P’(\ONAL ¢

@)

6\@ 9
AN
S/TY C

. ARG
Q 0
S e
% S
0. yuord®

ANL/MCS-TM-199, Rev 1

Users Guide for the
ANL IBM SPx

by

William Gropp and Ewing Lusk
Mathematics and Computer Science Division

hitp://www.mes.anl.gov/spl /quide-r2/quide-r2.html

Revised November 30, 1995

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

1 Imntroduction

1.1 Getting Started oL oo
1.2 Usage Rules o
1.3 Comments on This Manual

2 Machine Configuration

2.1 Hardware
2.1.1 Details on the High Performance Switch
2.2 Software
2.3 What is Not Provided
3 Programming
3.1 Transport Layers L
3.1.1 Ethernet/TP
3.1.2 Switch/TP oL
3.1.3 Switch/us Lo
3.1.4 How do I tell which transport layer I'm using?
3.2 Parallel Programming Libraries
3.21 MPL, POE,and PE
3.2.2 Chameleon 0L
3.23 Fortran M oL
324 MPL
325 pAd oL
4 Using the System
4.1 Compiling and Linking Applications
4.2 Running Applications
4.3 Parallel Unix Tools
4.4 Displaying System Information
4.5 Scheduling Use of the SPx
4.6 Additional Informationo

11

5 The File Systems
5.1 Umx filesystems
5.2 Parallel T/Oo
5.3 Hierarchical filesystem 0.

6 The Fiber Channel

7 Correctness and Performance Debugging
7.1 pdbxand xpdbx
7.2 dbx . ..
7.3 Profiling with prof and gprof00
7.4 Chameleon Options
7.5 upshot
T6 Vb e

8 Nonportable Programming

8.1 Using MPL
9 Benchmarking

10 Known Problems
10.1 IBM Documentation

11 In Case of Difficulty
12 Reporting Problems

13 Miscellaneous
13.1 Selecting Interrupt-Driven MPL
13.2 Interrupt-driven receives in MPL

13.3 Threads
Acknowledgments

Bibliography

v

16
16
17
17

18

19
19
19
19
20
20
21

22
22

23

24
25

26

33

34
34
34
34

35

36

Chapter 1

Introduction

This guide presents the features of the IBM SPx installed in the Mathematics
and Computer Science Division at Argonne National Laboratory. This guide
describes the available hardware and software, access policies, and hints for
using the system productively.

This document is available online through any World-wide-web (WWW)
reader, such as xmosaic, tkwww, or www. Many of the tools mentioned in this
document also have on-line documentation; in particular, p4, and Chameleon
have info documentation; Chameleon also has an extensive set of man pages.

1.1 Getting Started

This section describes how to get an account and get started on the ANL SPx.
To get an account, send email to spaccount@mcs.anl.gov and request an
SPx account. Fill out the form that is returned to you. You will be notified
when your application is approved or denied.
Publications resulting from your work on the Argonne SP1 should use the
following acknowledgment.

The author(s) gratefully acknowledge use of the Argonne High-
Performance Computing Research Facility. The HPCRF is funded
principally by the U.S. Department of Energy Office of Scientific
Computing.

To get started once you have an account, log into either bonnie.mcs.anl.gov
or clyde.mcs.anl.gov. These are IBM RS/6000s that serve as compile servers
and file system servers for the IBM SPx. If you edit your ‘.login’ or ‘.cshrc’
files, make sure that you understand the consequences of any changes that you
make to your PATH or MANPATH.

To change your default shell, you will have to send mail to spsupport@mcs.anl.gov.
The only shells supported are csh, ksh, sh, and tcsh.

The nodes of the SPx are named spnodel through spnode128. Names of
the form spnode001 also work. Access to these is through a locally developed
scheduler that is described below. If you have received interactive access to
some of the nodes, you may log into them by using rlogin, telnet, or rsh.

1.2 Usage Rules

Usage of the SPx is now managed by the spsubmit program. Information may
be found on the web at http://www.mes.anl.gov/home/rayl/scheduler/scheduler.html.

1.3 Comments on This Manual

Please send any comments on this manual to gropp@mcs.anl.gov. We are
particularly interested in new items for the chapters on known problems and
“In Case of Difficulty.”

Chapter 2

Machine Configuration

This chapter discusses the hardware and software configuration of the Argonne
SPx, as well as what is not provided on this system.

2.1 Hardware

The Argonne SPx consists of 128 nodes and two compile servers. Each node is
essentially an RS/6000 model 370. This model has a 62.5 MHz clock, a 32-KB

data cache, and a 32-KB instruction cache. Key features of this system are:
e 128 MBytes of memory per node

e 1 GByte local disk on each node (400 MBytes available to users, rest for
paging and the operating system)

Full Unix on each node (IBM AIX 3.2.5)

Each node accessible by Ethernet from the Internet

High-performance Omega switch (63 psec latency, 35 MBytes/sec band-
width when using “user space” option).

In addition, the ANL SPx has a large high-performance file system (220 GBytes
of RAID disk and a 6-TByte automated tape library).

The peak performance of each node is 125 MFlops (1 64-bit floating-point
add and 1 floating-point multiply in each clock cycle). In practice, each node
can achieve between 15 and 70 MFlops on Fortran code. Higher performance
can be reached by using the BLAS or ESSL routines.

2.1.1 Details on the High Performance Switch

References for omega networks include [8] and [7].

2.2 Software

As each SPx node is running a full Unix, most of the usual Unix tools are
available. Users may log directly into any SPx node using telnet, rlogin, or
rsh, as long as they have been granted access by the spsubmit program.

e Multiple parallel programming environments (see section 3 [Programming],
page 5).

e IBM’s ESSL library

e Performance debugging tools

2.3 What is Not Provided

While the nodes support a full AIX, several services are not supported. These
include mail, printing, and access to other file systems (with the exception of
‘/sphome’; see section 5 [The File Systems], page 16).

We have made no effort to provide PVM or PVM/e on our system.

The only mathematics software libraries on the SPx are the standard C
library ‘1ibm’ (which contains some special functions, such as Bessel functions),
IBM’s ESSL (includes the BLAS and LAPACK), and various research libraries.
Use -lessl on your link line to include ESSL.

