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A Case Study in Automated Theorem Proving:A Di�cult Problem about CommutatorsbyWilliam McCuneAbstractThis paper shows how the automated deduction system Otter was used toprove the group theory theoremx3 = e) [[[y; z]; u]; v] = e;where e is the identity, and [x; y] is the commutator x0y0xy. This is a di�cultproblem for automated provers, and several lengthy searches were run before aproof was found. Problem formulation and search strategy played a key role inthe success. I believe that ours is the �rst automated proof of the theorem.1 IntroductionThe automated theorem prover Otter [1] is not always easy to use. Version 3.0.0 ofOtter (and later versions) has an autonomous mode that allows the user simply toassert a denial of the theorem or conjecture; the program then formulates a simplestrategy and searches for a refutation. The autonomous mode is su�cient for manyeasy theorems and some moderately di�cult theorems, but more di�cult theoremsusually require some guidance from the user. Very little has been written about thekinds of guidance that can be given to the program and how that guidance is speci�ed.This paper shows how such guidance was provided in one case, a di�cult theoremabout commutators in group theory.Let GT stand for an axiomatization of group theory in terms of product, identity,and inverse, for example, fex = x; x0x = e; (xy)z = x(yz)g. The focus of this paperis the theorem ( GTx3 = e )) f[[[y; z]; u]; v] = eg;where [x; y] is the commutator x0y0xy. (Note the similarity of this theorem to thebenchmark theorem, usually called the commutator problem, in which the hypothe-ses are the same, but the conclusion is [[y; z]; z] = e. That theorem, once considered a1



di�cult challenge problem for automated theorem provers, is easily proved with Ot-ter in its autonomous mode and by other theorem provers based on paramodulationand rewriting.)When I learned of the theorem, I had only it's statement. (In fact, I wasn't sure itwas a theorem.) As I tried to get Otter to prove the theorem, I supplied guidancetoward �nding a particular type of proof and against paths that I thought fruitless,rather than directing Otter toward �nding a particular proof.This paper is intended for those who already have some familiarity with Otter.2 The Search for a ProofThe input �le for the �rst Otter search was the following.set(knuth_bendix).lex([e,A,B,C,D,_*_,g(_),h(_,_)]).clear(print_kept).clear(print_new_demod).clear(print_back_demod).assign(pick_given_ratio, 4).assign(max_mem, 24000).list(usable).x = x.end_of_list.list(sos).e * x = x.g(x) * x = e.(x * y) * z = x * (y * z).h(x,y) = g(x) * (g(y) * (x * y)).x * (x * x) = e.h(h(h(A,B),C),D) != e.end_of_list.The 
ag knuth_bendix speci�es a basic search strategy based on Knuth-Bendixcompletion, including the lexicographic recursive path ordering (LRPO) for orient-ing equalities and deciding which equalities are to be demodulators (rewrite rules).The command lex([ ... ]) speci�es an ordering on constant and function symbols2



(smallest �rst): * � h and g � h so that h is immediately eliminated from the de-nial (and from the search), and * � g so that g is eliminated from the search wheng(x)=x*x is derived.The commands clear(print_*) disable some of Otter's output; their purposehere is to save disk space. The command assign(pick_given_ratio, 4) speci�es aratio of 4:1 for selection of given clauses (clauses with which to make inferences): foreach four clauses that are selected because they have the lowest weight, one clause isselected because it has been available for the longest time (that is, best-�rst:breadth-�rst search). The command assign(max_mem, 24000) limits memory usage to about24 megabytes.The clauses in list(sos) are the axioms for group theory, the de�nition of thecommutator function h(x,y), the special hypotheses x3 = e, and the denial of theconclusion (A, B, C, and D, are Skolem constants, that is, elements for which thetheorem fails to hold).With this input �le, Otter quickly rewrites the denial, as expected, intoABAABBCABAABBABAABBCCDABAABBCABAABBABAABBCCABAABBCABAABBABAABBCCDD!=e(the product symbol is not shown, and right association is assumed) which has weight133 (the default weight, which applies if no weight templates occur in the input, is acount of the number of constant, variable, function, and predicate symbols).A scan of the output �le indicated at least four problems with the search.Focus of the Search. The high weight of the negative clauses delays their par-ticipation in the search. When new equalities are made into demodulators, allpossible rewriting is performed, but more seems to be needed. In particular, anequality such as xxyy = yxyx cannot be an ordinary rewrite rule (with LRPOor with RPO), so it must be applied with paramodulation. In order to apply itto another clause, the other clause must have been selected as given clause; neg-ative clauses are rarely selected as given clauses, however, so many importantinferences are delayed too long.What Otter clearly needs to address this problem is a better control mecha-nism that can be tailored to bidirectional search. The output �le has two typesof clause: (1) right-associated negative ground equalities (originating from therewritten denial shown above) with product and Skolem constants on the leftand e on the right, and (2) right-associated positive equalities in product andvariables. We wish to reason forward, applying the positive equalities to posi-tive equalities, and to reason backward, applying positive equalities to negativeequalities. However, with Otter's limited methods for selecting the givenclause, we must usually focus on one or the other.3



