ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL/MCS-TM-204

Nexus User’s Guide
by

lan Foster, John Garnett,* and Steven Tuecke

Mathematics and Computer Science Division

Technical Memorandum No. 204

February 1995
DRAFT

This work was support by the Office of Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

*Dept. of Computer Science, California Institute of Technology, Pasadena, CA 91125.

Contents

Abstract

1 Introduction

2 Executing a Nexus Application
2.1 Naming Nexus Nodes
2.2 Executing On a Network of Workstations
2.3 [Executing on the Intel Paragon L.

3 Debugging a Nexus Application
3.1 Examining Process State L o oo oL
3.2 Tracebacks oL
3.3 Signal handling L
3.4 Tracing Nexus Internals L oL L.
3.5 Using Testcenter and Purify o oo oo

4 Tuning a Nexus Application

5 Profiling a Nexus Application

6 Obtaining Nexus and Nexus Compilers

References

iii

11

12

13

13

Nexus User’s Guide

Tan Foster John Garnett Steven Tuecke

Abstract

This document describes the command line arguments and other features that are
common to any program that incorporates the Nexus runtime library. It is divided into
sections describing the execution, debugging, tuning, and profiling of such programs.
It is not intended as a compiler writer’s guide, and does not include any information
on the Nexus interface or other internal details.

1 Introduction

Nexus is a runtime library designed primarily as a compiler target for langages supporting
task-parallel and mixed data- and task-parallel execution. The Nexus interface and Nexus
design are described elsewhere [1, 2]; here, we provide the information needed to execute
programs that use Nexus services.

We term a compiler that targets the Nexus runtime system a Nexus compiler, and
an executable built with such a compiler a Nezus executable. A Nexus executable can
be passed command line arguments intended for the executable (executable flags) and for
Nexus itself (Nezus flags). Nexus flags follow executable flags and are separated by a
separator. The separator used is Nexus compiler dependent. Throughout this document
we use -nexus. The Nexus flags that are available to a given executable can be determined

by typing
<app> -nexus -help

where <app> denotes the executable name. The Nexus flags available may vary according
to the operating system, communication protocols, etc., used by Nexus on a particular
machine.

Nexus ensures that the executable is not aware of Nexus flags specified on the command
line. For example, suppose that the executable accepts a flag -f filename. Then the
command

<app> -f filename -nexus -pause_on fatal

runs the executable with the number of arguments set to 3, argument #0 set to <app>, argu-
ment #1 set to -f, and argument #2 set to filename. It also passes the flag -pause_on fatal
to Nexus (causing Nexus to pause upon a fatal error); however, this flag is not visible to
the application.

Table 1 lists the computers and operating systems on which Nexus is currently imple-
mented. Nexus does not yet support computations on networks of heterogeneous machines.
This restriction will be removed soon.

Table 1: Nexus Availability

‘ Computer ‘ Operating System ‘ Other Requirements
HP HPUX 9.x DCE threads
IBM RS6000 | AIX 3.2.x DCE threads
IBM SP AIX 3.2.x DCE threads
Intel Paragon | OSF/1
Sun SunOS 4.1.x
Sun Solaris 2.x

Table 2: Workstation-specific Flags

‘ Flag

‘ Description

-n N
-nodes 5

Create N nodes on default processor
Create nodes according to nodelist S

-Csave_fds NV

Reserve N file descriptors

Tables 2-7 summarize the flags supported by Nexus implementations on different ma-
chines. An 5 means that a string argument is expected. An N means that an integer
argument is expected. In the following, we discuss both these flags and the techniques

used to execute, debug, profile, and tune Nexus executables.

2 Executing a Nexus Application

Nexus supports several methods for starting distributed parallel programs. Since different
Nexus compilers prefer different methods, be sure to check compiler documentation for
language-specific details. The startup method can also vary according to the type of

parallel computer and network i

n use.