We do not support the usual MCS environment on the nodes. In particular,
if you use a .cshrc or .login file that needs things like ‘/mcs/etc/path’, they
will fail and you will need to modify them (if you are using ‘/mcs/etc/path’,
you should look at the man page on software. This is the supported method
of getting the basic environment, though it may cause problems for sh users.

We also provide no user-support services. We run a “dark” machine room:;
this means that there is no “operator” to respond to user requests, particularly
outside of normal working hours. There are no consultants to help with writing
or debugging your programs. We do respond to mail about problems with
the machine, and the various research groups often express interest in helping
people use their tools and in suggesting new features. See section 12 [Reporting
Problems], page 33 for more information.

Please see section 10 [Known Problems], page 24 for a list of known problems.
See section 11 [In Case of Difficulty], page 26, for help in identifying problems;
please check it before sending mail about a problem with the machine.

Chapter 3

Programming

3.1 Transport Layers

There are a number of transport layers, or ways to communicate between nodes,
on the SPx. For most uses, programmers will not use these directly; rather, they
will use one of the portable programming libraries. However, as the program-
ming libraries use these transport layers to actually accomplish the communi-
cation, 1t is important to understand them so that the proper transport layer
can be chosen.

The available transport layers are Ethernet/TP | Switch /TP, and Switch/us.
Only the first two support multiple parallel jobs on the same node. Switch/us
provides better performance (particularly reduced latency) but can only run as
a single process-per-node. Switch/us jobs may co-exist with other processes on
the same node as long as only one process is using the Switch/us mode.

3.1.1 Ethernet/IP

All nodes in the SPx are connected by Ethernet, with node names spnode001
through spnode128 (leading zeros may be ignored; thus spnode001 and spnodel
are the same node). With this choice of transport layer, the SPx looks just like
a collection of workstations. This method does suffer from the same drawbacks
as any Ethernet-connected system: high latency (about 1 msec), low bandwidth
(1 MByte/sec), and low scalability (the 1 MByte/sec is shared among all pro-
cessors).

3.1.2 Switch/IP

All of the nodes in the SPx are also connected by the high-performance switch
(HPS). One easy way to use the HPS is to use the same code but with different
node names. Using swnode... in place of spnode... causes the HPS to be

nodename | Environment transport layer

spnodex Unix Ethernet
swnodex | Unix Switch /TP
fenodex Unix Fiber Channel

any node | MP_EUILIB=us | Switch/us
any node | MP_EUILIB=ip | Switch/IP

Table 3.1: Relationship between node names and transport layers

used. This may be used with operations such as rsh and rcp, and by parallel
programming libraries such as MPL and MPI. The swnode. .. names apply only
when using IP over the switch. There is another way to use the switch that does
not use IP and is much faster, but has a few limitations. This is the Switch/us
mode, described next.

3.1.3 Switch/us

The same high-performance switch that provides the Switch/IP interface also
has a higher-performance version that uses a proprietary interface for accessing
the HPS. This version is called the “user space” version because it bypasses the
ATX operating system (a source of the high latency in the Switch/TP method)
and accesses the HPS directly. A drawback to this approach is that only one
process per node (or processor) may use this mode to access the HPS.

3.1.4 How do I tell which transport layer I’'m using?

The transport layer used depends on the parallel environment chosen and pos-
sibly the hostnames. The relationships are shown in Table 3.1.

3.2 Parallel Programming Libraries

We strongly encourage all programmers to use one or more of the systems de-
scribed 1n this section when developing parallel programs for the SPx. These
have been used on other systems and have made it easy to port significant appli-
cations to the SPx very quickly. These systems also offer a spectrum of tradeoffs
between functionality and performance; the Chameleon system in particular has
no overhead when used in “production” mode.

3.2.1 MPL, POE, and PE

MPL (formerly EUT) is IBM’s message-passing interface to the high-performance
switch. POE is the parallel operating environment, and controls the running of

MPL programs. PE is the parallel environment, and is IBM’s term for all of the
parallel tools (such as MPL, POE, pdbx, etc.) PE supports a parallel symbolic
debugger (pdbx; xpdbx is not yet available) and a performance visualization tool
(vt). MPL is documented in [6]. Any environment that makes use of Switch/us
uses POE; all options described in the man page on poe (man poe) may be used.

Note that MPL has a large number of options. The options can be set with
shell environment variables. The four most important are:

MP_HOSTFILE Gives the file that contains the processors that may be used.
The ‘SPnodes.xxxxx’ produced by the spsubmit command is an appro-
priate file

MP_PROCS Gives the number of processors to use. Must be no larger than
the number of processors given by MP_HOSTFILE.

MP_INFOLEVEL Controls the diagnostic output. A value of zero suppresses
all but fatal errors.

MP_PULSE Controls a “heartbeat” function in POE; in previous releases,
a setting other than zero may significantly degrade performance. As of
March 7, 1995, it is no longer necessary to set this parameter on the ANL
SPx. It does not hurt to do so, however.

For C-shell users, an example of the use of these is:

setenv MP_HOSTFILE SPnodes.124356788
setenv MP_PROCS 8

setenv MP_INFOLEVEL O

setenv MP_PULSE O

This assumes an interactive session with at least eight nodes, and a job ID of
124356788.

These options are relavent for all tools that use MPL, including the portable
message-passing libraries that are implemented on top of MPL. However, note
that the mpirun command for the MPICH implementation of MPI sets these for
you.

3.2.2 Chameleon

Chameleon is a lightweight, portable message-passing system. It provides ac-
cess to a wide range of communication layers, including MPL, MPI, PVM (not
supported on the ANL SPx), and p4. Chameleon provides a common startup
model that simplifies choosing a communication layer. (A communication layer
is an interface to a transport layer; through the use of p4 and MPL, Chameleon
provides access to both the TP and “user-space” transport layers.)

Examples: ‘/home/gropp/tools.n/comm/examples’ contains C and Fortran
examples as well as makefiles.

Documentation: ‘/home/gropp/tools.n/docs/tutorial/parallel.tex’. The
script ‘/home/gropp/tools.n/bin/toolman’ will start an xman for the
manual pages for the Chameleon routines (and others). See also [4].

