ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL/MCS-TM-201

Users Guide to the Argonne SP Scheduling System

by

David A. Lifka,* Mark W. Henderson, and Karen Rayl

Mathematics and Computer Science Division

Technical Memorandum No. 201

May 1995

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

* Also affiliated with the Illinois Institute of Technology.

Contents

Abstract

1 SP Scheduler Policy Overview

2 SP Scheduler Users Guide
2.1 Terminology
2.2 Scheduler Commands . .
2.3 Getting Started
2.4 Supported Job Types. . .

2.5 Using Temporary Storage on the SP Nodes with the Scheduler
2.6 Releasing Resources When Finished 0. 0000 0oL o L.
2.7 Current Queuing Algorithm oo

3 System Installation and Administration Guide

3.1 Installing the Scheduler .

3.2 Modifying the Scheduler for a Specific Environment
3.3 System Administration Tools L0

4 Scheduler Architecture

4.1 Components of a Scheduling System

4.2 SP Scheduler Design . . .
4.3 Sample Flow of Execution

References

iii

Users Guide to the Argonne SP Scheduling System

by

David A. Lifka, Mark W. Henderson, and Karen Rayl

Abstract

During the past five years scientists discovered that modern UNIX workstations connected with
ethernet and fiber networks could provide enough computational performance to compete with the
supercomputers of the day. As this concept became increasingly popular, the need for distributed
queuing and scheduling systems became apparent. Today, supercomputers, such as Argonne Na-
tional Laboratory’s IBM SP system, can provide more CPU and networking speed than can be
obtained from these networks of workstations. These modern supercomputers look like clusters of
workstations, however, so developers felt that the scheduling systems that were previously used on
clusters of workstations should still apply. After trying to apply some of these scheduling systems
to Argonne’s SP environment, it became obvious that these two computer environments have very
different scheduling needs. Recognizing this need and realizing that no one has addressed it, we
developed a new scheduling system. The approach taken in creating this system was unique in that
user input and interaction were encouraged throughout the development process. Thus, a scheduler
was built that actually worked the way the users wanted it to work. This document serves a dual
purpose. It is both a user’s guide and an administrator’s guide for the ANL SP scheduling system.
Look for revisions to this guide that will be appearing.

v

1 SP Scheduler Policy Overview

The goals of the Mathematics and Computer Science Division’s Argonne SP job scheduler are fair-
ness, simplicity, and efficient use of the available SP resources. These goals are in conflict, but the
scheduler is designed to be a compromise. Users will be able to request a set of nodes for any type
of use. In order to maintain the quality of machine access, the scheduler provides a single point of
access, spsubmit. This program will allow users to queue both interactive and batch access to the
SP. When resources are available, the user will be notified by the scheduler and at that time will
have exclusive access to the number of nodes requested. Having ezclusive access to the SP nodes
allows the user to have optimum cache performance and use of all available memory and /tmp disk
space. This type of access allows users to run benchmarks at any time and also to predict how
long it will take for their job to complete. Having exclusive access is essential so that users users
can predict wall-clock run time for their jobs when they submit them to the scheduler. While there
are currently no limits to the number or size of jobs that can be submitted, the scheduler uses a
public algorithm to determine when batch or interactive time is actually provided (see Section 2.9).
Any modifications to this algorithm will be made public. To view the current queuing policy, use
the command spq -1. MCS has also implemented an allocation policy as a separate part of the
scheduler. The intent of the policy is to ensure all users some set amount of resource time and to
prevent people from using more than their share of resources.

2 SP Scheduler Users Guide

2.1 Terminology

A few terms and conventions are used throughout this document. Commands that can be typed
at the Unix command line will are in a typewriter-like font: command name. "CAC" stands for
charge allocation category and is the account unit for the scheduler accounting system developed at
Argonne for use with the scheduler. It currently is used only at Argonne and has not been released
for distribution. If you are using this users guide somewhere other than Argonne you can ignore any
reference to the accounting system or CAC. GUI stands for graphical user interface and is typically
used in reference to xspusage.

2.2 Scheduler Commands

The scheduler was designed to be easy to use and to understand. The user interface to the scheduler
is made up of a group of commands that behave much like existing Unix commands. This section
lists the various user commands for using the SP job scheduler and gives a brief explanation of their
function. NOTE: All of the commands have "-h" options which provide help and describe additional
functionalities they may have.

2.2.1 spq
spq: Displays the SP scheduler job queue. It provides the following job information:
e the job IDs for each job
e the username associated with each job
e the number of nodes required/used by each job
e which jobs will start during the day, night, or weekend
e whether the job is (I)nteractive or (B)atch

e the current status of each job

— (W)aiting to run

— (P)aused by the user
— (H)eld by the system
— (h)eld by the system and paused by the user

e how much time the job is requesting or when it will finish if it is currently running.

Here is an example of spq in use:

bonnie.mcs.anl.govy, spq

Kok sk sk sk sk sk skt s o ok ok ok ook ok ok ok ok ok sk sk sk sk sk sk sk sk skt s sk ok ok ok kok ok ok
Please report any problems to spsupport@mcs.anl.gov

Kok sk sk sk sk sk skt s o ok ok ok ook ok ok ok ok ok sk sk sk sk sk sk sk sk skt s sk ok ok ok kok ok ok

115 nodes Available 0 nodes Down

Job ID User # Of Job Req./Stop
Number Name Nodes Queue Type Status Date Time
06154111 panigrah 3 Running N/A R 12/06 17:41
06173226 kohr 2 Running N/A R 12/06 17:52
06172525 michalak 4 Running N/A R 12/06 17:55
06172652 tuecke 4 Running N/A R 12/06 17:57
05162926 moon 128 Day B W Oday 0:05
05162940 moon 128 Day B W Oday 0:05
06160605 nakano 16 Day B W Oday 2:00
06165839 bryant 36 Day B W Oday 0:45
06170615 asussman 30 Day B W Oday 0:45
06173718 wiringa 64 Day B W Oday 0:20
06173728 spieper 32 Day B W Oday 0:20
06173828 spieper 39 Day B W Oday 0:15
06173816 twang 9 Day I W Oday 1:00
06064052 chasman 32 Night B W Oday 6:40
06064909 chasman 32 Night B W Oday 4:00
06070726 chasman 32 Night B W Oday 4:00
06094447 nanjundi 64 Night B W Oday 3:00
06123845 leaf 16 Night B W Oday 6:00
061729212 pudliner 32 Night B W Oday 1:40
06150129 chasman 32 Night B H Oday 4:00

bonnie.mcs.anl.govy

2.2.2 spsubmit

spsubmit: Used to submit jobs to the queue. This command will prompt you for information about
your job. Once you have answered all the questions, it will ask you to verify your answers and submit
that job to the queue. Once the job has been submitted, this command will return your unique job
ID for that job, which you can use to track your job using spq. Any information the system returns
to you about this job will also contain this job ID.

2.2.3 sprelease

sprelease: Is used to remove jobs from either the queue or the machine if the job has already
started. If your job is currently running, it informs the scheduler that your node(s) can be returned
to the free pool and that you should no longer be charged against your charge allocation category
(CAC). Once you sprelease the nodes you are on, it may take up to three minutes to release them

all, depending on how many you are releasing. This is because the scheduler, before returning nodes
to the free pool, verifies that you have left them in a usable state. You are not charged for the
release time. After sprelease finishes issuing all the release requests to the scheduler, it returns
the number of nodes that it has successfully released.

sprelease can be used in two ways. The first is when 1t is issued with a specific job ID, for example,

% sprelease 09144216

In this case all nodes in use by this particular job will be released to the free pool. If issued with a
job ID, sprelease can be issued from any workstation that has the scheduler running on it including
the nodes. The second way sprelease can be used is without a job ID when run from a particular
node that you have been allocated. This is useful for nonparallel jobs that may finish with particular
nodes before others and wish to return them to the free pool while the others continue to be used.

2.2.4 spfree

spfree: Is most commonly used to return the number of nodes currently available for use. It has
the following options:

-h Lists all the options and their functions.

-f <Default> Prints the number of currently available nodes.

-d Prints the number of down nodes.

-r Prints the number of nodes currently reserved for demonstrations.

-g Prints the number of nodes available without going through the scheduler.

