
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-205
Nexus: Runtime Support forTask-Parallel Programming LanguagesbyIan Foster, Carl Kesselman,� and Steven TueckeMathematics and Computer Science DivisionTechnical Memorandum No. 205February 1995 (draft)This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38, and by the National Science Foundation's Center forResearch in Parallel Computation under Contract CCR-8809615.�Dept. of Computer Science, California Institute of Technology, Pasadena, CA91125.

ContentsAbstract 11 Introduction 12 Existing Runtime Systems 23 Nexus Design and Implementation 43.1 Core Abstractions : 43.2 Implementation : 84 Nexus as a Compiler Target 94.1 Compiling CC++Using Nexus : 104.2 Compiling FM Using Nexus : 114.3 Interoperability between FM and CC++ : : : : : : : : : : : : : : : : 135 Performance Studies 136 Summary and Future Work 15References 16

iii

Nexus: Runtime Support for Task-ParallelProgramming LanguagesIan Foster Carl Kesselman Steven TueckeAbstractA runtime system provides a parallel language compiler with an interfaceto the low-level facilities required to support interaction between concurrentlyexecuting program components. Nexus is a portable runtime system for task-parallel programming languages. Distinguishing features of Nexus includeits support for multiple threads of control, dynamic processor acquisition,dynamic address space creation, a global memory model via interprocessorreferences, and asynchronous events. In addition, it supports heterogeneity atmultiple levels, allowing a single computation to utilize di�erent programminglanguages, executables, processors, and network protocols. Nexus is currentlybeing used as a compiler target for two task-parallel languages: Fortran Mand Compositional C++. In this paper, we present the Nexus design, outlinetechniques used to implement Nexus on parallel computers, show how it isused in compilers, and compare its performance with that of another runtimesystem.1 IntroductionCompilers for parallel languages rely on the existence of a runtime system. The run-time system de�nes the compiler's view of a parallel computer: how computationalresources are allocated and controlled and how parallel components of a programinteract, communicate and synchronize with one another.Most existing runtime systems support the single-program, multiple-data (SPMD)programming model used to implement data-parallel languages such as High Per-formance Fortran (HPF) [10], Fortran-D [18], Vienna Fortran [6], and pC++ [17].In this model, each processor in a parallel computer executes a copy of the sameprogram. Processors exchange data and synchronize with each other through callsto the runtime library, which typically is designed to optimize collective operationsin which all processors communicate at the same time, in a structured fashion. Amajor research goal in this area is to identify common runtime systems that can beshared by a variety of SPMD systems. 1

Task-parallel computations extend the SPMD programming paradigm by allow-ing unrelated activities to take place concurrently. The need for task parallelismarises in time-dependent problems such as discrete-event simulation, in irregularproblems such as sparse matrix problems, and in multidisciplinary simulations cou-pling multiple, possibly data-parallel, computations. Task-parallel programs maydynamically create multiple, potentially unrelated, threads of control. Communica-tion and synchronization are between threads, rather than processors, and can occurasynchronously among any subset of threads and at any point in time. A compileroften has little global information about a task-parallel computation, so there arefew opportunities for exploiting optimized collective operations.In the long term, it may prove possible to design runtime systems that supportboth task-parallel and SPMD computations e�ciently. Before such integrated sys-tems can be designed, however, it is important to identify the runtime requirementsof task-parallel languages, and to develop e�cient and portable runtime systems thatmeet these requirements. In order to achieve these goals, di�erent task-parallel lan-guage projects need to collaborate to identify common runtime requirements and toexperiment with the use of common runtime support. The Nexus project representsa �rst step in this direction.The design of Nexus is shaped both by the requirements of task-parallel com-putations and by a desire to support the use of heterogeneous environments, inwhich heterogeneous collections of computers may be connected by heterogeneousnetworks. Other design goals include e�ciency, portability across diverse systems,and support for interoperability of di�erent compilers. It is not yet clear to whatextent these various goals can be satis�ed in a single runtime system: in particular,the need for e�ciency may conict with the need for portability and heterogeneity.Later in this paper, we present some preliminary performance results that addressthis question.As we describe in this paper, Nexus is already in use as a compiler target for twotask-parallel languages: Fortran M (FM) and Compositional C++ (CC++). Ourinitial experiences have been gratifying in that the resulting compilers are consider-ably simpler than earlier prototypes that did not use Nexus services. Nevertheless,further work is required to determine whether the Nexus design incorporates fea-tures that will be useful for a wide range of task-parallel computations. One of ourgoals in writing this paper is to encourage discussion of this topic.2 Existing Runtime SystemsWe �rst review some existing runtime systems. We focus on systems designed fordistributed-memory computers, motivated by the prevalence of this architectureamong large, scalable parallel computers.At the lowest level, parallel runtime systems must support data transfer betweenprocessors and synchronization on the availability of data. The mechanisms most2