Table 3: Paragon-specific Flags

Flag ‘ Des

cription

-sz N | Number of nodes requested
-on N | Single node to load program on

-noc N | Specify number of communication partners
-mbf N | Specify buffer space for application
-mea N | Specify size of dedicated buffers
-pkt N | Specify message packet size

Table 4: General-purpose Debugging Flags

Flag ‘

Description

-debug_command 5
-debug_display S
-pause_on_fatal
-pause_on_startup
-nostart

Start each context in debugger (if supported)
Display for debugger windows (if supported)
Pause on fatal and display id

Pause on startup and display id

Print commands without startup

-no_catching
-catch_sigtrap
-catch_fpe

Disable catching of signals
Enable catching of TRAP signal
Enable catching of floating point exception

Table 5: General-purpose Profiling and Tuning Flags

‘ Flag ‘ Description ‘
-poll_check N N | Report polling frequency data
-poll_trace Generate stack trace on polls (AIX only)
-profile Generate SDDF trace file
-prsr N Control profiling level
-pablofile 5 Specify output file for profile data
-Dnexus N Enable tracing of Nexus internals
-hash N Set handler hash table size
-rsr_hash N Set RSR profiling hash table size

Table 6: Pthreads-specific Flags
‘ Flag ‘ Description ‘
-sched fifo | FIFO scheduling discipline
-sched rr Round-robin scheduling discipline
-stack N Set the stack size of all threads
Table 7: Solaris-specific Flags
‘ Flag ‘ Description ‘

‘ -concurrency_level N ‘ Control number of active threads ‘

2.1 Naming Nexus Nodes

Before learning how to start a Nexus computation on a particular set of computing re-
sources, it is necessary to know how Nexus names computing resources (processors or
computers). A Nexus node (virtual processor) is uniquely identified by a pair with the
following general form.

node_name#node_number

The character string node_name identifies a particular computing resource or set of re-
sources, while the node_number is an integer specifying a member of the node_name re-
source set. The node_number can be virtual in the sense that multiple node_numbers may
map to the same physical processor. In this case a cyclic mapping is used to associate
virtual node_numbers with physical processors. The ability to map multiple Nexus nodes
onto a single computer allows some flexibility in load balancing decisions. For example, a
distributed computation may need to map twice as much work to a two processor work-
station in order to use it effectively. One approach is to create a single Nexus node on this
computer, to which twice as much work is given. An alternative approach is to treat the
workstation as two Nexus nodes; this has the advantage of not requiring changes to work
allocation algorithms.

On a uniprocessor workstation, node_name is the workstation name and node_number
can be any integer > 0, with each unique number denoting a unique Nexus node. For
example, on a workstation named dalek, dalek#0 and daleki#l denote two Nexus nodes
located on the same processor.

A symmetric multiprocessor (SMP) incorporates more processors than a uniprocessor
workstation. However, on most SMPs the existence of additional processors is transparent
to the user, in that we cannot request execution on a particular processor. Hence, when
we refer to Nexus nodes mysmp#0 and mysmp#1 of a multiprocessor workstation mysmp,
we are not referring to specific processors but to virtual nodes that will be mapped to
available physical processors by the SMP operating system.

2.2 Executing On a Network of Workstations

We first describe how to start a Nexus executable on a network of workstations. Nexus
always creates a single initial node on the host computer: that is, the computer on which
the Nexus command is issued. The flags -n and -nodes can be used to create additional
nodes, as follows.

1. The -nodes flag has the general form
-nodes nodelist

where nodelist is a colon-separated list of node specifiers, where a node specifier has
the general form:

node_name[#node_number] [, count]

and where:

node_name : A string, specifying the host name.

#node_number : (Optional) An integer specifying the number within the node. If
omitted, then it defaults to 0.

,count : (Optional) Number of nodes to start on the given machine, starting with
node_number. If omitted, then it defaults to 1.

Hence, for example, a node specifier of dalek#2,2 means to create nodes dalek#2
and dalek#3. A node specifier of dalek means to create dalek#0. A node specifier
of dalek,3 means to create dalek#0, dalek#1, and dalek#2.

2. The -n flag provides a more abbreviated notation that can be used when wish to
create nodes only on the host computer. The flag:

-n number_of_nodes

starts number_of_nodes nodes, including the initial node, on the host computer.

As an example, execution of the command
<app> -nexus -nodes 'dalek#1l,2:zipper,2:pelican"

on a machine called dalek creates six nodes: the initial node dalek#0, two nodes dalekil
and dalek#2 defined by the first node specifier, two nodes zipper#0 and zipper#1 defined
by the second node specifier, and a single node pelican#0 defined by the third node
specifier.

It may be necessary to use fully qualified hostnames if the hosts are not all in the same
domain.

Note that some Nexus compilers may not use the -n or -nodes flags. Instead, they
may start execution as a single node and then use language constructs to create additional
nodes dynamically, during program execution.

