
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-201
Users Guide to the Argonne SP Scheduling SystembyDavid A. Lifka,* Mark W. Henderson, and Karen RaylMathematics and Computer Science DivisionTechnical Memorandum No. 201

May 1995This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.* Also a�liated with the Illinois Institute of Technology.

ContentsAbstract iv1 SP Scheduler Policy Overview 12 SP Scheduler Users Guide 12.1 Terminology : 12.2 Scheduler Commands : 12.3 Getting Started : 62.4 Supported Job Types : 92.5 Using Temporary Storage on the SP Nodes with the Scheduler : : : : : : : : : : : : 122.6 Releasing Resources When Finished : 122.7 Current Queuing Algorithm : 123 System Installation and Administration Guide 153.1 Installing the Scheduler : 153.2 Modifying the Scheduler for a Speci�c Environment : : : : : : : : : : : : : : : : : : 283.3 System Administration Tools : 294 Scheduler Architecture 304.1 Components of a Scheduling System : 304.2 SP Scheduler Design : 314.3 Sample Flow of Execution : 33References 33

iii

Users Guide to the Argonne SP Scheduling SystembyDavid A. Lifka, Mark W. Henderson, and Karen RaylAbstractDuring the past �ve years scientists discovered that modern UNIX workstations connected withethernet and �ber networks could provide enough computational performance to compete with thesupercomputers of the day. As this concept became increasingly popular, the need for distributedqueuing and scheduling systems became apparent. Today, supercomputers, such as Argonne Na-tional Laboratory's IBM SP system, can provide more CPU and networking speed than can beobtained from these networks of workstations. These modern supercomputers look like clusters ofworkstations, however, so developers felt that the scheduling systems that were previously used onclusters of workstations should still apply. After trying to apply some of these scheduling systemsto Argonne's SP environment, it became obvious that these two computer environments have verydi�erent scheduling needs. Recognizing this need and realizing that no one has addressed it, wedeveloped a new scheduling system. The approach taken in creating this system was unique in thatuser input and interaction were encouraged throughout the development process. Thus, a schedulerwas built that actually worked the way the users wanted it to work. This document serves a dualpurpose. It is both a user's guide and an administrator's guide for the ANL SP scheduling system.Look for revisions to this guide that will be appearing.
iv

1 SP Scheduler Policy OverviewThe goals of the Mathematics and Computer Science Division's Argonne SP job scheduler are fair-ness, simplicity, and e�cient use of the available SP resources. These goals are in con
ict, but thescheduler is designed to be a compromise. Users will be able to request a set of nodes for any typeof use. In order to maintain the quality of machine access, the scheduler provides a single point ofaccess, spsubmit. This program will allow users to queue both interactive and batch access to theSP. When resources are available, the user will be noti�ed by the scheduler and at that time willhave exclusive access to the number of nodes requested. Having exclusive access to the SP nodesallows the user to have optimum cache performance and use of all available memory and /tmp diskspace. This type of access allows users to run benchmarks at any time and also to predict howlong it will take for their job to complete. Having exclusive access is essential so that users userscan predict wall-clock run time for their jobs when they submit them to the scheduler. While thereare currently no limits to the number or size of jobs that can be submitted, the scheduler uses apublic algorithm to determine when batch or interactive time is actually provided (see Section 2.9).Any modi�cations to this algorithm will be made public. To view the current queuing policy, usethe command spq -l. MCS has also implemented an allocation policy as a separate part of thescheduler. The intent of the policy is to ensure all users some set amount of resource time and toprevent people from using more than their share of resources.2 SP Scheduler Users Guide2.1 TerminologyA few terms and conventions are used throughout this document. Commands that can be typedat the Unix command line will are in a typewriter-like font: command name. "CAC" stands forcharge allocation category and is the account unit for the scheduler accounting system developed atArgonne for use with the scheduler. It currently is used only at Argonne and has not been releasedfor distribution. If you are using this users guide somewhere other than Argonne you can ignore anyreference to the accounting system or CAC. GUI stands for graphical user interface and is typicallyused in reference to xspusage.2.2 Scheduler CommandsThe scheduler was designed to be easy to use and to understand. The user interface to the scheduleris made up of a group of commands that behave much like existing Unix commands. This sectionlists the various user commands for using the SP job scheduler and gives a brief explanation of theirfunction. NOTE: All of the commands have "-h" options which provide help and describe additionalfunctionalities they may have.2.2.1 spqspq: Displays the SP scheduler job queue. It provides the following job information:� the job IDs for each job� the username associated with each job� the number of nodes required/used by each job� which jobs will start during the day, night, or weekend� whether the job is (I)nteractive or (B)atch� the current status of each job{ (W)aiting to run 1

{ (P)aused by the user{ (H)eld by the system{ (h)eld by the system and paused by the user� how much time the job is requesting or when it will �nish if it is currently running.Here is an example of spq in use:bonnie.mcs.anl.gov% spq**Please report any problems to spsupport@mcs.anl.gov**115 nodes Available 0 nodes Down--Job ID User # Of Job Req./StopNumber Name Nodes Queue Type Status Date Time--06154111 panigrah 3 Running N/A R 12/06 17:4106173226 kohr 2 Running N/A R 12/06 17:5206172525 michalak 4 Running N/A R 12/06 17:5506172652 tuecke 4 Running N/A R 12/06 17:5705162926 moon 128 Day B W 0day 0:0505162940 moon 128 Day B W 0day 0:0506160605 nakano 16 Day B W 0day 2:0006165839 bryant 36 Day B W 0day 0:4506170615 asussman 30 Day B W 0day 0:4506173718 wiringa 64 Day B W 0day 0:2006173728 spieper 32 Day B W 0day 0:2006173828 spieper 39 Day B W 0day 0:1506173816 twang 9 Day I W 0day 1:0006064052 chasman 32 Night B W 0day 6:4006064909 chasman 32 Night B W 0day 4:0006070726 chasman 32 Night B W 0day 4:0006094447 nanjundi 64 Night B W 0day 3:0006123845 leaf 16 Night B W 0day 6:0006172912 pudliner 32 Night B W 0day 1:4006150129 chasman 32 Night B H 0day 4:00bonnie.mcs.anl.gov%2.2.2 spsubmitspsubmit: Used to submit jobs to the queue. This command will prompt you for information aboutyour job. Once you have answered all the questions, it will ask you to verify your answers and submitthat job to the queue. Once the job has been submitted, this command will return your unique jobID for that job, which you can use to track your job using spq. Any information the system returnsto you about this job will also contain this job ID.2.2.3 spreleasesprelease: Is used to remove jobs from either the queue or the machine if the job has alreadystarted. If your job is currently running, it informs the scheduler that your node(s) can be returnedto the free pool and that you should no longer be charged against your charge allocation category(CAC). Once you sprelease the nodes you are on, it may take up to three minutes to release them2

all, depending on how many you are releasing. This is because the scheduler, before returning nodesto the free pool, veri�es that you have left them in a usable state. You are not charged for therelease time. After sprelease �nishes issuing all the release requests to the scheduler, it returnsthe number of nodes that it has successfully released.sprelease can be used in two ways. The �rst is when it is issued with a speci�c job ID, for example,% sprelease 09144216In this case all nodes in use by this particular job will be released to the free pool. If issued with ajob ID, sprelease can be issued from any workstation that has the scheduler running on it includingthe nodes. The second way sprelease can be used is without a job ID when run from a particularnode that you have been allocated. This is useful for nonparallel jobs that may �nish with particularnodes before others and wish to return them to the free pool while the others continue to be used.2.2.4 spfreespfree: Is most commonly used to return the number of nodes currently available for use. It hasthe following options:-h Lists all the options and their functions.-f <Default> Prints the number of currently available nodes.-d Prints the number of down nodes.-r Prints the number of nodes currently reserved for demonstrations.-g Prints the number of nodes available without going through the scheduler.-r Prints the number of nodes that are currently in use.2.2.5 sppausesppause: Changes the status of all the user's interactive jobs in the queue from (W)aiting to(P)aused causing them to be passed over by the scheduler for execution until the user will be ableto use the interactive compter time at some point in the future. If a job has a status of "h" afterbeing paused, that job has been paused and also has been (H)eld by the system because the userhas requested more resources than the scheduling policy allows to be scheduled at any particulartime.2.2.6 spunpausespunpause: Changes the status of all the user's interactive jobs in the queue from (P)aused to(W)aiting so that the scheduler will start the job as soon as the resources the job needs are available.If a job with the status of "h" is unpaused, it will change to "H" until the number of outstandingresources requested is reduced either by some of the jobs running or by some of the queued requestsbeing removed.2.2.7 spstatusspstatus: This command is updated by the system administrator(s) and contains the current statusof the SP. Here is some sample output from spstatus on the Argonne SP.bonnie.mcs.anl.gov% spstatusSP Status:----------12/13/94- 126 nodes are up and running 3

