
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-204
Nexus User's GuidebyIan Foster, John Garnett,� and Steven TueckeMathematics and Computer Science DivisionTechnical Memorandum No. 204February 1995DRAFTThis work was support by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.�Dept. of Computer Science, California Institute of Technology, Pasadena, CA 91125.

ContentsAbstract 11 Introduction 12 Executing a Nexus Application 22.1 Naming Nexus Nodes : 42.2 Executing On a Network of Workstations : : : : : : : : : : : : : : : : : : : 42.3 Executing on the Intel Paragon : 63 Debugging a Nexus Application 63.1 Examining Process State : 73.2 Tracebacks : 93.3 Signal handling : 103.4 Tracing Nexus Internals : 103.5 Using Testcenter and Purify : 104 Tuning a Nexus Application 115 Pro�ling a Nexus Application 126 Obtaining Nexus and Nexus Compilers 13References 13

iii

Nexus User's GuideIan Foster John Garnett Steven TueckeAbstractThis document describes the command line arguments and other features that arecommon to any program that incorporates the Nexus runtime library. It is divided intosections describing the execution, debugging, tuning, and pro�ling of such programs.It is not intended as a compiler writer's guide, and does not include any informationon the Nexus interface or other internal details.1 IntroductionNexus is a runtime library designed primarily as a compiler target for langages supportingtask-parallel and mixed data- and task-parallel execution. The Nexus interface and Nexusdesign are described elsewhere [1, 2]; here, we provide the information needed to executeprograms that use Nexus services.We term a compiler that targets the Nexus runtime system a Nexus compiler, andan executable built with such a compiler a Nexus executable. A Nexus executable canbe passed command line arguments intended for the executable (executable
ags) and forNexus itself (Nexus
ags). Nexus
ags follow executable
ags and are separated by aseparator. The separator used is Nexus compiler dependent. Throughout this documentwe use -nexus. The Nexus
ags that are available to a given executable can be determinedby typing <app> -nexus -helpwhere <app> denotes the executable name. The Nexus
ags available may vary accordingto the operating system, communication protocols, etc., used by Nexus on a particularmachine.Nexus ensures that the executable is not aware of Nexus
ags speci�ed on the commandline. For example, suppose that the executable accepts a
ag -f �lename. Then thecommand <app> -f �lename -nexus -pause on fatalruns the executable with the number of arguments set to 3, argument #0 set to <app>, argu-ment #1 set to -f, and argument #2 set to �lename. It also passes the
ag -pause on fatalto Nexus (causing Nexus to pause upon a fatal error); however, this
ag is not visible tothe application.Table 1 lists the computers and operating systems on which Nexus is currently imple-mented. Nexus does not yet support computations on networks of heterogeneous machines.This restriction will be removed soon. 1

Table 1: Nexus AvailabilityComputer Operating System Other RequirementsHP HPUX 9.x DCE threadsIBM RS6000 AIX 3.2.x DCE threadsIBM SP AIX 3.2.x DCE threadsIntel Paragon OSF/1Sun SunOS 4.1.xSun Solaris 2.xTable 2: Workstation-speci�c FlagsFlag Description-n N Create N nodes on default processor-nodes S Create nodes according to nodelist S-Csave fds N Reserve N �le descriptorsTables 2{7 summarize the
ags supported by Nexus implementations on di�erent ma-chines. An S means that a string argument is expected. An N means that an integerargument is expected. In the following, we discuss both these
ags and the techniquesused to execute, debug, pro�le, and tune Nexus executables.2 Executing a Nexus ApplicationNexus supports several methods for starting distributed parallel programs. Since di�erentNexus compilers prefer di�erent methods, be sure to check compiler documentation forlanguage-speci�c details. The startup method can also vary according to the type ofparallel computer and network in use.Table 3: Paragon-speci�c FlagsFlag Description-sz N Number of nodes requested-on N Single node to load program on-noc N Specify number of communication partners-mbf N Specify bu�er space for application-mea N Specify size of dedicated bu�ers-pkt N Specify message packet size2