The Term Ordering. LRPO does not make enough equalities into rewrite rules. Ifwe were to use RPO instead (i.e., give * multiset status), many of the equalitiesthat fail to become rewrite rules under LRPO, for example, xxyyxx = yxy(right association), would become useful rewrite rules. However, we wish toretain associativity, (xy)z = x(yz), as a rewrite rule, and it cannot be so underRPO.Useful Rewrite Rules. Since we wish to keep everything right associated, manyequalities and rewrite rules do not apply where we wish them to. Consider, forexample, the rewritten denial shown above and the equality xxyy = yxyx. Wewould like the equality to apply (by paramodulation) at 12 di�erent places, butas things are, it applies only at the end.Memory Usage. The available 24 megabytes was consumed within 37 minutes(on a SPARC 2), and the search stopped. At that point 11,195 clauses hadbeen retained, 848 of those had become rewrite rules, and 119 clauses had beengiven (selected as the focus of attention). The vast majority of retained clauseswere simply sitting in the sos list, wasting memory. (The only sos clauses thatparticipate in the search are those that are also rewrite rules. Given clauses areselected from the sos list and moved to the usable list.) The standard solutionis to set a maximum on the weight of retained clauses, but this becomes di�cultbecause of our requirement for bidirectional search.The next few sections describe some experiments designed to address the precedingproblems.2.1 Focus of the SearchI thought that there might exist the following type of bidirectional proof. Equali-ties are derived from f(xy)z = x(yz); ex = x; xxx = eg. The balanced equalities(both sides having the same weight) paramodulate into negative clauses, and rewriteequalities (i.e, the left side heavier) rewrite negative equalities, eventually derivinge 6= e.To search for that type of proof, both positive and negative equalities must beselected as given clauses. The following approaches were considered.� Simply use assign(pick_given_ratio, 1). Since the negative clauses aremuch larger than the positive ones, half of the given clauses are the shortestavailable clauses (which are all positive) and the other half is a mixture of pos-itive and negative clauses (oldest �rst). This approach was abandoned becauseit places too much emphasis on positive clauses, and no preference is given toshort negative clauses. 4



� Adjust the weights of clauses, making the positive clauses heavier and the nega-tive clauses lighter. This can be accomplished by including the following weightlist in the input �le.weight_list(pick_and_purge).weight(x,4). % applies to all variablesweight(A,0).weight(B,0).weight(C,0).weight(D,0).end_of_list.Several weights for variables were tried before deciding to use 4. With weight4 for variables, along with assign(pick_given_ratio, 4), the search startsout mostly positive, but as the retained positive clauses become larger, thefocus changes to negative clauses (which become shorter), with positive clausesentering occasionally because of a ratio of 4. This approach seemed promising.� Separate the search into positive and negative parts. This involves making twoOtter runs. In the �rst run, the focus is exclusively on positive clauses; aftersome time, the run is stopped, and the positive clauses that had been given arecollected and used as input for the second run. The second run is a search for aproof, in which the focus is exclusively on negative clauses, using the (�xed) setof positive clauses from the �rst run for paramodulation and rewriting. Thisapproach was abandoned after several failures.2.2 Term OrderingTo address this problem, we use Otter's ad hoc term ordering to orient equalitiesand to decide which equalities are to be rewrite rules. The default ad hoc orderingsays simply that for terms, t1 > t2 if t1 has more symbols than t2. Equalities areoriented, when possible, as heavy=light, and positive equalities whose left sides areheavier are made into rewrite rules. With this method, when associativity is a rewriterule, and when the terms being rewritten are built from the binary function symbol,constants, and variables, rewriting will always terminate. This method was usedfor the rest of the experiments in this study; we can specify it with the commandclear(lrpo), placed after the command set(knuth_bendix).This solution does cause a secondary problem, however. The de�nition of commu-tator, g(x)*g(y)*x*y = h(x,y), and equality x*x = g(x), which is derived at thebeginning of the search, will be oriented as shown; both are the wrong way for thetype of proof we are seeking. The solution is simply to input the following list.5