commonly used for these purposes are send and receive. Send calls are usuallyaddressed to a processing node, which in a data-parallel program will be executingthe same program as the sending node. Consequently, it is straightforward for acompiler to place a corresponding receive in the generated code. The send/receivemodel is supported by a variety of machine-speci�c and portable communicationlibraries, including NX, p4, PVM, and MPI [3, 11, 8]. These are designed forprogrammer use and are not necessarily good compiler targets. In particular, thefocus on process-based rather than thread-based communication causes di�culty fortask-parallel languages.Two representative runtime systems layered on top of a send/receive model arethe HPF runtime of Bozkus et al. [1] and CHAOS [21]. Both support an SPMDprogramming model. In Bozkus et al.'s runtime, the focus is on providing e�cientsupport for collective operations on distributed arrays. Services include rotationof a matrix by row and column and broadcast along speci�c dimensions. A globalFortran namespace is supported by routines that map between indices for localsections of arrays and the global indices associated with that data. CHAOS supportsirregular mesh computations in data-parallel languages. A technique called runtimecompilation is used to compute optimized communication schedules at runtime,which are then executed in an SPMD fashion.While apparently e�ective for data-parallel computation, the send/receive modelposes di�culties for task-parallel systems. Because communication is between threads,not nodes, and can take place asynchronously, it can be di�cult for a compiler toplace receive operations. In addition, few existing send/receive libraries are threadsafe.A promising alternative model is active messages [22]. Here, a sender speci�esthe data that is to be transferred and the address of a compiler-generated activemessage handler that will process the data. When the data arrives at the destina-tion processor, an interrupt is generated and the speci�ed handler is executed as theinterrupt handler. However, while active messages allow for asynchronous transfer,limitations on their semantics (enforced by a need to run in interrupt service rou-tines) still restrict their use to data-parallel programs. As we will see, the remoteservice request used in Nexus behaves like an active message handler, but removesthe restrictions that prevent its e�ective use in task-parallel programs.The runtime systems discussed so far are subroutine libraries. An alternativeapproach is to de�ne an abstract machine that de�nes the runtime environment.An abstract machine provides an instruction set tailored to compilation of theparallel language; the compiler translates programs into this instruction set. Ex-amples include the Program Composition Machine (PCM) [16] and the ThreadedAbstract Machine (TAM) [23]. PCM was designed as a compilation target for thetask-parallel language PCN. It provides task creation, memory management viadistributed garbage collection, synchronization via data-ow variables, and datatransfer functions. TAM was designed to support the compilation of the data-owlanguage ID 90. The instruction set provides e�cient support for the dynamic cre-3

ation of multiple threads of control, locality of reference via hierarchal schedulingmechanisms, and e�cient synchronization via data-ow variables.3 Nexus Design and ImplementationBefore describing the Nexus interface and implementation, we review the require-ments and assumptions that motivated the Nexus design.Nexus is intended as a general-purpose runtime system for task-parallel lan-guages. While it currently contains no specialized support for data parallelism,data-parallel languages such as pC++and HPF can in principle also use it as aruntime layer. Nexus is designed speci�cally as a compiler target, not as a libraryfor use by application programmers. Consequently, the design favors e�ciency overease of use.We believe that the future of parallel computing lies in heterogeneous environ-ments in which diverse networks and communications protocols interconnect PCs,workstations, small shared-memory machines, and large-scale parallel computers.We also expect heterogeneous applications combining di�erent programming lan-guages, programming paradigms, and algorithms to become widespread.Nexus abstractions need to be close to the hardware, in order to provide e�ciencyon machines that provide appropriate low-level support. Operations that occur fre-quently in task-parallel computations, such as thread creation, thread scheduling,and communication, need to be particularly fast. At the same time, Nexus abstrac-tions must be easily layered on top of existing runtime mechanisms, so as to provideportability to machines that do not support Nexus abstractions directly. Communi-cation mechanisms that were considered in designing Nexus include message passing,shared memory, distributed shared memory, and message-driven computation.Finally, Nexus is intended to be a lingua franca for compilers, promoting reuseof code between compiler implementation as well as interoperability between codegenerated by di�erent compilers.Important issues purposefully not addressed in the initial design include reliabil-ity and fault tolerance, real-time issues, global resource allocation, replication, dataand code migration, and scheduling policies. We expect to examine these issues infuture research.3.1 Core AbstractionsThe Nexus interface is organized around �ve basic abstractions: nodes, contexts,threads, global pointers, and remote service requests. The associated services pro-vide direct support for light-weight threading, address space management, com-munication, and synchronization [14]. A computation consists of a set of threads,each executing in an address space called a context. An individual thread executesa sequential program, which may read and write data shared with other threads4