Supported Communication Layers: MPL, MPI, p4

Special Comments: The Chameleon makefiles provide portability by using
names defined on the make command line. You should set ARCH=rs6000
and BOPT=g (for debugging) or BOPT=0 (for production) and COMM=p4,
COMM=eui, or COMM=mpi for the interfaces p4, MPL, and MPI respectively.
If you choose not to use the Chameleon makefiles, be sure that you get all
of the required options (e.g., C programs require ~-D_POSIX_SOURCE).

Contact: gropp@mcs.anl.gov for more information.

How to compile and link: Examples may be found in ‘/usr/local/tools.core/comm/examples’.
Chameleon uses fairly complicated makefiles to achive portability to a wide
variety of systems; you should look at the Chameleon manual [4] for more
details. The value of ARCH for the SPx is rs6000. If you are using the
usual Chameleon makefile, an appropriate make line for MPL is

make ARCH=rs6000 COMM=eui BOPT=0

How to run: Chameleon provides a nearly consistent interface for all transport
layers. The special cases are detailed here by transport layer:
COMM=eui Run as an MPL program.

COMM=p4 To use p4 with Ethernet, you need to do
setenv TOOLSHOSTS /sphome/gropp/hosts
To use p4 with the High-Performance switch, you need to use
setenv TOOLSHOSTS /sphome/gropp/hosts.hps
and the command-line argument -p4 altnet.
COMM=pvm Not yet supported.
COMM=pvm3 Not yet supported.

Note that when using COMM=eui, you must use the MPL syntax to run a paral-
lel program. In particular, you need to set the environment variables MP_PROCS,
MP_EUILIB, etc. You can not use the -np command-line argument to choose the
number of processes. See the section on running MPL jobs in the spsubmit doc-
umentation (http://www.mcs.anl.gov/home/rayl/scheduler/scheduler.html).

3.2.3 Fortran M

Fortran M is a small set of extensions to Fortran that supports a modular ap-
proach to the construction of sequential and parallel programs. Fortran M pro-
grams use channels to plug together processes which may be written in Fortran
M or Fortran 77. Processes communicate by sending and receiving messages
on channels. Channels and processes can be created dynamically, but programs
remain deterministic unless specialized nondeterministic constructs are used.

Examples: ‘/usr/local/fm/examples’ contains Fortran M examples as well
as makefiles.

Documentation: Bound hardcopies (the ANL Technical Report) may be ob-
tained from the contact listed below.

Supported Transport Layers: Ethernet/IP and Switch/TP

Special Comments: See the “Network Specifics” section of the manual for
details on running Fortran M on the SPx. The hostnames of the switch
interface (i.e., swnodel) should be used. The latest version of the Fortran
M compiler is installed in ‘/usr/local/fm’.

Contact: fortran-m@mcs.anl.gov for more information.

3.2.4 MPI

MPT (Message-Passing Interface) is a new message-passing system "standard"
that has recently been defined by a broadly based group of parallel computing
vendors, library writers (including us), and users. The current draft is now in the
public-comment stage [3]. It was completed in the spring of 1994. The standard
draft is available by anonymous ftp from ‘info.mcs.anl.gov’in ‘pub/mpi/mpi-
report.ps.Z’,or on the WWW in http://www.mes.anl.gov /mpi/mpi-report /mpi-
report.html.

There are two implementations: one being done by us and a group from Mis-
sissippi State University, and the other being done by IBM. Both are relatively
complete and run now on the SPx.

3.2.4.1 The IBM Version

An experimental IBM implementation of MPI, from IBM Yorktown, is available.
This version works with POE/MPL system. It is located in ‘/usr/lpp/mpif’.

Examples: The directory ‘/usr/lpp/mpif/samples’contains examplesin both
Fortran and C as well as a makefile.

Documentation: There is documentation in ‘/usr/lpp/mpif/docu/mpif.ps’
and ‘/usr/lpp/mpif/docu/errata.tex’. Documentation on MPI is avail-
able in the MPT WWW page. (http://www.mcs.anl.gov/mpi)

Supported Transport Layers: Switch/IP and Switch/us.
Contact: gropp@mcs.anl.gov or lusk@mcs.anl.gov for more information.

How to compile and link: No special options are needed when compiling.
The include file ‘mpi.h’ is located in ‘/usr/lpp/mpif/include’ and is
needed by an C program. The include file ‘mpif.h’ should be included
by any Fortran routine that uses an MPI call. However, you need to use
mpicc instead of mpcc and mpix1f instead of mpx1f.

How to run: MPI-F programs are run using much the same approach as MPL
programs. To run a program

poe a.out ...

Use the same environment variables (e.g., MP_EUILIB) to control the trans-
port layer, choice of nodes, and level of messages.

3.2.4.2 The MPICH Version

Examples: ‘/usr/local/mpi/examples’ contains examples in Fortran and C,
and a makefile.

Documentation: No implementation-specific documentation is yet available.
Our implementation uses Chameleon, so the usual Chameleon methods of
preparing programs and starting jobs apply. There are man pages for all
of the MPI routines in ‘/usr/local/mpi/man’.

Supported Transport Layers: Switch/IP, Switch/US, Ethernet/TP.

Contact: gropp@mcs.anl.gov or lusk@mcs.anl.gov for more information.

3.2.5 p4

p4 [2,1] is a portable message-passing system that runs on a very wide variety
of parallel systems and workstations. It is in use at approximately 200 sites
around the world. Existing p4 programs will run unchanged on the SPx. The
current version is version 1.4, but experimental versions (such as 1.4a) and later
releases (1.5) may appear from time to time.

Examples: ‘/usr/local/p4-1.4a/SP2/examples’ on bonnie and clyde con-
tains C and Fortran examples, example makefiles, and a makefile that can
be used to construct your makefiles with the appropriate options for the
SPx’s various transport layers.

10

Documentation: ‘/home/lusk/ibm/p4-1.4b/doc’ contains the latexinfo source
for the manual [1], an ASCII version, and the postscript for a reference
card. ‘/home/lusk/p4.manual’ contains the postscript for the manual
itself in (‘p4.ps’). The manual is also online via info and any of the
inside-Emacs or stand-alone info readers (e.g., gnu-info).

Supported Transport Layers: Ethernet /TP, Switch/IP, Switch/us.

Special Comments: See the section of the p4 manual entitled "Running on
Specific Machines" for how to specify each of the transport layers.