list(demodulators).h(x,y) = g(x)*g(y)*x*y.g(x) = x*x.end_of_list.(With the ad hoc ordering, input demodulators are not 
ipped.) This input list causesthe denial to be rewritten on input into the form shown above; neither h nor g willappear thereafter in the search.2.3 Useful Rewrite RulesRecall that the equality xxyy = yxyx applies only at the end of the rewritten de-nial. However, the trivial consequence xxyyz = yxyxz applies at the other placesof concern. Also, if we reformulate the rewritten denial from t 6= e into t � E 6= E,where E is a new constant, the original equality xxyy = yxyx is no longer needed.(The reformulated denial corresponds to the conclusion [[[y; z]; u]; v] � w = w, whichclearly leads to an equivalent theorem.) This approach applies to both rewrite andnonrewrite (paramodulation) equalities.Let us borrow from associative-commutative terminology and call xxyyz = yxyxzthe extension of xxyy = yxyx. Paramodulating an equality into associativity, thenrewriting with associativity, produces the extension; hence, many of the extensionsappear automatically. However, we don't need any nonextended equalities, and we canavoid them by simply starting with extended equalities only, because paramodulationof two extended equalities always produces an extended equality. In this case, we startwith xxxy = y instead of xxx = e. In addition, this approach eliminates the identitye from the search.2.4 Memory UsageThe easiest way, and one of the most useful, to address the memory problem is tolimit the size of kept clauses with the parameter max_weight. At this point, theweighting scheme of assigning variables weight 4 and Skolem constants weight 0 wasbeing used. The rewritten denial has weight 67, and I was aiming for a proof inwhich the negative clauses \become smaller". I had no idea how big positive clauseswould have to be; after several preliminary runs, I made a guess of weight 104, whichallows positive clauses with up to 21 occurrences of variables. Assigning a weight limitobviously makes the search less complete, but it is frequently necessary in practice.If the search fails, one can easily raise the limit and try again.Another way a lot of memory was saved was to adjust the indexing parameters.This requires considerable knowledge of the indexing method, and I'll present it in6



some detail, so that it might be more accessible to others. Indexing is used in �veways for this type of search.� Paramodulation. This uses FPA/path indexing to �nd uni�able terms.� Forward demodulation. This uses discrimination indexing to �nd demodulators.� Forward subsumption. This uses discrimination indexing to �nd subsumingclauses.� Back demodulation. This uses FPA/path indexing to �nd terms to demodulate.� Back subsumption. This uses FPA/path indexing to �nd clauses to subsume.Otter's discrimination indexing is not adjustable, but we can limit the indexingdepth for FPA/path indexing. In fact, because of the structure of the terms in thesesearches, FPA/path indexing �lters out little or nothing, so disabling it saves vastamounts of memory (because terms are so deep) and a little bit of time. FPA/pathindexing works by �ltering out terms that fail to unify because of direct term structure(i.e., symbol clash). But our equalities are built from nothing more than variablesand product, and our negative equalities are built from constants and product andare right associated. Consider paramodulation between two extended equalities; itcannot fail, so indexing can �lter out nothing. Consider paramodulation between anextended equality and a right-associated ground equality; the only way it can fail is byindirect symbol clash, which cannot be �ltered out by FPA/path indexing. Therefore,Otter's indexing is useless for paramodulation.A similar analysis shows that Otter's indexing is useless for back demodulationand for back subsumption on positive clauses. But back subsumption on negativeclauses does bene�t from FPA/path indexing; in fact it is a perfect �lter, becauseall of our negative clauses are ground. However, memory was judged to be a seriousproblem, and back subsumption is not called often because we keep relatively fewclauses, so we simply disabled all FPA/path indexing (by setting the parametersfpa_terms and fpa_literals to 0).3 A ProofThe following input �le led to the �rst proof.set(knuth_bendix).lex([e,A,B,C,D,E,*(_,_),g(_),h(_,_)]).7