Requirements for Node Creation: Nexus can create nodes on other computers,
whether dynamically during program execution or at program startup as described by
a -nodes flag, only if:

1. the rsh command works from the initial host to each host in nodelist, and

2. each of the hosts shares a common filesystem (via NIF'S, AF'S, etc.) with the ini-
tial host (so that the user program may be invoked in the same directory on each
machine).

To ensure that rsh works as Nexus expects, be sure that one of the files $HOME/ . rhosts
or /etc/hosts.equiv contains an entry for each host participating in the computation
(one host per line). Note that for security reasons some sites do not allow .rhosts files. At
those sites ask the system administrator to add the desired hosts to the /etc/hosts.equiv

file.

2.3 Executing on the Intel Paragon

To both acquire a partition of size N on an Intel Paragon, and to create a single node
on every processor of that partition, we use the following Paragon flag in addition to
executable flags and Nexus flags.

-sz N

If the -sz flag is not used, then all available Paragon compute processors will be allocated
to our application. This is not usually desirable, so be sure not to forget the -sz flag.
Paragon flags may be placed anywhere in the argument list.

To acquire a partition of size N but create just a single node on logical node #0 (the
first out of the N processors allocated), we use the following Paragon flags.

-sz N -on O

The -on flag is used by Nexus compilers that allocate nodes dynamically during program
execution.

Paragon Tuning. Other Paragon-specific flags may be used to tune the Paragon run-
time system. See in particular those described in the section entitled “Specifying Message-
Passing Configuration Parameters” in Chapter 2 of the Paragon System User’s Guide.
These provide additional information on the interaction between communications perfor-
mance and runtime parameters. We describe some of these here.

By default, the Paragon assumes that each node may need to communicate with all
other nodes. This assumption can lead to an inefficient use of system buffer space. The
-noc number_of_.comms flag may be used to specify to the Paragon runtime system a
maximum number of communication partners for each node. In addition, the -mbf size
flag may be used to control the amount of buffer space allocated to the application. Note
that this buffer uses memory that could otherwise be used by the application for other
purposes. The default value for the buffer size is 1 MB.

Other flags that may be of interest are -mea size and -pkt size. These flags control
the size of the dedicated buffers and the message packet size respectively. By default,
half of the buffer space (specified via -mbf) is given to dedicated buffers (the number of
dedicated buffers per node is controlled via the -noc flag). The other half is reserved for
large messages.

3 Debugging a Nexus Application

Nexus is available in four flavors; see the documentation for your Nexus compiler for
information on how these are selected.

optimized: No debugging or profiling

safe : Range checking and other checks enabled
debug : Debugging enabled (implies -g)

profile : Profiling enabled

The debug flavor includes extra consistency checks which may be useful in tracking
down bugs that show up when using one of the other flavors. It also allows the state of
Nexus applications to be examined using symbolic debuggers. It is a good idea to compile
applications with the -g flag if the application is to be run under a debugger.

The current implementation of Nexus implements a context as a process. This means
that debuggers that work on processes can also be used to debug Nexus contexts. However,
Nexus applications may comprise multiple processes running on different processors or
hosts. Thus, attaching a debugger to the processes that constitute a Nexus computation
can be quite involved. Fortunately, Nexus provides support that makes this easier.

3.1 Examining Process State

If a computer has a debugger and X-Windows or other graphical user interface installed,
then debuggers can be invoked with the -~debug_command and -debug_display flags. The
first of these has the following general form.

-debug_command debugger

The debugger argument names a script or executable that Nexus will execute instead of
a context when Nexus receives a request that would normally create a context. Typi-
cally, this program will invoke an appropriate debugger, using a separate window for each
context. Nexus makes available three environment variables to debugger:

e NEXUS_DEBUG_CONTEXT: the filename of the executable for the context

e NEXUS DEBUG_ARGS: the command-line arguments that must be passed to the context
named by NEXUS_DEBUG_CONTEXT so that it can incorporate itself into the Nexus
computation

¢ NEXUS DEBUG_DISPLAY: the argument that was given to the -~debug_display flag.