Table 4: General-purpose Debugging FlagsFlag Description-debug command S Start each context in debugger (if supported)-debug display S Display for debugger windows (if supported)-pause on fatal Pause on fatal and display id-pause on startup Pause on startup and display id-nostart Print commands without startup-no catching Disable catching of signals-catch sigtrap Enable catching of TRAP signal-catch fpe Enable catching of
oating point exceptionTable 5: General-purpose Pro�ling and Tuning FlagsFlag Description-poll check N N Report polling frequency data-poll trace Generate stack trace on polls (AIX only)-profile Generate SDDF trace �le-prsr N Control pro�ling level-pablofile S Specify output �le for pro�le data-Dnexus N Enable tracing of Nexus internals-hash N Set handler hash table size-rsr hash N Set RSR pro�ling hash table sizeTable 6: Pthreads-speci�c FlagsFlag Description-sched fifo FIFO scheduling discipline-sched rr Round-robin scheduling discipline-stack N Set the stack size of all threadsTable 7: Solaris-speci�c FlagsFlag Description-concurrency level N Control number of active threads3

2.1 Naming Nexus NodesBefore learning how to start a Nexus computation on a particular set of computing re-sources, it is necessary to know how Nexus names computing resources (processors orcomputers). A Nexus node (virtual processor) is uniquely identi�ed by a pair with thefollowing general form. node name#node numberThe character string node name identi�es a particular computing resource or set of re-sources, while the node number is an integer specifying a member of the node name re-source set. The node number can be virtual in the sense that multiple node numbers maymap to the same physical processor. In this case a cyclic mapping is used to associatevirtual node numbers with physical processors. The ability to map multiple Nexus nodesonto a single computer allows some
exibility in load balancing decisions. For example, adistributed computation may need to map twice as much work to a two processor work-station in order to use it e�ectively. One approach is to create a single Nexus node on thiscomputer, to which twice as much work is given. An alternative approach is to treat theworkstation as two Nexus nodes; this has the advantage of not requiring changes to workallocation algorithms.On a uniprocessor workstation, node name is the workstation name and node numbercan be any integer � 0, with each unique number denoting a unique Nexus node. Forexample, on a workstation named dalek, dalek#0 and dalek#1 denote two Nexus nodeslocated on the same processor.A symmetric multiprocessor (SMP) incorporates more processors than a uniprocessorworkstation. However, on most SMPs the existence of additional processors is transparentto the user, in that we cannot request execution on a particular processor. Hence, whenwe refer to Nexus nodes mysmp#0 and mysmp#1 of a multiprocessor workstation mysmp,we are not referring to speci�c processors but to virtual nodes that will be mapped toavailable physical processors by the SMP operating system.2.2 Executing On a Network of WorkstationsWe �rst describe how to start a Nexus executable on a network of workstations. Nexusalways creates a single initial node on the host computer: that is, the computer on whichthe Nexus command is issued. The
ags -n and -nodes can be used to create additionalnodes, as follows.1. The -nodes
ag has the general form-nodes nodelistwhere nodelist is a colon-separated list of node speci�ers, where a node speci�er hasthe general form: node name[#node number][,count]and where: 4

node name : A string, specifying the host name.#node number : (Optional) An integer specifying the number within the node. Ifomitted, then it defaults to 0.,count : (Optional) Number of nodes to start on the given machine, starting withnode number. If omitted, then it defaults to 1.Hence, for example, a node speci�er of dalek#2,2 means to create nodes dalek#2and dalek#3. A node speci�er of dalek means to create dalek#0. A node speci�erof dalek,3 means to create dalek#0, dalek#1, and dalek#2.2. The -n
ag provides a more abbreviated notation that can be used when wish tocreate nodes only on the host computer. The
ag:-n number of nodesstarts number of nodes nodes, including the initial node, on the host computer.As an example, execution of the command<app> -nexus -nodes "dalek#1,2:zipper,2:pelican"on a machine called dalek creates six nodes: the initial node dalek#0, two nodes dalek#1and dalek#2 de�ned by the �rst node speci�er, two nodes zipper#0 and zipper#1 de�nedby the second node speci�er, and a single node pelican#0 de�ned by the third nodespeci�er.It may be necessary to use fully quali�ed hostnames if the hosts are not all in the samedomain.Note that some Nexus compilers may not use the -n or -nodes
ags. Instead, theymay start execution as a single node and then use language constructs to create additionalnodes dynamically, during program execution.Requirements for Node Creation: Nexus can create nodes on other computers,whether dynamically during program execution or at program startup as described bya -nodes
ag, only if:1. the rsh command works from the initial host to each host in nodelist, and2. each of the hosts shares a common �lesystem (via NFS, AFS, etc.) with the ini-tial host (so that the user program may be invoked in the same directory on eachmachine).To ensure that rsh works as Nexus expects, be sure that one of the �les $HOME/.rhostsor /etc/hosts.equiv contains an entry for each host participating in the computation(one host per line). Note that for security reasons some sites do not allow .rhosts �les. Atthose sites ask the system administrator to add the desired hosts to the /etc/hosts.equiv�le. 5