Contact: lusk@mcs.anl.gov for more information.

How to compile and link: For MPL, you must use a p4 made with PAARCH=SP1_EUTIH.
At Argonne, these libraries are in ‘/usr/local/p4-1.4a/SP2’ where x.y
are currently 1.3c.

How to run: To use p4 over MPL on the SPx, invoke your program from a
node with:

<progname> —procs <numprocs> <user args>

Specific nodes can be chosen by the same method as for other POE jobs.
The p4 procgroup file should contain the single line:

local <numprocs-1> <pathname of program>
The appropriate environment variables can be set with

set JID = ‘/usr/local/bin/getjid‘

setenv MP_EUILIB us

setenv MP_PROCS ‘cat /sphome/$LOGNAME/SPnodes.$JID | wc -1°
setenv MP_HOSTFILE '"/sphome/$LOGNAME/SPnodes.$JID"

To use Switch/TP with MPL, use setenv MP_EUILIB ip instead, with
‘/sphome/$LOGNAME/SWnodes.$JID’ .
To use Switch/IP without using MPL, you need a procgroup file of the

form

swnodel 0 executable
swnode2 1 executable
swnode3 1 executable

The line swnode 0 executable replaces the usual local 0. You can use
awk to create this from the file ‘/sphome/$LOGNAME/SWnodes.$JID’ .

11

Chapter 4

Using the System

This section describes how to run parallel programs and how to monitor the
state of the system (IBM provides a powerful system monitoring utility, but
it is only available to root. The monitoring tools described here were locally
developed).

4.1 Compiling and Linking Applications

All compilation and linking should be done on the compile servers, bonnie.mcs.anl.gov
and clyde.mcs.anl.gov). The compile servers should not be used to run any
other programs.

The compilers are named xlc (for C) and x1f (for Fortran). (For MPL
programs you must use mpcc and mpx1f instead.) These support most of the
usual options but sometimes with unusual (for Unix systems) names. Useful
options include

-¢ Compile to a .o file

-03 Produce optimized code

-gstrict Ensure that optimizations do not alter program semantics

-gsource -gxref Produce a source listing with cross-references

-qlist Produce an object listing. This is equivalent to =S on other Unix systems

-qwait=-1 Wait indefinately for a network license token. You may need this
if too many people are using the compilers at once, where too many is
defined by the license server.

One warning: the Fortran compiler takes around 50 seconds to compile a
trivial program; this is caused by the license server. This is considered a feature

12

by IBM. You may wish to consider using £2c¢ to convert Fortran programs to
C.

The GNU C++ compiler is available in ‘/usr/local/gcc/bin/c++’. It is not
supported for the SPx but should work.

We also have the IBM C++ compiler x1C; however, we do not have any
information on it (no man pages and no info information). We have been able
to gleen that to link Fortran subroutines to a program whose main program is
in C++4, add the library -1x1f to your link line.

The following arguments are available only to Fortran programmers:

-qautodbl=dblpad Promote REAL declarations to DOUBLE PRECISION. This
can be useful with Cray codes that require more than 32-bit precision (the
default precision of REAL on RS/6000’s). However, any double precision
or REAL*8 statements will be promoted to REAL#16 (128 bits) which is
significantly slower and probably not what is wanted.

-qdpc=e Treat floating-point constants as double precision.

-gextname Suffix an underscore to all external names. This makes Fortran
routines available to C programs that expect Fortran to add an underscore
suffix; this is common (but not standard) behavior of many Unix Fortran
compilers. Note that some software packages do not expect Fortran users
to use this option; their Fortran interfaces adjust to the default behavior
of the Fortran compiler. Using —gextname with these libraries can lead to
unresolved references.

When linking, this option can be useful:

-qloadmap:filename Produce a load map. This is handy for identifying from
which library an object file was loaded, or for seeing the total memory
requirements of your module.

-0 name Provide a name for the module. The usual Unix default of a.out is
used if no name is specified.

4.2 Running Applications

Each parallel programming system has its own requirements for running an
application. In this section, we describe some issues that are common to all
systems.
All access is through the scheduler http://www.mcs.anl.gov/home/rayl /scheduler/scheduler.html.
That document contains information on running programs on the SPx.

13

4.3 Parallel Unix Tools

We have developed parallel analogs of the common Unix tools ¢cp, 1s, ps, and
others. These are scalable and relatively fast. They simplify the task of execut-
ing commands on all or part of the SPx. However, they are currently unavailable
on the SPx. We expect to provide them again in the near future.

4.4 Displaying System Information

Currently, there are four X Windows tools for displaying the state of the system.
These are wish scripts that require tk-3.3. This code is available in the MCS
Division. As tk is in the public domain, other sites should have no problem
acquiring it. In addition, there is a program provided by IBM that gives some
information on POE.

Currently, the only supported tool is xspusage. This shows which nodes are
in use and which are available.

The program ‘spusage’ will display the users of the the SPx nodes in ASCII
format. This is useful on a text terminal or if running X over a slow connection.

4.5 Scheduling Use of the SPx

All access to the SPx is made through the use of the spsubmit program. This
program maintains queues of pending jobs. The program spq lists the contents
of the queues. sphelp lists the programs that are available for submitting jobs
and manageing them. On-line documentation is provided through WWW.

4.6 Additional Information

There are three IBM manuals on the Fortran (and C) compilers:

The Language Reference In addition to describing the Fortran language it
explains a large number of IBM-provided system-interface type of subrou-
tines.

The User’s Guide describes compiling, linking, use of the preprocessors, in-
teraction of Fortran with files, etc.

The Optimization and Tuning Guide for the XL Fortran and XL C Compilers
a very useful (and readable) description of optimization considerations for

the RS/6000 architecture.

If you are using an X-windows system to access the compile server, you may
view these manuals on line using IBM’s info system. Before invoking info,
define your display to the compile server:

14

setenv DISPLAY myid.mcs.anl.gov:0.0 (csh)
export DISPLAY=myid.mcs.anl.gov:0.0 (ksh)
info

where myid.mcs.anl.govis the TCP/IP address of your computer or X-station.
When info finally comes up (it can take several minutes), select the “List of
Books” panel, find the desired manual, and double-click on 1t.