The debug-display flag has the general form
-debug_display displayname

and names the display device (e.g., X-windows display) to which debugger output should
be directed.
If X-Windows and the dbx debugger are available, then the command

<app> -nexus -debug_command debugger -debug.-display troop:0.0

can be used to execute the example debugger script listed in Figure 1. This script creates a
unique instance of dbx with output displayed in a separate window on troop:0.0 for each
context created by the Nexus computation. (Make sure debugger has execute permissions
and is installed in a directory that is in your PATH.) Each window will have a title showing
the name of the context being debugged. FEach context is initially suspended; typing
the command go in its window initiates execution. This command is aliased to run the
context using the various Nexus flags necessary to incorporate the context into the Nexus
computation; in order to see these flags, type alias go. It is often useful to set breakpoints
before issuing the go command. If a given system does not have dbx or X-Windows, the
script in figure 1 can easily be modified to use a different debugger and to display to a
different windowing system.

#!/bin/sh

Nexus debugger script for AIX 3.2. To modify

for Solaris 2.3, use "-c source $TMP" instead of

-c $TMP.

#

XTERM=/usr/bin/X11/xterm

RM="/usr/bin/rm -f"

TMP=/tmp/nexus.debug.$$

TITLE="$0: dbx $NEXUS_DEBUG_CONTEXT"

trap "$RM $TMP; exit 1" 1 2 15

export NEXUS_DEBUG_CONTEXT

export NEXUS_DEBUG_ARGS

export NEXUS_DEBUG_DISPLAY

echo "alias go ’run $NEXUS_DEBUG_ARGS’ " > §$TMP

$XTERM -title "$TITLE" -display $NEXUS_DEBUG_DISPLAY \
-e dbx -c $TMP \
$NEXUS_DEBUG_CONTEXT

$RM $TMP

Figure 1: Example of a debugger script

The -pause_on_fatal Flag. Other Nexus flags can be useful when debugging on systems
that do not support a grahical user interface. For example, the -pause_on fatal flag
causes a context to pause and print its process id upon occurrence of a fatal error. At this
point it is often possible to attach a debugger to determine why the process failed. Suppose
that our Nexus executable is called myprogram and that the process used to implement
a Nexus context has a process id of 4321. Then the following commands can be used to
attach to the process:

AIX 3.2x @ dbx -a 4321
SunOS 4.1.x : dbx myprogram 4321
Solaris 2.x : dbx myprogram

(dbx) debug -p 4321 myprogram
HPUX 9x : dbx - 4321

After attaching the debugger use the dbx where command to obtain a stack trace showing
where the error occurred.

The Free Software Foundation’s (GNU) debugger gdb is also able to attach to a running
process. For example if the executable were named myprogram and the process id were
4242, the following commands would attach gdb to the process:

% gdb myprogram

(gdb) attach 4242

swift:23284:n0:c23284:t0: Fatal error: Signal 6
swift:23284:n0:¢c23284:t0: Traceback:
swift:23284:n0:¢c23284:t0: _nx_traceback
swift:23284:1n0:¢c23284:t0: nexus_silent_fatal
swift:23284:1n0:¢c23284:t0: nexus_fatal
swift:23284:n0:¢c23284:t0: abnormal_death
swift:23284:n0:c23284:t0: cma__sig_deliver
swift:23284:1n0:c23284:t0: cma___sig_sync_term
swift:23284:n0:¢c23284:t0: 7
swift:23284:n0:¢c23284:t0: abort
swift:23284:n0:¢c23284:t0: foo__Fv
swift:23284:n0:c23284:t0: cCpP_main__FiPPc
swift:23284:n0:¢23284:t0: main
swift:23284:n0:¢c23284:t0: 7

Figure 2: Example of a traceback. This shows the function call stack, with the call that
caused the error on the top.

The Intel Paragon debugger (IPD R1.2) is not able to debug multithreaded applica-
tions. Since all Nexus applications are multithreaded, it is very difficult to debug Nexus
applications on the Paragon. For this reason it is advantageous to develop and debug a
Nexus application on a network of workstations before trying it on the Paragon.

3.2 Tracebacks

Some implementations of Nexus (for example, the AIX implementation) show stack trace-
backs upon fatal errors without requiring the use of any debugger. A traceback will be
shown for each context that terminates abnormally. An example of such a traceback is in
Figure 2, which shows that Nexus context 23284 crashed as a result of a function called
foo calling the abort () system call.

Nexus errors tend to cascade since the abnormal termination of a context will cause
all connected contexts to terminate and so on. The first traceback that is printed usually
indicates the true source of the problem. Subsequent tracebacks are usually of the form
shown in Figure 3. This particular traceback shows that thread #1 of process 26113 died
in the function tcp_handler_thread. This is the Nexus function which handles remote
service requests. This traceback is typical for contexts that die as a result of losing a
connection to another context.