- The SP system has been upgraded to SP software version 2.1. Thenew POE libraries have been loaded onto bonnie and clyde andusers must recompile their code in order for it to workproperly.SP Downtime:------------- Wednesday 12/14 Racks 1 and 5 will be out of service while we finishthe installation of TB2 adaptors in Mercury (node 1) and Jupiter (node 65).Cables we received were bad causing us to have to wait 1 more day for thesenodes to be installed. After the installation bonnie andclyde will be rebooted as well. Kingston will be looking into thememory allocation problem, the slow compile times on bonnie and clyde,and the p4 initialization problems throughout the week. Nodes whichshow in "service" mode are being used to debug these problems.- Next planned downtime is on 12/20 from 8:00 am to 12:00 pmfor regular system maintenancebonnie.mcs.anl.gov%2.2.8 spusagespusage: Shows who is currently using which nodes. The format of its output format is node number(1,0,-1,-2,-3 -4,-5);username;Job ID;Job run-time. The second number signi�es the status of the node.1 The node is being used by a user job.0 The node is available.-1 The node is down and thus unavailable.-2 The node is being serviced and thus unavailable.-3 The node is generally available for all users.-4 The node is being used for a CAVE demonstration.-5 The node is being used for a demonstration.2.2.9 xspusagexspusage: Displays who is currently using which nodes. An X Windows GUI interface,xspusage,performs the same function as the ASCII spusage command. It also provides a way for a user toquickly determine which nodes they have been allocated. The user can then click on those nodesin this X interface to open xterms on those nodes. This program was based on the GUI tools thatwere developed as part of the Scalable Unix Tools project [2]. The MPI Implementation, MPICH,has tools like this as well as tools to automate the submission and execution of jobs using the SPscheduler [4].Here is a snapshot of xspusage: 4

Following is a snapshot of xspusage in small mode. This mode is useful if you just want to watchfor a large group of nodes to become available. You can leave this application in the corner of yourscreen and easily monitor the system by watching the color changes.
The colors correspond to the the numeric values in spusage and indicate node status.1 The node is use by a user job blue0 The node is available yellow-1 The node is down and thus unavailable red-2 The node is being serviced and thus unavailable light blue-3 The node is generally available for all users green-4 The node is being used for a CAVE demonstration brown-5 The node is being used for a demonstration pink5

2.2.10 spwhatspwhat: Shows the number of nodes currently available and how long they will be available. If a jobis submitted based on the information provided by spwhat, it should start immediately. Currently,spwhat has not been updated to work with the latest scheduling algorithm and so it is turned o�.It should be �xed and available soon.2.2.11 spwhenspwhen: Estimates when a particular job, referred to by Job ID, will start based on the currentqueuing algorithm. This is a worst-case estimate in that the job will start no later than this time butmay be started sooner if jobs ahead of it in the queue �nish before they are expected to. Currently,spwhen has not been updated to work with the latest scheduling algorithm and so it is turned o�.It should be �xed and available soon.2.2.12 spwaitspwait: Provides a way to "watch" a particular Job ID in the queue and to return when the job isno longer in the queue. This is useful for users whose jobs require the output from a previous job asinput to the next. Scripts can be written to verify the output of the job, once a job has completed,and then to automatically submit the next job to the queue with the appropriate input. If a userhas one job in the queue, spwait will "watch" that job. If it is necessary to monitor several jobs,spwait can be executed with a Job ID and each invocation will return when the job it is "watching"is no longer in the queue.2.2.13 getjidgetjid: Returns the Job ID based on the node it is executed on. This is a useful command forbatch scripts that need to determine which nodes they are running on after they've been started onthem.2.2.14 cacReportcacReport: Provides statistics for a given CAC.2.2.15 what cacwhat cac: Reports the CAC group of a given user ID.2.3 Getting StartedThe spsubmit command will allow you to submit jobs to the scheduling system. The currentscheduler will prompt you for necessary information about your job. NOTE: In the future there willbe a version of spsubmit that supports command-line arguments. The scheduler will assign yourjob entry a unique numeric job ID. This unique job ID can be used to track how many jobs youhave submitted to the scheduler and also to remove your unwanted job entries from the schedulerby using spq and sprelease, respectively. When the nodes you've become available, the schedulerwill create a special �le in your /sphome directory. The scheduler will also notify you via e-mailat the time the nodes you requested were actually allocated and the names of the nodes that wereassigned to you. You can also use xspusage to determine which users are using which nodes. The�le has the form:/<home_path>/<username>/SPnodes.<job_ID>Here is an example: 6

/sphome/lifka/SPnodes.09145115This �le contains a list of the nodes names you have been assigned for a particular run.Nodes allocated to you by the scheduler will be in exclusive access mode. Only your login will beenabled on the nodes that you are allocated. (This means you will be the only one that can log intothese nodes until you release them with sprelease. Once you issue the sprelease on the nodesallocated to you (see Section 2.8), you will not be able to log into those nodes.)2.3.1 Batch Submission with spsubmitIf you have submitted a program or script for batch execution, it will be automatically executed foryou. It does this by issuing an rsh of the program or script to the �rst node in the group that itallocates to you.If you require that data be staged to nodes or other job setup, you should submit a job script thatperforms the appropriate setup and then runs your program. Be sure when submitting programs orscripts that you provide the full path to them, for example,(/sphome/<user_name>/<program>)You should also use full paths to any �les or programs referenced inside your programs or job scripts.NOTE: even though a job is running as a batch job, the user who submitted it will have access tothe nodes it is executing on.2.3.2 Interactive Submission with spsubmitIt may be useful to request interactive time on the SP until you have thoroughly tested your programsand/or scripts. This will allow you to closely monitor their performance until you are con�dent thatthey will run correctly in batch mode.If you schedule interactive time and it gets queued because the system is currently loaded, be surethat you will be available to use the resources when they actually become available. For example, ifthe system is heavily loaded and the interactive time you requested becomes available at midnight,you will need to be able to use those resources at midnight because they will be allocated to youand thus billed against your CAC until they are released with sprelease. You may wish to removeinteractive jobs or pause them with sppause from the queues when leaving work for the day.When you use spsubmit to request interactive time, it asks for information about your job eventhough you can use the nodes any way you wish interactively. The scheduler is just a means ofcollecting this information to study how people are using the machine.2.3.3 Spsubmit Example 1: An MPL ScriptWe present a submission example in which the user wishes to submit a script that runs an MPLprogram in "user space" mode over the IBM switch.bonnie.mcs.anl.gov% spsubmitCharge Allocation Category: [default lifka]Maximum Wall-clock Run-Time (minutes): (1-???) 15Number of Nodes Required: (1 - 128) 4CAC: "lifka" *now* has 28114 RUs available, after committing.(I)nteractive (B)atch: bJob Classification (M)PL, (T)ask Farm, (P)4: mIP over the switch [y/n]: nFull path to Shell Script/Program: /sphome/lifka/MPL/RunMeCommand Line arguments for your job: 7