clear(lrpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).clear(detailed_history).assign(pick_given_ratio, 4).assign(max_weight, 105).assign(max_mem, 24000).assign(fpa_literals, 0).assign(fpa_terms, 0).list(usable).x = x.end_of_list.list(sos).x*x*x*y = y.(x*y)*z = x*y*z.h(h(h(A,B),C),D)*E != E.end_of_list.list(demodulators).h(x,y) = g(x)*g(y)*x*y.g(x) = x*x.(x*y=x*z) = (y=z).end_of_list.weight_list(pick_and_purge).weight(x, 4).weight(A, 0).weight(B, 0).weight(C, 0).weight(D, 0).weight(E, 0).end_of_list.The third clause in list(demodulators) applies left cancellation as a rewriterule. It is used once (clause 129) in the proof below, but it is not necessary; otherproofs have been found without it. 8



The following proof was produced with the preceding input �le; Otter tookabout 12 hours and used about 12 megabytes of memory on a SPARC 2 to �nd it.Proof (found by Otter 3.0.3+ on altair.mcs.anl.gov at 43268.49 seconds).1 h(x; y) = g(x)g(y)xy2 g(x) = xx3 (xy = xz) = (y = z)4 x = x6,5 xxxy = y8,7 (xy)z = xyz9 h(h(h(A;B); C); D)E 6= E10 AABBABAABBABCCAABBABCAABBABAABBABCCAABBABCDDAABBABAABBABCCAABBABCDE 6= E [copy,9 :1,2,2,8,8,1,2,8,8,8,8,8,2,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,1,2,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,2,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8]11 xyxyxyz = z [5 ! 7 :8,8, 
ip]17,16 xyxyxz = yyz [5 ! 11]18 xyxyzzu = yyzxzxu [16 ! 16]21 xyxyz = yyxxz [5 ! 16]23,22 xyzxyzxu = yzyzu [7 ! 16 :8,8,8]25 xxyyz = yxyxz [
ip 21]26 xyxzzyyu = yyxxzyzu [21 ! 21]29 xyzxyzu = yzyzxxu [7 ! 21 :8,8,8]31,30 xxyyxxz = yxyz [5 ! 21, 
ip]32 xyzxyzu = zzxyxyu [7 ! 21 :8,8,8]34 xyxyzzu = zxyzxyu [
ip 29]35 xxyzyzu = yzxyzxu [
ip 32]40 AABABBCCAABBABCAABBABAABBABCCAABBABCDDAABBABAABBABCCAABBABCDE 6= E [21 ! 10 :23,17]41 xxyzzyyu = yxyxzyzu [21 ! 25]42 xyxyzxzxu = yyxzzu [16 ! 25, 
ip]44 xyxyzxzu = yyxzzxxu [
ip 41]55 xyxzyzyu = yyxxyzzu [25 ! 21]56 xxyyxzzu = yxyzxzxu [
ip 55]58 xxyyxzzxxu = yxyzxzu [21 ! 30]63,62 xxyzyzxxu = yzxyzu [7 ! 30 :8,8,8]81 xyxyzuzuv = yyuxuxzzv [25 ! 18]82 xyzxyzuuv = yzyzuxuxv [7 ! 18 :8,8,8]83 xyzxyzuuv = zzuxyuxyv [7 ! 18 :8,8,8]89 xxyzuyzuv = zuxzuxyyv [
ip 83]92 xyxyzzuxuxv = yyzxzuuv [18 ! 16]111 xyxxyzxzu = yxyxzzxxu [30 ! 22]119 xyzxyxxu = yzyzzxzu [16 ! 22]121,120 xyzuxyzuxv = yzuyzuv [7 ! 22 :8,8,8]122 xyxxyz = yxyxxz [5 ! 22]124,123 xyyxxyxz = yxyyz [30! 22 :6]129 xyxyyz = yxyyxz [16! 22 :3]131 xyxyzzyyu = yxyyxzyzu [
ip 111]9