-r Prints the number of nodes that are currently in use.

2.2.5 sppause

sppause: Changes the status of all the user’s interactive jobs in the queue from (W)aiting to
(P)aused causing them to be passed over by the scheduler for execution until the user will be able
to use the interactive compter time at some point in the future. If a job has a status of "h" after
being paused, that job has been paused and also has been (H)eld by the system because the user
has requested more resources than the scheduling policy allows to be scheduled at any particular
time.

2.2.6 spunpause

spunpause: Changes the status of all the user’s interactive jobs in the queue from (P)aused to
(W)aiting so that the scheduler will start the job as soon as the resources the job needs are available.
If a job with the status of "h" is unpaused, it will change to "H" until the number of outstanding
resources requested is reduced either by some of the jobs running or by some of the queued requests
being removed.

2.2.7 spstatus

spstatus: This command is updated by the system administrator(s) and contains the current status
of the SP. Here is some sample output from spstatus on the Argonne SP.

bonnie.mcs.anl.gov}, spstatus
SP Status:
12/13/94
- 126 nodes are up and running

- The SP system has been upgraded to SP software version 2.1. The
new POE libraries have been loaded onto bonnie and clyde and
users must recompile their code in order for it to work
properly.

SP Downtime:

- Wednesday 12/14 Racks 1 and 5 will be out of service while we finish

the installation of TB2 adaptors in Mercury (node 1) and Jupiter (node 65).
Cables we received were bad causing us to have to wait 1 more day for these

nodes to be installed. After the installation bonnie and

clyde will be rebooted as well. Kingston will be looking into the
memory allocation problem, the slow compile times on bonnie and clyde,
and the p4 initialization problems throughout the week. Nodes which
show in "service" mode are being used to debug these problems.

- DNext planned downtime is on 12/20 from 8:00 am to 12:00 pm

for regular system maintenance
bonnie.mcs.anl.govy

2.2.8 spusage

spusage: Shows who is currently using which nodes. The format of its output format is node_number(1,0,-

1,-2,-3 -4,-5);username;Job ID;Job run-time. The second number signifies the status of the node.

1 The node is being used by a user job.

0 The node is available.

-1 The node is down and thus unavailable.

-2 The node is being serviced and thus unavailable.
-3 The node is generally available for all users.

-4 The node is being used for a CAVE demonstration.
-5 The node is being used for a demonstration.

2.2.9 «xspusage

xspusage: Displays who is currently using which nodes. An X Windows GUI interface,xspusage,
performs the same function as the ASCII spusage command. It also provides a way for a user to
quickly determine which nodes they have been allocated. The user can then click on those nodes
in this X interface to open xterms on those nodes. This program was based on the GUI tools that
were developed as part of the Scalable Uniz Tools project [2]. The MPI Implementation, MPICH,
has tools like this as well as tools to automate the submission and execution of jobs using the SP

scheduler [4].

Here is a snapshot of xspusage:

Following is a snapshot of xspusage in small mode. This mode is useful if you just want to watch
for a large group of nodes to become available. You can leave this application in the corner of your

= Xspusage

Service | winnga pudliner

dstevens winnga wirnga pudliner

wirdnga wirnga wirdnga pudliner

panigrah
panigrah
Krishnai

wininga

wiringa

dstevens

wirnga

wininga

wirnga
wiringa
wininga
wiringa
wirnga
wiringa
wininga

wiringa

dstevens wirnga

dstevens spieper

witinga
dstevens
wiringa
wikinga
witinga
wiringa
wirnga
wikinga
witinga
leaf

homann

pudliner
pudliner
pudliner

pudliner

krishnai
pudliner
pudliner

pudliner

wirnga
wikinga
witinga
wiringa

wirnga

Mon 14:31

pudliner
pudliner
pudliner
pudliner
krishnai
krishnai
krishnai
krishnai
krishnai

panigrah

krishnai
krishnai
krishnai
Hennett
rhennett
thennett
thennett
Hennett
rhennett
thennett
rennett
rhennett

rhennett

pudliner

pudliner
open
open

wiringa

panigrah

Cave

screen and easily monitor the system by watching the color changes.

33
Mon 14:33

The colors correspond to the the numeric values in spusage and indicate node status.

1 The node is use by a user job blue
The node is available yellow
-1 The node is down and thus unavailable red
-2 The node is being serviced and thus unavailable light blue
-3 The node is generally available for all users green
-4 The node is being used for a CAVE demonstration brown
-5 The node is being used for a demonstration pink

2.2.10 spwhat

spwhat: Shows the number of nodes currently available and how long they will be available. If a job
is submitted based on the information provided by spwhat, it should start immediately. Currently,
spwhat has not been updated to work with the latest scheduling algorithm and so it is turned off.
It should be fixed and available soon.

2.2.11 spwhen

spwhen: Estimates when a particular job, referred to by Job ID, will start based on the current
queuing algorithm. This is a worst-case estimate in that the job will start no later than this time but
may be started sooner if jobs ahead of it in the queue finish before they are expected to. Currently,
spwhen has not been updated to work with the latest scheduling algorithm and so it is turned off.
It should be fixed and available soon.

2.2.12 spwait

spwait: Provides a way to "watch" a particular Job ID in the queue and to return when the job is
no longer in the queue. This is useful for users whose jobs require the output from a previous job as
input to the next. Scripts can be written to verify the output of the job, once a job has completed,
and then to automatically submit the next job to the queue with the appropriate input. If a user
has one job in the queue, spwait will "watch" that job. If it is necessary to monitor several jobs,
spwait can be executed with a Job ID and each invocation will return when the job it is "watching"
is no longer in the queue.

2.2.13 getjid

getjid: Returns the Job ID based on the node it is executed on. This is a useful command for
batch scripts that need to determine which nodes they are running on after they’ve been started on
them.

2.2.14 cacReport

cacReport: Provides statistics for a given CAC.

2.2.15 what_cac

what_cac: Reports the CAC group of a given user ID.

2.3 Getting Started

The spsubmit command will allow you to submit jobs to the scheduling system. The current
scheduler will prompt you for necessary information about your job. NOTE: In the future there will
be a version of spsubmit that supports command-line arguments. The scheduler will assign your
job entry a unique numeric job ID. This unique job ID can be used to track how many jobs you
have submitted to the scheduler and also to remove your unwanted job entries from the scheduler
by using spq and sprelease, respectively. When the nodes you’ve become available, the scheduler
will create a special file in your /sphome directory. The scheduler will also notify you via e-mail
at the time the nodes you requested were actually allocated and the names of the nodes that were
assigned to you. You can also use xspusage to determine which users are using which nodes. The
file has the form:

/<home_path>/<username>/SPnodes.<job_ID>

Here is an example:

/sphome/lifka/SPnodes.09145115

This file contains a list of the nodes names you have been assigned for a particular run.

Nodes allocated to you by the scheduler will be in exclusive access mode. Only your login will be
enabled on the nodes that you are allocated. (This means you will be the only one that can log into
these nodes until you release them with sprelease. Once you issue the sprelease on the nodes
allocated to you (see Section 2.8), you will not be able to log into those nodes.)

2.3.1 Batch Submission with spsubmit

If you have submitted a program or script for batch execution, it will be automatically executed for
you. It does this by issuing an rsh of the program or script to the first node in the group that it
allocates to you.

If you require that data be staged to nodes or other job setup, you should submit a job script that
performs the appropriate setup and then runs your program. Be sure when submitting programs or
scripts that you provide the full path to them, for example,

(/sphome/<user_name>/<program>)

You should also use full paths to any files or programs referenced inside your programs or job scripts.

NOTE: even though a job is running as a batch job, the user who submitied it will have access to
the nodes it is executing on.

2.3.2 Interactive Submission with spsubmit

It may be useful to request interactive time on the SP until you have thoroughly tested your programs
and/or scripts. This will allow you to closely monitor their performance until you are confident that
they will run correctly in batch mode.

If you schedule interactive time and it gets queued because the system is currently loaded, be sure
that you will be available to use the resources when they actually become available. For example, if
the system is heavily loaded and the interactive time you requested becomes available at midnight,
you will need to be able to use those resources at midnight because they will be allocated to you
and thus billed against your CAC until they are released with sprelease. You may wish to remove
interactive jobs or pause them with sppause from the queues when leaving work for the day.