executing in the same context. It can also generate asynchronous remote servicerequests, which invoke procedures in other contexts.Nodes. The most basic abstraction in Nexus is that of a node. A node representsa physical processing resource. Consequently, the set of nodes allocated by a pro-gram determines the total processing power available to that computation. Whena program using Nexus starts, an initial set of nodes is created; nodes can also beadded or released dynamically. Programs do not execute directly on a node. Rather,as we will discuss below, computation takes place in a context, and it is the contextthat is mapped to a node.Nexus provides a set of routines to create nodes on named computational re-sources, such as a symmetric shared-memory multiprocessor or a processor in adistributed-memory computer. A node speci�es only a computational resourceand does not imply any speci�c communication medium or protocol. This nam-ing strategy is implementation dependent; however, a node can be manipulated inan implementation-independent manner once created.Contexts. Computation takes place within an object called a context. Each con-text relates an executable code and one or more data segments to a node. Manycontexts can be mapped onto a single node. Contexts cannot be migrated betweennodes once created.Contexts are created and destroyed dynamically. We anticipate context creationoccurring frequently: perhaps every several thousand instructions. Consequently,context creation should be inexpensive: certainly less expensive then process cre-ation under Unix. This is feasible because unlike Unix processes, contexts do notguarantee protection. We note that the behavior of concurrent I/O operations withincontexts is currently unde�ned.Compiler-de�ned initialization code is executed automatically by Nexus whena context is created. Once initialization is complete, a context is inactive until athread is created by an explicit remote service request to that context. The creationoperation is synchronized to ensure that a context is not used before it is completelyinitialized. The separation of context creation and code execution is unique to Nexusand is a direct consequence of the requirements of task parallelism. All threads ofcontrol in a context are equivalent, and all computation is created asynchronously.Threads. Computation takes place in one or more threads of control. A thread ofcontrol must be created within a context. Nexus distinguishes between two types ofthread creation: within the same context as the currently executing thread and ina di�erent context from the currently executing thread. We discuss thread creationbetween contexts below.Nexus provides a routine for creating threads within the context of the currentlyexecuting thread. The number of threads that can be created within a context islimited only by the resources available. The thread routines in Nexus are modeled5

N O D E N O D E

Context

TT T T T T T

Context ContextFigure 1: Nodes, Contexts, and Threadsafter a subset of the POSIX thread speci�cation [20]. The operations supportedinclude thread creation, termination, and yielding the current thread. Mutexes andcondition variables are also provided for synchronization between threads within acontext.Basing Nexus on POSIX threads was a pragmatic choice: because most ven-dors support POSIX threads (or something similar), it allows Nexus to be imple-mented using vendor-supplied thread libraries. The drawback to this approach isthat POSIX was designed as an application program interface, with features such asreal-time scheduling support that may add overhead for parallel systems. A lower-level interface designed speci�cally as a compiler target would most likely result inbetter performance [2, 9] and will be investigated in future research.To summarize, the mapping of computation to physical processors is determinedby both the mapping of threads to contexts and the mapping of contexts to nodes.The relationship between nodes, contexts, and threads is illustrated in Fig. 1.Global Pointers. Nexus provides the compiler with a global namespace, by al-lowing a global name to be created for any address within a context. This name iscalled a global pointer. A global pointer can be moved between contexts, thus pro-viding for a movable intercontext reference. Global pointers are used in conjunctionwith remote service requests to cause actions to take place on a di�erent context.The use of global pointers was motivated by the following considerations.� While the data-parallel programming model naturally associates communica-tion with the section of code that generates or consumes data, task-parallelprograms need to associate the communication with a speci�c data structureor a speci�c piece of code. A global namespace facilitates this.� Dynamic behaviors are the rule in task-parallel computation. References todata structures need to be passed between contexts.6

