
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-197
Runtime System Library for Parallel FiniteDi�erence Models with NestingbyJohn MichalakesMathematics and Computer Science DivisionTechnical Memorandum No. 197

March 1997This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.

ContentsAbstract 11 Overview 12 Related Work 33 Model Characteristics 33.1 Nesting : 44 Parallelization 54.1 Domain De�nition, Decomposition, and Allocation : : : : : : : : : : : : : : 54.2 Local Iteration and Computation : 54.3 Local and Logical Index Correspondence : 64.4 Interprocessor Communication : 64.5 Load Balancing : 74.6 Irregularly Shaped Nests : 84.7 Input and Output : 85 Example: Simple Relaxation 95.1 Preliminaries : 105.2 De�ning Domains : 105.3 De�ning Stencils : 155.4 Initializing the Mother Domain : 175.5 Computation on a Domain : 185.6 Forcing the Nest : 195.7 Dynamic Load Balancing : 215.8 Main Loop and Model Output : 226 Parallel MM5 237 Conclusions and Future Work 25References 38iii

A Runtime System Library for Parallel FiniteDi�erence Models with NestingJohn MichalakesAbstractRSL is a parallel run-time system library for implementing regular-grid models withnesting on distributed memory parallel computers. RSL provides support for auto-matically decomposing multiple model domains and for redistributing work betweenprocessors at run time for dynamic load balancing. A unique feature of RSL is thatprocessor subdomains need not be rectangular patches; rather, grid points are indepen-dently allocated to processors, allowing more precisely balanced allocation of work toprocessors. Communication mechanisms are tailored to the application: RSL providesan e�cient high-level stencil exchange operation for updating subdomain ghost areasand interdomain communication to support two-way interaction between nest levels.RSL also provides run-time support for local iteration over subdomains, global-localindex translation, and distributed I/O from ordinary Fortran record-blocked data sets.The interface to RSL supports Fortran77 and Fortran90. RSL has been used to paral-lelize the NCAR/Penn State Mesoscale Model (MM5).1 OverviewRSL is a Fortran library and run-time system for e�cient and straightforward implemen-tation of nested regular-grid applications, such as regional weather models, on distributedmemory parallel computers. These applications employ �nite-di�erence approximation onrectangular coordinate grids. Domains may be a single rectangle or, more generally, unionsof rectangles. RSL facilitates parallel implementation of these models by providing sup-port for domain decomposition, stencil communication, interdomain communication, localiteration, index translation, distributed I/O, and dynamic load balancing.Features of RSL include the following:� Domain speci�cation, decomposition, and remapping over processors{ Rectangular or irregularly shaped (union of rectangles) domains.{ Multiple, two-way interacting nested domains, independently decomposed overprocessors.{ Pointwise processor decomposition allowing nonrectangular processor subdomainsfor more precisely balanced allocation of work to processors.1

{ Automatic run-time decomposition and re-decomposition of domains using built-in or user-supplied mapping functions.{ Run-time migration of state data between processors for dynamic load balancing.{ Automatic run-time calculation of array size requirements on each processor, al-lowing models to dynamically allocate memory for local domain data structures.� Communication{ Stencil exchanges for updating ghost regions. These are de�ned at a high levelthat encapsulates details of the underlying message passing. Packing and un-packing of messages from domain data structures is handled automatically andtransparently within RSL,{ Automatic �rst-use compilation of stencil communication schedules. Stencilsautomatically recompile when a domain is remapped,{ Message aggregation semantics that allows many �elds to be communicatedwithin a single stencil exchange, yielding greater code compactness and, on ma-chines where latency is a concern, e�ciency.{ Broadcast-merges to exchange forcing and feedback data between nested do-mains.� Computation{ Run-time support for local iteration over decomposed dimensions on each pro-cessor.{ Run-time support for global-local index translation on each processor.{ M4 and CPP macro support for expressing parallel loops and indices. Thesemay be used directly or targeted by a source translator such as the Fortran Loopand Index Converter (FLIC)[7], enabling a same-source approach to parallelizingexisting codes with RSL.� Distributed I/O{ Single-reader/single-writer distributed I/O, in which the \monitor" processor,usually node zero, reads and writes the �le system and communicates with theother processors to distribute or collect the data.{ Ability to read and write ordinary Fortran record-blocked serial data sets, allow-ing the parallel code to use native data sets.MPMM and MM90, parallel versions of the Penn State/NCAR Mesoscale Model MM5were parallelized using RSL [2, 3, 4, 8]. At the present time, RSL is applicable only tomodels using explicit solvers. Support for global communication in the form of paralleltranspose routines is under future work. The transposes may be implemented in a codeoutside the RSL framework by calling MPI directly. The interested reader may also wishto consider routines in the PETSc tools package[1].Continuing RSL development focuses on the FLIC source translation software, whichis based on a full Fortran-parser front-end and application speci�c back-end software, to2

generate distributed-memory code mapped transparently onto the RSL library from orig-inal model source code [7]. This approach, which is virtually directiveless, will allow fulland seamless integration of MPP capability into the o�cially maintained weather model,eliminating the need to support separate versions of the code for di�erent architectures.The purpose of this article is to provide an introduction to RSL and its concepts, pre-senting usage examples where necessary, but deferring detailed information on the libraryto a reference manual 1 Section 2 discusses related research e�orts by other groups. Section3 gives a brief overview of the features of the type of application RSL is designed to helpparallelize. Section 4 discusses the issues involved in parallelizing a model and describesthe approach one use with RSL. Section 5 walks through the parallelization of a simplerelaxation code using RSL. Section 6 discusses the implementation of a MM5 using RSL.Section 7 presents conclusions and directions for future work.2 Related WorkRSL is similar to e�orts of a number of other groups, particularly Comlib [5], LAPRX [6],and NNT/SMS [9], in that it provides high-level, e�cient mechanisms for performing data-parallel computations over multiple interrelated grids.Like the LAPRX software abstractions, RSL is able to support dynamic load balancing,e�cient intergrid communication, irregularly shaped logical domains, and irregularly shapedprocessor subdomains. However, since RSL is less general|tailored to multiple-grid �nite-di�erence atmospheric models|it is smaller, simpler, and more conceptually familiar toa geophysical modeler. At the same time, it exploits �ne-grained parallelism over grids,whereas LAPRX is restricted to coarse-grained parallelism over grids (and not within them).RSL, like NNT/SMS and Comlib, is closely targeted to atmospheric models. In par-ticular, like NNT/SMS, RSL o�ers stencil exchanges and interprocessor communication tosupport nesting. NNT/SMS puts more emphasis on parallel I/O, though it limits gridsand processor subdomains to rectangular geometries. RSL, on the other hand, o�ers ad-vanced features: pointwise decomposed, irregularly shaped processor subdomains, dynamicremapping of work to processors for load balancing, and support for irregularly shapednests. Earlier concerns that RSL required more dramatic modi�cations to existing codesfor column callability have been addressed in the current version, without sacri�cing RSL'sunique ability to e�ciently support irregularly shaped processor decomposition.3 Model CharacteristicsFinite-di�erence models of dynamical systems are widespread in atmospheric and othersciences. The models typically consist of a two- or three-dimensional gridded domain repre-senting the model state|velocity, temperature, and pressure, for example. Most generally,a domain is initialized and then integrated forward over a series of time steps. Boundaryinput and model output are performed periodically, as follows:1A draft is in progress. Please see http://www.mcs.anl.gov/Projects/RSL for the most up to date version.3

Domain de�nition and initialization.Loop over time.If it is time, acquire new boundary data.Advance domain state by one time step.If it is time, perform model output.End loop.At the beginning of the simulation, the model domain is de�ned in terms of its size,shape, and allocation in memory, and the initial state of the model is input or otherwiseobtained. A second source of model input, lateral boundary conditions, may input period-ically over the course of the simulation. During each time step, the state of the model forthe next time step is computed for each grid point by evaluating the state at the point andsome stencil of nearest-neighbor grid points.Xnewi;j = c1Xi+i;j +c2Xi;j�1 + c3Xi;j + c4Xi;j+1+ c5Xi�i;jThe exact shape and number of points in a stencil depend on the order of the �nite-di�erencemethod and on the gridding scheme used. Interpolation will also involve a stencil.3.1 NestingAccurate resolution of weather phenomena improves with scale-appropriate resolution. How-ever, as �neness of resolution increases, so does computational cost because of the addednumber of grid points and the smaller time step. Nesting is used to increase resolution overportions of a domain. Nesting is accomplished by positioning a higher-resolution domainwithin a coarser domain and exchanging forcing and feedback data between the two:Parent domain de�nition and initialization.Nested domain de�nition and initialization.Loop over time.Advance parent domain one time step.Transfer parent domain state data to force the nest.Loop over nest time steps.Advance nested domain one time step.End loop.Transfer nested domain state data back to parent domain.If it is time, perform model output for both parent and nest.End loop.The parent domain advances one time step; then data in the region of the nest is transferredfrom the parent to the nest. The model iterates over the smaller nested domain time steps,bringing it forward to the same time level as the parent. Finally, nested domain data istransferred back onto the region of the parent domain, and the next time step commences.4