When you use spsubmit to request interactive time, it asks for information about your job even
though you can use the nodes any way you wish interactively. The scheduler is just a means of
collecting this information to study how people are using the machine.

2.3.3 Spsubmit Example 1: An MPL Script

We present a submission example in which the user wishes to submit a script that runs an MPL
program in "user space" mode over the IBM switch.

bonnie.mcs.anl.govy% spsubmit

Charge Allocation Category: [default lifka]

Maximum Wall-clock Run-Time (minutes): (1-7?77) 15

Number of Nodes Required: (1 - 128) 4

CAC: "lifka" *now* has 28114 RUs available, after committing.
(I)nteractive (B)atch: b

Job Classification (M)PL, (T)ask Farm, (P)4: m

IP over the switch [y/n]l: n

Full path to Shell Script/Program: /sphome/lifka/MPL/RunMe
Command Line arguments for your job:

Username: lifka

Charge Allocation Group: lifka

Job Type: B

Job Classification: mpl

IP over the switch: no

Number of Nodes: 4

Maximum Wall-clock Run-Time (minutes): 15
Program/Job Script: /sphome/lifka/MPL/RunMe
Command Line Arguments:

(C)ommit or (A)bort: ¢

Your JID for this job is: 12132612
bonnie.mcs.anl.gov%

2.3.4 Spsubmit Example 2: A p4 Program

Our second submission example i1s for a p4 program, not a script. Notice that the p4 debugging
options and output redirection were entered as desired command-line arguments.

bonnie.mcs.anl.govy% spsubmit

Charge Allocation Category: [default lifka]

Maximum Wall-clock Run-Time (minutes): (1-7?77) 15

Number of Nodes Required: (1 - 128) 186

CAC: "lifka" *now* has 27814 RUs available, after committing.

(I)nteractive (B)atch: b

Job Classification (M)PL, (T)ask Farm, (P)4: p

IP over the switch [y/n]: y

Full path to Shell Script/Program: /sphome/lifka/P4/UniTree/Utest

Command Line arguments for your job:-p4dbg 10 -p4rdbg 10 > /sphome/lifka/run.out

Username: lifka

Charge Allocation Group: lifka

Job Type: B

Job Classification: p4

IP over the switch: yes

Number of Nodes: 16

Maximum Wall-clock Run-Time (minutes): 15

Program/Job Script: /sphome/lifka/P4/UniTree/Utest

Command Line Arguments: -p4dbg 10 -pdrdbg 10 > /sphome/lifka/run.out

(C)ommit or (A)bort: ¢

Your JID for this job is: 12135506
bonnie.mcs.anl.gov%

2.3.5 Spsubmit Example 3: A Task Farm Script

bonnie.mcs.anl.govy% spsubmit

Charge Allocation Category: [default lifka]

Maximum Wall-clock Run-Time (minutes): (1-7?77) 15

Number of Nodes Required: (1 - 128) 32

CAC: "lifka" *now* has 26526 RUs available, after committing.
(I)nteractive (B)atch: b

Job Classification (M)PL, (T)ask Farm, (P)4: t

IP over the switch [y/n]l: n
Full path to Shell Script/Program: /sphome/lifka/RunMe
Command Line arguments for your job:4 16

Username: lifka

Charge Allocation Group: lifka

Job Type: B

Job Classification: task

IP over the switch: no

Number of Nodes: 32

Maximum Wall-clock Run-Time (minutes): 15
Program/Job Script: /sphome/lifka/RunMe
Command Line Arguments: 4 16

(C)ommit or (A)bort: c
Your JID for this job is: 12135557
bonnie.mcs.anl.gov%

2.4 Supported Job Types

With the SP scheduler, nodes can be used both for interactive and batch computing. The nodes
are configured to run parallel programs that use the IBM switch or ethernet for communication.
Jobs that use MPL, MPI, or p4 for interprocess communication fall into this category. Task farm
jobs, or those that use the SP as if it were a large cluster of network-connected IBM RS6000s, are
also supported. If you are not sure how to classify a program, please consult the ANL SP Users
Guide [5]. If you are still having trouble, contact spsupport@mecs.anl.gov or your local support staff.

2.4.1 MPL

MPL is the new IBM switch software that replaces EUI/EUTH. To use MPL, it is preferable to
use mpce and mpxlf instead of xlc and xIf to compile and link your programs. For more details
on compiling and linking MPL code, see the SP Users Guide. To run an MPL code, you must set
several environment variables.

MP_HOSTFILE: Points to the file containing the list of nodes that you
have been assigned to run on by the scheduler.
MP_INFOLEVEL: Provides an overwhelming amount of debugging
information, most of which is often difficult to interpret
or missleading.
The default level is 1 but should be 0 which is no
information. (We have suggested this change to IBM.)

MP_EUILIB: Tells MPL either to run IP over the switch if set to
"ip'" or to use direct mode over the switch if set to "us".
MP_PROCS: Indicates the number of processors the job runs on (should

correspond to the number of nodes in the host file).

These variables can be set interactively if you are scheduling interactive time or within a script if
you are scheduling batch time. It is crucial that you set the environment variable MP_HOSTFILE
to the file containing the list of nodes the scheduler has allocated to you; otherwise MPL will fail.
Here are some examples of a csh batch scripts that will run a MPL programs.

2.4.2 MPL Batch Script Example for IP over the IBM Switch

#!/bin/csh

get the job id for this job

set JID = ‘/usr/local/bin/getjid‘

Run IP over the switch

setenv MP_EUILIB ip

convert the Scheduler generated SPnodes file to an SWnodes file for
IP over the switch

cat /sphome/$LOGNAME/SPnodes.$JID | sed ’s/sp/sw/’ > /sphome/$LOGNAME/SWnodes.$JID
set SWnodes file the host list for this job

setenv MP_HOSTFILE /sphome/$LOGNAME/SWnodes.$JID

set the number of processes that you wish to run on

setenv MP_PROCS 64

set the debugging level (0 is generally recommended)

setenv MP_INFOLEVEL 0O

execute the program with the output redirected to a file

poe /sphome/$LOGNAME/<program_name> >& /sphome/$LOGNAME/job.output

release the nodes for the next user

sprelease $JID

2.4.3 MPL Batch Script Example for Direct Mode over the IBM Switch

#!/bin/csh

get the job id for this job

set JID = ‘/usr/local/bin/getjid‘

Run IP over the switch

setenv MP_EUILIB us

make the scheduler generated SPnodes file the host list for this job
setenv MP_HOSTFILE /sphome/$LOGNAME/SPnodes.$JID

set the number of processes that you wish to run on

setenv MP_PROCS 64

set the debugging level (0 is generally recommended)

setenv MP_INFOLEVEL 0O

execute the program with the output redirected to a file

poe /sphome/$LOGNAME/<program_name> >& /sphome/$LOGNAME/job.output
release the nodes for the next user

sprelease $JID

Note to interactive MPL users:

If you are going to use your interactive time for MPL jobs, you will have to use an MPL host list
file so that your MPL job will run on the nodes you have been allocated. If you do not, MPL may
try to run your jobs on nodes that you do not have access to, causing the job to fail.

2.4.4 MPI

MPI (Message Passing Interface) is a new message-passing system "standard" that has recently
been defined by a broadly based group of parallel computing vendors, library writers, and users.
The current draft is now in the public-comment stage [3]. Argonne has an implementation of MPI
called MPICH [4], which runs on the Argonne SP system. MPI programs can be treated like MPL
programs described in the preceding section but have the added capability of being ported to other
platforms. The MPICH implementation also has a portable method of starting jobs, called mpirun.
On the ANL SP system mpirun interfaces with the SP scheduler to schedule and start jobs.

10

2.4.5 p4

The p4 system [1], is a portable message-passing system that runs on a wide variety of parallel
computers and workstations. It is in use at approximately 200 sites around the world. Existing p4
programs will run unchanged on the SP.

2.4.6 p4 Batch Script Example for IP over the IBM Switch
This csh script will produce a procgroup appropriate for IP over the IBM switch.