Username: lifkaCharge Allocation Group: lifkaJob Type: BJob Classification: mplIP over the switch: noNumber of Nodes: 4Maximum Wall-clock Run-Time (minutes): 15Program/Job Script: /sphome/lifka/MPL/RunMeCommand Line Arguments:(C)ommit or (A)bort: cYour JID for this job is: 12132612bonnie.mcs.anl.gov%2.3.4 Spsubmit Example 2: A p4 ProgramOur second submission example is for a p4 program, not a script. Notice that the p4 debuggingoptions and output redirection were entered as desired command-line arguments.bonnie.mcs.anl.gov% spsubmitCharge Allocation Category: [default lifka]Maximum Wall-clock Run-Time (minutes): (1-???) 15Number of Nodes Required: (1 - 128) 16CAC: "lifka" *now* has 27814 RUs available, after committing.(I)nteractive (B)atch: bJob Classification (M)PL, (T)ask Farm, (P)4: pIP over the switch [y/n]: yFull path to Shell Script/Program: /sphome/lifka/P4/UniTree/UtestCommand Line arguments for your job:-p4dbg 10 -p4rdbg 10 > /sphome/lifka/run.outUsername: lifkaCharge Allocation Group: lifkaJob Type: BJob Classification: p4IP over the switch: yesNumber of Nodes: 16Maximum Wall-clock Run-Time (minutes): 15Program/Job Script: /sphome/lifka/P4/UniTree/UtestCommand Line Arguments: -p4dbg 10 -p4rdbg 10 > /sphome/lifka/run.out(C)ommit or (A)bort: cYour JID for this job is: 12135506bonnie.mcs.anl.gov%2.3.5 Spsubmit Example 3: A Task Farm Scriptbonnie.mcs.anl.gov% spsubmitCharge Allocation Category: [default lifka]Maximum Wall-clock Run-Time (minutes): (1-???) 15Number of Nodes Required: (1 - 128) 32CAC: "lifka" *now* has 26526 RUs available, after committing.(I)nteractive (B)atch: bJob Classification (M)PL, (T)ask Farm, (P)4: t8

IP over the switch [y/n]: nFull path to Shell Script/Program: /sphome/lifka/RunMeCommand Line arguments for your job:4 16Username: lifkaCharge Allocation Group: lifkaJob Type: BJob Classification: taskIP over the switch: noNumber of Nodes: 32Maximum Wall-clock Run-Time (minutes): 15Program/Job Script: /sphome/lifka/RunMeCommand Line Arguments: 4 16(C)ommit or (A)bort: cYour JID for this job is: 12135557bonnie.mcs.anl.gov%2.4 Supported Job TypesWith the SP scheduler, nodes can be used both for interactive and batch computing. The nodesare con�gured to run parallel programs that use the IBM switch or ethernet for communication.Jobs that use MPL, MPI, or p4 for interprocess communication fall into this category. Task farmjobs, or those that use the SP as if it were a large cluster of network-connected IBM RS6000s, arealso supported. If you are not sure how to classify a program, please consult the ANL SP UsersGuide [5]. If you are still having trouble, contact spsupport@mcs.anl.gov or your local support sta�.2.4.1 MPLMPL is the new IBM switch software that replaces EUI/EUIH. To use MPL, it is preferable touse mpcc and mpxlf instead of xlc and xlf to compile and link your programs. For more detailson compiling and linking MPL code, see the SP Users Guide. To run an MPL code, you must setseveral environment variables.MP HOSTFILE: Points to the �le containing the list of nodes that youhave been assigned to run on by the scheduler.MP INFOLEVEL: Provides an overwhelming amount of debugginginformation, most of which is often di�cult to interpretor missleading.The default level is 1 but should be 0 which is noinformation. (We have suggested this change to IBM.)MP EUILIB: Tells MPL either to run IP over the switch if set to"ip" or to use direct mode over the switch if set to "us".MP PROCS: Indicates the number of processors the job runs on (shouldcorrespond to the number of nodes in the host �le).These variables can be set interactively if you are scheduling interactive time or within a script ifyou are scheduling batch time. It is crucial that you set the environment variable MP HOSTFILEto the �le containing the list of nodes the scheduler has allocated to you; otherwise MPL will fail.Here are some examples of a csh batch scripts that will run a MPL programs.9

2.4.2 MPL Batch Script Example for IP over the IBM Switch#!/bin/csh# get the job id for this jobset JID = `/usr/local/bin/getjid`# Run IP over the switchsetenv MP_EUILIB ip# convert the Scheduler generated SPnodes file to an SWnodes file for# IP over the switchcat /sphome/$LOGNAME/SPnodes.$JID | sed 's/sp/sw/' > /sphome/$LOGNAME/SWnodes.$JID# set SWnodes file the host list for this jobsetenv MP_HOSTFILE /sphome/$LOGNAME/SWnodes.$JID# set the number of processes that you wish to run onsetenv MP_PROCS 64# set the debugging level (0 is generally recommended)setenv MP_INFOLEVEL 0# execute the program with the output redirected to a filepoe /sphome/$LOGNAME/<program_name> >& /sphome/$LOGNAME/job.output# release the nodes for the next usersprelease $JID2.4.3 MPL Batch Script Example for Direct Mode over the IBM Switch#!/bin/csh# get the job id for this jobset JID = `/usr/local/bin/getjid`# Run IP over the switchsetenv MP_EUILIB us# make the scheduler generated SPnodes file the host list for this jobsetenv MP_HOSTFILE /sphome/$LOGNAME/SPnodes.$JID# set the number of processes that you wish to run onsetenv MP_PROCS 64# set the debugging level (0 is generally recommended)setenv MP_INFOLEVEL 0# execute the program with the output redirected to a filepoe /sphome/$LOGNAME/<program_name> >& /sphome/$LOGNAME/job.output# release the nodes for the next usersprelease $JIDNote to interactive MPL users:If you are going to use your interactive time for MPL jobs, you will have to use an MPL host list�le so that your MPL job will run on the nodes you have been allocated. If you do not, MPL maytry to run your jobs on nodes that you do not have access to, causing the job to fail.2.4.4 MPIMPI (Message Passing Interface) is a new message-passing system "standard" that has recentlybeen de�ned by a broadly based group of parallel computing vendors, library writers, and users.The current draft is now in the public-comment stage [3]. Argonne has an implementation of MPIcalled MPICH [4], which runs on the Argonne SP system. MPI programs can be treated like MPLprograms described in the preceding section but have the added capability of being ported to otherplatforms. The MPICH implementation also has a portable method of starting jobs, called mpirun.On the ANL SP system mpirun interfaces with the SP scheduler to schedule and start jobs.10