Nested domains may themselves have nests, allowing simulations to reach arbitrarily�ne resolutions within the limits of the particular dynamics and physics in the model.4 ParallelizationParallelizing a model on a distributed-memory parallel computer involves de�ning, decom-posing, and allocating memory for the model domains; iteration over decomposed dimen-sions; local-global index translation; interprocessor communication; load balancing, nesting;and I/O. RSL provides support for each of these tasks.4.1 Domain De�nition, Decomposition, and AllocationDomains are de�ned by describing their size, shape, and parentage to RSL. Size and shapeare speci�ed by giving the number of rows and columns for rectangular domains. Forirregularly shaped domains, size and shape are speci�ed by giving the outline of the domain,that is, by listing the coordinates of the vertices of the irregularly shaped domain's enclosingpolygon. A domain may be any nonzero size provided it is totally enclosed by its parentdomain (in the case of nest), within the limits of physical memory. A nest is always de�nedas the child of a parent domain, and parentage remains �xed for the duration of the nest.Multiple nested domains may be de�ned within a parent. There must always be a top-levelmother domain that is de�ned �rst and only once. The mother domain is always rectangularand has no parent.Decomposition of a domain maps each grid cell of the domain to a processor. All domainsin a model are de�ned over the same set of processors. Viewed another way, each processorhas a piece of every domain in the model. RSL automatically decomposes domains whenthey are de�ned or remapped. RSL's default algorithm divides the domains into partitionswith the number of points as close to equal as possible. Each point of the domain can beallocated independently, allowing irregularly shaped processor subdomains. Domains maybe redecomposed at any point during a run. The user may specify alternative decompositionalgorithms.Allocation pertains not to the domain itself but rather to the two- and three-dimensionalarrays that store the state and intermediate variables used in the model. For a givendecomposition, the arrays associated with a domain require a certain amount of memoryon each processor. RSL does not actually allocate the arrays associated with a domain.Rather, it makes the size information available to the program. This size information maybe used to allocate memory dynamically or simply to provide a means for checking thatstatic sizes are large enough for a decomposition.4.2 Local Iteration and ComputationSince a processor computes only the points that are stored locally, a mechanism is neededfor keeping track of a processor's local allocation in the parallel code. RSL assumes theresponsibility for keeping track of the points that are local on each processor and for direct-ing iteration over those points. A number of mechanisms are provided. RSL may actually5

control the iteration by applying model routines that the user provides as functional point-ers, or it may simply make the partition information available to control iteration that isspeci�ed explicitly in the user program. Macros are provided to facilitate the expressionof decomposed loops using RSL. The macros may be programmed manually or generatedautomatically by using a special purpose preprocessor or precompiler, such as FLIC.4.3 Local and Logical Index CorrespondenceUnder the single-address space memory model, the indices of a point in the logical domainare identical to its array indices, so that the indices may be used interchangeably. Decom-position and shrinking of local data structures on processors break this relationship: theindex of a point in a local processor's memory is almost never the logical index of the pointin the global domain. Therefore, the relationship between the local array indices and logicalcoordinates must be explicitly established and maintained.RSL automatically computes and makes available to the program both sets of indices.The indices in local data structures are used whenever a local array is referenced in thecode. No assumptions can be made by the program about the actual value of these localindices except that a point i is always adjacent to the points i � 1 and i + 1 in a givendimension. A corresponding set of global indices are used for determining the position of apoint within the logical domain, for example, when testing for proximity with a boundary.4.4 Interprocessor CommunicationModel computations that involve data from neighboring cells or from cells that exist onanother domain will require communication if the cells reside on a di�erent processor. Toavoid complicated, error-prone, and potentially less e�cient message-passing code in themodel, RSL provides high-level communication mechanisms for handling the types of datadependency found in �nite-di�erence models with nests. The stencil provides intradomaincommunication for �nite-di�erencing and interpolation. The broadcast-merge provides com-munication for exchanging data between domains for nesting.Intradomain communication resolves the nearest-neighbor data dependencies associatedwith �nite di�erencing and horizontal interpolation. The set of neighboring points thathave data needed for a computation is called a stencil. Under RSL, stencils are de�ned byspecifying the points of the stencil and the �elds (model variables) that should be exchangedon each of the points. Stencils are used in stencil exchanges: transfers of data from remotelystored points into extra cells of the local array that have been allocated around the partition.This padding is known as the \halo" or \ghost" region of an array. RSL automaticallydetermines the size and shape of the ghost region for each de�ned stencil. During a stencilexchange, the needed data is automatically bu�ered on the sender and unbu�ered on thereceiver; hence, each stencil exchange involves only one message sent and one messagereceived for each processor pair in the exchange, minimizing the latency cost of the transfer.Interdomain communication transfers the forcing or feedback data between a parentdomain and a nest. At the time a nest is created, RSL establishes a link between each parentdomain point and the points in the nest it overlays (Figure 1). The links are logical and donot depend upon on what processor a parent or nested domain point resides. Downward6

parent domain
mesh point

nested domain
mesh points

Bidirectional RSL
communication streamsFigure 1: A parent domain cell and nine nested domain cells covering the same geographyat di�erent resolutions. The domains exchange data over communication streams.forcing, from parent to nest, involves a logical broadcast from a parent domain point to thenest points that are linked to it. Upward forcing involves a merge along the same links butin the opposite direction.Incidentally, RSL permits the ratio of nested to parent points to vary in each horizontaldimension (but always � 1).4.5 Load BalancingLoad imbalance occurs when some processors have more work to do than others. Proces-sors that �nish �rst idle, reducing performance relative to the ideal (in which all processorsare kept busy). The ratio of actual performance to ideal performance is called the e�-ciency. Ine�ciency from load imbalance may result from (1) an uneven initial distributionof domain points to processors{especially if the number of processors does not evenly di-vide the number of rows or columns; (2) reduced amounts of work in the boundary pointsof a domain; (3) dynamic conditions in the simulation itself that cause computations tobe performed in some sections of the domain but not in others; or (4) di�erent processorspeeds or task loads in a heterogeneous or multiuser computing environment. RSL ad-dresses this problem by supporting optimal decompositions of points to processors, whetheror not the decomposition results in rectangular processor subdomains, and by providinga mechanism for distributing and redistributing domain cells between processors. Imple-menting irregularly shaped processor decompositions would be prohibitively complicated inan explicit message-passing code or using High Performance Fortran, which supports onlyregular decompositions of work to processors. However, RSL supports this automatically,transparently, and with little additional overhead.7

Multiple Rectangular
 Nests

Single Irregular
 Nest

Figure 2: A single irregularly shaped nest �ts a feature of interest in a simulation moreclosely and without additional code to handle the overlap region that occurs when tworectangular nests are used.4.6 Irregularly Shaped NestsModels that support nested domains may also allow multiple overlapping nests so that auser can overlay a number of rectangular nests to closely �t a feature of interest in thesimulation, such as a weather front or a region of complicated terrain. RSL supportsmultiple domains on a nest level, but the user can avoid the need to writing complicated\overlap" code by specifying, instead, an irregularly shaped nested domain whose shape isa union of rectangles to �t the feature of interest (Figure 2). Control
ow of the model isalso simpli�ed by eliminating nest overlapping in favor of irregularly shaped domains. Thenesting hierarchy becomes strictly tree-shaped, since only parent-to-nest (not nest-to-nest)data dependency relationships need to be supported.4.7 Input and OutputReading data from a serial data set onto distributed domains and outputting distributeddata to serial data sets requires communication between processors and may also introducea serial bottleneck in the parallel code. RSL provides routines that read and write sequentialFortran data sets, automating the distribution of array elements to processors on input andthe collection of array elements from processors on output. The parallel implementation ofMM5, for example, is able to read and write serial MM5 data sets.Although RSL manages the complicated task of decomposing serial input and recom-posing serial output on the
y, the mechanism employed is currently \single reader, singlewriter"; that is, one processor reads and writes the data to �les and sends and receivesmessages to the other processors. This aspect of the system is currently nonscalable andrepresents a disadvantage. However, since atmospheric codes such as MM5 generate outputat a low frequency relative to the amount of computation that occurs between outputs,the single-reader, single-writer mechanism has not been a serious problem in the work with8