The pause_on_startup Flag. Sometimes a Nexus application will crash in such a way
that attaching dbx to it does not give any useful information. The -pause_on_startup
flag can be useful in such cases. This flag causes each Nexus context to pause by spinning
in an infinite loop on a variable named nx_pausing for_startup. This pause gives time
to attach a debugger. Once the debugger is attached, allow the process to continue by
using the dbx command assign nx pausing for_startup=0 and then typing cont.

swift:26113:n1:¢c26113:t1: Traceback:
swift:26113:n1:¢c26113:t1: _nx_traceback
swift:26113:n1:¢c26113:t1: nexus_silent_fatal
swift:26113:n1:¢c26113:t1: nexus_fatal
swift:26113:n1:c26113:t1: check_proto_for_close
swift:26113:n1:¢c26113:t1: select_and_read
swift:26113:n1:c26113:t1: tcp_handler_thread
swift:26113:n1:¢c26113:t1: thread_starter
swift:26113:n1:¢c26113:t1: cma__thread_base

Figure 3: Another example of a traceback.

The -nostart Flag. As an alternative to -pause_for_startup, the -nostart flag may
be used. When this flag is used, no processes are actually started; instead, a message is
printed out for each context that shows what command would have been used to start the
process if the -nostart flag had not been used. This information can be used to determine
what command to run from inside dbx to start a given Nexus context.

3.3 Signal handling

By default Nexus traps various signals including BUS, SEGV, PIPE, ABRT, and ILL. These
signals usually cause the abnormal death function to be called. To disable these signals
from being trapped, use the Nexus flag -no_catching. This ability can be useful when
running from inside a debugger since some debuggers have difficultly giving a stacktrace
that extends past the signal handler.

Two other signal-related Nexus flags that may prove useful are -catch_sigtrap and
-catch fpe. The first requests that the TRAP signal cause program termination. The
second causes the program to terminate upon receipt of a floating point exception signal.

3.4 Tracing Nexus Internals

The -Dnexus levelflag can be useful for those familiar (or wishing to become familiar) with
Nexus internals. The integer level specifies the level of detail that Nexus debug statements
should print. The lowest level of detail is given by -Dnexus 1 and the highest is limited
by the size of a machine integer. The -Dnexus flag has an effect only if the debug flavor
of Nexus is used.

3.5 Using Testcenter and Purify

Commercial debugging tools with graphical interfaces, such as Testcenter and Purify, can
be used to debug networked Nexus applications if the user’s $HOME/ . cshrc file contains a
line setting the DISPLAY environment variable to point to the proper host.

10

4 Tuning a Nexus Application

Several Nexus flags may be used to tune the performance of a Nexus application. Some
of these flags are specific to a particular implementation of Nexus.

Reserving File Descriptors. Network versions of Nexus support the -Csave fds in-
teger flag. This may be used to instruct Nexus to reserve the specified number of file
descriptors for use by the user’s application. By default ten file descriptors are saved.
The system saves a minimum of three file descriptors even if -Csave_fds is used to specify
fewer. This flag may be necessary in a large application (i.e. many nodes and/or contexts)
that must have many files open simultaneously.

Solaris Concurrency Level. The Solaris version of Nexus supports a flag with the
following general form.

-concurrency_level integer

The integer value is used as a parameter to the Solaris thr_setconcurrency system call.
By default the Solaris threads system ensures that a sufficient number of threads are active
so that the process can continue to make progress. Nexus can use the thr_setconcurrency
call to instruct the system to ensure that a larger number of threads can be active at one
time (at the expense of system resources). This can result in increased performance. See
the Solaris thr_setconcurrency() man page for more information. By default, Nexus
uses a Solaris concurrency level of 5.

Setting Thread Stack Size. Versions of Nexus that use pthreads (POSIX threads)
support the -stack stack_size argument, which sets the stack size of all threads to the
integer stack_size. (These versions include AIX and HP-UX; the Paragon uses an older
version of pthreads that does not allow stack size to be changed.) Applications that use
many automatic variable may require this flag.