2.4.5 p4The p4 system [1], is a portable message-passing system that runs on a wide variety of parallelcomputers and workstations. It is in use at approximately 200 sites around the world. Existing p4programs will run unchanged on the SP.2.4.6 p4 Batch Script Example for IP over the IBM SwitchThis csh script will produce a procgroup appropriate for IP over the IBM switch.#!/usr/local/bin/tcshset JID = `/usr/local/bin/getjid`cat /sphome/lifka/SPnodes.$JID | sed 's/sp/sw/'>/sphome/lifka/SWnodes.$JID@ I = 0touch /sphome/lifka/pg.$JIDforeach i (`cat /sphome/lifka/SWnodes.$JID`)echo "$i $I /sphome/lifka/P4/Utest" >> /sphome/lifka/pg.$JIDif ($I == 0) then@ I = $I + 1endifend/sphome/lifka/P4/Utest -p4pg /sphome/lifka/pg.$JID -p4dbg 10 -p4rdbg 10This example produces the following procgroup �le:swnode001 0 /sphome/lifka/P4/Utestswnode002 1 /sphome/lifka/P4/Utestswnode003 1 /sphome/lifka/P4/Utestswnode004 1 /sphome/lifka/P4/Utest2.4.7 p4 Batch Script Example IP over the EthernetThis csh script will produce a procgroup appropriate for IP over the Ethernet between the SP nodes.#!/usr/local/bin/tcshset JID = `/usr/local/bin/getjid`echo "local 0" > /sphome/lifka/pg.$JIDforeach i (`cat /sphome/lifka/SPnodes.$JID`)echo "$i 1 /sphome/lifka/P4/Utest">>/sphome/lifka/pg.$JIDend/sphome/lifka/P4/Utest -p4pg /sphome/lifka/pg.$JIDThis example produces the following procgroup �le:local 0spnode001 1 /sphome/lifka/P4/Utestspnode002 1 /sphome/lifka/P4/Utestspnode003 1 /sphome/lifka/P4/Utestspnode004 1 /sphome/lifka/P4/UtestNote to Interactive p4 users:If you are going to use your interactive time for p4 jobs, you will have to create a procgroup �lethat uses only the nodes you have been allocated. The SPnodes �le that the scheduler provides youwith contains a list of nodes you can use in your procgroup �le. If you submit a p4 program to thescheduler, instead of a job script, it will automatically generate an appropriate procgroup �le foryou. If you would like to submit a job script to the scheduler you can use the previous csh scripts asa base, which automatically generate an appropriate procgroup �le at run-time based on the nodesyou are assigned. 11

2.4.8 Task FarmTask farm users generally use the SP as if it were a large cluster of network connected IBM RS6000workstations. Binary executables can be submitted to the scheduler, as can shell scripts that runsingle process jobs on multiple nodes.2.5 Using Temporary Storage on the SP Nodes with the SchedulerIf your program requires that data be moved into and/or out of the /tmp directory on the nodes, itwill be important that your program or script perform these moves before and after program execu-tion. This is because you cannot be guaranteed access to speci�c SP nodes for data staging beforethe nodes are actually allocated to you or after you have released the nodes using the spreleasecommand. If you request interactive time, you will be able to log into the nodes allocated to youand do your data staging before and after running your program interactively. NOTE: Once a nodeis released, all user data in /tmp is removed so that the next user has the same amount of /tmpspace available for a job.2.6 Releasing Resources When FinishedWhen you are �nished with the SP resources that you have been allocated, you will have to releasethem so that they can be re-scheduled by the system. It is extremely important that you releaseresources when you are �nished with them so that the idle node time is not charged to your CAC.Any allocated time will be charged against your CAC for the resources you requested, whether youuse them or not. This is because while the nodes are assigned to you, no one else will have accessto them. To return nodes to the scheduler once you are done, you will have to use the spreleasecommand on each of your allocated nodes or with a job ID to release all nodes associated with thatparticular job ID. sprelease will log your release of the node at the time it is issued, remove youraccess from the node, kill all current processes on the node owned by you, and clear /tmp for thenext user. Because /tmp is cleared, it will be necessary to move any important data o� the /tmpdisk to your /sphome directory before releasing the node.The sprelease command can be run interactively by the user, called at the end of a shell script orfrom a system call in your programs. The advantage of embedding it at the end of your scripts orprograms is that you will not have to monitor your batch runs to ensure that your resources werereleased at the correct time. The sprelease command o�ers a big improvement over the sign-upsheet schedulers because nodes can be made available and used again as soon as users are �nishedusing them. In the past, large time-blocks were reserved and held iregardless of how long they wereactually used.2.7 Current Queuing AlgorithmJobs are currently run in an optimized �rst-in-�rst-out (FIFO) fashion. The optimization works by�rst seeing whether the next job in a particular queue has enough nodes available to start. If so, itis allocated the nodes and started. If there are not enough nodes available for the next job in thequeue, the time that job is blocked for is determined by looking at jobs currently on the system anddetermining how long it will be before enough of them �nish so that the next job can start. Thescheduler tries to �ll this time gap with another job in the queue that will not run longer than thistime gap and does not require more nodes than are currently available.To see resource unit limits that the scheduler uses to classify jobs, use the spq -h command. Duringthe time periods when jobs requiring large numbers of resources are started, jobs requiring fewnumbers of resources will be started if there are no large jobs queued to run. Also notice that jobsrequiring very large numbers of resources are considered to be extraordinary events and will betreated as such by the scheduling system. 12

2.7.1 Queuing Example DescriptionThis �ve-part example shows a typical job load in the queue and shows the machine state beforeand after each job is started on the system. Each yellow box in the mesh represents a node on theArgonne 128-node SP system. As a job is added to the system the nodes it occupies are changedto a unique color. The Job Status column of the queue table has three states. "W" means the jobis waiting to be started, "S" indicates that the job is being started in this part of the example, and"R" means the job is currently running.2.7.2 Queuing Example Part 1
	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A AUser Name Number of Nodes Number of Minutes Job Statususer A 32 120 Suser B 64 60 Wuser C 24 180 Wuser D 32 120 Wuser E 16 120 Wuser F 10 480 Wuser G 4 30 Wuser H 32 120 WJob A requires 32 nodes for 2 hours. There are 128 nodes available so this job can start.2.7.3 Queuing Example Part 2

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A AUser Name Number of Nodes Number of Minutes Job Statususer A 32 120 Ruser B 64 60 Suser C 24 180 Wuser D 32 120 Wuser E 16 120 Wuser F 10 480 Wuser G 4 30 Wuser H 32 120 WJob B requires 64 nodes for 1 hour. There are 96 nodes available so this can also start.13

2.7.4 Queuing Example Part 3
	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B BUser Name Number of Nodes Number of Minutes Job Statususer A 32 120 Ruser B 64 60 Ruser C 24 180 Suser D 32 120 Wuser E 16 120 Wuser F 10 480 Wuser G 4 30 Wuser H 32 120 WJob C requires 24 nodes for 3 hours. There are 32 nodes available so this can also start.2.7.5 Queuing Example Part 4a

C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

G
G
G
G

C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B BUser Name Number of Nodes Number of Minutes Job Statususer A 32 120 Ruser B 64 60 Ruser C 24 180 Ruser D 32 120 Wuser E 16 120 Wuser F 10 480 Wuser G 4 30 Suser H 32 120 WJob D requires 32 nodes for 2 hours. There are only 8 nodes available so this job cannot start. Nowthe scheduler determines how long it will be before enough nodes currently in use will be availableso that job D can start. Job B will �nish the soonest, and when it does there will 8 + 64 nodesavailable, which is enough for Job D to run. The scheduler now looks for a job that can use theavailable 8 nodes for 1 hour or less. Jobs E and F need more nodes than are currently free, so theyare not candidates. Job G needs 4 nodes for 30 minutes, which is less than the 8 node/60 minutelimit, so it is allowed to start. 14

2.7.6 Queuing Example Part 4b
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

	

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

B B
B B
B B
B B

F
F

F
F

F
F

F
FUser Name Number of Nodes Number of Minutes Job Statususer A 32 120 Ruser B 64 60 Ruser C 24 180 Ruser D 32 120 Wuser E 16 120 Wuser F 8 480 Suser G 4 30 Wuser H 32 120 WHere is a slightly di�erent scenario assuming the queued job requirements are slightly di�erent. JobD requires 32 nodes for 2 hours. There are only 8 nodes available so this job cannot start. Now thescheduler determines how long it will be before enough nodes currently in use will be available so thatJob D can start. Job B will �nish the soonest, and when it does there will 8 + 64 nodes available,which is enough for Job D to run. The scheduler now looks for a job that can use the available 8nodes for 1 hour or less. Job E needs more nodes than are currently free, so it is not a candidate.Job F needs 8 nodes for 480 minutes, which is greater than the 60 minute limit. Nevertheless Job Fis allowed to start because when Job B �nishes, it will release 64 nodes, which is 32 more than JobD needs. If Job B released only 24 nodes (with 8 currently available), Job F would not have beenallowed to start.3 System Installation and Administration Guide3.1 Installing the SchedulerThis section describes the requirements and steps to install the Argonne SP scheduler. It also goesthrough the con�guration �le Scheduler.config in detail explaining the various settings and theirimportance. It assumes a basic understanding of SP system administration.3.1.1 System RequirementsThe Argone SP scheduling system has several SP system requirements, most of which are normallypart of any SP installation. This list is based on what has been needed on Argonne's SP systemfor the scheduler. It can be used as a reference if things do not work as expected on other systemscon�gured di�erently.1. An IBM RS6000 system with at least 20 megabytes of free disk space in a �leystem thatcan be made NFS mountable to all schedulable resources in the SP complex. At Argonnewe use a secondary control workstation, which also has several other administrative purposes.The scheduler does not require a dedicated resource, but it should not be installed on a busysystem such as a control workstation or a heavily used compile server.15