� Data structures other than arrays need to be supported. A general globalpointer mechanism facilitates construction of complex, distributed data struc-tures.� Distributed-memory computers are beginning to provide direct hardware sup-port for a global shared namespace. We wanted to reect this trend in Nexus.Global pointers can be used to implement data structures other than C pointers.For example, the FM compiler uses them to implement channels.Remote Service Requests. A thread can request that an action be performedin a remote context by issuing a remote service request. A remote service requestresults in the execution of a special function, called a handler, in the context pointedto by a global pointer. The handler is invoked asynchronously in that context; noaction, such as executing a receive, needs to take place in the context in order forthe handler to execute. A remote service request is not a remote procedure call,because there is no acknowledgement or return value from the call, and the threadthat initiated the request does not block.Remote service requests are similar in some respects to active messages [22].They also di�er in signi�cant ways, however. Because active message handlers aredesigned to execute within an interrupt handler, there are restrictions on the waysin which they can modify the environment of a node. For example, they cannotcall memory allocation routines. While these restrictions do not hinder the use ofactive messages for data transfer, they limit their utility as a mechanism for creatinggeneral threads of control. In contrast, remote service requests are more expensivebut less restrictive. In particular, they can create threads of control, and two ormore handlers can execute concurrently.During a remote service request, data can be transferred between contexts bythe use of a bu�er. Data is inserted into a bu�er and removed from a bu�er throughthe use of packing and unpacking functions similar to those found in PVM andMPI [8, 11]. Invoking a remote service request is a three-step process:1. The remote service request is initialized by providing a global pointer to anaddress in the destination context and the identi�er for the handler in theremote context. A bu�er is returned from the initialization operation.2. Data to be passed to the remote handler is placed into the bu�er. The bu�eruses the global pointer provided at initialization to determine if any dataconversion or encoding is required.3. The remote service request is performed. In performing the request, Nexus usesthe global pointer provided at initialization to determine what communicationprotocols can be used to communicate with the node on which the contextresides. 7

 Network
Protocol 1

 Network
Protocol 2

Thread
Library

Other System Services

 Protocol
 Module 1

 Protocol
Module 2

Nexus
Thread
Module

Other Nexus Services

 Nexus Protocol
Module Interface

N e x u s I n t e r f a c e

Figure 2: Structure of Nexus ImplementationThe handler is invoked in the destination context with the local address com-ponent of the global pointer and the message bu�er as arguments. In the mostgeneral form of remote service request, the handler runs in a new thread. However,a compiler can also specify that a handler is to execute in a preallocated thread ifit knows that that handler will terminate without suspending. This avoids the needto allocate a new thread; in addition, if a parallel computer system allows handlersto read directly from the message interface, it avoids the copying to an intermediatebu�er that would otherwise be necessary for thread-safe execution. As an example,a handler that implements the get and put operations found in Split-C [7] can takeadvantage of this optimization.3.2 ImplementationIn our description of the Nexus implementation, we focus on the techniques used tosupport execution in heterogeneous environments: in particular, to support multiplecommunication protocols. As an example of why this is important, the IBM SP1 atArgonne (a representative modern parallel computer, with multifunctional nodes)currently provides �ve communication protocols, any combination of which may beused in a particular application: shared memory between processes on the samenode, MPI over the messaging fabric, Fiber Channel from compute nodes to I/Onodes, HIPPI between I/O nodes, and TCP to other computers. In the future,Asynchronous Transfer Mode (ATM) connections will also be incorporated. WhileTCP can be used on many of these networks, it is often not the most e�cientprotocol.In order to support heterogeneity, the Nexus implementation encapsulates threadand communication functions in thread and protocol modules, respectively, thatimplement a standard interface to low-level mechanisms (Fig. 2). Current threadmodules include POSIX threads, DCE threads, C threads, and Solaris threads. Cur-8