#!/usr/local/bin/tcsh

set JID = ‘/usr/local/bin/getjid‘

cat /sphome/lifka/SPnodes.$JID | sed ’s/sp/sw/’>/sphome/lifka/SWnodes.$JID
@I =0

touch /sphome/lifka/pg.$JID

foreach i (‘cat /sphome/lifka/SWnodes.$JID¢)

echo "$i $I /sphome/lifka/P4/Utest" >> /sphome/lifka/pg.$JID
if ($I == 0) then

@I =393I+1

endif

end

/sphome/lifka/P4/Utest -p4pg /sphome/lifka/pg.$JID -p4dbg 10 -p4rdbg 10

This example produces the following procgroup file:

swnode001 0 /sphome/lifka/P4/Utest
swnode002 1 /sphome/lifka/P4/Utest
swnode003 1 /sphome/lifka/P4/Utest
swnode004 1 /sphome/lifka/P4/Utest

2.4.7 p4 Batch Script Example IP over the Ethernet
This csh script will produce a procgroup appropriate for IP over the Ethernet between the SP nodes.

#!/usr/local/bin/tcsh

set JID = ‘/usr/local/bin/getjid‘

echo "local 0" > /sphome/lifka/pg.$JID

foreach i (‘cat /sphome/lifka/SPnodes.$JID¢)

echo "$i 1 /sphome/lifka/P4/Utest">>/sphome/lifka/pg.$JID
end

/sphome/lifka/P4/Utest -p4pg /sphome/lifka/pg.$JID

This example produces the following procgroup file:

local 0

spnode001 1 /sphome/lifka/P4/Utest
spnode002 1 /sphome/lifka/P4/Utest
spnode003 1 /sphome/lifka/P4/Utest
spnode004 1 /sphome/lifka/P4/Utest

Note to Interactive pj users:

If you are going to use your interactive time for p4 jobs, you will have to create a procgroup file
that uses only the nodes you have been allocated. The SPnodes file that the scheduler provides you
with contains a list of nodes you can use in your procgroup file. If you submit a p4 program to the
scheduler, instead of a job script, it will automatically generate an appropriate procgroup file for
you. If you would like to submit a job script to the scheduler you can use the previous csh scripts as
a base, which automatically generate an appropriate procgroup file at run-time based on the nodes
you are assigned.

11

2.4.8 Task Farm

Task farm users generally use the SP as if it were a large cluster of network connected IBM RS6000
workstations. Binary executables can be submitted to the scheduler, as can shell scripts that run
single process jobs on multiple nodes.

2.5 Using Temporary Storage on the SP Nodes with the Scheduler

If your program requires that data be moved into and/or out of the /tmp directory on the nodes; it
will be important that your program or script perform these moves before and after program execu-
tion. This is because you cannot be guaranteed access to specific SP nodes for data staging before
the nodes are actually allocated to you or after you have released the nodes using the sprelease
command. If you request interactive time, you will be able to log into the nodes allocated to you
and do your data staging before and after running your program interactively. NOTE: Once a node
is released, all user data in /tmp is removed so thal the next user has the same amount of /lmp
space available for a job.

2.6 Releasing Resources When Finished

When you are finished with the SP resources that you have been allocated, you will have to release
them so that they can be re-scheduled by the system. It is extremely important that you release
resources when you are finished with them so that the idle node time is not charged to your CAC.
Any allocated time will be charged against your CAC for the resources you requested, whether you
use them or not. This is because while the nodes are assigned to you, no one else will have access
to them. To return nodes to the scheduler once you are done, you will have to use the sprelease
command on each of your allocated nodes or with a job ID to release all nodes associated with that
particular job ID. sprelease will log your release of the node at the time 1t is issued, remove your
access from the node, kill all current processes on the node owned by you, and clear /tmp for the
next user. Because /tmp is cleared, it will be necessary to move any important data off the /tmp
disk to your /sphome directory before releasing the node.

The sprelease command can be run interactively by the user, called at the end of a shell script or
from a system call in your programs. The advantage of embedding it at the end of your scripts or
programs is that you will not have to monitor your batch runs to ensure that your resources were
released at the correct time. The sprelease command offers a big improvement over the sign-up
sheet schedulers because nodes can be made available and used again as soon as users are finished
using them. In the past, large time-blocks were reserved and held iregardless of how long they were
actually used.

2.7 Current Queuing Algorithm

Jobs are currently run in an optimized first-in-first-out (FIFO) fashion. The optimization works by
first seeing whether the next job in a particular queue has enough nodes available to start. If so, it
is allocated the nodes and started. If there are not enough nodes available for the next job in the
queue, the time that job is blocked for is determined by looking at jobs currently on the system and
determining how long it will be before enough of them finish so that the next job can start. The
scheduler tries to fill this time gap with another job in the queue that will not run longer than this
time gap and does not require more nodes than are currently available.

To see resource unit limits that the scheduler uses to classify jobs, use the spq -h command. During
the time periods when jobs requiring large numbers of resources are started, jobs requiring few
numbers of resources will be started if there are no large jobs queued to run. Also notice that jobs
requiring very large numbers of resources are considered to be extraordinary events and will be
treated as such by the scheduling system.

12

2.7.1 Queuing Example Description

This five-part example shows a typical job load in the queue and shows the machine state before
and after each job is started on the system. Each yellow box in the mesh represents a node on the
Argonne 128-node SP system. As a job is added to the system the nodes it occupies are changed
to a unique color. The Job Status column of the queue table has three states. "W'" means the job
is waiting to be started, "S" indicates that the job is being started in this part of the example, and
"R" means the job is currently running.

2.7.2 Queuing Example Part 1

User Name Number of Nodes Number of Minutes Job

93]

tatus

user A 32 120 S
user B 64 60 W
user C 24 180 W
user D 32 120 W
user B 16 120 W
user 10 480 W
user G 4 30 W
user H 32 120 W

Job A requires 32 nodes for 2 hours. There are 128 nodes available so this job can start.

2.7.3 Queuing Example Part 2

User Name | Number of Nodes | Number of Minutes | Job Status
user A 32 120 R
user B 64 60 s
user C 24 180 W
user D 32 120 W
user B 16 120 W
user 10 480 W
user G 4 30 W
user H 32 120 W

Job B requires 64 nodes for 1 hour. There are 96 nodes available so this can also start.

13

2.7.4 Queuing Example Part 3

User Name Number of Nodes Number of Minutes Job Status

user A 32 120 R
user B 64 60 R
user C 24 180 s
user D 32 120 W
user B 16 120 W
user 10 480 W
user G 4 30 W
user H 32 120 W

Job C requires 24 nodes for 3 hours. There are 32 nodes available so this can also start.

2.7.5 Queuing Example Part 4a

l

User Name Number of Nodes Number of Minutes Job Status
user A 32 120 R
user B 64 60 R
user C 24 180 R
user D 32 120 W
user B 16 120 W
user 10 480 W
user G 4 30 s
user H 32 120 W

Job D requires 32 nodes for 2 hours. There are only 8 nodes available so this job cannot start. Now
the scheduler determines how long it will be before enough nodes currently in use will be available
so that job D can start. Job B will finish the soonest, and when it does there will 8 4+ 64 nodes
available, which is enough for Job D to run. The scheduler now looks for a job that can use the
available 8 nodes for 1 hour or less. Jobs E and F need more nodes than are currently free, so they
are not candidates. Job G needs 4 nodes for 30 minutes, which is less than the 8 node/60 minute
limit, so it 1s allowed to start.

14

2.7.6 Queuing Example Part 4b

User Name Number of Nodes Number of Minutes Job Status

user A 32 120 R
user B 64 60 R
user C 24 180 R
user D 32 120 W
user B 16 120 W
user 8 480 s
user G 4 30 W
user H 32 120 W

Here is a slightly different scenario assuming the queued job requirements are slightly different. Job
D requires 32 nodes for 2 hours. There are only 8 nodes available so this job cannot start. Now the
scheduler determines how long it will be before enough nodes currently in use will be available so that
Job D can start. Job B will finish the soonest, and when it does there will 8 + 64 nodes available,
which is enough for Job D to run. The scheduler now looks for a job that can use the available 8
nodes for 1 hour or less. Job E needs more nodes than are currently free, so it is not a candidate.
Job F needs 8 nodes for 480 minutes, which is greater than the 60 minute limit. Nevertheless Job F
is allowed to start because when Job B finishes, it will release 64 nodes, which is 32 more than Job
D needs. If Job B released only 24 nodes (with 8 currently available), Job F would not have been
allowed to start.