2. The scheduler has been run under AIX 3.2.4. and 3.2.5. It has not been tested with AIX 4yet.3. To enforce exclusive access to the SP nodes, the scheduler relies on having an NIS serverthat all the schedulable resouces can rely on for user authentication information. When thescheduler allocates an SP node to a user, it adds that user's username to the SP node's/etc/passwd �le. This username is used by the NIS server to ensure that the user has accessto the SP node.4. The SP scheduler system is almost entirely written in Perl. It does not use any version-speci�cfeatures of Perl and is currently using Perl version 4.036. It has not been tested with Perl 5 yet.5. Tcl and Tk are required if you wish to use the xspusage GUI interface. Argonne is currentlyusing versions tcl-7.0 and tk-3.3.Please send information to spsupport@ms.anl.gov about any special features, that are not listedabove and are required to get the scheduler working. This will allow us to make future versions ofthe scheduler more robust.3.1.2 InstallationThe following instructions need to be followed by a system administrator with root privileges.1. Find or create an NFS �lesystem on the RS6000 that the scheduler is going to be installed on.This �lesystem must provide read and write access to all schedulable resources (SP nodes)and to any machine from which users will be able to submit jobs. At Argonne, jobs can besubmitted only from the compile servers.2. Ftp the scheduler.tar �le to the RS6000 that it is going to be installed on. The scheduler canbe obtained by anonymous ftp from info.mcs.anl.gov. It is located in the /pub/sp_schedulerdirectory.3. Untar scheduler.tar in the scheduler RS6000 in the NFS-mounted �les system created inStep 1. On the Argonne system the scheduler directory is in /etc/FRAMES. After untarring thescheduler, the directory SP_Schedulerwill be created, which contains the scheduler's contents.At Argonne, the driectory containing the scheduler software is in /etc/FRAMES/SP_Scheduler.It is important that the directory containing the scheduler be named SP_Scheduler.4. The scheduler security is built upon Unix �le protection. The code is owned by a special groupdb_prot. Users have execute privileges on the scheduler codes owned by db_prot, which canmodify scheduler resource �les. Users cannot modify the resource �les directly, since they arenot members of this group.To create this group, edit the �le /etc/group. Add the following line to this �le:db_prot:*:669This gives the db_prot group the group-id number 669. The user-id number for this groupshould be 0 or root. If group-id number 669 is already taken, you may substitute it with aunique group-id, but you must then also put this number in the Scheduler.config �le inStep 9 of this installation procedure.5. Now resource con�guration �le must be modi�ed to match the system the scheduler is beinginstalled on. To do this, edit the Resource_list �le in the SP_Scheduler directory. This �lecontains a list of the names of the "schedulable resources" in the order that they should be16

scheduled if when they are available to run a job. The names of these resources correspond tothe hostnames the scheduler will rsh commands to. This is a partial example of the ArgonneResource_List:spnode001spnode002spnode003spnode004spnode005spnode006spnode007spnode008spnode009spnode010spnode011spnode012spnode013spnode014spnode015spnode016spnode017spnode018spnode019spnode0206. Now run the Configure script in the Scheduler directory. First cd to the SP_Schedulerdirectory. Then execute the script Configure. It will �rst prompt you for the path to Perlon your system. This is commonly /usr/local/bin/perl. It will then prompt you for thepath to the scheduler directory. This is the directory you are currently in. On the Argonnesystem the response would be /etc/FRAMES/SP_Scheduler. This script adds the correct pathin the scheduler con�guration �le to all the scheduler routines that reference it. It will thenask whether you wish to install the xspusage GUI interface. If so, it will prompt you for thefull path to the Tk program wish. This is commonly /usr/local/bin/wish. Configure willmodify all the scheduler codes appropriately for the system it is going to be run on, compiletwo small C programs that are part of the system, set all the �le protections and ownerships,and �nally create a resource �le that the scheduler will use to keep track of all the schedulableresources.7. To avoidmaking SP system users modify their Unix path, create symbolic links from /usr/local/binto the scheduler directory on any system used to access the scheduler. Speci�cally, create sym-bolic links for the following scheduler utilities:� spfree� sphelp� sppause� spunpause� spq� sprelease� spsubmit� spusage� spwait� getjid 17

8. To guarantee that users have exclusive access to the SP nodes that they are allocated throughthe scheduler, the scheduler adds their username to the /etc/passwd �le. This usernameis then used to query the NIS server to allow user access to node. Here is an example of astandard SP node /etc/passwd �le that allows access to all users known by the NIS server.root:!:0:0::/:/bin/kshdaemon:!:1:1::/etc:bin:!:2:2::/bin:sys:!:3:3::/usr/sys:adm:!:4:4::/usr/adm:uucp:!:5:5::/usr/lib/uucp:lpd:!:104:9::/:nobody:!:4294967294:4294967294::/:+::0:0:::In order to allow access to the SP node on a per user basis by the scheduler, this password�le must be modi�ed to look like the following.root:!:0:0::/:/bin/kshdaemon:!:1:1::/etc:bin:!:2:2::/bin:sys:!:3:3::/usr/sys:adm:!:4:4::/usr/adm:uucp:!:5:5::/usr/lib/uucp:lpd:!:104:9::/:nobody:!:4294967294:4294967294::/:This password �le should replace the current password �le on all the Schedulable resourcesexcept the nodes the MPL Job Manager runs on. Because of a limitation in its implementation,the MPL Job Manager requires the standard full password �le on the nodes it executes on.After creating the restricted-access password �le on the nodes copy, it to /etc/passwd.base.cp /etc/passwd /etc/passwd.baseThe /etc/passwd.base �le is used by the scheduler to remover a user's access from the node.It simply copies /etc/passwd.base over /etc/passwd, e�ectively removing the current user'susername from the nodes password �le.Example: If the scheduler gave a user with the username lifka access to an SP node, it wouldappend "+lifka" to the nodes /etc/password �le. The nodes /etc/passwd �le then wouldlook like the following.root:!:0:0::/:/bin/kshdaemon:!:1:1::/etc:bin:!:2:2::/bin:sys:!:3:3::/usr/sys:adm:!:4:4::/usr/adm:uucp:!:5:5::/usr/lib/uucp:lpd:!:104:9::/:nobody:!:4294967294:4294967294::/:+lifkaTo remove user Lifka's access from the node the Scheduler simple copies the base password�le over the current password �le.9. Several scheduler settings vary from system to system. All con�guration settings are containedin the �le Scheduler.config, which is located in the SP_Scheduler directory created in Step3 of this installation procedure. In order to avoid any confusion, the entire Scheduler.config18