rent protocol modules include local (intracontext) communication, TCP socket, andIntel NX message-passing. Protocol modules for MPI, PVM, SVR4 shared mem-ory, Fiber Channel, IBM's EUI message-passing library, AAL-5 (ATM AdaptationLayer 5) for Asynchronous Transfer Mode (ATM), and the Cray T3D's get and putoperations are planned or under development.More than one communication mechanism can be used within a single program.For example, a context A might communicate with contexts B and C using twodi�erent communication mechanisms if B and C are located on di�erent nodes.This functionality is supported as follows. When a protocol module is initialized, itcreates a table containing the functions that implement the low-level interface and asmall descriptor that speci�es how this protocol is to be used. (Protocol descriptorsare small objects: typically 4-5 words, depending on the protocol.) When a globalpointer is created in a context, a list of descriptors for the protocols supported bythis context is attached to the global pointer. The protocol descriptor list is part ofthe global pointer and is passed with the global pointer whenever it is transferredbetween contexts. A recipient of a global pointer can compare this protocol list withits local protocols to determine the best protocol to use when communicating onthat global pointer.Although some existing message-passing systems support limited network hetero-geneity, none do so with the same generality. For example, PVM3 allows processorsin a parallel computer to communicate with external computers by sending messagesto the pvmd daemon process which acts as a message forwarder [8]. However, thisapproach is not optimal on machines such as the IBM SP1 and the Intel Paragon,whose nodes are able to support TCP directly, and it limits PVM programs to usingjust one protocol in addition to TCP. P4 has several special multiprotocol imple-mentations, such as a version for the Paragon that allows the nodes to use both NXand TCP [3]. But it does not allow arbitrary mixing of protocols.4 Nexus as a Compiler TargetNexus is currently being used as the runtime system for two di�erent program-ming languages: CC++and FM. Although both languages provide a task-parallelprogramming model, they have very di�erent characteristics. The compilers useNexus in two di�erent ways, translating some language constructs directly to Nexuscalls and for others generating calls to specialized FM or CC++runtime librariesimplemented using Nexus services.In the following, we give a brief overview of CC++and FM and the ways inwhich they use Nexus services. Rather than present a comprehensive discussion ofcompilation strategies, our goal is to present representative examples that illustratethe correspondence between Nexus features and the runtime requirements of theselanguages. 9

4.1 Compiling CC++Using NexusCC++ [4, 5] is a general-purpose parallel programming comprising all of C++plussix new keywords. The CC++parallel constructs are intended to support the de-velopment of parallel class libraries implementing a wide range of di�erent parallelprogramming styles, for example, synchronous virtual channels, actors, data ow,and concurrent aggregates.Parallel Control Structures. CC++provides three parallel control structures:the parallel block, the parallel loop, and the spawn statement. These structurescreate new threads of control which have complete access to the environment inwhich they execute; they map naturally to Nexus threads.Parallel blocks and loops introduce structured parallelism: they do not terminateuntil all threads of control that they have created terminate. Because Nexus doesnot provide any parent/child relationship between threads, the CC++compiler mustplace a barrier after each parallel block or loop. These barriers are implemented withNexus condition variables.Synchronization Structures. CC++provides two mechanisms for controllingthe interaction of parallel threads of control: synchronization (sync) variables andatomic functions. Any data type can be made into a sync variable by modifying itstype with the keyword sync. Sync variables are single assignment variables. At-tempting to read an unassigned sync variable causes the reader to block; attemptingto write to a sync variable more than once is an error. Assignment to a sync variablewakes any threads suspended on that variable. A sync variable is implemented as adata structure containing the variable's value, a ag to indicate if the variable hasbeen initialized and a Nexus condition variable. Threads waiting for the value of async variable block on the condition variable.Atomic functions provide a means for controlling the scheduling of threads. Anatomic function is like a monitor [19]. Within an instance of a given C++class,only one atomic function is allowed to execute at a time. Atomic functions areimplemented by requiring that they obtain a Nexus mutex prior to executing thefunction body.Managing Processing Resources. CC++introduces a structure called a pro-cessor object. Like other C++objects, a processor object has a type declared by aclass de�nition, encapsulates functions and data, and can be dynamically createdand destroyed. It is distinguished from other objects by the type of resources fromwhich it is allocated. A normal object is allocated from an address space, while theresources for a processor object are allocated from a \process space". Each instanceof a processor object contains an address space from which regular objects can beallocated. Thus a CC++computation consists of a collection of processor objects,where each processor object contains a collection of normal C++objects.10