When connecting to Sun workstations, info (and most IBM X Windows
tools) will generate several warning messages. These may be ignored.

15

Chapter 5

The File Systems

There are currently four file systems accessible to the nodes: two Unix (sequen-
tial) filesystems, ‘/sphome’ (shared) and ‘/tmp’ (local), a parallel file system
(PIOFS), and a hierarchical file system (the 220 GByte RAID arrays).

5.1 Unix filesystems

The file system ‘/sphome’ is shared between the nodes and the compile servers.
This file system 1s NFS mounted.

Warning:

There is a problem where files that are copied over an existing file
do not always seem to be noticed. You should always rm a file before
you copy over it.

Be frugal with your use of ‘/sphome’. There is only 1 GByte of space in
‘/sphome’; and this must be shared by all users, including those with large
input and output files. Try not to keep any large files in ‘/sphome’ except when
you need them for a run (don’t move files back and forth during the day but also
don’t leave a large output file on ‘/sphome’ once it is generated). The program
xsponu may be used to display the usage of ‘/sphome’.

Each local disk holds 400 KBytes and may also be used for temporary data
files and for executables, but again, you should not leave large files on them.
The program xsp1df (see section 4.3 [Parallel Unix Tools], page 14) can be used
to display the amount of space available on each node’s ‘/tmp’ partition. (The
rest of the local disk holds the local ‘/var’ partition and the swap area.)

The SPx nodes do not mount the MCS file systems. Thus, the only way to
move files is either by first moving them to ‘/sphome’ or by using rcp.

16

For additional information on other file systems being considered or de-
veloped for the ANL SPx, see ‘/home/nickless/Documents/io.ps’. Contact
nickless@mcs.anl.gov for more information.

Important Note:
Neither ‘/sphome’ nor ‘/tmp’ are backed up. In addition, the ‘/tmp’ areas will
be cleaned of old files on a regular basis; large files may be removed at any time.

5.2 Parallel I/0O

The parallel /O systems remain experimental. We are beta-testing IBM’s par-

allel file system, PIOFS. Send mail to pierce@mcs.anl.gov to ask for access to

PIOFS.
The PIOFS users guide is in ‘/usr/local/ibmdoc/piofs/UsersGuide.ps’.

Header files are in ‘/usr/lpp/piofs/include’; the libraries are in ‘/usr/lpp/piofs/1ib’.
This file sysetm is not yet considered stable; data loss is possible. On the

up side, performance i1s much better than using Ethernet to the regular Unix

filesystem, so PIOFS may be a good place to store data generated by a parallel

program that could be re-generated in an emergency.

5.3 Hierarchical filesystem

The large hierarchical file system is managed by Unitree and is documented
separately.

17

Chapter 6

The Fiber Channel

NOTE: THE FIBER CHANNEL IS NOT AVAILABLE YET; ANY
INFORMATION IN THIS SECTION IS SUBJECT TO CHANGE
WITHOUT NOTICE

Nodes 2 + 47 have Fiber Channel connections for ¢ = 0,...,31.

Fiber Channel supports both TCP/IP and direct (ioctl) interfaces. The
node names for Fiber Channel are fcnodez.

Performance is about 2.5 MB/sec for TP and 17 MB/sec for direct.

p4 provides access to Fiber Channel. Here 1s a sample p4 procgroup file:

fcnode2 1 /sphome/lusk/pdtest/systest
fcnode6 1 /sphome/lusk/pdtest/systest

18

Chapter 7

Correctness and
Performance Debugging

Several tools may be used to do correctness and performance debugging of
parallel programs. This section describes these tools and how to use them.

7.1 pdbx and xpdbx

IBM’s POE provides parallel versions of dbx and xdbx called pdbx and xpdbx
respectively. These work with POE/MPL programs, and allow you to run and
debug parallel applications.

7.2 dbx

It is also possible to use dbx and xdbx with parallel programs by loging into
each node and using the command

dbx process id
after the parallel programs have started. You can get the process_id with

ps —ef | grep $LOGNAME

7.3 Profiling with prof and gprof

It is now possible to use both prof and gprof to profile the performance of your
codes. Just compile with the -p or —-pg option and execute

setenv MP_LIBPATH /usr/lib/profiled

19

before running your program. The -p option will create a file called mon.out . <taskid>.
The -pg option will create a file called gmon.out.<taskid>. These can be used
as input to prof and gprof respectively.

(Thanks to Tim Pierce for this information.)

Then just use prof and gprof with these output files.

7.4 Chameleon Options

Chameleon provides a number of features that support both correctness and
performance debugging. These apply only to programs compiled with BOPT=g
or BOPT=0pg. These featuers may be selected by command-line switch when the
Chameleon application is started:

-event Generate an event log that may be viewed with upshot (see section 7.5
[upshot], page 20).

-summary Generate a summary of message passing activity, giving the amount
of time spent in each process sending and receiving messages

-trace Produce a line of output for each message-passing operation (including
the begining and ending of receives). This is useful for finding the cause
of deadlock in parallel applications.

7.5 upshot

Upshot [5] is a portable X Windows program for visualizing the behavior of
a parallel program. Both Chameleon and p4 can generate the event logs that
upshot reads. To generate an event log from Chameleon, use the -event flag

a.out —np 4 -event
This generates a file ‘b1’. To view this file with upshot, use
upshot -1 bl

In order for a Chameleon program to be able to generate this event file, the
BOPT=g or BOPT=0pg version must be used.

Currently, you should have ‘/home/gropp/bin/sun4’ in your path to use
upshot on the Sun workstations. The version in ‘/usr/local/bin’ will be
updated in the near future.

Sample output from upshot is shown in Figure 7.1.

Chameleon can generate event logs with any transport layer.

20

UPSHOT

[Zoom-out |[Zoom-in_|[Display Options |[State Definition || Reset Il Quit |
Page wiew Log file:
Fresh vt B

0 H A O N Y Y N O O O (O —

Zoomsteps State file:

[1 H M O O I I-IH
FVENT KEY -

103 Start bsend
3 Start bsem
2 HH M
104; End bsend
105; Start nsend
3 HH O O HI—H
1062 End nsend
107; Start wsend
4 HH O A H
108: End wsend
103: Start brecy
110: End breey |p 5 M HIN N O D N BN
1113 Start nrecy :;
112: End nrecy g 6 HH IS O N I N
113; Start urecv |5
5
114: End wrecv e 7 HH HE . H
115: Start recy f
1 1 1 1
72417 72917 73417 73917

time in microseconds

File pages:

Figure 7.1: Sample upshot output

7.6 vt

The POE (Parallel Operating Environment) provided by IBM includes a per-
formance visualization tool called vt. This tool, like upshot, can analyze a
tracefile that is generated by a parallel program.