MM5. Implementing a scalable yet portable solution to parallel I/O is an issue that will beaddressed in future implementations of RSL.5 Example: Simple RelaxationThe previous discussion described RSL's approach to parallelizing �nite-di�erence weathercodes with nesting. The purpose of this section is to introduce some of the main rou-tines and discuss their usage in the context of a simple example. The size and complexityof a weather model make it unsuitable for illustration. Instead, a simple grid-boundaryrelaxation program is used. The basic algorithm is as follows.De�ne an m� n domain.Initialize the boundaries.Do the following set of computations some number of times:Exchange stencil data.Do j 1, nDo i 1, mNewi;j = (Xi+1;j�1 +Xi+ 1; j + � � �)=8End do.End do.Do j 1, nDo i 1, mXi;j = Newi;jEnd do.End do.End do.Each iteration of the model computes the value at each point i; j as the average of itseight neighbors. Thus, when decomposed, some data necessary for the local computationis located on a di�erent processor, and a stencil exchange must be de�ned and executedbefore each successive phase of the computation.To simulate the interdomain communication in a model with a nested domain, the exam-ple has a nested grid. Also, the nest is de�ned with an irregular boundary to demonstratethis capability in RSL. The complete algorithm with the nested communication is as follows:De�ne an m� n mother domain.De�ne a �ner resolution nest (arbitrary shape) in mother domain.Initialize the boundaries of the mother domain.Do the following until simulation is �nished:Exchange stencil data on mother domain.Relax the mother domain.Transfer mother domain data onto nested boundary.Do the following several times (simulating a nested time step):Exchange stencil data on nested domain.9

program relaxmain#include "rsl.inc"logical rsl_iammonitorexternal rsl_iammonitor...call rsl_initializeif (rsl_iammonitor()) thenread*, nproc_m, nproc_nend ifcall rsl_mon_bcast(nproc_m,4)call rsl_mon_bcast(nproc_n,4)call rsl_mesh(nproc_m, nproc_n)Figure 3: RSL include �le and initialization.Relax the nested domain.End do.Transfer data from nest onto overlying cells of mother domain.End do.After each relaxation, mother domain cells transfer their values of X to the underlyingnested domain points if those points lie on the boundary of the nest. This process isequivalent to the transfer of atmospheric variables to update the boundaries of a nesteddomain. The relaxation computation is performed several times on the nest; then, nesteddata is fed back onto the parent domain and the next major time step commences.Main sections of the program are detailed below. The complete Fortran90 texts of therelaxation code are provided as appendixes.5.1 PreliminariesThe main program is declared and the header �le rsl.inc is included in Figure 3. Here, aCPP directive is used, but a Fortran INCLUDE also works. The RSL library must be initial-ized before it can be used. RSL INITIALIZE partially initializes the run-time system so thatcertain basic functions may be used. Informational routines such as RSL IAMMONITORand the simple broadcast routine RSL MON BCAST are enabled, but not the rest of thesystem. This strategy allows con�guration information to be read on processor zero (the\monitor") and distributed to the other processors. Initialization completes with a call toRSL MESH, giving the values just read in for the numbers of processors decomposing the Mand N dimensions. Con�guration information supplied by Fortran Namelists is also inputin this fashion at the beginning of a run.5.2 De�ning DomainsRSL must be given a description of the domains that it will be working with. Once described,a domain becomes active and an integer descriptor is returned for use when performing10

C define the top level domaincall rsl_mother_domain($ did, ! parent domain descriptor (output)$ RSL_8PT, ! maximum stencil (input)$ m, n, ! global dimensions (input)$ mloc, nloc) ! local memory required (output)C define a nestxlist(1) = 4 ; ylist(1) = 6 ! outline of the nest, specifiedxlist(2) = 4 ; ylist(2) = 11 ! in coarse domain coordinatesxlist(3) = 7 ; ylist(3) = 11xlist(4) = 10 ; ylist(4) = 14xlist(5) = 15 ; ylist(5) = 14xlist(6) = 15 ; ylist(6) = 9xlist(7) = 10 ; ylist(7) = 4xlist(8) = 6 ; ylist(8) = 4xlist(9) = 4 ; ylist(9) = 6 ! close the polygon (optional)npoints = 9call rsl_spawn_irreg_nest($ nid, ! nested domain descriptor (output)$ did, ! parent domain descriptor (input)$ RSL_8PT, ! max stencil (input)$ xlist, ylist, 7, ! xpts, ypts, and npts (input)$ 3, 3, ! nesting ratio in m and n (input)$ 2, 2, ! domain trim factors (input)$ mloc_n, nloc_n, ! local memory size (output)$ m_n, n_n) ! global size (output)Figure 4: De�nition of the top-level mother domain and an irregularly shaped nest.computation, stencil exchanges, opening nests, remapping, and other operations on thedomain. The top-level mother domain must be speci�ed. Nests may be opened in anydomain that is currently active at any time.The mother domain. One domain must always be de�ned in a model. The code inFigure 4 declares this top-level mother domain for the relaxation program. M and n areinteger variables giving the global number of rows and columns of the two-dimensionaldomain. Although nested domains may be irregularly shaped, the mother domain is alwaysrectangular. The de�nition of the domain also results in its automatic decomposition. Here,the default decomposition algorithm in RSL is used. The decomposition generated for fourprocessors is shown in Figure 5. The decomposition of the nested domain is shown in Figure7. On return, RSL MOTHER DOMAIN sets the integer arguments mloc and nloc, spec-ifying the minimum local array size that will hold arrays associated with the decomposeddomain. The values of mloc and nloc may di�er on each processor. If the calling programuses dynamic memory allocation, such as is available in Fortran 90, the sizes can be usedto allocate the model arrays. If not, the sizes may still be used to check that statically11

domain=0, len_n=25, len_m=202 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 30 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1Figure 5: Decomposition of the mother domain.
Figure 6: The parent domain and its nonrectangular nest as de�ned in the example relax-ation code. The nest is trimmed two cells in each horizontal dimension (trimmed sectionsshown in grey). 12

domain=1, len_n=36, len_m=33. 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 . .0 0 0 0 0 0 0 0 0 0 0 0 0 1 . .0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1Figure 7: Decomposition of the irregularly shaped nest.
13

allocated arrays are large enough for the decomposition.The value of RSL 8PT, de�ned in the rsl.inc, tells RSL what the largest stencil will be.In this case, an 8-point stencil is speci�ed (a 9-point stencil if one counts the center point).On return, the integer variable did is set to the value of an RSL handle that refers to thedomain just declared.De�ning a rectangular nest. Rectangularly shaped nests are easily speci�ed in RSL byproviding the number of rows and columns of the domain and by giving the position of thenest within its parent. RSL provides two routines for specifying regular nests. The �rst,RSL SPAWN REGULAR NEST, speci�es the dimensions of the nest in parent domain co-ordinates. The second, RSL SPAWN REGULAR NEST1, speci�es the dimensions in nestcoordinates. The following example is from MM90, the Fortran90 parallel implementationof MM5: call rsl_spawn_regular_nest1(+ d%child(kid)%domdesc,+ d%domdesc,+ RSL_24PT,+ ipos,+ jpos,+ idim,+ jdim,+ irax, jrax,+ d%child(kid)%mloc, d%child(kid)%nloc,+ d%child(kid)%m, d%child(kid)%n)The �rst argument will be returned with the RSL descriptor for the nest (the reference hereis through the Fortran90 derived data type for the parent). The second argument is thedescriptor for the parent. RSL 24PT speci�es the largest stencil that will be used on thedomain. IPOS and JPOS are the parent domain coordinates of the southwest corner of thenest. IDIM and JDIM are the M and N dimensions of the nest.2 IRAX and JRAX specifythe nesting ratios in each dimension. The last four arguments return the minimum localarray size in M, the minimum local array size in N, the e�ective global domain size in M, andthe e�ective global domain size in N. The returned local memory requirements may be usedto dynamically allocate local arrays or may provide a means to check that enough memoryhas been allocated for the given decomposition. The domain will have been automaticallydecomposed when the routine returns. Consult the RSL reference manual for additionalinformation.De�ning an irregularly shaped nest. The relaxation problem in the example alsospeci�es a nested domain. The call to RSL SPAWN IRREG NEST in Figure 4 de�nes anested domain and positions it within the coarse domain. The resolution of the nest is threetimes that of the coarse domain in each of the two horizontal dimensions, associating ninenested cells with each coarse domain cell in the region of the nest.2M corresponds to the north-south dimension in MM5, N to the east-west dimension.14