Interprocessor object references are allowed but must be explicitly declared tobe global. Global pointers provide CC++with both a global name space and atwo-level locality model that can be manipulated directly by a program. A globalpointer can be dereferenced like any other C++pointer. However, dereferencing aglobal pointer causes an operation to take place in the processor object referencedby that global pointer.A Nexus context is created for each processor object created by a CC++program;the compiler also ensures that a Nexus node exists prior to creating a processorobject. CC++global pointers are mapped directly into Nexus global pointers. Anoperation that results in dereferencing a global pointer is compiled to a remoteservice request. The handler for this request is speci�c to the data type of theglobal pointer and is generated by the compiler. The function of the handler is toperform the requested operation on the object referenced by the global pointer.Data access and function call through global pointers are synchronous: the callermust wait until the operations complete and any return values have be obtained.Because Nexus remote service requests are asynchronous and unidirectional, a han-dler responsible for processing a remote operation must notify the initiator whenthat operation has completed. This noti�cation is accomplished by issuing a remoteservice request back to the context from which the operation was invoked. Thethread requesting the remote operation waits for completion by blocking on a Nexuscondition variable. By including a global pointer to that condition variable as partof the data included in the initial remote service request, the return remote servicerequest can signal on the condition variable, notifying the initial thread that the re-mote operation has completed. Because remote service requests are unidirectional,the CC++compiler can detect when a return value is not required and optimize outthe return remote service request.4.2 Compiling FM Using NexusFM [13, 15] is a small set of extensions to Fortran 77 for task-parallel programming.FM is designed to support both the modular construction of large parallel programsand the development of libraries implementing other programming paradigms. Forexample, in a joint project with Syracuse, such a library has been used to integrateHPF programs into a task-parallel framework [12].FM programs can dynamically create and destroy processes, single-reader/single-writer channels, and multiple-writer, single-reader mergers. Processes can encapsu-late state (common data) and communicate by sending and receiving messages onchannels and mergers; references to channels, called ports, can be transferred be-tween processes in messages. FM also provides constructs for mapping processes toprocessors.Processes FM processes are created by process block and process do-loop con-structs. These have similar semantics to CC++parallel blocks and loops and are11

implemented in the same fashion, by using a compiler-generated barrier.Arguments passed to a process are copied in on call and back on return. Aprocess is compiled into two Nexus handlers: a process invocation handler whichinvokes the subroutine in a new thread, extracting arguments from the bu�er; anda process return handler, called on process completion to return arguments to thecalling process block and to update the barrier.By default, an FM process is implemented as a thread executing in a dedicatedNexus context, with the context's data segments used to hold process state. Thiscontext must be allocated by the FM compiler prior to creating the thread, anddeallocated upon process termination. As an optimization, processes without statecan be implemented as threads in a preexisting context containing the code for thatprocess. This optimization can reduce process creation costs and, in some systems,scheduling costs, and is important for �ne-grained applications.Channels and Mergers. A channel is a typed, �rst-in/�rst-out message queuewith a single sender and a single receiver; the merger is similar but allows for mul-tiple senders. A restricted global address space is provided by outport and inportvariables, which can contain references to the sending and receiving ends, respec-tively, of channels and mergers. Ports can be passed as arguments when processesare created, or can be transferred between processes in messages.A channel is implemented as a message queue data structure maintained in thecontext of the receiving process; an outport is implemented as a data structurecontaining a Nexus global pointer to the channel data structure. A send operationis compiled to code which packs the message data into a bu�er and invokes a remoteservice request to a compiler-generated handler which enqueues the message onto thechannel. A receive operation is compiled to code which unpacks a pending messageinto variables or suspends on a condition variable in the channel data structure ifno messages are pending.One of the more complex aspects of FM implementation is port migration. Fore�ciency reasons, we maintain the invariant that a channel data structure is locatedin the same context as its inport; hence, migration of a port can require the updatingof a number of distributed data structures. In earlier versions of the FM compiler,these protocols were implemented in terms of send and receive calls; however, theresulting code was both complex and hard to verify. The asynchronous nature ofthe Nexus remote service request has greatly simpli�ed both implementation andvalidation.Process Mapping. FM constructs allow the programmer to control process place-ment by specifying mappings of processes to virtual computers: arrays of virtualprocessors. The mapping of virtual to physical processors is speci�ed at programstartup. The programmer can also de�ne submachines to indicate that a subcom-putation should execute in a subset of available resources.12