21

Chapter 8

Nonportable Programming

It is possible to use MPL without using the portability tools. This section
describes how to run these programs. There are man pages for the individual
routines (see ‘/usr/man/catl’ on bonnie or clyde).

8.1 Using MPL

MPL programs must be compiled with mpx1f, mpcc, and mpCC (in fact, only
the main program must be compiled with this routines, but it is safer to use
them for all routines). The switch —us selects Switch/us; the switch -ip selects
Switch /TP.

22

Chapter 9

Benchmarking

Benchmarking on the SPx is more difficult than on most other MPPs because the
SPx provides a friendly multiprocessing environment on each node. Avoiding
the effects of contention with other users requires that the machine be scheduled
as single user. To schedule single-user time, see section 4.5 [Scheduling Use of
the SPx], page 14.

It is important to distinguish between elapsed (also called wall-clock) and
CPU time when running a parallel program. Depending on the transport layer
that is used, CPU time may not include the time in which processes were idle
while waiting for messages to arrive. It is best when benchmarking to compute
both the elapsed and CPU time; for most purposes, elapsed time is the better
indicator of true performance.

The Chameleon package (see section 3.2.2 [Chameleon], page 7) provides
portable routines for measuring both elapsed and CPU time.

#include "system/system.h"
double start_cpu, cpu_time, start_elapsed, elapsed_time;

start_cpu = SYGetCPUTime();
start_elapsed = SYGetElapsedTime();
. work to time ...
elapsed_time = SYGetElapsedTime() - start_elapsed;
cpu_time = SYGetCPUTime() - start_cpu;

Fortran versions of these are also available.

23

Chapter 10

Known Problems

1. NFS file updates. We are seeing a problem where changing a file on
‘/sphome’ does not seem to actually change the file. Until this is fixed,
the best work-around is to always rm the file rather than cp’ing over it. If
you change a program, rebuild it, and then run it and don’t see the effect
of your change, you are probably seeing this problem.

2. Linking takes forever. This is a feature. However, there are some things
that you can do to (sometimes) speed things.

(a)

If you are relinking an application, use your old executable as input to
the linker, along with only the modules that you have changed. For
example, if the executable is a.out and the file ‘changed.f’ contains
the only changes, then

x1f changed.f a.out

will generate a new ‘a.out’ executable. You will also get an error
message about “xIf: 1501-218 file a.out contains an incorrect file
suffix”: you can ignore this message. If you use an executable name
with no suffix, you will not get this message.

This also works with x1c (including the error message).

If you are using one or more object libraries, consider moving them
to a local disk. On bonnie, this means to ‘/sphome’.

Consider prebinding any libraries. For example,
1ld -r foo.a bar.a -o foobar.o

will produce a file, ‘foobar.o’, that is “prebound”; that is, all of
the references between functions and symbols within these files are
resolved. This can speed up the time to link, particularly if you make
sure that this file is local (on bonnie or clyde, on ‘/sphome’).

24

(d) (Experts only): Consider building a shared library. Information on
this may be found by using info and looking for “How to Create a
Shared Library.”

(e) Check that only four biod processes are running on the compile
server. In experiments, using 16 biod processes caused a significant
increase in linking time compared to 4 biod processes.

3. info generates “X Error of failed request: BadValue” when it starts. This
is a feature. You can ignore it (it has to do with the fonts used by the
X11 server).

10.1 IBM Documentation

This note lists various SP-related documents. Those documents followed by
“|[== some date, 1993]” are orderable, bound, IBM documents. There is at
least one copy of these documents in the lab and Tim Lehmann has unbound
equivalent copies (with the noted date). All documents not followed by “[==
some date, 1993]” are available unbound (from Tim Lehmann; some are not
orderable and some came with the software). There’s a day or two turn around
to have copies made for the big documents.

The following SP documents exist for Release 1.0 e IBM 9076 Scal-
able POWERparallel Systems: Administration Guide, SH26-7221-00,
September, 1993 [== _, 1993]

e IBM 9076 Scalable POWERparallel Systems: Maintenance Informa-
tion, SY66-0299-00, September, 1993 [== _, 1993]

e IBM 9076 Scalable POWERparallel Systems: Planning and Installa-
tion Guide, SA23-2481-0, September, 1993 [== _, 1993]

e IBM 9076 System Support Programs, AIX 3.2.4, Release Notes, Re-
lease 01, Mod level 00, no date

The following PFS document exists e Parallel File System External User
Interface, Proposal, Version 1.0, September 17, 1993

The following Vesta documents exist e Overview of the Vesta Parallel
File System, no date

o Satisfying the I/O Requirements of Massively Parallel Supercomput-
ers, no date

e Interfacing Vesta to an External File System, Version 0.3, August 23,
1993

e Vesta File System Programmer’s Reference, Version 0.82, August 10,
1993

25

Chapter 11

In Case of Difficulty

This chapter describes some common problems and possible solutions or work-
arounds. You can also send mail to spsupport@mcs.anl.gov if you have ques-
tions.

1. Q: You run your program and it seems to be running the “wrong” program
(e.g., print statements that you added do not seem to work).

A: You may be running afoul of the NFS bug (see section 10 [Known
Problems], page 24). Remove the executable and object files and rebuild
the program.

2. Q: When running your MPL program, the application never seems to
start.

A: Unknown at present.

3. Q: I specify Switch/us but get error messages like this:

setenv MP_EUILIB us

setenv MP_HOSTFILE /sphome/<myhostlist>

setenv MP_INFOLEVEL O

setenv MP_PROCS 4

poe a.out -procs 4

ERROR: 0031-619 mp_euilib specifies us, adapter not us
ERROR: 0031-619 mp_euilib specifies us, adapter not us
ERROR: 0031-619 mp_euilib specifies us, adapter not us
ERROR: 0031-619 mp_euilib specifies us, adapter not us

A: This may mean that you linked the executable with -bnso. This spec-

ifies no shared libraries and caused mpxlf or mpcc to link in only the
Switch/ip libraries.