2.3 Executing on the Intel ParagonTo both acquire a partition of size N on an Intel Paragon, and to create a single nodeon every processor of that partition, we use the following Paragon
ag in addition toexecutable
ags and Nexus
ags. -sz NIf the -sz
ag is not used, then all available Paragon compute processors will be allocatedto our application. This is not usually desirable, so be sure not to forget the -sz
ag.Paragon
ags may be placed anywhere in the argument list.To acquire a partition of size N but create just a single node on logical node #0 (the�rst out of the N processors allocated), we use the following Paragon
ags.-sz N -on 0The -on
ag is used by Nexus compilers that allocate nodes dynamically during programexecution.Paragon Tuning. Other Paragon-speci�c
ags may be used to tune the Paragon run-time system. See in particular those described in the section entitled \Specifying Message-Passing Con�guration Parameters" in Chapter 2 of the Paragon System User's Guide.These provide additional information on the interaction between communications perfor-mance and runtime parameters. We describe some of these here.By default, the Paragon assumes that each node may need to communicate with allother nodes. This assumption can lead to an ine�cient use of system bu�er space. The-noc number of comms
ag may be used to specify to the Paragon runtime system amaximum number of communication partners for each node. In addition, the -mbf size
ag may be used to control the amount of bu�er space allocated to the application. Notethat this bu�er uses memory that could otherwise be used by the application for otherpurposes. The default value for the bu�er size is 1 MB.Other
ags that may be of interest are -mea size and -pkt size. These
ags controlthe size of the dedicated bu�ers and the message packet size respectively. By default,half of the bu�er space (speci�ed via -mbf) is given to dedicated bu�ers (the number ofdedicated bu�ers per node is controlled via the -noc
ag). The other half is reserved forlarge messages.3 Debugging a Nexus ApplicationNexus is available in four
avors; see the documentation for your Nexus compiler forinformation on how these are selected.optimized : No debugging or pro�lingsafe : Range checking and other checks enableddebug : Debugging enabled (implies -g)profile : Pro�ling enabled 6

The debug
avor includes extra consistency checks which may be useful in trackingdown bugs that show up when using one of the other
avors. It also allows the state ofNexus applications to be examined using symbolic debuggers. It is a good idea to compileapplications with the -g
ag if the application is to be run under a debugger.The current implementation of Nexus implements a context as a process. This meansthat debuggers that work on processes can also be used to debug Nexus contexts. However,Nexus applications may comprise multiple processes running on di�erent processors orhosts. Thus, attaching a debugger to the processes that constitute a Nexus computationcan be quite involved. Fortunately, Nexus provides support that makes this easier.3.1 Examining Process StateIf a computer has a debugger and X-Windows or other graphical user interface installed,then debuggers can be invoked with the -debug command and -debug display
ags. The�rst of these has the following general form.-debug command debuggerThe debugger argument names a script or executable that Nexus will execute instead ofa context when Nexus receives a request that would normally create a context. Typi-cally, this program will invoke an appropriate debugger, using a separate window for eachcontext. Nexus makes available three environment variables to debugger:� NEXUS DEBUG CONTEXT: the �lename of the executable for the context� NEXUS DEBUG ARGS: the command-line arguments that must be passed to the contextnamed by NEXUS DEBUG CONTEXT so that it can incorporate itself into the Nexuscomputation� NEXUS DEBUG DISPLAY: the argument that was given to the -debug display
ag.The debug display
ag has the general form-debug display displaynameand names the display device (e.g., X-windows display) to which debugger output shouldbe directed.If X-Windows and the dbx debugger are available, then the command<app> -nexus -debug command debugger -debug display troop:0.0can be used to execute the example debugger script listed in Figure 1. This script creates aunique instance of dbx with output displayed in a separate window on troop:0.0 for eachcontext created by the Nexus computation. (Make sure debugger has execute permissionsand is installed in a directory that is in your PATH.) Each window will have a title showingthe name of the context being debugged. Each context is initially suspended; typingthe command go in its window initiates execution. This command is aliased to run thecontext using the various Nexus
ags necessary to incorporate the context into the Nexuscomputation; in order to see these
ags, type alias go. It is often useful to set breakpointsbefore issuing the go command. If a given system does not have dbx or X-Windows, thescript in �gure 1 can easily be modi�ed to use a di�erent debugger and to display to adi�erent windowing system. 7