The integer argument did speci�es the parent domain. On return, the integer argumentnid is set to a handle that will be used when referring to the nest in subsequent calls toRSL.The nest in the example is irregularly shaped. Its size and shape are speci�ed by de�ningthe outline of the enclosing polygon in parent domain coordinates, speci�ed by xlist andylist. The next argument is a count of the number of elements in each of the lists. Althoughthe lists are hard-coded here, the outline coordinates could also come from a �le or aninteractive window that allowed the user to draw the nest's shape through a run-time userinterface (not part of RSL).Since the nesting ratio in each dimension is three, the dimensions of the nest in eachdimension must be a multiple of three. The result, for example with staggered logical grids,may be iteration over parts of the nest that do not exist. Therefore, a number of cells maybe trimmed from each dimension by specifying a trim in each dimension. Trims of 2 and2 are speci�ed here. The trim may be in the range of integers zero through the nestingratio minus one. Cells are always trimmed from the high end of a dimension. The resultingparent and nested domains are shown in Figure 6.As with the mother domain, the nest is automatically decomposed when it is instan-tiated. The routine returns the required memory size for the local partition (mloc n andnloc n) and the global size of the nest as if it were rectangular. In other words, m n and n nreturned above specify the size of the rectangle that would totally enclose the nest, eventhough the nest's shape may not cover every point of that rectangle.5.3 De�ning StencilsThe relaxation computation uses the eight neighboring values of the variable X for eachnonboundary cell of the domain. Since the horizontal dimensions of the domain are decom-posed, some data needed for the computation will lie on other processors. Therefore, wede�ne an 8-point stencil that can be used by the routine RSL EXCH STENCIL to exchangedata prior to the computation. RSL stencils comprise messages, which are composed of oneor more �eld descriptions. A stencil for the variable X is de�ned in Figure 8.Building a stencil involves specifying the messages that will be required for each point ofthe stencil. Therefore, the messages are constructed �rst.The call to RSL CREATE MESSAGE creates a temporary message descriptor that canbe built up by adding �eld descriptions. The messages descriptor stays in e�ect untilit is used in the description of the stencil, after which point the message descriptor be-comes unde�ned. The call to RSL BUILD MESSAGE adds the two-dimensional array Xas a �eld of the message. Other �elds can be added to the message by repeated calls toRSL BUILD MESSAGE.The �rst argument to RSL BUILD MESSAGE is the message descriptor. This is fol-lowed by the type speci�er, in this case RSL REAL (de�ned in rsl.inc). The �eld itselfis speci�ed as the third argument. The fourth argument is the dimensionality of X . Thelast three arguments, DECOM, GLEN, and LLEN, are integer arrays that specify how thedimensions are decomposed, the global or logical length of the dimensions, and the localdeclared lengths of the dimensions, respectively. The arrays are set at the top of the �gure.15

decomp(1) = RSL_M ! minor dim is mdecomp(2) = RSL_N ! major dim is nllen(1) = mloc ! local memory size in mllen(2) = nloc ! local memory size in nglen(1) = m ! global domain size in mglen(2) = n ! global domain size in nc define the message to be sent on the stencil pointscall rsl_create_message(mesg) ! create a message handlecall rsl_build_message(mesg, ! add X to the messageRSL_REAL, ! type of XX, ! X2, ! how many dimensionsdecomp, ! how decomposedglen, ! global dimensionsllen) ! local dimensionsc create and define the stencilpoints(1) = mesgpoints(2) = mesgpoints(3) = mesgpoints(4) = mesgpoints(5) = mesgpoints(6) = mesgpoints(7) = mesgpoints(8) = mesgcall rsl_create_stencil(sten)call rsl_describe_stencil(did, sten, RSL_8PT, points)Figure 8: Building a stencil description out of messages.The lowest numbered index is most minor.Once the messages for the stencil are built (in this case there is only one), the messagesare assigned to the stencil points by �rst assigning them to an integer array POINTS whoselength is equal to the number of stencil points, then using the array to describe the stencilwith a call to RSL DESCRIBE STENCIL. The stencil descriptor being described must �rsthave been created with a call to RSL CREATE STENCIL.Stencil points are numbered from top to bottom and left to right. Thus, for an 8-pointstencil, index 1 in the points array is the descriptor for the northwest message. Index 8 isthe descriptor for the southeast message. The center point of the stencil is never speci�ed.This example shows the same message being assigned to each point of the stencil. However,di�erent messages may be assigned to di�erent stencil points. If a stencil point is not used,the corresponding array element should be assigned the value RSL INVALID, instead.RSL DESCRIBE STENCIL describes a stencil and associates it with a domain. Sten-cils are speci�c to the domain for which they are described. Therefore, a stencil must bedescribed for each new domain, for example, by including the stencil de�nitions in a sub-16

C DECLARATION SECTIONRSL_RUN_DECL...C EXECUTABLERSL_INIT_RUNVARS(did)...RSL_DO_N(j)RSL_DO_M(i)X(i,j) = 10.0RSL_ENDDORSL_ENDDORSL_DO_N(j,2,n-1)RSL_DO_M(i,2,m-1)X(i,j) = 0.0RSL_ENDDORSL_ENDDO Figure 9: Initializing the mother domain.routine. RSL compiles communication schedules for stencils at the point of �rst use after adomain is de�ned or remapped.5.4 Initializing the Mother DomainThe �rst computational part of the program initializes X . Boundary cells are given initialvalues of 10.0. Interior cells are set to 0.0. The code is shown in Figure 9.The �rst loop sets all cells to 10.0; the second loop sets the interior to 0.0. The macroRSL INIT RUNVARS initializes the looping macros RSL DO M and RSL DO N for thedomain speci�ed by the integer descriptor DID. Arguments to the macros are the name ofthe loop variable and, if the loop is over a subrange of the logical dimension, the startingand ending global indices. Otherwise, only the loop variable is speci�ed. Another wayto handle boundary points separately from the interior is to code a single loop with aconditional in the body. This is done in the relaxation computation later in the example.RSL RUN DECL in the declaration section declares the data structures used when the loopmacros are expanded.The loop macros are de�ned in RSL in the �le LoopMacros.m4, which may be expandedby using M4 on the command line or in a UNIX Make �le:m4 Loopmacros.m4 file.fOften, subroutines are written to include iteration over one dimension but not the other;rather, the statement expressing the major iteration may be in a routine further up the calltree. This is handled in the called routine by including the comment17

C define(INSIDE_MLOOP)or C define(INSIDE_NLOOP)For additional information on RSL macros and their expansions, see the RSL referencemanual. Macro insertion may be automated using FLIC.5.5 Computation on a DomainComputation of one relaxation step for either domain, mother or nest, involves iteratingover the local subdomain on each processor and computing the average value of the eightneighbors, except on the boundaries, which are held �xed. The code is shown in Figure 10.As in the previous example, RSL INIT RUNVARS initializes the loop macros. This stepis not strictly necessary, since the �rst call to the macro for a domain initializes the loopingstructures for every routine with the RSL RUN DECL macro in its declaration section.The impact on e�ciency is minimal, however, and this is the safest approach during codedevelopment.Since the routine will be called on both rectangular and irregularly shaped domains, theboundary test must be handled accordingly. RSL provides support for handling irregularlyshaped boundaries using conditionals within the parallel loops. RSL GET BDY LARRAYinitializes a three-dimensional integer array, BDYINFO, with boundary proximity infor-mation. The �rst two dimensions correspond to the horizontal dimensions of the domainand are indexed by the local indices I and J . The third dimension indexes the proximityinformation by kind. The values for this index are de�ned in the rsl.inc include �le:Normal grid boundary information (dot, in Arakawa B)RSL MLOW Distance to MLOW (south) boundaryRSL MHIGH Distance to MHIGH (north) boundaryRSL NLOW Distance to NLOW (west) boundaryRSL NHIGH Distance to NHIGH (east) boundaryRSL DBDY Distance to closest boundaryRSL CLOSEST Closest boundaryCross grid boundary information (cross, in Arakawa B)RSL MLOW X Distance to MLOW (south) cross boundaryRSL MHIGH X Distance to MHIGH (north) cross boundaryRSL NLOW X Distance to NLOW (west) cross boundaryRSL NHIGH X Distance to NHIGH (east) cross boundaryRSL DBDY X Distance to closest boundaryRSL CLOSEST X Closest cross boundaryBefore the relaxation, a stencil exchange is performed. RSL EXCH STENCIL is calledwith ID set to the identi�er of the domain, DID or NID. STEN is set to the stencil descriptorde�ned for the domain. The exchange ensures that the data for every point needed in theaverage calculation will be on-processor, either locally or in the ghost region.18