26

4. Q: Whenever I run a Switch/us job, I get these error messages:

spnode002.mcs.anl.gov:/sphome/gropp(4) poe ring

WARNING:
WARNING:
WARNING:

WARNING:

0031-402
0031-403
0031-403

0031-403

Using cssO as euidevice for User Space job
Forcing dedicated adapter for User Space job
Forcing dedicated adapter for User Space job

Forcing dedicated adapter for User Space job

with p 4+ 1 lines of output if I am running on p processors.

A: This 1s a feature. To disable this, you can do

setenv MP_INFOLEVEL O

but this will disable all (almost all?) informational and warning messages.
There is no known way to select specific messages, or to reduce the output
to a single line for all processors. The default value of MP_INFOLEVEL is 1;
there appears to be no way to change the default.

5. Q: My job fails with these messages:

jm: 023
jm: 023
jm: 023
jm: 023
jm: 023
jm: 023
jm: 023
jm: 023
jm: 023
jm: 023

-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed
-005 Failed

to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =
to connect() spnode001.mcs.anl.gov, errno =

jm: 0023-161 connect jmd exceeded max times.

jm: 0023-023 Quitting...

ERROR: 0031-117 Unable to contact Resource Manager

ERROR: 0031-635 Non-zero status -1 returned from pm_mgr_init

A: This is caused when the MPL job manager dies (for reasons unknown
at this time).

6. Q: T get error messages like this when I run an MPL job (using Switch/ip):

ERROR:
ERROR:
ERROR:
ERROR:

0031-161 EOF on socket connection with task 28
0031-160 I/0 error on socket connection with task 29

0031-619

: Bad file number

0031-161 EOF on socket connection with task 29

27

79.
79.
79.
79.
79.
79.
79.
79.
79.
79.

10.

ERROR: 0031-160 I/0 error on socket connection with task 31
ERROR: 0031-619 : Bad file number
ERROR: 0031-161 EOF on socket connection with task 31

A: Unknown at this time.

Q: I get error messages like this when I run an MPL job

ERROR: 0031-630 pm_contact: read timeout occurred; nprocs =
ERROR: 0031-618 The following nodes were not contacted:
ERROR: 0031-623 task 5: hostname spnode009.mcs.anl.gov
ERROR: 0031-635 Non-zero status -1 returned from pm_mgr_init

A: Unknown at this time.

Q: I try to compile my program and I get an error message:

x1f -c utility.f

NETLS: StartNetLS: communications failure (network computing sys-

tem/RPC runtime)
The error code from the last failed command is -1.

A: Welcome to the world of licensed software. Our compilers (and possibly
other products) are controlled by a network license server. This error
message means that the license server could not be contacted; please notify
spsupport. Another error that you might encounter is some message
about there being no licenses left; you can for the compiler to wait for a
license with the option —qwait=-1.

Q: It takes forever to compile my small Fortran program.

A: The Fortran compiler takes around 50 seconds to compile a trivial
program; this is caused by the license server. This is considered a feature
by IBM. You may wish to consider using £2¢ to convert Fortran programs

to C.

Q: My program is in ‘/sphome/$LOGNAME/myname’, but when I try to ex-
ecute it, I get

myprog: Command not found.

A: This means that your PATH does not contain the current directory
(usually a single “.” in the PATH. Either modify your PATH or prefix the
program name with ./:

./myprog ...

28

32

11.

12.

13.

14.

Also see section 1.1 [Getting Started], page 1.

Q: My program runs correctly when I compile it —g but not when I compile
it with optimizations (-0).

A: The compiler may be generating incorrect code. Try using bisection on
your source files: compile half with —g and half with -0 and test again.
Continue replacing files compiled with -0 with ones compiled with —g until
the code works. You may be able to simply use a few modules compiled
with —g in your application.

If you can produce a simple example (a few dozen lines of code) that you
are sure 1s incorrectly compiled, send it to spsupport.

Q: I tried to login but got messages like

cat: cannot open /mcs/etc/path
arch: Command not found.
hostname: Command not found.
biff: Command not found.

tset: Command not found.
hostname: Command not found.

A: Your ‘.login’ or ‘. cshrc’ file contains references to the MCS filesystem
(e.g., ‘/mecs/etc/path’). These are unavailable on the nodes. Modify your
files accordingly. See ‘/sphome/INIT/initcsh’for a script to create initial
‘.login’ and ‘.cshrc’ files.

Q: I tried to use xspusage but I got the error message

bonnie % X1ib: connection to "neptoon:0.0" refused by server

X1lib: Client is not authorized to connect to Server
couldn’t connect to display "neptoon:0"

A: You need to do xhost + bonnie on the X11 server you are using (in this
example, neptoon). Some other tools will require that you have allowed
connections from the individual nodes; you may want to add xhost +
spnode$i for i from 1 to 128.

Q: My parallel program runs on other parallel machines but seems to
deadlock on the SPx when using MPL, MPI, or Chameleon.

A: The following parallel program can deadlock on any system when the
size of the message being sent is large enough:

send(to=partner, data, len, tag)
recv(from=partner, data, maxlen, tag)

29

15.

16.

where these are blocking send’s and receives (mp_bsend in MPL and
PIbsend in Chameleon). For many systems, deadlock does not occur until
the message is very long (often 128 KBytes or more). The limit for MPL
1s smaller.

To fix this you have several choices:

e Reorder your send and receive calls so that they are pair up. For
example, if there are always an even number of processors, you could
use

if (myid is even) {
send(to=partner, data, len, tag)
recv(from=partner, data, maxlen, tag)

¥

else {
recv(from=partner, data, maxlen, tag)
send(to=partner, data, len, tag)

}

Another possible source of problems is trying to receive messages in
a different order than they were sent. For example, if processor 1
does

send(to=0, data, len, tagl)
send(to=0, data, len, tag2)
and processor 0 does

recv(from=1, data, len, tag2)
recv(from=1, data, len, tagl)

and these are blocking receives, then when using MPL, this program
may deadlock. To fix this, reorder either the sends or receives.

e Use non-blocking sends and receives instead

e If you are using Chameleon, you can use the command line argument
-eui nsend=0 to cause Chameleon to provide buffering from user-
space for all blocking sends. This works with the COMM=eui.