Pthreads Scheduling Discipline. Versions of Nexus that use pthreads also support
the -sched fifo and -sched rr flags. The -sched fifo flag causes Nexus to use a FIFO
(first in, first out) scheduling discipline for threads. The -sched rr flag causes Nexus to
use a round robin scheduling discipline for threads. Round robin is the default. The
round robin discipline uses timeslicing to share the processor among threads. The FIFO
discipline allows a thread to run until it completes or blocks before scheduling another
thread. Round robin usually imposes more overhead (because of timer interrupts for
implementing the timeslicing) but for some applications it gives better performance.

Polling Diagnostics. For certain applications, it may be useful to know how often a
given Nexus context checks for the arrival of messages from other contexts. The Nexus
flags -poll_check min maz and -poll_trace can be used to gain some insight on this
matter. The -poll_check flag causes a message to be printed out if the time between
nexus_poll() calls does not fall in the supplied range, min—maz. Both min and maz
should be real numbers (in units of seconds). In the AIX version of Nexus, the -poll_trace

11

flag causes a stack traceback to be printed each time -poll_check causes a notice to be
printed; this allows the programmer to identify the points in the program where polls are
infrequent.

5 Profiling a Nexus Application

Nexus can produce trace data for the Pablo performance visualization tool developed by
the Picasso group at University of Illinois. Pablo source and documentation are available
via anonymous ftp from bugle.cs.uiuc.edu in the directory /pub/Release. Building
Pablo requires that both Motif and X11R5 be installed. Pablo is not available as a binary
distribution because of Motif licensing restrictions.

The Nexus flags used to produce Pablo tracefiles are -profile, -prsr, and -pablofile.
The -profile flag enables profiling, the -pablofile flag specifies a filename prefix for
output files, and the -prsr flag determines the remote service request (RSR) data that is
recorded:

0 : log each RSR send and receive
-1 : keep cumulative profile, and dump only at end (default)
integer > 0 : keep cumulative profile, and dump after every integer RSR, receives

If -prsr is not specified, the profile level defaults to 1. A typical usage of these flags is as
follows:

<app> -nexus -profile -prsr 2 -pablofile app.1

Trace data is saved for each Nexus context that is part of the computation. The Pablo
data is dumped in Self Describing Data Format (SDDF) in one file per context. Each file
is prefixed with the string specified via the -pablofile flag, and has a unique suffix based
on node and context identifiers.

Tracefiles must be merged into a single file before they can be examined with Pablo.
This merging can be accomplished by using a script named allmergeSDDF that is dis-
tributed with Nexus, as follows

allmergeSDDF filename

where filenameis the filename prefix supplied to the Nexus executable with the -pablofile
flag.

The allmergeSDDF command creates several files including filename_all.status, file-
name_all .binary, and filename_all.ascii. To invoke Pablo, type:

runPablo

after which the file filename_all .binary can be loaded into the visualization tool. Note
that Pablo requires that a configuration file be created for each tracefile that is to be
visualized. Pablo can use the same configuration file for different tracefiles but only if the
tracefiles were generated by the same (or very similar) executable. Study the examples
that come with Pablo in order to learn how to create Pablo configuration files tailored
to the the tracefiles produced by a given executable. Pablo problems may be reported to
pablo-bugs@guitar.cs.uiuc.edu.

12

6 Obtaining Nexus and Nexus Compilers

The Nexus source code, additional documentation, and help can be obtained from the

following ftp site, World Wide Web URL, and email address:

ftp : ftp.mcs.anl.gov, directory /pub/nexus
http : http://www.mcs.anl.gov/nexus
email : nexus@mcs.anl.gov

Fortran M is a compiler that uses Nexus as a runtime library. Information about
Fortran M is available at the following locations:

ftp : ftp.mcs.anl.gov, directory /pub/fortran-m
http : http://www.mcs.anl.gov/fortran-m
email : fortran-m@mcs.anl.gov

Compositional C++4(CC++) is a compiler that uses Nexus as a runtime library. In-
formation about CC++is available at the following locations:

ftp : compbio.caltech.edu, directory /pub/C++
http : http://compbio.caltech.edu
email : cc++-requests@compbio.caltech.edu

References

[1] I. Foster, C. Kesselman, R. Olson, and S. Tuecke, Nexus: An interoperability toolkit
for parallel and distributed computer systems, Technical Report ANL/MCS-TM-189,
Mathematics and Computer Science Division, Argonne National Laboratory, 1994.

[2] 1. Foster, C. Kesselman, and S. Tuecke, Nexus: Runtime Support for Task-Parallel
Programming Languages, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, ANL/MCS-TM-205, February 1995 (draft).

13