C DECLARATION SECTIONRSL_RUN_DECL...C EXECUTABLERSL_INIT_RUNVARS(did)call rsl_get_bdy_larray(id, bdyinfo)call rsl_exch_stencil(id, sten)RSL_DO_N(j)RSL_DO_M(i)if (bdyinfo(i,j,RSL_DBDY) .eq. 1) thenNew(i,j) = X(i,j)elseNew(i,j) = ($ X(i+1,j-1) + X(i+1,j) + X(i+1,j+1) +$ X(i,j-1) + X(i,j+1) +$ X(i-1,j-1) + X(i-1,j) + X(i-1,j+1)$) / 8.0endifRSL_ENDDORSL_ENDDORSL_DO_N(j)RSL_DO_M(i)X(i,j) = New(i,j)RSL_ENDDORSL_ENDDO Figure 10: One relaxation step on a domain.Following the boundary calculation in the �rst set of nested loops, the variable X isupdated in a second set of loops. Note that unlike the the �rst loop body, the second loopbody for the update has no horizontal dependencies. Therefore, no prior stencil exchangeis required.5.6 Forcing the NestData is exchanged from a parent domain to a nest in three phases. The �rst phase involvespacking the data on the parent domain, sending the data, and unpacking the data on thenest.The packing in Figure 11 is implemented as a conditional loop that performs one itera-tion for each point in the nested domain, speci�ed by nid. Each time RSL TO CHILD INFOis called, it returns with the global coordinates of the nested point, NIG and NJG; the localand global indices of the forcing parent domain point, I,J, PIG, and PJG; and the index ofthe nested point, CM and CN, associated with the parent domain point. When no nestedpoints remain to be processed, RSL TO CHILD INFO returns a value of �1 in the integerargument RETVAL. 19

call rsl_to_child_info($ did, ! parent (input)$ nid, ! nest (input)$ 4, ! bytes from each point (input)$ i, j, ! local indices in parent (output)$ pig, pjg, ! global indices in parent (output)$ cm, cn, ! which child of parent cell (output)$ nig, njg, ! global indices in nest (output)$ retval) ! result (1 if a valid point)do while (retval .eq. 1)call rsl_get_bdy_gpt(nid, bdyinfo, nig, njg)if (bdyinfo(RSL_DBDY) .eq. 1) thencall rsl_to_child_msg($ 4, ! size of data in bytes (input)$ X(i,j)) ! data being added to message (input)endifcall rsl_to_child_info(did, nid, 4,$ i, j, pig, pjg, cm, cn,$ nig, njg, retval)enddocall rsl_bcast_msgsFigure 11: Forcing the nest boundary from the parent domain: packing the data from theparent and sending it between processors.The call to RSL GET BDY GPT (\get boundary information for a globally indexedpoint") is used to determine boundary proximity for the nested point indexed by NIG andNJG. If the nested point is on a boundary, RSL TO CHILD MSG is called to pack thevalue of X(i,j), the parent copy of the variable X , into the message destined for the pointindexed by NIG and NJG on the nest. In this example, only one variable is being sent;however, RSL TO CHILD MSG may be called as many times as necessary to pack �elds forthe nested point. After the completion of the packing loop, the messages are sent betweenprocessors with the call to RSL BCAST MSGS.In Phase 2 of the broadcast, data from the parent domain cells is unpacked onto the nest.Again, a packing loop is used, now with calls to RSL FROM PARENT INFO (Figure 12).On each iteration of the loop, RSL FROM PARENT INFO returns the local and globalindices of a nested point, I, J, NIG, and NJG, and the global indices of the sending parentcell, PIG and PJG. When no points remain, RSL FROM PARENT INFO returns a valueof �1 in RETVAL. RSL FROM PARENT MSG unpacks the data into the nest's copy ofthe array X .The upward forcing of nested data to the parent domain at the end of the set of nestediterations is similar to the downward forcing described here.20

call rsl_from_parent_info($ i, j, ! local indices in nest (output)$ nig, njg, ! global indices in nest (output)$ cm, cn, ! which child of parent cell (output)$ pig, pjg, ! global indices of parent (output)$ retval) ! result (1 if a valid point)do while (retval .eq. 1)call rsl_from_parent_msg($ 4, ! size of data in bytes (input)$ X(i,j)) ! data being extracted (output)call rsl_from_parent_info($ i, j, nig, njg, cm, cn,$ pig, pjg, retval)enddoFigure 12: Forcing the nest boundary from the parent domain: unpacking onto the nest.5.7 Dynamic Load BalancingDomains are automatically decomposed when they are de�ned. However, the applicationmay rede�ne the decomposition at any time. A remapping is done for a single domain andhas no e�ect on other domains in the simulation.The simplest remapping situation is if the data structures for a domain have notyet been allocated and initialized. In this case, the remapping is accomplished by usingRSL FDECOMPOSE:rsl_fdecompose(d, fcn, nproc_m, nproc_n, info, mloc, nloc)The �rst argument is the integer RSL domain handle. The FCN argument is a user-suppliedfunction that RSL will use to determine a new processor assignment for each point in thedomain. NPROC M and NPROC N are the numbers of processors decomposing m andn. The INFO argument may be used to pass information, such as per-processor timinginformation, to FCN for its internal use. MLOC and NLOC are integers that, on return,contain the minimum local array size for the newly decomposed domain. It is only slightlymore di�cult to remap a domain after arrays have been allocated and �lled with distributedstate data. This movement is accomplished by using a specially de�ned RSL state messageand the routine RSL REMAP STATE (Figure 13).RSL uses a state message to know how to pack and unpack �elds when moving pointsbetween processors. The variable DSTATE in the �gure is a Fortran90 structure containingpointers to X and other dynamically allocated model state arrays. The variable TMP isan identical structure that is used to hold the new state while the remapping from theorignal state is underway. Once the remapping is complete, the new state in TMP becomesthe state stored in DSTATE by means of Fortran90 pointer assignments in a user-suppliedroutine, MOVE STATE.Fortran90 is used to simplify the management of the user data structures involved inthe example remapping. Pointers, dynamically allocatable arrays, and derived types (struc-21

c define array X as a member of the state message, used in remappingcall rsl_create_message(mesg)call rsl_build_message(mesg,RSL_REAL,dstate%X,2,decomp,glen,llen)... add other fields to message ...call rsl_describe_state(d, mesg)c generate new decomposition; mloc and nloc return with new array sizesrsl_fdecompose(d, mapping, nproc_m, nproc_n, info, mloc, nloc)c allocate new data structures for the domain; store in temporary structurecall allocate_domain(tmp, m, n, mloc, nloc) ! user definedc now defined a new state message for the new X (associated with tmp)call rsl_create_message(mesg)call rsl_build_message(mesg,RSL_REAL,tmp%X,2,decomp,glen,llen)... add other fields to message ...call rsl_describe_state(d, mesg)c do the remappingcall rsl_remap_state(d)c replace the old model state with the new model statecall move_state(tmp, dstate) ! user definedFigure 13: Dynamic redecomposition of a domain over processors during a model run.tures) obviously simplify remapping. However, since RSL REMAP STATE is able to remapthe domain arrays in-place, the remapping can be accomplished within statically allocateddata structures under Fortran77. The mapping function, FCN, must be constrained to gen-erate only those mappings that will �t in the statically allocated data structures on eachprocessor.5.8 Main Loop and Model OutputThe main loop of the example is analogous to the time loop in a weather model. On eachiteration, the domain and its nests are advanced one time step. The code is show in Figure14. Output is generated periodically by the calls to RSL WRITE. The �rst argument isthe Fortran unit number of the data set. This is followed by the data description
agIO2D, de�ned in the rsl header �le rsl.inc. IO2D speci�es that the array being writtenis two-dimensional. Implicit is the assumption that both dimensions are horizontal anddecomposed and that the minor dimension of the array corresponds to the minor dimensionof the domain. That is, m in the domain and m in the array X are both minor. Thenext argument is the X array itself, followed by the domain descriptor. RSL REAL is atag specifying the type of the array. The arrays GLEN and LLEN specify the global andlocal sizes of the arrays. The local array size is given by the elements of LLEN, the globaldomain size by GLEN. 22