#!/bin/sh# Nexus debugger script for AIX 3.2. To modify# for Solaris 2.3, use "-c source $TMP" instead of# -c $TMP.#XTERM=/usr/bin/X11/xtermRM="/usr/bin/rm -f"TMP=/tmp/nexus.debug.$$TITLE="$0: dbx $NEXUS_DEBUG_CONTEXT"trap "$RM $TMP; exit 1" 1 2 15export NEXUS_DEBUG_CONTEXTexport NEXUS_DEBUG_ARGSexport NEXUS_DEBUG_DISPLAYecho "alias go 'run $NEXUS_DEBUG_ARGS' " > TMPXTERM -title "$TITLE" -display $NEXUS_DEBUG_DISPLAY \-e dbx -c $TMP \$NEXUS_DEBUG_CONTEXT$RM $TMP Figure 1: Example of a debugger scriptThe -pause on fatal Flag. Other Nexus
ags can be useful when debugging on systemsthat do not support a grahical user interface. For example, the -pause on fatal
agcauses a context to pause and print its process id upon occurrence of a fatal error. At thispoint it is often possible to attach a debugger to determine why the process failed. Supposethat our Nexus executable is called myprogram and that the process used to implementa Nexus context has a process id of 4321. Then the following commands can be used toattach to the process:AIX 3.2.x : dbx -a 4321SunOS 4.1.x : dbx myprogram 4321Solaris 2.x : dbx myprogram(dbx) debug -p 4321 myprogramHPUX 9.x : dbx - 4321After attaching the debugger use the dbx where command to obtain a stack trace showingwhere the error occurred.The Free Software Foundation's (GNU) debugger gdb is also able to attach to a runningprocess. For example if the executable were named myprogram and the process id were4242, the following commands would attach gdb to the process:% gdb myprogram...(gdb) attach 4242 8

swift:23284:n0:c23284:t0: Fatal error: Signal 6swift:23284:n0:c23284:t0: Traceback:swift:23284:n0:c23284:t0: _nx_tracebackswift:23284:n0:c23284:t0: nexus_silent_fatalswift:23284:n0:c23284:t0: nexus_fatalswift:23284:n0:c23284:t0: abnormal_deathswift:23284:n0:c23284:t0: cma__sig_deliverswift:23284:n0:c23284:t0: cma___sig_sync_termswift:23284:n0:c23284:t0: ?swift:23284:n0:c23284:t0: abortswift:23284:n0:c23284:t0: foo__Fvswift:23284:n0:c23284:t0: cCpP_main__FiPPcswift:23284:n0:c23284:t0: mainswift:23284:n0:c23284:t0: ?Figure 2: Example of a traceback. This shows the function call stack, with the call thatcaused the error on the top.The Intel Paragon debugger (IPD R1.2) is not able to debug multithreaded applica-tions. Since all Nexus applications are multithreaded, it is very di�cult to debug Nexusapplications on the Paragon. For this reason it is advantageous to develop and debug aNexus application on a network of workstations before trying it on the Paragon.3.2 TracebacksSome implementations of Nexus (for example, the AIX implementation) show stack trace-backs upon fatal errors without requiring the use of any debugger. A traceback will beshown for each context that terminates abnormally. An example of such a traceback is inFigure 2, which shows that Nexus context 23284 crashed as a result of a function calledfoo calling the abort() system call.Nexus errors tend to cascade since the abnormal termination of a context will causeall connected contexts to terminate and so on. The �rst traceback that is printed usuallyindicates the true source of the problem. Subsequent tracebacks are usually of the formshown in Figure 3. This particular traceback shows that thread #1 of process 26113 diedin the function tcp handler thread. This is the Nexus function which handles remoteservice requests. This traceback is typical for contexts that die as a result of losing aconnection to another context.The pause on startup Flag. Sometimes a Nexus application will crash in such a waythat attaching dbx to it does not give any useful information. The -pause on startup
ag can be useful in such cases. This
ag causes each Nexus context to pause by spinningin an in�nite loop on a variable named nx pausing for startup. This pause gives timeto attach a debugger. Once the debugger is attached, allow the process to continue byusing the dbx command assign nx pausing for startup=0 and then typing cont.9