Q: My C program include fcntl.h but does not find symbols like 0_RDONLY
(needed for open.

A: You need to add -D_POSIX_SOURCE to your compile flags. This is
usually required if you use x1c instead of cc.

Q: T can’t seem to run MPL jobs in the background or with nohup job;
the just seems to die when I log off. (May only happen to ksh users)

A: (quick answer): Don’t log off; just leave an xterm running the program)

30

17.

18.

(long answer; not recently tested): If one is using ksh, and one starts a
normal job, or a p4-socket job on one of the nodes, using

nohup job.....
then when one logs off, the job continues, providing one used telnet to get

to the node (I think rlogin won’t work).
If makes a script for the job and puts

#! /bin/csh
at the beginning of the script and then runs
nohup script.name &

1t still dies.

However if one enters csh first:

csh
nohup script.name &

then all 1s ok.

Q: My Fortran program uses NAMELIST and no longer works.

A: There are reports that the behavior of NAMELIST has changed. x1f now
conforms to Fortran 90, and the Fortran 90 standard specifies the form and
interpretation of NAMELIST. The earlier verision of the Fortran standard,
Fortran 77, did not include NAMELIST. However, many Fortran compilers
implemented some form of NAMELIST. The problem comes from incompat-
ibilities between these previous non-standard definitions of NAMELIST and
the Fortran 90 specification.

Q: How do T use info with ASCIT text (e.g., over a modem)?
A: To access the InfoExplorer Help pages via the info ASCII interface:

info -a
CTRL-0 to access the menu bar
D to select the "Display'" menu option
B to select the '"Books'" sub-menu option
CTRL-F several times to the "Getting Started" topic
ENTER to select this topic

CTRL-N, CTRL-F, and CTRL-B as needed to reach '"Chapter 9.

ing the
InfoExplorer ASCII Interface"
ENTER to select this topic

Us-—

Use the following keys as needed to move around this chapter

31

and learn

CTRL-0 to
its info)

CTRL-N to

CTRL-P to

CTRL-F to

CTRL-B to

more details about the info ASCII interface:
toggle to/from the menu bar (E in the menu bar ex-

scroll to the next page

scroll to the previous page

move forward within a topic list
move backward within a topic list

To access the Parallel Environment documentation, execute

info -a -1 pe

and use the same movement keys as noted above.

32

Chapter 12

Reporting Problems

If you believe that the SPx has a hardware or software problem, please send
mail to spsupport. Please be as specific as you can; if relevant, include samples
of code or output.

The mail alias spusers should be used for sending mail to fellow users of
the SPx. This list 1s appropriate for mail about new tools, user-group meetings,
pleas for reducing disk space usage, and the like.

If the ‘/sphome’ file system fills up, you should do the following

1. Use the command df /sphome to verify that the file system really is full.
2. Remove whatever you can. The command
du -k /sphome/$LOGNAME
will show (in kilobytes) the disk usage of all of your subdirectories.

3. Send a message to the other SPx users alerting them to the fact that
‘/sphome’is full. This can be done by sending a message to spusers@mcs.anl.gov.
You might want to include (some) of the output of

du -k -s /sphome/* | sort -r -n | head

which will show the disk usage of each user (note that ‘/sphome/pass’
is a mounted file system and hence does not take space away from the
‘/sphome’ file system).

33

Chapter 13

Miscellaneous

13.1 Selecting Interrupt-Driven MPL

By default, MPL uses a polling method to check for incoming messages. This
has the advantage of reducing the number of interrupts that must be handled,
but can in some cases introduce long delays as processes wait for messages to be
delivered. Programs containing large amounts of nonblocking communications
can benefit from setting the environment variable MP_CSS_INTERRUPT to yes
before running. This works with Chameleon and p4 as well as for MPL jobs
started with poe.

13.2 Interrupt-driven receives in MPL

As an experimental feature, our version of MPL includes a way to specify that
a function should be called when a message of a particular type is received.
Please see Mike Minkoff for more information.

13.3 Threads

DCE threads are available on all nodes and compile servers.

34

Acknowledgments

We thank all the users who have contributed to this guide. Particular thanks
go to Steve Pieper of the ANL Physics Division, who has been an aggressive,
pioneering, and always helpful user, and has uncovered many problems for the
first time. His initial efforts to document his findings on the use of the SP
provided the initial text for the first edition of this guide, and the authors of
this edition gratefully acknowledge his contributions.

The work described in this report has benefited from conversations with and
use by a large number of people. Steven Tuecke provided the descriptions for
Fortran M and a number of valuable comments. Thanks to the many people
who provided comments on the early draft of this document. In particular,
Bill Nickless and Paul Plassmann made a number of useful suggestions. Tim
Lehmann read the document with particular care, identifying a number of places
where files or commands refered to had moved.

35

Bibliography

(1]

[2]

Ralph Butler and Ewing Lusk. User’s guide to the p4 parallel program-
ming system. Technical Report ANL-92/17, Argonne National Laboratory,
October 1992.

Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4
parallel programming system. Journal of Parallel Computing, 1993. To ap-
pear (Also Argonne National Laboratory Mathematics and Computer Sci-
ence Division preprint P362-0493).

Message Passing Interface Forum. Document for a standard message-passing
interface. Technical Report CS-93-214, University of Tennessee, November
1993.

William D. Gropp and Barry F. Smith. Chameleon parallel programming
tools users manual. Technical Report ANL-93/23, Argonne National Labo-
ratory, March 1993.

Virginia Herrarte and Ewing Lusk. Studying parallel program behavior
with Upshot. Technical Report ANL-91/15, Argonne National Laboratory,
August 1991.

IBM. IBM AIX Parallel Environment Parallel Programming Subroutine Ref-
erence Release 2.0, June 1994.

D. H. Lawrie. Access and alignment of data in an array processor. [FEFE
Transactions on Computers, C-24(12):1145-1155, December 1975.

H. J. Siegel. Interconnection Networks for Large Scale Parallel Processing.
Lexington Books, 1985.

36