do t = 0, iter-1<relax coarse domain><forcing coarse->nest>do tnest = 1,3<relax nested domain>enddo<forcing nest->coarse>if ((mod(t,5).eq.0)) thencall rsl_write(18,IO2D,Xparent,did,RSL_REAL,glen,llen)call rsl_write(19,IO2D,Xnest,nid,RSL_REAL,glen_n,llen_n)endifendifFigure 14: Main loop of relaxation. For each iteration, one set of calculations is performedover the parent domain, the nest is forced, then three sets of calculations are performed onthe nest. Data from the nest is fed back onto the parent, and the cycle repeats. Output isgenerated every �ve iterations of the outer loop.The relaxation code described in this section was run for �fty steps on multiple processorsof an IBM SP2, generating output every �ve steps. The output data after the full �fty stepson the parent and nest domains is plotted in Figure 15.6 Parallel MM5MM5 is a numerical weather prediction model used for forecasting, climate prediction, andother atmospheric simulations for domains ranging from several thousand kilometers downto several hundred. Domains are uniform rectangular grids representing three-dimensionalregions of the atmosphere. The horizontal coordinate system is equally spaced geographi-cally, and the model uses the Arakawa-B gridding scheme. The vertical coordinate systemis � surfaces, with layers distributed more closely nearer the surface (23 layers in the cur-rent model). For this implementation, atmospheric dynamics is nonhydrostatic and uses�nite-di�erence approximation. Physics includes the Blackadar high-resolution planetaryboundary layer scheme, the Grell cumulus scheme, explicit moisture with treatment ofmixed-phase processes (ice), shallow convection, dry convective adjustment, and the Dud-hia long- and short-wave radiation scheme [3].MM5 was �rst converted to column-callable form and then parallelized using the �rstgeneration of RSL. MPMM, as the parallel version is called (for Massively Parallel MesoscaleModel), was validated and benchmarked on the IBM SP1 and SP2. It has since beenported to the Intel Paragon, Cray T3D, Fujutsu AP1000, Silicon Graphics Power Chal-lenge, and networks of workstations using MPI. Performance of 1.2 G
ops has been gen-erated for a single domain problem running on 64 SP1 processors. Additional informationregarding the parallel MM5 is available in [8] and on the World Wide Web at the locationhttp://www.mcs.anl.gov/Projects/mpmm/index.html.Parallelizing MM5 provided a number of insights and suggested improvements that havebeen incorporated into the latest version of RSL. These include explicit loop constructs that23

Figure 15: Example problem output from coarse domain (left) and nest running in parallelafter 50 iterations of the main loop, plotted as 2D density plots. The value of each point isrepresented by shades of grey. The position of the nested domain in relation to the coarsedomain is shown in outline. In each step on the coarse domain, the irregularly shapedboundaries of the nest are set to the values of the overlying coarse domain points. Then thenest performs several relaxation steps of its own. Finally, the values of the nested pointsare copied back onto the coarse domain points that overlay them.
24

allow relaxation of the column-callable requirement, support for dynamic memory allocationat the option of the programmer, removal from RSL of the need to explicitly compile stencilsand broadcast-merges before use (they are now compiled automatically on �rst use), andthe automatic and default decomposition of domains.7 Conclusions and Future WorkRSL provides a system whereby an existing or new weather model can be implemented ona parallel machine with support for dynamic, �ne-grained parallel decomposition of mul-tiple nested domains and with high-level communication routines that hide and e�cientlyimplement message passing. Improvements to the original version of RSL have also reducedthe number of changes to an existing code, simplifying initial implementation and ongoingmaintenance and e�ectively removing a source of architecture-dependent coding from themodel.New features and enhancements to the system will include� ports to other parallel machines,� scalable and portable parallel I/O,� hybrid parallelism,� fully Fortran90 implementation, and� automatic dependency analysis and source translation.Porting to other parallel machines such as the Cray T3E is already simpli�ed because RSLcan be implemented atop the MPI standard message-passing layer. The I/O mechanismof RSL is currently a potential obstacle to scalability and must be addressed in a portablemanner.Hybrid parallelism is the mixing of shared and distributed-memory approaches in asingle architecture: a set of distributed memories representing the computational nodes ofa message-passing computer but on each of which multiple processing elements operate inshared-memory mode. The semantics embodied in the computational and communicationstructures already in RSL will support this feature if the underlying mechanism is available.A fully Fortran90 implementation has the advantage of incorporating derived typesand dynamic memory allocation directly into RSL, allowing it to provide additional levelsof support for managing multiple parallel domains in separate processor memories. Onemight, for example, construct must of the underlying structure of a parallel model simplyby specifying to the run-time system a list of variables and their logical dimensions, givingthe run-time system complete control over their allocation and reallocation, further relievingthe programmer of the task of explicitly managing this (admittedly, this feature would bemore useful for a new code than an existing code).The long-range bene�t to ceding this kind of control to a run-time system is that ithides more and more of the implementation details and makes the top-level description of25

the program increasingly architecturally independent. The scienti�c community will bene�tsigni�cantly if a single expression of a weather model can be made to run equally well onvector, RISC, shared-memory, and distributed-memory parallel architectures. This goal willprove elusive in the foreseeable future for the general class of scienti�c applications preciselybecause of their ambitious scope. However, a focused approach that addressed the needsand requirements of a particular type of application|in this case, grid-based weather andrelated codes|has a good chance of success in the near term. Elements of a total systemwill include source translation and run-time system technology augmenting basic compilertechnology. Therefore, the run-time system library approach of RSL represents a step inthe direction toward architecture independence.AcknowledgmentsAppendixThe following is a Fortran90 implementation of the example code in Section 5. Each modeldomains is represented as a Fortran90 derived type, and the nesting hierarchy is imple-mented as pointers between these structures. The main computational part of the code is arecursive descent of this tree for each time step. The number of processors decomposing thecode and the size of all data model data structures are de�ned at run-time and dynamicallyallocated. The data for Figure 15 was generated by using this program on four processorsof an IBM SP2 computer.Implementation note: the IBM Fortran compiler is already F90 compliant and supportsrecursion. However, stack allocation of local variables may not be the default at everyinstallation. Therefore, the code should be compiled with -qnosave.CC FORTRAN 90 MODULE DEFINITION FOR A 'DOMAIN'CCCC User program definition of domain data structure andCC manipulation routines.CC module domains_moduleinteger :: maxkids ! maximum number of childrenparameter (maxkids = 5)CC Domainstruct is the principal domain data structure in the userC program. It contains the size of the domain in localC memory and logically. Also pointers to parent and child domains,C if any. Also the RSL domain handle. Also, the domain stateC arrays themselves (unallocated, so virtually no storage expendedC unless the domain is actually used).C type domainstructC 26

C This section has information about the domain.C type(domainstruct), pointer ::$ parent, ! parent domain$ child(:) ! childreninteger nkids ! number of (active) childreninteger nestlevel ! nestlevel of this domaininteger domdesc ! RSL domain handlelogical active ! flaginteger m, mloc ! global and local dimensions in minteger n, nloc ! global and local dimensions in ninteger sten ! stencil descriptorCC This section has the state arrays for the domain.C real, pointer :: X(:,:)endtype domainstructCC Declaration of the top-level domain (all others are children of this one)C type (domainstruct), target :: motherCC Domain manipulation routinesC containsCC Initialize a domain data structureC subroutine init_domain(d)type(domainstruct) :: dd%active = .false.d%m = 0d%n = 0end subroutineCC Allocate the fields of the domain (including state arrays). OnceC this is called, the domain will take more than nominal storage.C subroutine allocate_domain(d, m, n, mloc, nloc)type(domainstruct) :: d ! domain structureinteger m, n, mloc, nloc ! global and local sizesinteger k ! child indexif (d%active) thenwrite(0,*) 'allocate_domain: domain already active.'stopendifwrite(0,*)'allocate_domain ',d%domdesc,m,n,mloc,nlocCC Create and initialize structures for future children. Note: onlyC the child domain structures and not the child state arrays areC being allocated here -- thus, the children require only nominalC storage until actually activated and allocated.C 27

allocate (d%child(maxkids))do k = 1, maxkidscall init_domain(d%child(k))enddoCC Set the size information about this domainC d%m = md%n = nd%mloc = mlocd%nloc = nlocd%active = .true.d%nkids = 0CC Allocate storage for state arrays.C allocate (d%X(mloc,nloc))end subroutineend moduleCC MAIN PROGRAMCCCC This is the main routine for a Fortran-90/RSL implementation ofCC a simple relaxation problem on a grid, with an irregularly shapedCC nested domain.CCCC The bulk of the main routine, here, is involved with definingCC and allocating the problem, which can be done entirely at run-timeCC by exploiting modern features of F90 such as derived data typesCC and dynamic memory allocation.CCCC The model itself is executed in one call to another routine,CC ITERATE_MODELCC at the bottom of this main program.CC program relaxmainuse domains_moduleimplicit nonetype(domainstruct), pointer :: d#include "rsl.inc"integer m,n,mloc,nloc,did ! coarse domain paramsinteger m_n,n_n,mloc_n,nloc_n,nid ! nested domain paramsinteger mtrim, ntrim ! trim for the nestinteger xlist(20), ylist(20), npoints ! outline of nestinteger iter ! number of iterations to performinteger k ! child indexinteger nproc_m, nproc_n ! number of procs in m, nCC Initialize RSLC call rsl_initialize 28