swift:26113:n1:c26113:t1: Traceback:swift:26113:n1:c26113:t1: _nx_tracebackswift:26113:n1:c26113:t1: nexus_silent_fatalswift:26113:n1:c26113:t1: nexus_fatalswift:26113:n1:c26113:t1: check_proto_for_closeswift:26113:n1:c26113:t1: select_and_readswift:26113:n1:c26113:t1: tcp_handler_threadswift:26113:n1:c26113:t1: thread_starterswift:26113:n1:c26113:t1: cma__thread_baseFigure 3: Another example of a traceback.The -nostart Flag. As an alternative to -pause for startup, the -nostart
ag maybe used. When this
ag is used, no processes are actually started; instead, a message isprinted out for each context that shows what command would have been used to start theprocess if the -nostart
ag had not been used. This information can be used to determinewhat command to run from inside dbx to start a given Nexus context.3.3 Signal handlingBy default Nexus traps various signals including BUS, SEGV, PIPE, ABRT, and ILL. Thesesignals usually cause the abnormal death function to be called. To disable these signalsfrom being trapped, use the Nexus
ag -no catching. This ability can be useful whenrunning from inside a debugger since some debuggers have di�cultly giving a stacktracethat extends past the signal handler.Two other signal-related Nexus
ags that may prove useful are -catch sigtrap and-catch fpe. The �rst requests that the TRAP signal cause program termination. Thesecond causes the program to terminate upon receipt of a
oating point exception signal.3.4 Tracing Nexus InternalsThe -Dnexus level
ag can be useful for those familiar (or wishing to become familiar) withNexus internals. The integer level speci�es the level of detail that Nexus debug statementsshould print. The lowest level of detail is given by -Dnexus 1 and the highest is limitedby the size of a machine integer. The -Dnexus
ag has an e�ect only if the debug
avorof Nexus is used.3.5 Using Testcenter and PurifyCommercial debugging tools with graphical interfaces, such as Testcenter and Purify, canbe used to debug networked Nexus applications if the user's $HOME/.cshrc �le contains aline setting the DISPLAY environment variable to point to the proper host.10

4 Tuning a Nexus ApplicationSeveral Nexus
ags may be used to tune the performance of a Nexus application. Someof these
ags are speci�c to a particular implementation of Nexus.Reserving File Descriptors. Network versions of Nexus support the -Csave fds in-teger
ag. This may be used to instruct Nexus to reserve the speci�ed number of �ledescriptors for use by the user's application. By default ten �le descriptors are saved.The system saves a minimum of three �le descriptors even if -Csave fds is used to specifyfewer. This
ag may be necessary in a large application (i.e. many nodes and/or contexts)that must have many �les open simultaneously.Solaris Concurrency Level. The Solaris version of Nexus supports a
ag with thefollowing general form. -concurrency level integerThe integer value is used as a parameter to the Solaris thr setconcurrency system call.By default the Solaris threads system ensures that a su�cient number of threads are activeso that the process can continue to make progress. Nexus can use the thr setconcurrencycall to instruct the system to ensure that a larger number of threads can be active at onetime (at the expense of system resources). This can result in increased performance. Seethe Solaris thr setconcurrency() man page for more information. By default, Nexususes a Solaris concurrency level of 5.Setting Thread Stack Size. Versions of Nexus that use pthreads (POSIX threads)support the -stack stack size argument, which sets the stack size of all threads to theinteger stack size. (These versions include AIX and HP-UX; the Paragon uses an olderversion of pthreads that does not allow stack size to be changed.) Applications that usemany automatic variable may require this
ag.Pthreads Scheduling Discipline. Versions of Nexus that use pthreads also supportthe -sched fifo and -sched rr
ags. The -sched fifo
ag causes Nexus to use a FIFO(�rst in, �rst out) scheduling discipline for threads. The -sched rr
ag causes Nexus touse a round robin scheduling discipline for threads. Round robin is the default. Theround robin discipline uses timeslicing to share the processor among threads. The FIFOdiscipline allows a thread to run until it completes or blocks before scheduling anotherthread. Round robin usually imposes more overhead (because of timer interrupts forimplementing the timeslicing) but for some applications it gives better performance.Polling Diagnostics. For certain applications, it may be useful to know how often agiven Nexus context checks for the arrival of messages from other contexts. The Nexus
ags -poll check min max and -poll trace can be used to gain some insight on thismatter. The -poll check
ag causes a message to be printed out if the time betweennexus poll() calls does not fall in the supplied range, min{max. Both min and maxshould be real numbers (in units of seconds). In the AIX version of Nexus, the -poll trace11