134 AABABBCCAABBABCBABBCACBBABCDDBABBCACBBABCDE 6= E [40 :124,31,31,124,31,31]135 xyxyyzyu = zxyzxzzu [
ip 119]139 xyxxyyxz = yyxyz [22! 30 :6, 
ip]154,153 xxyyzuxzuxv = yxyzuzuv [22 ! 21, 
ip]194 ABBAABCCAABBABCBABBCACBBABCDDBABBCACBBABCDE 6= E [21 ! 134]214 xyzuxyzuv = yzuyzuxxv [7 ! 29 :8,8,8]216,215 xyxyzzyyu = zxyzxu [5 ! 29, 
ip]226 xyyxz = yxxyz [5 ! 29 :6]238,237 xyxxyzxzu = zyxzyu [131 :216, 
ip]251 xxyxyyz = yxyyxxz [29! 30 :6]266 xyxxyyz = yyxyxxz [
ip 251]281 xyzuxyzuv = uuxyzxyzv [7 ! 32 :8,8,8]311,310 xyyxyzzyyu = yxxzyzu [30 ! 226, 
ip]319 xyzzxyu = zxyxyzu [7 ! 226 :8,8,8]320 xyxyyxz = yxxyxyz [226 ! 226]321 xyzzyxyxu = yxxyzyxzu [32 ! 226]324 xyyxzxyzxu = yxyzyzu [22 ! 226, 
ip]328 xyzyzxu = yzxxyzu [7 ! 226 :8,8,8]339 xyyxyxz = yxyxxyz [
ip 320]340 xyyxzxyzu = yxzzxyxyu [
ip 321]348 ABBAABCCABAABBCBABBCACBBABCDDBABBCACBBABCDE 6= E [226 ! 194]352,351 xyxxyxz = yxyz [226 ! 30]409 ABBAABCCABBABACBABBCACBBABCDDBABBCACBBABCDE 6= E [25 ! 348]418 xyzxyzyyu = zzxyxu [26! 34 :6, 
ip]520 xxyxxz = yyxyyz [226 ! 42 :31]534,533 xyxyyxzzxxu = yxyyzxzu [44! 32 :6]576,575 xxyyxyzxzu = yzyxzyu [58 ! 32 :6,216]578,577 xyxxyyzxzu = yzyxzyu [58 ! 29 :576,311, 
ip]596,595 xxyzuyzuxxv = yzuxyzuv [7 ! 62 :8,8,8]644,643 xyxzxyzxu = yxzyzu [81 ! 82 :63,17,6]746 xxyyxzxuuv = zyxzyuzuzv [92 ! 62]747 xyzxyuxuxv = zzyyzxzuuv [
ip 746]806 xyzxzuyuyv = yxyzyxzuuv [83 ! 351 :154]810,809 xyzxxyzxu = yzxyzu [7 ! 351 :8,8,8]813 xyxzxyzuuv = yxzyzuxuxv [
ip 806]918,917 xyxyzyzzyu = zxyzxzu [129! 129 :238]1121 xyzuyxzuyv = yyxyzuxzuv [89 ! 139 :596]1277,1276 xyzyzxyzyu = yzxxzzu [16 ! 319, 
ip]1308 ABBACBABACABABCDDBABBCACBBABCDE 6= E[319 ! 409 :1277,534,121,352]1372 ABBACBABACBBAACDDBABBCACBBABCDE 6= E [21 ! 1308]1378 ABBACAABBCBBAACDDBABBCACBBABCDE 6= E [21 ! 1372]1404 ABBACAACCBCCAACDDBABBCACBBABCDE 6= E [520 ! 1378]1416 ABBACAACCBACADCDCBABBCACBBABCDE 6= E [56 ! 1404]1453 ABBCACAACBACADCDCBABBCACBBABCDE 6= E [122 ! 1416]1551,1550 xyzuvxyzuvxw = yzuvyzuvw [7 ! 120 :8,8,8]1645 xyxxzuxzuv = yyzuyxzuyv [120 ! 16]10