CC Input run-time problem configuration informationC if (rsl_iammonitor()) thenread(7,*)m,n ! mother domain size specif. at run timeread(7,*)iter ! number of mother domain iterationsread(7,*)nproc_m, nproc_n ! number of processors specif. at run timeendifcall rsl_mon_bcast(m, 4)call rsl_mon_bcast(n, 4)call rsl_mon_bcast(iter, 4)call rsl_mon_bcast(nproc_m, 4)call rsl_mon_bcast(nproc_n, 4)call rsl_mesh(nproc_m, nproc_n)call rsl_error_dup()CC Mother domain. Note that the RSL routine is called before theC domain is allocated. This allows the local state arrays to beC allocated only as large as necessary (using the size informationC returned by rsl_mother_domain in mloc and nloc).C call init_domain(mother)C call rsl_mother_domain($ did, ! output: RSL domain handle$ RSL_8PT, ! input: max stencil$ m, n, ! input: global size$ mloc, nloc) ! output: local sizecall show_domain_decomp(did)C call allocate_domain(mother, m, n, mloc, nloc)mother%domdesc = did ! store RSL handle in domainmother%nestlevel = 1 ! nest level of mother is 1CC Specify the outline of the nest in coarse domain coordinatesC xlist(1) = 4 ; ylist(1) = 6xlist(2) = 4 ; ylist(2) = 11xlist(3) = 7 ; ylist(3) = 11xlist(4) = 10 ; ylist(4) = 14xlist(5) = 15 ; ylist(5) = 14xlist(6) = 15 ; ylist(6) = 9xlist(7) = 10 ; ylist(7) = 4xlist(8) = 6 ; ylist(8) = 4xlist(9) = 4 ; ylist(9) = 6npoints = 9CC Specify the "trim" for the nestC mtrim = 2ntrim = 2C 29

C Spawn an irregular nest using the outline and trim informationC specified above.C call rsl_spawn_irreg_nest($ nid, ! output: nest handle$ mother%domdesc, ! input: parent handle$ RSL_8PT, ! input: max stencil$ xlist, ylist, npoints, ! input: domain outline$ 3, 3, ! input: nesting ratios$ mtrim, ntrim, ! input: trim effective size$ mloc_n, nloc_n, ! output: local memory size$ m_n, n_n) ! output: global sizecall show_domain_decomp(nid)CC Allocate using local size information returned by RSL.C call allocate_domain(mother%child(1), m_n, n_n, mloc_n, nloc_n)CC Set fields in domain structures associating nest with parentC mother%nkids = 1 ! mother has one nestmother%child(1)%parent => mother ! back pointer to parentmother%child(1)%domdesc = nid ! store RSL handlemother%child(1)%nestlevel = mother%nestlevel+1CC Define the stencil communications on the mother and all subnestsC call define_data(mother) ! user routine: recursiveCC Initialize the interior of the mother and the boundary cellsC call init_grid(mother, mloc, nloc, 1)CC Initialize the nests with data from the mother. (There is onlyC one nest in this example, but this code allows for more).C do k = 1, mother%nkidscall initial_nest_data(mother, mother%child(k))enddoCC Write initial state of the modelC call output_domains(mother) ! recursiveCC Execute 'iter' iterations of the simulation. The following callC executes on the mother and recursively on all nests.C call iterate_model(mother, 1, iter) ! main time loop (recursive)C stopendCCC30

CCCC ITERATE_MODELCCCC Main computational routine -- loop over time, iteration over motherCC and all subnests, and control of inter-domain data exchanges.CC recursive subroutine iterate_model(d, iter1, itern)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d ! input: domaininteger iter1, itern ! input: starting and ending stepsinteger t ! local: time step on this domaininteger k ! local: child indexdo t = iter1, iterncall relax_grid(d, d%mloc, d%nloc, 1) ! compute this domaindo k = 1, d%nkids ! for each nest...call force_domain(d, d%child(k)) ! forcecall iterate_model(d%child(k), 1, 3) ! RECURSIVE CALLcall merge_domain(d, d%child(k)) ! feedbackenddoif (d%nestlevel .eq. 1 .and.$ ((mod(t-1, 5) .eq. 0) .or. (t .eq. itern))$) thencall output_domains(d) ! if time, outputendifenddoreturnendCCC RELAX_GRIDCCCC This is the main computational routine that is called for one stepCC on a domain. The new value for each point is computed as theCC average of the values of 8 neighbors. Prior to the computation,CC a stencil exchange is performed to ensure that off-processor dataCC will be available for the computation.CC subroutine relax_grid(d, ilen, jlen, klen)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d ! input: domain being computedinteger ilen, ! input: local array sizes in m$ jlen, ! input: local array sizes in n$ klen ! input: local array sizes in verticalRSL_RUN_DECL ! macro: declares looping informationinteger m, n, i, j ! local: misc inforeal New(ilen, jlen) ! local: temporary array31

! local: proximity informationinteger bdyinfo(ilen,jlen,DOT_BDY_INFO_LEN)real, pointer :: X(:,:) ! local: state array pointerCC Macro to initialize RSL loop constructsC RSL_INIT_RUNVARS(d%domdesc)CC Get boundary proximity information for each cell from RSL.C call rsl_get_bdy_larray(d%domdesc, bdyinfo, DOT_BDY_INFO_LEN)CC Exchange data with other processors on this domain using the stencilC information defined for and stored with the domain.C call rsl_exch_stencil(d%domdesc, d%sten)CC Set pointer to domain state array. Size info.C X => d%Xm = d%mn = d%nCC Main loop over horizontal dimensions of partition of array thatC is stored on local processor. If a boundary cell, hold fixed,C otherwise compute average. Boundary cells are those with a boundaryC proximity of zero (i.e. they are zero cells away from a boundary).C RSL_DO_N(j)RSL_DO_M(i)if (bdyinfo(i,j,RSL_DBDY) .eq. 1) thenNew(i,j) = X(i,j)elseNew(i,j) = ($ X(i+1,j-1) + X(i+1,j) + X(i+1,j+1) +$ X(i,j-1) + X(i,j+1) +$ X(i-1,j-1) + X(i-1,j) + X(i-1,j+1)$) / 8.0endifRSL_ENDDORSL_ENDDOCC Update X.C RSL_DO_N(j)RSL_DO_M(i)X(i,j) = New(i,j)RSL_ENDDORSL_ENDDOC returnendCCC32

CCCC OUTPUT_DOMAINSCCCC Called initially and periodically. Outputs state of model onCC to separate files for each nest level.CC recursive subroutine output_domains(d)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d ! input: domaininteger k ! local: child indexinteger glen(2), llen(2) ! local: size arraysC glen(1) = d%mglen(2) = d%nllen(1) = d%mlocllen(2) = d%nlocCC Output top level domainC call rsl_write(18+d%nestlevel-1, ! Fortran unit for output$ IO2D_IJ, ! describe record$ d%X, ! data for record$ d%domdesc, ! domain descriptor$ RSL_REAL, ! type of each element$ glen, llen) ! size infoCC Foreach nest, output it and its subnests recursively.C do k = 1, d%nkidscall output_domains(d%child(k)) ! recurseenddoreturnendCCC INITIAL_NEST_DATACCCC Set the cells in the nest to values transferred down from the parent.CC This is called to initialize the nest.CC subroutine initial_nest_data (d, nst)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d, nst ! input: parent and nestinteger pi, pj, pig, pjg ! local: parent indicesinteger ni, nj, nig, njg ! local: nest indicesinteger m, n, i, j, msize ! local: misc variablesinteger cm, cn ! local: relative nest indexinteger retval ! local: return valuereal, pointer :: X(:,:) ! local: pointer to state array33