3 System Installation and Administration Guide

3.1 Installing the Scheduler

This section describes the requirements and steps to install the Argonne SP scheduler. It also goes
through the configuration file Scheduler.configin detail explaining the various settings and their
importance. It assumes a basic understanding of SP system administration.

3.1.1 System Requirements

The Argone SP scheduling system has several SP system requirements, most of which are normally
part of any SP installation. This list is based on what has been needed on Argonne’s SP system
for the scheduler. It can be used as a reference if things do not work as expected on other systems
configured differently.

1. An IBM RS6000 system with at least 20 megabytes of free disk space in a fileystem that
can be made NFS mountable to all schedulable resources in the SP complex. At Argonne
we use a secondary control workstation, which also has several other administrative purposes.
The scheduler does not require a dedicated resource, but it should not be installed on a busy
system such as a control workstation or a heavily used compile server.

15

2.

The scheduler has been run under AIX 3.2.4. and 3.2.5. It has not been tested with AIX 4
yet.

To enforce exclusive access to the SP nodes, the scheduler relies on having an NIS server
that all the schedulable resouces can rely on for user authentication information. When the
scheduler allocates an SP node to a user, it adds that user’s username to the SP node’s
/etc/passwd file. This username is used by the NIS server to ensure that the user has access
to the SP node.

. The SP scheduler system 1s almost entirely written in Perl. It does not use any version-specific

features of Perl and is currently using Perl version 4.036. It has not been tested with Perl 5 yet.

. Tecl and Tk are required if you wish to use the zspusage GUI interface. Argonne is currently

using versions tcl-7.0 and tk-3.3.

Please send information to spsupport@ms.anl.gov about any special features, that are not listed
above and are required to get the scheduler working. This will allow us to make future versions of
the scheduler more robust.

3.1.2

Installation

The following instructions need to be followed by a system administrator with root privileges.

1.

Find or create an NFS filesystem on the RS6000 that the scheduler is going to be installed on.
This filesystem must provide read and write access to all schedulable resources (SP nodes)
and to any machine from which users will be able to submit jobs. At Argonne, jobs can be
submitted only from the compile servers.

. Ftp the scheduler. tar file to the RS6000 that it is going to be installed on. The scheduler can

be obtained by anonymous ftp from info.mcs.anl.gov. It islocated in the /pub/sp_scheduler
directory.

. Untar scheduler.tar in the scheduler RS6000 in the NFS-mounted files system created in

Step 1. On the Argonne system the scheduler directory is in /etc/FRAMES. After untarring the
scheduler, the directory SP_Scheduler will be created, which contains the scheduler’s contents.
At Argonne, the driectory containing the scheduler software is in /etc/FRAMES/SP_Scheduler.
It is important that the directory containing the scheduler be named SP_Scheduler.

. The scheduler security 1s built upon Unix file protection. The code is owned by a special group

db_prot. Users have execute privileges on the scheduler codes owned by db_prot, which can
modify scheduler resource files. Users cannot modify the resource files directly, since they are
not members of this group.

To create this group, edit the file /etc/group. Add the following line to this file:
db_prot:*:669

This gives the db_prot group the group-id number 669. The user-id number for this group
should be 0 or root. If group-id number 669 is already taken, you may substitute it with a
unique group-id, but you must then also put this number in the Scheduler.config file in
Step 9 of this installation procedure.

. Now resource configuration file must be modified to match the system the scheduler is being

installed on. To do this, edit the Resource_list file in the SP_Scheduler directory. This file
contains a list of the names of the "schedulable resources" in the order that they should be

16

scheduled if when they are available to run a job. The names of these resources correspond to
the hostnames the scheduler will rsh commands to. This is a partial example of the Argonne
Resource_List:

spnode001
spnode002
spnode003
spnode004
spnode005
spnode006
spnode007
spnode008
spnode009
spnode010
spnode0O11
spnode012
spnode013
spnode014
spnode015
spnode016
spnode017
spnode018
spnode019
spnode020

6. Now run the Configure script in the Scheduler directory. First cd to the SP_Scheduler
directory. Then execute the script Configure. It will first prompt you for the path to Perl
on your system. This is commonly /usr/local/bin/perl. It will then prompt you for the
path to the scheduler directory. This is the directory you are currently in. On the Argonne
system the response would be /etc/FRAMES/SP_Scheduler. This script adds the correct path
in the scheduler configuration file to all the scheduler routines that reference it. It will then
ask whether you wish to install the xspusage GUI interface. If so, it will prompt you for the
full path to the Tk program wish. This is commonly /usr/local/bin/wish. Configure will
modify all the scheduler codes appropriately for the system it is going to be run on, compile
two small C programs that are part of the system, set all the file protections and ownerships,
and finally create a resource file that the scheduler will use to keep track of all the schedulable
resources.

7. To avoid making SP system users modify their Unix path, create symbolic links from /usr/local/bin
to the scheduler directory on any system used to access the scheduler. Specifically, create sym-
bolic links for the following scheduler utilities:

e spfree

e sphelp

e sppause

e spunpause
* spq

e sprelease
e spsubmit
e spusage

e spwait

e getjid

17

8. To guarantee that users have exclusive access to the SP nodes that they are allocated through
the scheduler, the scheduler adds their username to the /etc/passwd file. This username
is then used to query the NIS server to allow user access to node. Here is an example of a
standard SP node /etc/passwd file that allows access to all users known by the NIS server.

root:1:0:0::/:/bin/ksh
daemon:!:1:1::/etc:
bin:!':2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/usr/adm:
uucp:!:5:5::/usr/1ib/uucp:
lpd:':104:9::/:

nobody: ! :4294967294:4294967294: :/:
+::0:0:::

In order to allow access to the SP node on a per user basis by the scheduler, this password
file must be modified to look like the following.

root:!':0:0::/:/bin/ksh
daemon:!:1:1::/etc:
bin:!':2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/usr/adm:
uucp:!:5:5::/usr/1ib/uucp:
lpd:':104:9::/:

nobody: ! :4294967294:4294967294: :/:

This password file should replace the current password file on all the Schedulable resources
except the nodes the MPL Job Manager runs on. Because of a limitation in its implementation,
the MPL Job Manager requires the standard full password file on the nodes it executes on.
After creating the restricted-access password file on the nodes copy, it to /etc/passwd.base.

cp /etc/passwd /etc/passwd.base

The /etc/passwd.base file is used by the scheduler to remover a user’s access from the node.
It simply copies /etc/passwd.base over /etc/passwd, effectively removing the current user’s
username from the nodes password file.

FEzample: If the scheduler gave a user with the username 1ifka access to an SP node, it would
append "+lifka" to the nodes /etc/password file. The nodes /etc/passwd file then would
look like the following.

root:!':0:0::/:/bin/ksh
daemon:!:1:1::/etc:
bin:!':2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/usr/adm:
uucp:!:5:5::/usr/1ib/uucp:
lpd:':104:9::/:

nobody: ! :4294967294:4294967294: :/:
+lifka

To remove user Lifka’s access from the node the Scheduler simple copies the base password
file over the current password file.

9. Several scheduler settings vary from system to system. All configuration settings are contained
in the file Scheduler.config, which is located in the SP_Scheduler directory created in Step
3 of this installation procedure. In order to avoid any confusion, the entire Scheduler.config

18

file 1s listed below with a brief explanation of each variable or routine, its purpose, and its
appropriate settings.

The variable $DEBUG is for system administrative purposes. If it is set to $TRUE, each piece of
the scheduler code will print status messages on the console the scheduler is started from. To
disable these messages, set $DEBUG to $FALSE.

$DEBUG = $TRUE; # Debugging mode ON
$DEBUG = $FALSE; # Debugging mode OFF

The $Armed variable is also for system administrative purposes. It was added so that the
system administrator could test the Scheduler without actually touching the SP system. If
$Armed is set to $FALSE the Scheduler code will run against the queue of jobs and print
messages on the console as to what it would actually be doing. If $Armed is set to $TRUE, the
scheduler will actually schedule and start the queued jobs.