1691 ACABCABACBACADCDCBABBCACBBABCDE 6= E [35 ! 1453]1910 ACABCACCBABAADCDCBABBCACBBABCDE 6= E [32 ! 1691]2159,2158 xyyxzxxyzu = yyzyzxu [214 ! 226 :23, 
ip]3080 ACABCACCABAABDCDCBABBCACBBABCDE 6= E [129 ! 1910]3655,3654 xyxzxzzyxu = yzxzzyu [328 ! 324 :17,31, 
ip]3880,3879 xyzzyxyzzu = yyzxyxu [339 ! 340 :918,6,17, 
ip]4469,4468 xyzxzzxyxu = yzxzzyu [418 ! 281 :17,6]4483 ACBCACCBABDCDCBABBCACBBABCDE 6= E [3080 :4469]4642 ACBCACCBADCBBDCABBCACBBABCDE 6= E [328 ! 4483]4669 ACBCACCBADCBBDBCACABCBBABCDE 6= E [319 ! 4642]4727 ACBCACCBADCBBDBAACCBCBBABCDE 6= E [21 ! 4669]4749 ACBCACCBADCBBDBAACACBACAACDE 6= E [135 ! 4727]4772 ACBCACCBADCBBDBAACACBAACCADE 6= E [226 ! 4749]4795 ACBCACCBADCBBDBACCAABAACCADE 6= E [21 ! 4772]4830 ACBCACCBADCBBDBACCBBABBCCADE 6= E [520 ! 4795]4850 ACBCACCBADCBBDBABCBCABBCCADE 6= E [25 ! 4830]4857 ACBCACCBADCBBDBBCAABCBBCCADE 6= E [328 ! 4850]4867 ACBCACCBADCBBDBBCAACCBCBBADE 6= E [266 ! 4857]4879 ACBCACCBADCBBDCBCBACABCBBADE 6= E [41 ! 4867]4894 ACBCACCBABDCDCBBCBACABCBBADE 6= E [319 ! 4879]4912 ACBCACCBABBDCBDCCBACABCBBADE 6= E [34 ! 4894]9687,9686 xyxzyxyzxzu = yzzyzyxu [1121! 813 :644,3655,2159]15798 ACBCACCAADCABDABBABACBADE 6= E [1645 ! 4912 :9687]15805 E 6= E [747 ! 15798 :578,3880,6,1551,810,23,17,6]15806 2 [15805,4]4 Relation to a Conjecture of PadmanabhanConjecture (R. Padmanabhan [2]). Let A = fa1; a2; � � � ; ang and fag be identitiesin the language of one binary operation. If A ) a in group theory, then A ) a incancellative semigroups (CS) as well.The proof in the preceding section supports the conjecture. For cancellative semi-groups, the statement corresponding to the focal theorem of this paper isfCS; x0 = xx; xxx = yyyg ) f[[[x; y]; z]; w] = uuug: (1)What Otter actually proved isfCS; x0 = xx; xxxy = yg ) f[[[x; y]; z]; w]u= ug: (2)Statement 1 follows easily from 2, because fCS; xxx = yyyg ) fxxxy = yg.11



5 Concluding RemarksFor these experiments, I ran about 20 Otter searches, modifying the formulationand search strategy for each based on results of the previous searches. In providingthe guidance, I used only fairly well-understood and fairly well-de�ned knowledgeabout Otter and search strategies, rather than knowledge about a particular proofor general knowledge of mathematics; therefore there is hope that some of the methodsdescribed in this paper can be automated. Such automation would be an advancetoward the goal of self-analytical theorem provers, advocated by Larry Wos [3].Otter clearly needs better features for control of bidirectional search. We wereable to achieve an e�ective bidirectional search for this problem by adjusting theweights: the �rst part of the search focused on positive clauses, then shorter negativeclauses were derived, then the second part of the search focused on negative clauses.But few bidirectional searches have such a smooth and natural transition. In general,we need a true dual-focus (or more-part focus) search.Finally, perhaps the strategies used for this problem can be shown to be completefor a useful class of problems.References[1] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6,Argonne National Laboratory, Argonne, Ill., 1994.[2] R. Padmanabhan, Electronic mail to W. McCune, May 7, 1993.[3] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introductionand Applications, revised edition. McGraw-Hill, New York, 1992.
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