�le is listed below with a brief explanation of each variable or routine, its purpose, and itsappropriate settings.The variable $DEBUG is for system administrative purposes. If it is set to $TRUE, each piece ofthe scheduler code will print status messages on the console the scheduler is started from. Todisable these messages, set $DEBUG to $FALSE.$DEBUG = $TRUE; # Debugging mode ON$DEBUG = $FALSE; # Debugging mode OFFThe $Armed variable is also for system administrative purposes. It was added so that thesystem administrator could test the Scheduler without actually touching the SP system. If$Armed is set to $FALSE the Scheduler code will run against the queue of jobs and printmessages on the console as to what it would actually be doing. If $Armed is set to $TRUE, thescheduler will actually schedule and start the queued jobs.## Allows the Scheduler to actually "touch" the machine# (used for testing purposes)#$Armed = $TRUE;During holiday seasons or periods where it is preferable to allow "night" class jobs to run 24hours day, a special holiday
ag can be set. If you wish to start a holiday scheduling timeperiod, the system administrator has to create a �le named HOLIDAY in the scheduler directory.To end the holiday scheduling period, simply remove this �le.## Holidays are like Night times all the time#if (-e "$Scheduler_Dir/HOLIDAY"){$Holiday = $TRUE;}else{$Holiday = $FALSE;}The Argonne SP accounting system is currently not available for distribution. For all sitesother than Argonne, the $Scheduler_Accounting
ag should be set to $FALSE.## Run the ANL/MCS Accounting System ?#$Scheduler_Accounting = $FALSE;In Step 4 of this installation procedure, if you chose a group ID number other than 669 forthe scheduler code, you must modify the $db_prot_gid
ag in the following section of code.## File Protection Parameters & Group ID for db_prot#$db_prot_uid = 0;$db_prot_gid = 669; 19

The $User_home variable tells the scheduler where the user's home �lesystem is located. OnArgonne's SP user's home SP �le systems are located in /sphome/<username>. If you have adi�erent naming convention for the user's home �lesystem, the $User_home should be modi�edaccordingly.## User's home directory (User NFS mounted file-system that all nodes see)#$User_home = "sphome";The $Scheduler_Host variable should be set to the Internet address of the computer that thescheduler code runs on.## Hostname of the Machine running the Scheduler#$Scheduler_Host = "somewhere.mcs.anl.gov";The following section of code controls the scheduler policies. The variables de�ne when di�er-ent types of jobs can run and ve policy statements for the -h options in the various scheduleruser utilities. If the scheduler policy does not meet your user community requirements, thefollowing variables can be modi�ed to allow it to do so.## These variables describe and define the Night and Day Queues#$Day_Time_Def = "Day time is from 9AM to 6PM, Monday through Friday\n";$Night_Time_Def = "Night time is from 6PM to 9AM, Monday through Friday\n";$Night_Time_Def .= "and 6PM Friday till 9AM Monday\n";## These are the time limits for the Day & Night Queues#$DayJob = 1920; # Max minutes a Day job can run (32 node/hours)$NightJob = 15360; # Max minutes a Night job can run (256 node/hours)$Queued_Limit = 30720; # Max minutes you can have Queued Waiting$Week_Night = 900; # Max minutes on week night$Limits_Def = "Size Ranges (in Node/Minutes)\n";$Limits_Def .= " Day Queue: up to $DayJob";$Limits_Def .= " AND 9 hours or less.\n";$Limits_Def .= " Night Queue : ".($DayJob +1)." up to 63 node/hours\n\n";$Limits_Def .= "After a CAC has $Queued_Limit Node/Minutes scheduled per\n";$Limits_Def .= "queue, additional jobs are \"Held\" by the system till\n";$Limits_Def .= "the total Node/Minutes that CAC has requested in that queue\n";$Limits_Def .= "fall below $Queued_Limit Node/Minutes. At that point Held\n";$Limits_Def .= "jobs are returned to \"Waiting\" status.\n";$Limits_Def .= "\nThis allows a user to submit many jobs at one time without\n";$Limits_Def .= "denying access to other active users.\n";20

Most scheduler code requires the following information. The only option that may needchanging is the $Number_of_Nodes
ag, which corresponds to the number of schedulable SPnodes in the SP system.## these are variables used in most of the Scheduler daemons#$Number_of_Nodes = 128; # number of nodes in the system$LockWait = 1200; # daemons wait 20 minutes for file lock%days_in_Month = ("January", "31", "February", "28", "March", "31","April", "30", "May", "31", "June", "30", "July", "31","August", "31", "September", "30", "October", "31","November", "30", "December", "31");@Months = ("January", "February", "March", "April", "May", "June","July", "August", "September", "October", "November", "December");After the declaration of all the essential scheduler variables there are several subroutines whichare used by several pieces of the scheduler code. They follow the following comment lines.## These are special Scheduler Subroutines#The �rst two, AmIRunning and GetMyName, are used to ensure that only one of each of thescheduler daemon processes is running on the scheduler host computer.## Subroutine to ensure only one copy of a daemon is running#sub AmIRunning{$Process_Name = $_[0];$occurrences = 0;$hostname = `/bin/hostname`;chop $hostname;# Make sure you are running on the correct machineif ($hostname eq $Scheduler_Host){# Make sure your not allready runningopen(PS,"/bin/ps auwx|");while (<PS>){if (/$Process_Name/) { $occurrences++; }}if ($occurrences > 1){if ($DEBUG) {print "DEBUG> Found $occurrences of this program running\n";}return 1;}return 0;}else 21

{print "This program only runs on $Scheduler_Host\n";return 1;}}## Returns the program name without the path#sub GetMyName{$Full_Name = $_[0];while ($Full_Name =~ m#/#) {$Full_Name = "$'";}return ($Full_Name);}The routine IsA_Node is used to ensure that when a user issues a getjid or spreleasecode, that is done from a valid schedulable resource. It assumes that nodes from which thesecommands could be run have the same names as those in the Resource_List �le that wascreated in Step 5 of this installation procedure. If an SP node responds as a di�erent hostnamefrom that listed in the Resource_List, you can modify the hostname conversion section ofthis subroutine to convert its hostname to its corresponding Resouce_List name.## Ensures that the Node name passed is a scheduable resource#sub IsA_Node{$Check = $_[0];## perform any special hostname conversions here#if ($Check eq "mercury") { $Check = "spnode001"; }if ($Check eq "venus") { $Check = "spnode017"; }if ($Check eq "earth") { $Check = "spnode033"; }if ($Check eq "mars") { $Check = "spnode049"; }if ($Check eq "jupiter") { $Check = "spnode065"; }if ($Check eq "saturn") { $Check = "spnode081"; }if ($Check eq "uranus") { $Check = "spnode097"; }if ($Check eq "neptune") { $Check = "spnode113"; }open (RESOURCES,"$Scheduler_Dir/spusage |");while (<RESOURCES>){chop;($node, $avail, $user, $JID, $StopTime) = split;if ($node eq $Check) { return ($node); }}close(RESOURCES);return("");}The subroutine UserInfo simply returns the e�ective user ID for a given user. This routineshould not have to be modi�ed. 22

Gets the effective uid for the user#sub UserInfo{@password = getpwuid($>);$username = $password[0];$username =~ s/,.*//;}The subroutine TimeStamp simply returns the current time, which is used to generate a job IDand also to determine whether it is daytime or nighttime. Several of the Scheduler programsuse this routine.## Sets the current time and JID for a given job#sub TimeStamp{($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime();$mon++;$msec = `$Scheduler_Dir/GenJID`;chop($msec);# put in leading zeros as neededif ($mon < 10) { $mon = "0".$mon; }if ($mday < 10) { $mday = "0".$mday; }if ($hour < 10) { $hour = "0".$hour; }if ($min < 10) { $min = "0".$min; }if ($sec < 10) { $sec = "0".$sec; }$TimeNow = "$mon$mday$hour$min";$logtime = "monmday$hour$min$sec";$ClockTime = "$hour$min$sec";$Midnight = "240000";$DayStart = "090000";$NightStart = "180000";$JID = $mday.$hour.$min.$sec.$msec;$Sunday = 0;$Monday = 1;$Tuesday = 2;$Wednesday = 3;$Thursday = 4;$Friday = 5;$Saturday = 6;$Today = $wday;# Determine if it is Night or Dayif (($Today == $Saturday) || ($Today == $Sunday)){$DayTime = $FALSE;$NightTime = $TRUE;} #if its a weekend 23