#

Allows the Scheduler to actually '"touch" the machine
(used for testing purposes)

#

$Armed = $TRUE;

During holiday seasons or periods where it is preferable to allow "night" class jobs to run 24
hours day, a special holiday flag can be set. If you wish to start a holiday scheduling time
period, the system administrator has to create a file named HOLIDAY in the scheduler directory.
To end the holiday scheduling period, simply remove this file.

#
Holidays are like Night times all the time
#

if (-e "$Scheduler_Dir/HOLIDAY")

{

$Holiday = $TRUE;
¥
else

{

$Holiday = $FALSE;
¥

The Argonne SP accounting system is currently not available for distribution. For all sites
other than Argonne, the $Scheduler_Accounting flag should be set to $FALSE.

#
Run the ANL/MCS Accounting System ?
#

$Scheduler_Accounting = $FALSE;

In Step 4 of this installation procedure, if you chose a group ID number other than 669 for
the scheduler code, you must modify the $db_prot_gid flag in the following section of code.

#
File Protection Parameters & Group ID for db_prot
#

$db_prot_uid = 0;
$db_prot_gid = 669;

19

The $User_home variable tells the scheduler where the user’s home filesystem is located. On
Argonne’s SP user’s home SP file systems are located in /sphome/<username>. If you have a
different naming convention for the user’s home filesystem, the $User_home should be modified
accordingly.

#
User’s home directory (User NFS mounted file-system that all nodes see)
#

$User_home = "sphome";

The $Scheduler_Host variable should be set to the Internet address of the computer that the
scheduler code runs on.

#

Hostname of the Machine running the Scheduler
#

$Scheduler_Host = "somewhere.mcs.anl.gov";

The following section of code controls the scheduler policies. The variables define when differ-
ent types of jobs can run and ve policy statements for the -h options in the various scheduler
user utilities. If the scheduler policy does not meet your user community requirements, the
following variables can be modified to allow it to do so.

#
These variables describe and define the Night and Day Queues
#

$Day_Time_Def = "Day time is from 9AM to 6PM, Monday through Friday\n";

$Night_Time_Def = "Night time is from 6PM to 9A4M, Monday through Friday\n";
$Night_Time_Def .= '"and 6PM Friday till 9AM Monday\n";

#

These are the time limits for the Day & Night Queues

#

$DayJob = 1920; # Max minutes a Day job can run (32 node/hours)
$NightJob = 15360; # Max minutes a Night job can run (256 node/hours)
$Queued_Limit = 30720; # Max minutes you can have Queued Waiting

$Week_Night = 900; # Max minutes on week night

$Limits_Def = "Size Ranges (in Node/Minutes)\n";

$Limits_Def .= " Day Queue: up to $DayJob";

$Limits_Def .= " AND 9 hours or less.\n";

$Limits_Def .= " Night Queue : '".($DayJob +1)." up to 63 node/hours\n\n";
$Limits_Def .= "After a CAC has $Queued_Limit Node/Minutes scheduled per\n";
$Limits_Def .= "queue, additional jobs are \"Held\'" by the system till\n";
$Limits_Def .= "the total Node/Minutes that CAC has requested in that queue\n";
$Limits_Def .= "fall below $Queued_Limit Node/Minutes. At that point Held\n";
$Limits_Def .= "jobs are returned to \"Waiting\" status.\n";

$Limits_Def .= "\nThis allows a user to submit many jobs at one time without\n";
$Limits_Def .= "denying access to other active users.\n";

20

Most scheduler code requires the following information. The only option that may need
changing is the $Number_of_Nodes flag, which corresponds to the number of schedulable SP
nodes in the SP system.

#

these are variables used in most of the Scheduler daemons
#

$Number_of_Nodes = 128; # number of nodes in the system

$LockWait = 1200; # daemons wait 20 minutes for file lock

%days_in_Month = ("January", "31", "February", "28", '"March", "31",
IIAPrilll’ II30II’ IIMayII’ II31II’ IIJunell’ II30II’ IIJulyll’ II31II’
"August", "31", "September", '"30", "October", "31",
"November", "30", "December", "31");

@Months = ("January", "February", "March'", "April", "May", "June",
"July", "August", "September", '"October", '"November", "December");

After the declaration of all the essential scheduler variables there are several subroutines which
are used by several pieces of the scheduler code. They follow the following comment lines.

#
These are special Scheduler Subroutines
#

The first two, AmIRunning and GetMyName, are used to ensure that only one of each of the
scheduler daemon processes is running on the scheduler host computer.

#
Subroutine to ensure only one copy of a daemon is running
#

sub AmIRunning
{
$Process_Name = $_[0];
$occurrences = 0;
$hostname = ‘/bin/hostname‘;
chop $hostname;
Make sure you are running on the correct machine
if ($hostname eq $Scheduler_Host)
{
Make sure your not allready running
open(PS,"/bin/ps auwx|");
while (<PS>)
{
if (/$Process_Name/) { $occurrences++; }
}
if ($occurrences > 1)
{
if ($DEBUG) {print "DEBUG> Found $occurrences of this program running\n";}
return 1;
}
return O;
}

else

21

{

print "This program only runs on $Scheduler_Host\n";

return 1;
b
b
#
Returns the program name without the path
#

sub GetMylName

{
$Full_Name = $_[0];
while ($Full_Name =" m#/#) {$Full_Name = "$’";}
return ($Full_Name);

¥

The routine IsA_Node is used to ensure that when a user issues a getjid or sprelease
code, that is done from a valid schedulable resource. It assumes that nodes from which these
commands could be run have the same names as those in the Resource_List file that was
created in Step b of this installation procedure. If an SP node responds as a different hostname
from that listed in the Resource_List, you can modify the hostname conversion section of
this subroutine to convert its hostname to its corresponding Resouce_List name.

#

Ensures that the Node name passed is a scheduable resource
#

sub IsA_Node

{

$Check = $_[0];

#

perform any special hostname conversions here
#

$Check = "spnode001";
$Check = "spnode017";
$Check = "spnode033";
$Check = "spnode049";
$Check = "spnode065";
$Check = "spnode081";
$Check = "spnode097";
$Check = "spnodelil3";

if ($Check eq "mercury")
if ($Check eq "venus"

if ($Check eq "earth")
if ($Check eq "mars"

if ($Check eq "jupiter")
if ($Check eq "saturn")
if ($Check eq "uranus"

{
{
{
{
{
{
{
if ($Check eq "neptune") {

L T B =

open (RESOURCES,"$Scheduler_Dir/spusage |");
while (<RESOURCES>)
{
chop;
($node, $avail, $user, $JID, $StopTime) = split;
if ($node eq $Check) { return ($node);

¥
close (RESOURCES) ;
return("");

}

The subroutine UserInfo simply returns the effective user ID for a given user. This routine
should not have to be modified.

22

#
Gets the effective uid for the user
#

sub UserInfo

{
Q@password = getpwuid($>);
$username = $password[0];
$username =" s/, .*//;

}

The subroutine TimeStamp simply returns the current time, which is used to generate a job ID
and also to determine whether it is daytime or nighttime. Several of the Scheduler programs
use this routine.