A virtual processor array is implemented as an array of pointers to Nexus nodestructures. Mapping a process call to a virtual processor involves �rst looking upthe correct node in the virtual processor array and then creating the process on thatnode (in a new or existing context). Creating a submachine causes a new virtualprocessor array, based on the existing one, to be created.4.3 Interoperability between FM and CC++Because CC++and FM are both implemented using Nexus facilities, parallel struc-tures in the two languages can interact. For example, an FM program can invokea CC++program, specifying the contexts in which it is to execute and passing asarguments an array of Nexus global pointers representing the inports or outportsof channels. The CC++program can then send or receive functions on these globalpointers to transfer data between contexts executing FM code and contexts execut-ing CC++code.5 Performance StudiesIn this section, we present results of some preliminary Nexus performance studies.We note that the thrust of our development e�ort to date has been to provide acorrect implementation of Nexus. No tuning or optimization work has been doneat all. In addition, the operating system features used to implement Nexus arecompletely generic: we have not exploited even the simplest of operating systemfeatures, such as nonblocking I/O. Consequently, the results reported here shouldbe viewed as suggestive of Nexus performance only, and are in no way conclusive.The experiments that we describe are designed to show the cost of the Nexuscommunication abstraction as compared to traditional send and receive. BecauseNexus-style communication is not supported on current machines, Nexus is imple-mented with send and receive. Thus, Nexus operations will have overhead comparedto using send and receive. Our objective is to quantify this overhead. We note thatsupport for Nexus can be build directly into the system software for a machine,in which case Nexus performance could meet or even exceed the performance ofa traditional process-oriented send and receive based system. (We have starteda development e�ort with the IBM T.J. Watson Research Center to explore thispossibility.)The experiments reported here compare the performance of a CC++programcompiled to use Nexus and a similarC++program using PVM [8] for communication.The CC++program uses a function call through a CC++global pointer to transferan array of double-precision oating-point numbers between two processor objects(Nexus contexts). We measure the cost both with remote thread creation and when apreallocated thread is used to execute the remote service request. The PVM programuses send and receive to transfer the array. Both systems are compiled with -03using the Sun unbundled C and C++compilers; neither performs data conversion.13

1000

10000

100000

1e+06

1 10 100 1000 10000

T
ra

ns
fe

r
T

im
e

(u
se

cs
)

Message Length (double floats)

Nexus (remote thread)
Nexus (no remote thread)

PVM3

Figure 3: Round-trip time as a function of message size between two Sun 10 work-stations under Solaris 2.3 using an unloaded Ethernet.
14

In both cases the data starts and �nishes in a user-de�ned array. This array iscirculated between the two endpoints repeatedly until the accumulated executiontime is su�cient to measure accurately. Execution time is measured for a range ofarray sizes. The results of these experiments are summarized in Fig. 3.We see that despite its lack of optimization, Nexus is competitive with PVM.Execution times are consistently lower by about 15 per cent when remote servicerequests are executed in a preallocated thread; this indicates that both latency andper-word transfer costs are lower. Not surprisingly, execution times are higher whena thread is created dynamically: by about 40 per cent for small messages and 10 to20 per cent for larger messages.6 Summary and Future WorkNexus is a runtime system for compilers of task-parallel programming languages.It provides an integrated treatment of multithreading, address space management,communication, and synchronization and supports heterogeneity in architecturesand communication protocols.Nexus is operational on networks of Unix workstations communicating overTCP/IP networks, the IBM SP1, and the Intel Paragon using NX; it is being portedto other platforms and communication protocols. Nexus has been used to implementtwo very di�erent task-parallel programming languages: CC++and Fortran M. Inboth cases, the experience with the basic abstractions has been positive: the overallcomplexity of both compilers was reduced considerably compared to earlier proto-types that did not use Nexus facilities. In addition, we have been able to reuse codeand have laid the foundations for interoperability between the two compilers. Thepreliminary performance studies reported in this paper suggest that Nexus facilitiesare competitive with other runtime systems.These preliminary experiences suggest that Nexus is already useful as a tool forimplementing task-parallel programming languages, as a framework for studying theinteractions between task and data parallelism, and as a vehicle for studying paral-lelism on heterogeneous computer systems and networks. In future work, we plan toextend the basic Nexus design to incorporate new capabilities, including I/O oper-ations and support for data-parallel computations. In the latter area, our objectiveis not primarily to support purely data-parallel computations, but rather to sup-port programs which combine task and data parallelism. This work is being pursuedjointly with other members of the POrtable RunTime System consortium (PORTS),a working group including universities, government laboratories, and industry.We also plan to conduct more detailed investigations of the performance con-sequences of Nexus interface and implementation design decisions. For example,we want to understand the cost of compile-time management of storage associ-ated with communication, and determine whether our compilers can provide thecommunication layer with additional information regarding data structures to facil-15