ag causes a stack traceback to be printed each time -poll check causes a notice to beprinted; this allows the programmer to identify the points in the program where polls areinfrequent.5 Pro�ling a Nexus ApplicationNexus can produce trace data for the Pablo performance visualization tool developed bythe Picasso group at University of Illinois. Pablo source and documentation are availablevia anonymous ftp from bugle.cs.uiuc.edu in the directory /pub/Release. BuildingPablo requires that both Motif and X11R5 be installed. Pablo is not available as a binarydistribution because of Motif licensing restrictions.The Nexus
ags used to produce Pablo trace�les are -profile, -prsr, and -pablofile.The -profile
ag enables pro�ling, the -pablofile
ag speci�es a �lename pre�x foroutput �les, and the -prsr
ag determines the remote service request (RSR) data that isrecorded:0 : log each RSR send and receive-1 : keep cumulative pro�le, and dump only at end (default)integer > 0 : keep cumulative pro�le, and dump after every integer RSR receivesIf -prsr is not speci�ed, the pro�le level defaults to 1. A typical usage of these
ags is asfollows: <app> -nexus -profile -prsr 2 -pablofile app.1Trace data is saved for each Nexus context that is part of the computation. The Pablodata is dumped in Self Describing Data Format (SDDF) in one �le per context. Each �leis pre�xed with the string speci�ed via the -pablofile
ag, and has a unique su�x basedon node and context identi�ers.Trace�les must be merged into a single �le before they can be examined with Pablo.This merging can be accomplished by using a script named allmergeSDDF that is dis-tributed with Nexus, as follows allmergeSDDF �lenamewhere �lename is the �lename pre�x supplied to the Nexus executable with the -pablofile
ag.The allmergeSDDF command creates several �les including �lename all.status, �le-name all.binary, and �lename all.ascii. To invoke Pablo, type:runPabloafter which the �le �lename all.binary can be loaded into the visualization tool. Notethat Pablo requires that a con�guration �le be created for each trace�le that is to bevisualized. Pablo can use the same con�guration �le for di�erent trace�les but only if thetrace�les were generated by the same (or very similar) executable. Study the examplesthat come with Pablo in order to learn how to create Pablo con�guration �les tailoredto the the trace�les produced by a given executable. Pablo problems may be reported topablo-bugs@guitar.cs.uiuc.edu. 12

6 Obtaining Nexus and Nexus CompilersThe Nexus source code, additional documentation, and help can be obtained from thefollowing ftp site, World Wide Web URL, and email address:ftp : ftp.mcs.anl.gov, directory /pub/nexushttp : http://www.mcs.anl.gov/nexusemail : nexus@mcs.anl.govFortran M is a compiler that uses Nexus as a runtime library. Information aboutFortran M is available at the following locations:ftp : ftp.mcs.anl.gov, directory /pub/fortran-mhttp : http://www.mcs.anl.gov/fortran-memail : fortran-m@mcs.anl.govCompositional C++(CC++) is a compiler that uses Nexus as a runtime library. In-formation about CC++is available at the following locations:ftp : compbio.caltech.edu, directory /pub/C++http : http://compbio.caltech.eduemail : cc++-requests@compbio.caltech.eduReferences[1] I. Foster, C. Kesselman, R. Olson, and S. Tuecke, Nexus: An interoperability toolkitfor parallel and distributed computer systems, Technical Report ANL/MCS-TM-189,Mathematics and Computer Science Division, Argonne National Laboratory, 1994.[2] I. Foster, C. Kesselman, and S. Tuecke, Nexus: Runtime Support for Task-ParallelProgramming Languages, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, ANL/MCS-TM-205, February 1995 (draft).
13