#
Sets the current time and JID for a given job
#

sub TimeStamp
{
($sec,$min, $hour, $mday, $mon, $year,$wday, $yday,$isdst) = localtime();
$mon++;
$msec = ‘$Scheduler_Dir/GenJID;
chop($msec) ;

put in leading zeros as needed

if ($mon < 10) { $mon = "0".$mon; I
if ($mday < 10) { $mday = "0".$mday;
if ($hour < 10) { $hour = "0".$hour; }
if ($min < 10) { $min = "0".$min; 3
if ($sec < 10) { $sec = "0".$sec; }
$TimeNow = "$mon$mday$hour$min”;
$logtime = "$mon$mday$hourminsec";
$ClockTime = "$hourminsec";
$Midnight = "240000";
$DayStart = '"090000";
$NightStart = "180000";
$JID = $mday.$hour.$min.$sec.$msec;
$Sunday = 0;
$Monday = 1;
$Tuesday = 2;
$Wednesday = 3;
$Thursday = 4;
$Friday = 5;
$Saturday = 6;
$Today = $wday;
Determine if it is Night or Day
if (($Today == $Saturday) || ($Today == $Sunday))
{
$DayTime = $FALSE;
$NightTime = $TRUE;

} #if its a weekend

23

if (($Today >= $Monday) && ($Today <= $Friday))

{
if (($ClockTime ge $DayStart) && ($ClockTime 1t $NightStart))
{
$DayTime = $TRUE;
$NightTime = $FALSE;
}
else
{
$DayTime = $FALSE;
$NightTime = $TRUE;
}

} #if its a weekday

Override normal settings if its a Holiday

if ($Holiday)
{
$DayTime
$NightTime
b

b

$FALSE;
$TRUE;

The EndTime subroutine determines when a job started now will finish, based on the number
of minutes it has requested.

sub EndTime

{

$Time = $_[0];

calculate minutes from days & hours

$req_day = int($Time / 1440.0); # the number of minutes in a day

$req_hour = int(($Time % 1440) / 60); # number of hours
$req_min = $Time % 60;

split the current time

$now = $TimelNow;

$now =" /(\d\d) (\d\d) (\d\d) (\d\d)/;

$now_mon = $1;

$now_day = $2;

$now_hour = $3;

$now_min = $4;

calculate stop times
$end_mon = int($now_mon);

$end_day = int($now_day) + $req_day;
$end_hour = int($now_hour) + $req_hour;
$end_min = int($now_min) + $req_min;
handle roll-overs
if ($end_min > 59)

{

$tmp = $end_min;

$end_min = $tmp % 60;

$end_hour += int ($tmp / 60.0);

}
if ($end_hour > 23)

{

$tmp = $end_hour;

$end_hour = $tmp % 24;

24

$end_day += int($tmp / 24.0);
}
while ($end_day > $days_in_Month{@Months [$now_mon-1]})
{
$end_day -= $days_in_Month{@Months [$now_mon-1]};
$end_mon++;
if ($end_mon == 13) { $end_mon = 1; }
}
now format the EndTime
if ($end_min < 10) { $end_min
if ($end_hour < 10) { $end_hour

"0".$end_min; }
"0".$end_hour; }

if ($end_day < 10) { $end_day = "0".$end_day; }
if ($end_mon < 10) { $end_mon = "0".$end_mon;
return ($end_mon.$end_day.$end_hour.$end_min);
}

The subroutines TimeLimit, TodayAt, and TomorrowAt are used to determine how long a job
can run, based on the current time and day of the week.

sub TimeLimit

{
This subroutine returns a run—-time limit it the form MMDDHHMM
$JobClass = $_[0];

Monday - Friday behave the same
if (($Today >= $Monday) && ($Today <= $Friday))

{
if (($ClockTime >= $DayStart) && ($ClockTime <= $NightStart))
{
$DayLimit = &TodayAt("1800");
$NightLimit = "000000"; # Don’t start Night jobs on Weekdays
b
else

{ # 6pm till Midnight
if (($NightStart <= $ClockTime) && ($ClockTime < $Midnight))
{ # Handle Monday - Thursday nights
$DayLimit = &TomorrowAt("1800");
$NightLimit = &TomorrowhAt("0900");
}
else
{ # handle early Mornings
$DayLimit = &TodayAt('1800");
$NightLimit = &TodayAt("0900");
}
}
} # if Monday - Friday

Today is Saturday or Sunday

if (($Today == $Sunday) || ($Today == $Saturday))
{
$DayLimit = &TomorrowAt('1800");
$NightLimit = &TomorrowhAt("0900");

} # if today is Saturday or Sunday

If this is a Holiday

25

if ($Holiday)
{
$DayLimit = &TomorrowAt ('"0900");
$NightLimit = &TomorrowhAt("0900");
} # if this is a Holiday period

if ($JobClass eq "DAY") { return($DayLimit);
if ($JobClass eq "NIGHT") { return($NightLimit); }
}

sub TodayAt

{
$time = $_[0];
return($mon.$mday.$time);

}

sub TomorrowAt
{
$time = $_[0];
if (($Today >= $Sunday) && ($Today < $Friday))

{ $manana = int($mday) + 1 };
if ($Today == $Friday) { $manana = int($mday) + 3 };
if ($Today == $Saturday) { $manana = int($mday) + 2 };
$Tmon = int($mon);
$0ver_days = $manana - $days_in_Month{@Months[$mon-1]1} ;
if ($0ver_days > 0)

{

$Tmon++;

if ($Tmon == 13) { $Tmon = 1; }
$manana = $0ver_days;

¥

if ($Tmon < 10) { $Tmon = "0$Tmon"; }

if ($manana < 10) { $manana = "O$manana"; 7}
return($Tmon.$manana.$time) ;

}

The CheckNode routine had to be written to due to a bug in the SP Resource Manager. The
switch responds flag for a given node may respond positively even though it is not possible
to run a job that requires IP over the switch. CheckNode tests the node by rsh’ing to the node’s
ethernet address a ping of the node’s switch address. If either do not respond the node will
be marked down and taken out of service so that the Scheduler does not try to start new jobs
on it. This routine assumes that the switch host name for any given SP node is swnode + the
nodes number, for example, swnode001, swnode065, or swnode128. If this does correspond
to the naming conventions on your local SP, this routine will need to be modified accordingly.

sub CheckNode

{
this will always be in the form "spnode###"
(IsA_Node does appropriate name conversions for various
system configurations

$Node = $_[0];

#
Notice: Non—ANL systems need to modify this routine. O0On the ANL system

26

}

since the Resource Manager does not provide reliable information

on "switch-responds'" we rsh to the Ethernet address a ping of its

own switch address. This will verify that both network interfaces

are up and can run any type of communications a job may require.

On ANL’s system the Ethernet address is '"spnode###'" and the corresponding
switch address is 'swnode###'".

H O H H HH

get just the node number to append to the string '"swnode"
$Node_num = $Node;
$Node_num =~ s/spnode//;

$Response=‘$timeout 10 /usr/bin/rsh $Node /etc/ping -c¢ 2 swnode$Node_num‘;
return ($Response);

The last routine locksmith, was developed at Argonne to cleanly perform the locking and
unlocking of the files. It is used by the scheduler code to lock and unlock the SP_Resource
file. It should not have to be modified.

sub locksmith

{

local($timeout, $lockfile, $command) = @_;

if ($command eq ’release’)

{
unlink($lockfile) || warn "Could not unlink $lockfile: $'\n";
return 1;
¥
elsif ($command eq ’release_maybe’)
{
unlink($lockfile);
return 1;
¥
elsif ($command ne ’lock’)
{
die "Invalid command ’$command’ in locksmith\n";
¥

local($endtime) = time + $timeout;

#

If there is a locksmith_RS6000, then we are
on a machine where we can’t do a syscall

#

if (-x "$Scheduler_Dir/locksmith_RS6000")
{

require ’errno.ph’;

local($rc, $err, $ret, $errstr, Qerrstr);

while (time < $endtime)
{
open(DOLOCK, "$Scheduler_Dir/locksmith_RS6000 $lockfile [");
$ret = <DOLOCK>;
close(DOLOCK) ;

27

($rc, $err, Qerrstr) = split(/\s+/, $ret);
$errstr = join(" ", Qerrstr);

if ($rc >= 0)
{
return 1;
}
elsif ($err !'= &EEXIST)
{
die "Error in open: $errstr\n";
}
sleep 1;

else

{
local($£fd);
require ’sys/file.ph’;
require ’sys/fcntl.ph’;
require ’syscall.ph’;

while (time < $endtime)
{
$fd = syscall(&SYS_open, $lockfile, &O_CREAT | &0_WRONLY | &O0_TRUNC |
&0_EXCL, 0644);

if (1$fd)
{
warn "syscall failed: $!\n";
}
elsif ($fd >= 0)
{

open(FH, ">&$£fd") || die "perl open failed: $!\n";
print FH time . "\n$$\n";
close(FH);
return 1;
}
sleep 1;
}
}
return undef;

}

10. The last step in the scheduler installation is to run Scheduler_Startup on the scheduler’s
host computer. If you wish to have this happen after any reboot, you can modify the
/etc/rc.local file on the workstation that the scheduler runs on.

NOTE: It is vmportant to move the scheduler log files off the scheduler’s file system on a regular
basis to ensure that they do not fill the file system. This can eastly be done by using a cron job.