if (($Today >= $Monday) && ($Today <= $Friday)){if (($ClockTime ge $DayStart) && ($ClockTime lt $NightStart)){$DayTime = $TRUE;$NightTime = $FALSE;}else{$DayTime = $FALSE;$NightTime = $TRUE;}} #if its a weekday# Override normal settings if its a Holidayif ($Holiday){$DayTime = $FALSE;$NightTime = $TRUE;}}The EndTime subroutine determines when a job started now will �nish, based on the numberof minutes it has requested.sub EndTime{$Time = $_[0];# calculate minutes from days & hours$req_day = int($Time / 1440.0); # the number of minutes in a day$req_hour = int(($Time % 1440) / 60); # number of hours$req_min = $Time % 60;# split the current time$now = $TimeNow;$now =~ /(\d\d)(\d\d)(\d\d)(\d\d)/;$now_mon = $1;$now_day = $2;$now_hour = $3;$now_min = $4;# calculate stop times$end_mon = int($now_mon);$end_day = int($now_day) + $req_day;$end_hour = int($now_hour) + $req_hour;$end_min = int($now_min) + $req_min;# handle roll-oversif ($end_min > 59){$tmp = $end_min;$end_min = $tmp % 60;$end_hour += int ($tmp / 60.0);}if ($end_hour > 23){$tmp = $end_hour;$end_hour = $tmp % 24; 24

$end_day += int($tmp / 24.0);}while ($end_day > $days_in_Month{@Months[$now_mon-1]}){$end_day -= $days_in_Month{@Months[$now_mon-1]};$end_mon++;if ($end_mon == 13) { $end_mon = 1; }}# now format the EndTimeif ($end_min < 10) { $end_min = "0".$end_min; }if ($end_hour < 10) { $end_hour = "0".$end_hour; }if ($end_day < 10) { $end_day = "0".$end_day; }if ($end_mon < 10) { $end_mon = "0".$end_mon; }return ($end_mon.$end_day.$end_hour.$end_min);}The subroutines TimeLimit, TodayAt, and TomorrowAt are used to determine how long a jobcan run, based on the current time and day of the week.sub TimeLimit{# This subroutine returns a run-time limit it the form MMDDHHMM$JobClass = $_[0];# Monday - Friday behave the sameif (($Today >= $Monday) && ($Today <= $Friday)){if (($ClockTime >= $DayStart) && ($ClockTime <= $NightStart)){$DayLimit = &TodayAt("1800");$NightLimit = "000000"; # Don't start Night jobs on Weekdays}else{ # 6pm till Midnightif (($NightStart <= $ClockTime) && ($ClockTime < $Midnight)){ # Handle Monday - Thursday nights$DayLimit = &TomorrowAt("1800");$NightLimit = &TomorrowAt("0900");}else{ # handle early Mornings$DayLimit = &TodayAt("1800");$NightLimit = &TodayAt("0900");}}} # if Monday - Friday# Today is Saturday or Sundayif (($Today == $Sunday) || ($Today == $Saturday)){$DayLimit = &TomorrowAt("1800");$NightLimit = &TomorrowAt("0900");} # if today is Saturday or Sunday# If this is a Holiday 25

if ($Holiday){$DayLimit = &TomorrowAt("0900");$NightLimit = &TomorrowAt("0900");} # if this is a Holiday periodif ($JobClass eq "DAY") { return($DayLimit); }if ($JobClass eq "NIGHT") { return($NightLimit); }}sub TodayAt{$time = $_[0];return($mon.$mday.$time);}sub TomorrowAt{$time = $_[0];if (($Today >= $Sunday) && ($Today < $Friday)){ $manana = int($mday) + 1 };if ($Today == $Friday) { $manana = int($mday) + 3 };if ($Today == $Saturday) { $manana = int($mday) + 2 };$Tmon = int($mon);$Over_days = $manana - $days_in_Month{@Months[$mon-1]} ;if ($Over_days > 0){$Tmon++;if ($Tmon == 13) { $Tmon = 1; }$manana = $Over_days;}if ($Tmon < 10) { $Tmon = "0$Tmon"; }if ($manana < 10) { $manana = "0$manana"; }return($Tmon.$manana.$time);}The CheckNode routine had to be written to due to a bug in the SP Resource Manager. Theswitch responds
ag for a given node may respond positively even though it is not possibleto run a job that requires IP over the switch. CheckNode tests the node by rsh'ing to the node'sethernet address a ping of the node's switch address. If either do not respond the node willbe marked down and taken out of service so that the Scheduler does not try to start new jobson it. This routine assumes that the switch host name for any given SP node is swnode + thenodes number, for example, swnode001, swnode065, or swnode128. If this does correspondto the naming conventions on your local SP, this routine will need to be modi�ed accordingly.sub CheckNode{# this will always be in the form "spnode###"# (IsA_Node does appropriate name conversions for various# system configurations$Node = $_[0];## Notice: Non-ANL systems need to modify this routine. On the ANL system26

since the Resource Manager does not provide reliable information# on "switch-responds" we rsh to the Ethernet address a ping of its# own switch address. This will verify that both network interfaces# are up and can run any type of communications a job may require.# On ANL's system the Ethernet address is "spnode###" and the corresponding# switch address is "swnode###".## get just the node number to append to the string "swnode"$Node_num = $Node;$Node_num =~ s/spnode//;$Response=`$timeout 10 /usr/bin/rsh $Node /etc/ping -c 2 swnode$Node_num`;return ($Response);}The last routine locksmith, was developed at Argonne to cleanly perform the locking andunlocking of the �les. It is used by the scheduler code to lock and unlock the SP_Resource�le. It should not have to be modi�ed.sub locksmith{ local($timeout, $lockfile, $command) = @_;if ($command eq 'release'){unlink($lockfile) || warn "Could not unlink $lockfile: $!\n";return 1;}elsif ($command eq 'release_maybe'){unlink($lockfile);return 1;}elsif ($command ne 'lock'){die "Invalid command '$command' in locksmith\n";}local($endtime) = time + $timeout;## If there is a locksmith_RS6000, then we are# on a machine where we can't do a syscall#if (-x "$Scheduler_Dir/locksmith_RS6000"){require 'errno.ph';local($rc, $err, $ret, $errstr, @errstr);while (time < $endtime){open(DOLOCK, "$Scheduler_Dir/locksmith_RS6000 $lockfile |");$ret = <DOLOCK>;close(DOLOCK); 27

($rc, $err, @errstr) = split(/\s+/, $ret);$errstr = join(" ", @errstr);if ($rc >= 0){return 1;}elsif ($err != &EEXIST){die "Error in open: $errstr\n";}sleep 1;}}else{local($fd);require 'sys/file.ph';require 'sys/fcntl.ph';require 'syscall.ph';while (time < $endtime){$fd = syscall(&SYS_open, $lockfile, &O_CREAT | &O_WRONLY | &O_TRUNC |&O_EXCL, 0644);if (!$fd){warn "syscall failed: $!\n";}elsif ($fd >= 0){open(FH, ">&$fd") || die "perl open failed: $!\n";print FH time . "\n$$\n";close(FH);return 1;}sleep 1;}}return undef;}10. The last step in the scheduler installation is to run Scheduler_Startup on the scheduler'shost computer. If you wish to have this happen after any reboot, you can modify the/etc/rc.local �le on the workstation that the scheduler runs on.NOTE: It is important to move the scheduler log �les o� the scheduler's �le system on a regularbasis to ensure that they do not �ll the �le system. This can easily be done by using a cron job.3.2 Modifying the Scheduler for a Speci�c EnvironmentThe scheduler can be modi�ed to handle any message-passing library. The only routine that needsto be modi�ed is spsubmit. If special job setup is required for a particular message-passing library,spsubmit can be modi�ed to handle it by adding code to it that works much as the current code28