itate optimization. We are also interested in the performance implications of thePOSIX-based thread interface, and the potential bene�ts of lower-level interfacesor lighter-weight threads. Finally, we wish to investigate the locality propertiesof compiler-generated Nexus code, to determine whether a hierarchical schedulingmechanism such as found in TAM [23] can improve performance.AcknowledgmentsWe are grateful to Bob Olson and James Patton for their considerable input tothe Nexus design and implementation. The FM runtime support was designed andimplemented by Robert Olson, and the NX protocol module by Tal Lancaster.References[1] Z. Bozkus, Alok Choudhary, Geo�rey C. Fox, T. Haupt, and S. Ranka. For-tran 90D/HPF compiler for distributed memory MIMD computers: Design,implementation, and performance results. In Proc. Supercomputing '93. IEEE,November 1993.[2] Peter Buhr and R. Stroobosscher. The �system: Providing light-weight con-currency on shared-memory multiprocessor systems running Unix. SoftwarePractice and Experience, pages 929{964, September 1990.[3] R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel pro-gramming system. Parallel Computing (to appear), 1994.[4] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent objectoriented programming notation. In Research Directions in Object OrientedProgramming. MIT Press, 1993.[5] K. Mani Chandy and Carl Kesselman. Compositional C++: Compositionalparallel programming. In Proc. Fifth Int'l Workshop on Parallel Languagesand Compilers. Springer-Verlag, 1993.[6] Barbra Chapman, Piyush Mehrotra, and Hans Zima. Programming in ViennaFortran. Scienti�c Programming, 1(1):31{50, 1992.[7] David Culler et al. Parallel programming in Split-C. In Proc. Supercomputing'93. ACM, 1993.[8] J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Integrated PVM frame-work supports heterogeneous network computing. In Computers in Physics,April 1993. 16

[9] D. Engler, G. Andrews, and D. Lowenthal. Filaments: E�cient support for�ne-grained parallelism. Technical Report 93-13, Dept. of Computer Science,U. Arizona, Tuscon, Ariz., 1993.[10] High Performance Fortran Forum. High performance Fortran language speci�-cation, version 1.0. Technical Report CRPC-TR92225, Center for Research onParallel Computation, Rice University, Houston, Texas, January 1993.[11] Message Passing Interface Forum. Document for a standard messge-passinginterface, March 1994. (available from netlib).[12] I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system thatintegrates High Performance Fortran and Fortran M. In Proc. 1994 ScalableHigh Performance Computing Conf. IEEE, 1994. to appear.[13] Ian Foster and K. Mani Chandy. Fortran M: A language for modular parallelprogramming. J. Parallel and Distributed Computing, 1994. to appear.[14] Ian Foster, Carl Kesselman, Robert Olson, and Steve Tuecke. Nexus: Aninteroperability toolkit for parallel and distributed computer systems. TechnicalReport ANL/MCS-TM-189, Argonne National Laboratory, 1994.[15] Ian Foster, Bob Olson, and Steve Tuecke. Programming in Fortran M. TechnicalReport ANL-93/26, Argonne National Laboratory, 1993.[16] Ian Foster and Stephen Taylor. A compiler approach to scalable concurrentprogram design. ACM TOPLAS, 1994. to appear.[17] Dennis Gannon et al. Implementing a parallel C++ runtime system for scalableparallel systems. In Proc. Supercomputing '93, November 1993.[18] Seema Hiranandani, Ken Kenedy, and Chau-Wen Tseng. Compiling FortranD for MIMD distributed memory machines. Communications of the ACM,35(8):66{80, August 1992.[19] C.A.R Hoare. Monitors: An operating system structuring concept. Communi-cations of the ACM, 17(10):549{557, October 1974.[20] IEEE. Threads extension for portable operating systems (draft 6), February1992.[21] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation tech-niques for data partitioning and communication schedule reuse. ComputerScience Technical Report CS-TR-3055, University of Maryland, 1993.17

[22] Thorsten von Eicken, David Culler, Seth Copen Goldstein, and Klaus ErikSchauser. Active messages: a mechanism for integrated communication andcomputation. In Proc. 19th Int'l Symposium on Computer Architecture, May1992.[23] Thorsten von Eicken, David Culler, Seth Copen Goldstein, and Klaus ErikSchauser. TAM| a compiler controlled threaded abstract machine. J. Paralleland Distributed Computing, 1992.

18