3.2 Modifying the Scheduler for a Specific Environment

The scheduler can be modified to handle any message-passing library. The only routine that needs
to be modified is spsubmit. If special job setup is required for a particular message-passing library,
spsubmit can be modified to handle it by adding code to it that works much as the current code

28

currently does for MPL and p4 jobs. The spsubmit routine can be used as-is if users are told to
choose the "task farm" option when submitting jobs and submitting a shell script, which does all
the appropriate setup for the given message-passing system.

3.3 System Administration Tools

Several utilities were designed to make administration of the scheduler and the SP easier. Sched-
uler_Startup simply starts all the necessary scheduler processes. The two utilities are Sched-
uler_ON and Scheduler_OFF are used to enable graceful interrupts. Sometimes it is necessary to
stop the scheduler for urgent SP system administration. In order to stop the scheduler without
corrupting the status of the queue or the currently running jobs, Scheduler_ OFF signals all the
scheduler processes so that they can complete any task they are currently working on and then stop
gracefully. Scheduler_OFF does not actually kill the scheduler processes; it just pauses them until
they are either killed by hand or restarted by signaling them with Scheduler_ON. Another utility,
sprelease, is the same as the user command only it is more powerful for the administrator logged
in as root. As root, sprelease will allow a system administrator to take a job off any particular node
or off all the nodes it is running on in the case of parallel program. It essentially is the scheduler’s
version of the Unix kill command.

The service command has several functions. It provides a clean way for the administrator to take
an set of nodes out of service and still allow the scheduler to schedule jobs that can run on the
remaining nodes. Its basic syntax is

service <when> <reason> first_node last_node

The <when> field can either be —-n for service immediately and inform the current user of the node
by email that it had to be taken out of service or —s or service the node the next time it becomes
available. Argonne has several reasons for "servicing" nodes, but these can be modified renamed to
better suit other environments. The choices that are currently available are as follows.

-h prints a list of the various flags
-f puts nodes back in service
-u mark the nodes down for service or basic maintenance
-g mark the nodes available for general use
-¢ mark the nodes down for CAVE use
-d mark the nodes down for a demonstration
If you decide to modify these, you will have to modify xspusage accordingly so that the correct

message is displayed to the users.

The last utility is Clear_SP_Resources. It is used to regenerate a clear resource file after a long
period of downtime when you would like the scheduler to start as if it were the first time it was
turned on.

The "scheduler message" is a way for the administrators to display current information to the users
about the current status of the machine for example after a compiler upgrade. This message is
displayed by spq and spsubmit so that users are sure to see it. To modify this message, simply edit
the file Scheduler_message file in the scheduler directory.

Finally, there are log files generated by each of the scheduler daemons that contain information about
what they are doing during every iteration of their execution. These are useful if the administrator
wants to see why the scheduler treats various queues of jobs the way that it does and to verify that
it 1s working the way it should.

29

4 Scheduler Architecture

4.1 Components of a Scheduling System

Before we began to write a new scheduler, a lot of thought went into what exactly it was a scheduling
system should provide. There were three basic goals that almost any scheduling system strives for:
fairness; simplicity (ease of understanding); and efficient use of the available resources. These three
goals are obviously in conflict, so there had to be some compromise that would make the users
happy. After a fair amount of research a list of features making up the "Ultimate Scheduler" was
developed. This "Perfect Scheduler" would

e provide optimum utilization (e.g., schedule I/O bound and CPU bound jobs together),
e be fair,

e support different job classes (e.g., interactive vs. batch),

e support various message-passing libraries,

e use static or dynamic partitioning of the machine,

e utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms,

o schedule different computation models (task farm vs. parallel processing),

e manage other system resources (e.g., I/O subsystems),

e provide priority scheduling for special jobs.

Several of these items really depend upon how the users of a machine expect to be able to use
it. Several very nice scheduling systems available today that address these issues. A few of the
more popular are DQS from Florida State, Condor from University of Wisconsin, IBM LoadLeveler,
and NQS. The problem with these systems is that they all primarily focus on managing multiple
queues of nonparallel jobs for networks of workstations. They were developed during the "free su-
percomputing'" movement, not too long ago when high-end workstations connected by fast networks
could provide as much computational power as the supercomputers of the day at a fraction of the
cost. Many of these scheduling systems do more than scheduling. The following diagram shows
the main pieces of a complete scheduling system. Several of the available scheduling systems have
implemented the various pieces of this diagram in a tightly coupled fashion. This greatly reduces the
extensibility of the system. For this reason a scheduling system that would meet the Argonne goals
addresses only "Scheduling" and attempts to get the other pieces from either the machine vendors
or other developers wherever possible.

The following diagram illustrates the various pieces of a full scheduling system. This scheduler only
performs the "scheduling" task.

30

Dynamic Process Allocation

Resource Scheduling Job User
Management Starter Processes

Security

4.2 SP Scheduler Design

The scheduler is made up of a series of Perl daemons and user interface programs that monitor
several shared directories. Those directories are accessible to the entire SP complex. They contain
information on the current state of the machine and queue of jobs and update a single resource
file that stores this information. The user interface programs are discussed in Section 2.2 of this
document. There are currently six Perl daemons, as shown in the following diagram.

31

@ sprel ease

<>
<> /

e ____,

r
|
I |
|
|

Bat ch Queue Resource Service Freed
W apper s File Resour ces

Bat ch_Cl eanu Aut oRel easer

Deal | ocat e_Nodes Schedul er _Wat chdog I
SPQ Wat cher Queue_Supervi sor

NFS nounted, Protected Directory

These scheduler daemons have the following jobs:

Batch_Cleanup: Thisis a simple cleanup utility that removes batch scripts from the Batch_wrappers
directory when they are no longer on the system.

Deallocate_Nodes: Watches for jobs that have been released and then clears the resources they
used, verifies they are still operational, and returns them to the "free pool".

SPQ_Watcher: Monitors the job and service queues and starts Allocate_Nodes if there is a job that
needs starting.

Queue_Supervisor: Ensures that no user has more jobs queued than are allowed in the current
queuing policy.

Scheduler_Watchdog: Monitors the SP resources to ensure that they are operational. If a SP node
is down, Scheduler_Watchdog will take it out of service; if a node comes back up, this daemon will
put it back in service.

AutoReleaser: Removes jobs from the system that have used all the time they requested.

4.3

Sample Flow of Execution

The following flow-of-execution example is provided to help clarify the roles of the various pieces of
the scheduler system.

1. User submits a job with spsubmit.
2. The Queue_Supervisor ensures this job is not one of several requiring more resources and time
than the queue limit.
3. Job is "noticed" by the SPQ_Watcher daemon.
4. SPQ_Watcher Starts Allocate_Nodes program to start the job.
5. User 1s granted access to a group of nodesm, and their job is rsh’d to the first node in that
group of scheduled nodes.
6. The AutoReleaser monitors the resource file to ensure the job has not run out of time.
7. When the job has finished 1t "spreleases" its nodes.
8. sprelease puts tokens in the Freed_Resources directory to notify the Deallocate_Nodes daemon.
9. Deallocate_Nodes daemon clears and checks the released nodes and returns them to the
Free_Pool.
10. The Batch_Cleanup daemon realizes the job has now finished, so it removes the jobs batch
script from the Batch_wrapper directory.
11. The Scheduler_Watchdog daemon "patrols" the machine looking for nodes in need of service
or that have been repaired and should be put back in the "free-pool".
References

[1] Ralph Butler and Ewing Lusk. User’s guide to the p4 parallel programming system. Technical
Report ANL-92/17, Argonne National Laboratory, October 1992.

[2] William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In Proceedings of
the Scalable High-Performance Computing Conference, IEFE, pages b5—62, 1994.

[3] Message Passing Interface Forum. Document for a standard message-passing interface. Technical
Report Technical Report No. CS-93-214 (revised), University of Tennessee, April 1994. Available
on netlib.

[4] William D. Gropp and Ewing Lusk. A test implementation of the MPI draft message-passing
standard. Technical Report ANL-92/47, Argonne National Laboratory, December 1992.

[5] William D. Gropp, Ewing Lusk, and Steven C. Pieper. Users guide for the ANL IBM SPI.
Technical Report ANL/MCS-TM-198, Argonne National Laboratory, October 1994.

33