CC Point to parent's state arrays.C X => d%XCC Build a message for each point on the nest using data from theC overlying cell in the parent domain. Loop goes until we have handledC data from all the parent domain points on this processor.C call rsl_to_child_info(d%domdesc, nst%domdesc, 4,$ i, j, pig, pjg, cm, cn, nig, njg, retval)do while (retval .eq. 1)call rsl_to_child_msg(4, X(i,j))call rsl_to_child_info(d%domdesc, nst%domdesc, 4,$ i, j, pig, pjg, cm, cn, nig, njg, retval)enddoCC Exchange the data using RSL inter-domain communication.C call rsl_bcast_msgsCC Now, point to nest state dataC X => nst%XCC Unpack the message on each point of the nest. Loop goes until weC have unpacked all the nested domain points that are local to thisC processor.C call rsl_from_parent_info(i, j, nig, njg, cm, cn, pig, pjg, retval)do while (retval .eq. 1)call rsl_from_parent_msg(4, X(i,j))call rsl_from_parent_info(i, j, nig, njg, cm, cn, pig, pjg, retval)enddoC returnendCCC FORCE_DOMAINCCCC Similar to init_domain, except this is called atCC each step to force only the boundaries of the nestCC (not the entire domain, as in init_domain).CC subroutine force_domain (d, nst)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d, nst ! input: parent and nestinteger pi, pj, pig, pjg ! local: parent indicesinteger ni, nj, nig, njg ! local: nest indicesinteger m, n, i, j, msize ! local: misc variables34

integer cm, cn ! local: relative nest indexinteger retval ! local: return valuereal, pointer :: X(:,:) ! local: pointer to state arrayinteger bdyinfo(DOT_BDY_INFO_LEN) ! local: boundary proximityCC Point to parent's state arrays.C X => d%XCC Build a message for ONLY THOSE POINTS on the nest that are on a boundary.C The call to rsl_get_bdy_gpt gets the proximity information for a nestedC point. The information is then used to decide whether or not data shouldC be packed for that point. Note: RSL will automatically size the messagesC between processors to exchange only that data that is packed.C call rsl_to_child_info(d%domdesc, nst%domdesc, 4,$ i, j, pig, pjg, cm, cn, nig, njg, retval)do while (retval .eq. 1)call rsl_get_bdy_gpt(nst%domdesc, bdyinfo,$ DOT_BDY_INFO_LEN,nig, njg)if (bdyinfo(RSL_DBDY) .eq. 1) thencall rsl_to_child_msg(4, X(i,j))endifcall rsl_to_child_info(d%domdesc, nst%domdesc, 4,$ i, j, pig, pjg, cm, cn, nig, njg, retval)enddoCC Exchange the data using RSL inter-domain communication.C call rsl_bcast_msgsCC Now, point to nest state dataC X => nst%XCC Unpack the message on each point of the nest. Because the first phaseC of the exchange packed only data for the boundary points, this loopC will iterate only over those.C call rsl_from_parent_info(i, j, nig, njg, cm, cn, pig, pjg, retval)do while (retval .eq. 1)call rsl_from_parent_msg(4, X(i,j))call rsl_from_parent_info(i, j, nig, njg, cm, cn, pig, pjg, retval)enddoreturnendCCC MERGE_DOMAINCCCC This implements the feedback of data from the nest to the parent.CC The structure is similar to FORCE_DOMAIN, except that the flow35

CC of information is in the opposite direction. Data is returned onlyCC for the center nest point under each coarse domain point (cm=2, cn=2).CC subroutine merge_domain (d, nst)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: d, nst ! input: parent and nestinteger pi, pj, pig, pjg ! local: parent indicesinteger ni, nj, nig, njg ! local: nest indicesinteger m, n, i, j, msize ! local: misc variablesinteger cm, cn ! local: relative nest indexinteger retval ! local: return valuereal, pointer :: X(:,:) ! local: pointer to state arrayC X =>nst%Xcall rsl_to_parent_info(d%domdesc, nst%domdesc, 4,$ i, j, nig, njg, cm, cn, pig, pjg, retval)do while (retval .eq. 1)if (cm .eq. 1 .and. cn .eq. 1) thencall rsl_to_parent_msg(4, X(i,j))endifcall rsl_to_parent_info(d%domdesc, nst%domdesc, 4,$ i, j, nig, njg, cm, cn, pig, pjg, retval)enddoC call rsl_merge_msgsC X => d%Xcall rsl_from_child_info(i, j, pig, pjg, cm, cn, nig, njg, retval)do while (retval .eq. 1)if (cm .eq. 2 .and. cn .eq. 2) thencall rsl_from_child_msg(4, X(i,j))endifcall rsl_from_child_info(i, j, pig, pjg, cm, cn, nig, njg, retval)enddoC returnendCCC INIT_GRIDCCCC This is a computational routine whose purpose it is to assignCC a domain with initial values. Boundary cells receive a nonzeroCC initial value. The interior receives a zero value.CC subroutine init_grid(d, ilen, jlen, klen)use domains_moduleimplicit none#include "rsl.inc"type(domainstruct) :: dinteger ilen, jlen, klen 36

RSL_RUN_DECLinteger bdyinfo(ilen,jlen,DOT_BDY_INFO_LEN)integer m, n, i, jinteger cn, cmreal, pointer :: X(:,:)C RSL_INIT_RUNVARS(d%domdesc)call rsl_get_bdy_larray(d%domdesc, bdyinfo, DOT_BDY_INFO_LEN)C X => d%Xm = d%mn = d%nC RSL_DO_N(j)RSL_DO_M(i)if (bdyinfo(i,j,RSL_DBDY) .eq. 1) thenX(i,j) = 10.0elseX(i,j) = 0.0endifRSL_ENDDORSL_ENDDOC returnendCCC DEFINE_DATACCCC This is called only once, prior to the first step of the model, andCC is used to define the stencils on all the domains in the simulation.CC Stencils, though identical, must be assigned individually for eachCC domain. This routine does that recursively for the domain 'd', andCC all nests under 'd'.CC recursive subroutine define_data(d)use domains_module#include "rsl.inc"type(domainstruct) :: d ! input: domaininteger decomp(3) ! local: how dimensions are decomposedinteger llen(3) ! local: local size in each dim.integer glen(3) ! local: global size in each dim.integer mesg ! local: a message definitioninteger messages(8) ! local: message for each stencil pt.integer k ! local: child indexC decomp(1) = RSL_NORTHSOUTH ! m is decomposed by n/s processorsdecomp(2) = RSL_EASTWEST ! n is decomposed by e/w processorsglen(1) = d%m ! global sizes setglen(2) = d%nllen(1) = d%mloc ! local sizes setllen(2) = d%nloc 37

CC Create and build a message descriptor containing the state array X.C call rsl_create_message(mesg)call rsl_build_message(mesg,RSL_REAL,d%X,2,decomp,glen,llen)CC Create and build a stencil with the message on each of the 8 pts.C call rsl_create_stencil(d%sten)messages(1) = mesgmessages(2) = mesgmessages(3) = mesgmessages(4) = mesgmessages(5) = mesgmessages(6) = mesgmessages(7) = mesgmessages(8) = mesgcall rsl_describe_stencil(d%domdesc, d%sten, RSL_8PT, messages)CC Define the stencils for all the child domains of this domainsC do k = 1, d%nkidscall define_data(d%child(k)) ! RECURSIONenddoC returnendCCReferences[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, E�cient Managementof Parallelism in Object-Oriented Numerical Software Libraries, in Modern SoftwareTools in Scienti�c Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,Birkhauser Press, 1997. To appear (Also Argonne National Laboratory Mathematicsand Computer Science Division preprint P634-0197).[2] I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale Model, inParallel Supercomputing in Atmospheric Science, G.-R. Ho�mann and T. Kauranne,eds., World Scienti�c, River Edge, NJ 07661, 1993, pp. 354{363.[3] G. A. Grell, J. Dudhia, and D. R. Stauffer, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep. NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, Colorado, June 1994.[4] P. L. Haagenson, J. Dudhia, G. A. Grell, and D. R. Stauffer, ThePenn State/NCAR Mesoscale Model (MM5), Source Code Documentation, Tech. Rep.38

NCAR/TN-328+STR, National Center for Atmospheric Research, Boulder, Colorado,March 1994.[5] R. Hempel and H. Ritzdorf, The GMD communications library for grid-orientedproblems, Tech. Rep. GMD-0589, German National Research Center for InformationTechnology, 1991.[6] S. R. Kohn and S. B. Baden, A Parallel Software Infrastructure for Structured Adap-tive Mesh Methods, in Proceedings of Supercomputing '95, IEEE Computer SocietyPress, 1996.[7] J. Michalakes, FLIC: A Translator for Same-source Parallel Implementation of Reg-ular Grid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Illinois, March 1997.[8] J. Michalakes, T. Canfield, R. Nanjundiah, and S. Hammond, Parallel Imple-mentation, Validation, and Performance of MM5, in Coming of Age: Proceedings ofthe Sixth ECMWF Workshop on the Use of Parallel Procesors in Meteorology, WorldScienti�c, River Edge, NJ, 1995, pp. 266{276.[9] B. Rodriguez, L. Hart, and T. Henderson, A Library for the Portable Parall-lelization of Operational Weather Forecast Models, in Coming of Age: Proceedings ofthe Sixth ECMWF Workshop on the Use of Parallel Procesors in Meteorology, WorldScienti�c, River Edge, NJ, 1995, pp. 148{161.

39