currently does for MPL and p4 jobs. The spsubmit routine can be used as-is if users are told tochoose the "task farm" option when submitting jobs and submitting a shell script, which does allthe appropriate setup for the given message-passing system.3.3 System Administration ToolsSeveral utilities were designed to make administration of the scheduler and the SP easier. Sched-uler_Startup simply starts all the necessary scheduler processes. The two utilities are Sched-uler_ON and Scheduler_OFF are used to enable graceful interrupts. Sometimes it is necessary tostop the scheduler for urgent SP system administration. In order to stop the scheduler withoutcorrupting the status of the queue or the currently running jobs, Scheduler_OFF signals all thescheduler processes so that they can complete any task they are currently working on and then stopgracefully. Scheduler_OFF does not actually kill the scheduler processes; it just pauses them untilthey are either killed by hand or restarted by signaling them with Scheduler_ON. Another utility,sprelease, is the same as the user command only it is more powerful for the administrator loggedin as root. As root, sprelease will allow a system administrator to take a job o� any particular nodeor o� all the nodes it is running on in the case of parallel program. It essentially is the scheduler'sversion of the Unix kill command.The service command has several functions. It provides a clean way for the administrator to takean set of nodes out of service and still allow the scheduler to schedule jobs that can run on theremaining nodes. Its basic syntax isservice <when> <reason> first_node last_nodeThe <when> �eld can either be -n for service immediately and inform the current user of the nodeby email that it had to be taken out of service or -s or service the node the next time it becomesavailable. Argonne has several reasons for "servicing" nodes, but these can be modi�ed renamed tobetter suit other environments. The choices that are currently available are as follows.-h prints a list of the various
ags-f puts nodes back in service-u mark the nodes down for service or basic maintenance-g mark the nodes available for general use-c mark the nodes down for CAVE use-d mark the nodes down for a demonstrationIf you decide to modify these, you will have to modify xspusage accordingly so that the correctmessage is displayed to the users.The last utility is Clear_SP_Resources. It is used to regenerate a clear resource �le after a longperiod of downtime when you would like the scheduler to start as if it were the �rst time it wasturned on.The "scheduler message" is a way for the administrators to display current information to the usersabout the current status of the machine for example after a compiler upgrade. This message isdisplayed by spq and spsubmit so that users are sure to see it. To modify this message, simply editthe �le Scheduler_message �le in the scheduler directory.Finally, there are log �les generated by each of the scheduler daemons that contain information aboutwhat they are doing during every iteration of their execution. These are useful if the administratorwants to see why the scheduler treats various queues of jobs the way that it does and to verify thatit is working the way it should. 29

4 Scheduler Architecture4.1 Components of a Scheduling SystemBefore we began to write a new scheduler, a lot of thought went into what exactly it was a schedulingsystem should provide. There were three basic goals that almost any scheduling system strives for:fairness; simplicity (ease of understanding); and e�cient use of the available resources. These threegoals are obviously in con
ict, so there had to be some compromise that would make the usershappy. After a fair amount of research a list of features making up the "Ultimate Scheduler" wasdeveloped. This "Perfect Scheduler" would� provide optimum utilization (e.g., schedule I/O bound and CPU bound jobs together),� be fair,� support di�erent job classes (e.g., interactive vs. batch),� support various message-passing libraries,� use static or dynamic partitioning of the machine,� utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms,� schedule di�erent computation models (task farm vs. parallel processing),� manage other system resources (e.g., I/O subsystems),� provide priority scheduling for special jobs.Several of these items really depend upon how the users of a machine expect to be able to useit. Several very nice scheduling systems available today that address these issues. A few of themore popular are DQS from Florida State, Condor from University of Wisconsin, IBM LoadLeveler,and NQS. The problem with these systems is that they all primarily focus on managing multiplequeues of nonparallel jobs for networks of workstations. They were developed during the "free su-percomputing" movement, not too long ago when high-end workstations connected by fast networkscould provide as much computational power as the supercomputers of the day at a fraction of thecost. Many of these scheduling systems do more than scheduling. The following diagram showsthe main pieces of a complete scheduling system. Several of the available scheduling systems haveimplemented the various pieces of this diagram in a tightly coupled fashion. This greatly reduces theextensibility of the system. For this reason a scheduling system that would meet the Argonne goalsaddresses only "Scheduling" and attempts to get the other pieces from either the machine vendorsor other developers wherever possible.The following diagram illustrates the various pieces of a full scheduling system. This scheduler onlyperforms the "scheduling" task.
30

Dynamic Process Allocation

Security

Resource
Management

Job
Starter

User
Processes

Scheduling

4.2 SP Scheduler DesignThe scheduler is made up of a series of Perl daemons and user interface programs that monitorseveral shared directories. Those directories are accessible to the entire SP complex. They containinformation on the current state of the machine and queue of jobs and update a single resource�le that stores this information. The user interface programs are discussed in Section 2.2 of thisdocument. There are currently six Perl daemons, as shown in the following diagram.

31

getjid

Batch
Wrappers

Queue Resource
File

Service Freed
Resources

SPQ_Watcher

Deallocate_Nodes

Batch_Cleanup

Queue_Supervisor

AutoReleaser

Scheduler_Watchdog

sphelp

spfree

spusage

spsubmit

sprelease

spwait

spunpause

sppause

spwhen

spwhat

spq

NFS mounted, Protected DirectoryThese scheduler daemons have the following jobs:Batch_Cleanup: This is a simple cleanup utility that removes batch scripts from the Batch_wrappersdirectory when they are no longer on the system.Deallocate_Nodes: Watches for jobs that have been released and then clears the resources theyused, veri�es they are still operational, and returns them to the "free pool".SPQ_Watcher: Monitors the job and service queues and starts Allocate_Nodes if there is a job thatneeds starting.Queue_Supervisor: Ensures that no user has more jobs queued than are allowed in the currentqueuing policy.Scheduler_Watchdog: Monitors the SP resources to ensure that they are operational. If a SP nodeis down, Scheduler_Watchdog will take it out of service; if a node comes back up, this daemon willput it back in service.AutoReleaser: Removes jobs from the system that have used all the time they requested.32

4.3 Sample Flow of ExecutionThe following
ow-of-execution example is provided to help clarify the roles of the various pieces ofthe scheduler system.1. User submits a job with spsubmit.2. The Queue Supervisor ensures this job is not one of several requiring more resources and timethan the queue limit.3. Job is "noticed" by the SPQ Watcher daemon.4. SPQ Watcher Starts Allocate Nodes program to start the job.5. User is granted access to a group of nodesm, and their job is rsh'd to the �rst node in thatgroup of scheduled nodes.6. The AutoReleaser monitors the resource �le to ensure the job has not run out of time.7. When the job has �nished it "spreleases" its nodes.8. sprelease puts tokens in the Freed Resources directory to notify the Deallocate Nodes daemon.9. Deallocate Nodes daemon clears and checks the released nodes and returns them to theFree Pool.10. The Batch Cleanup daemon realizes the job has now �nished, so it removes the jobs batchscript from the Batch wrapper directory.11. The Scheduler Watchdog daemon "patrols" the machine looking for nodes in need of serviceor that have been repaired and should be put back in the "free-pool".References[1] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system. TechnicalReport ANL-92/17, Argonne National Laboratory, October 1992.[2] William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In Proceedings ofthe Scalable High-Performance Computing Conference, IEEE, pages 55{62, 1994.[3] Message Passing Interface Forum. Document for a standard message-passing interface. TechnicalReport Technical Report No. CS-93-214 (revised), University of Tennessee, April 1994. Availableon netlib.[4] William D. Gropp and Ewing Lusk. A test implementation of the MPI draft message-passingstandard. Technical Report ANL-92/47, Argonne National Laboratory, December 1992.[5] William D. Gropp, Ewing Lusk, and Steven C. Pieper. Users guide for the ANL IBM SP1.Technical Report ANL/MCS-TM-198, Argonne National Laboratory, October 1994.
33

