
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-208
Users Manual for bfort:Producing Fortran Interfaces to C Source CodebyWilliam GroppMathematics and Computer Science DivisionTechnical Memorandum No. 208March 1995This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 22 Getting Started 23 Structured Comments 23.1 C Routines : 23.2 C Macros : 33.3 Indicating Special Limitations : 33.4 Indicating Include Files : 44 Command Line Arguments 45 Examples 56 Installing bfort 7Acknowledgment 7References 7

iii

Users Manual for bfort:Producing Fortran Interfaces to C Source CodebyWilliam GroppAbstractIn many applications, the most natural computer language to write in may be di�erent from the mostnatural language to provide a library in. For example, many scienti�c computing applications are writtenin Fortran, while many software libraries|particularly those dealing with complicated data structures ordynamic memory management|are written in C. Providing an interface so that Fortran programs can callroutines written in C can be a tedious and error-prone process. We describe here a tool that automaticallygenerates a Fortran-callable wrapper for routines written in C, using only a small, structured commentand the declaration of the routine in C. This tool has been used on two large software packages, PETScand the MPICH implementation of MPI.

1

1 IntroductionThe program described in this report is intended to help you create interfaces to routines written in C thatare callable from Fortran. Speci�cally, the program bfort takes �les containing C programs and generates anew �le for each routine that contains a C routine, callable from Fortran, that will correctly call the originalC routine. The interface, often called a wrapper routine or just wrapper, handles the issues of Fortranroutine name, variables passed by value instead of reference, and values generated and returned by the Clibrary that are pointers to opaque objects.2 Getting StartedUsing bfort is easy. For example, the commandbfort foo.cwill generate Fortran interfaces for all of the commented routines in the �le `foo.c'. But before this will doyou any good, you will need to add some structured comments to your �le.3 Structured CommentsThe program bfort searches for C comments of the form /*c ... c*/, where c is a single character indicatingthe type of documentation. The available types include @ for routines and M for C macros. These structuredcomments can be used by doctext [2] to automatically generate manual pages and may containing additionalinformation. In all cases, the structured comment has the form/*@ name - short descriptionheading 1:heading 2:...@*/The structured comment for a routine must immediately precede the declaration of the routine (currentlyonly K&R-style declarations; ANSI-style prototypes will be supported in a later release). Figure 1 showsthe structured comment and the routine being documented.3.1 C RoutinesC routines are indicated by the structured comment /*@ ... @*/. The program bfort uses the name in the�rst line (Add in this example) to generate the name of the routine for which a wrapper is being provided.
2

/*@Add - Add two valuesParameters:. a1,a2 - Values to add@*/int Add(a1, a2)int a1, a2;{return a1 + s2;} Figure 1: C code for an Add routine with bfort-style structured comment3.2 C MacrosC macros are indicated by the structured comment /*M ... M*/. Unlike the case of C routines, macrode�nitions do not provide any information on the types of the arguments. Thus, the body of a structuredcomment for a C macro should include a synopsis section, containing a declaration of the macro as if it werea C routine. For example, if the Add example were implemented as a macro, the structured comment for itwould look like/*MAdd - Add two valuesParameters:. a1,a2 - Values to addSynopsis:int Add(a1, a2)int a1, a2;M*/It is important that the word Synopsis be used; bfort and related programs (doctext and doc2lt) use thisname to �nd the C-like declaration for the macro.3.3 Indicating Special LimitationsTwo modi�ers to the structured comments indicate special behavior of the function. The modi�ers mustcome after the character that indicates a routine, macro, or documentation. The modi�ed C indicates thatthis routine is available only in C (and not from Fortran). If this modi�er is present, bfort will not generatea wrapper for the routine. For example, a routine that returns a pointer to memory cannot be called fromstandard Fortran 77, so its structured comment should be/*@C....@*/The other modi�er is X; this indicates that the routine requires the X11 Window System. This is usedby bfort to provide an #ifdef around the call in case X11 include �les are not available.3

The modi�ers C and X may be used together and may be speci�ed in either order (i.e., CX or XC).3.4 Indicating Include FilesIt is often very important to indicate which include �les need to be used with a particular routine. For thispurpose, you may add a special structured comment of the form /*Iinclude-�le-nameI*/. For example, toindicate that the routine requires that `<sys/time.h>' has been included, use#include <sys/time.h> /*I <sys/time.h> I*/in the C �le. A user-include can be speci�ed as#include "system/nreg.h" /*I "system/nreg.h" I*/This approach of putting the structured include comment on the same line as the include of the �le ensuresthat if the source �le is changed by removing the include, the documentation and Fortran wrappers willre
ect that change.4 Command Line ArgumentsTo use bfort, you need only to give it the name of the �les to process. For example, to process every .cand .h �le in the current directory, usebfort *.[ch]Command-line options to bfort allow you to change the details of how bfort generates output.A complete list of the command line options follows. Some of these will be used often (e.g., -anyname);others are needed only in special cases (e.g., -ferr).The following option controls the location of the output �le:-dir name Directory for output �leIn all cases, the name of the output �le is the name of the input �le with an f su�x. For example, if theinput �le is `foo.c', the �le containing the generated wrappers is `foof.c'.The following options control the kind of messages that bfort produces about the generated interfaces.-nomsgs Do not generate messages for routines that cannot be converted to Fortran.-nofort Generate messages for all routines/macros without a Fortran counterpart.The following options provide special control over the form of the interface and the generated �le.-anyname Generate a single wrapper that can handle the three most common cases: trailing underscore, nounderscore, and all caps. The choice is based on whether one of the following macro names is de�ned.FORTRANCAPS Names are upper case with no trailing underscore.FORTRANUNDERSCORE Names are lower case with trailing underscore.FORTRANDOUBLEUNDERSCORE Names are lower case, with two trailing underscores. Thisis needed when some versions of f2c are used to generate C for Fortran routines. Note that f2cuses two underscores only when the name already contains an underscore (on at least one FreeBSDsystem that uses f2c). To handle this case, the generated code contains the second underscoreonly when the name already contains one.In addition, if -mpi is used, the MPI pro�ling names are also generated, surrounded by MPI_BUILD_PROFILING.-ferr Fortran versions return the value of the routine as the last argument (an integer). This is used in MPIand is a common approach for handling error returns.4

-I name Give the name of a �le that contains #include statements that are necessary to compile thewrapper.-mapptr Generate special code to convert Fortran integers to and from pointers used by the C routines. Thespecial code is used only if the macro POINTER_64_BITS is de�ned. It is also used to determine whetherpointers are too long to �t in a 32-bit Fortran integer. (You have to insert a call to __RmPointer(pointer) into the routines that destroy the pointer.) The routines for managing the pointers are in`ptrcvt.c'.-mnative Multiple indirects (int *** are native datatypes; that is, there is no coercion to the basic type).-mpi Recognize special MPI [1] datatypes (some MPI datatypes are pointers by de�nition).-ptrpre�x name Change the pre�x for names of functions to convert to/from pointers. The default valueof name is __.-voidisptr Consider void * as a pointer to a structure.-ansiheader Generate ANSI-C style headers instead of Fortran interfaces. This is useful in creating ANSIprototypes without converting the code to ANSI prototype form. These use a trick to provide bothANSI and non-ANSI prototypes. The declarations are wrapped in ANSI_ARGS, the de�nition of whichshould be#ifdef ANSI_ARG#undef ANSI_ARG#endif#ifdef __STDC__#define ANSI_ARGS(a) a#else#define ANSI_ARGS(a) ()#endifAfter the command-line arguments come the names of the �les for which Fortran interfaces are to beconstructed.5 ExamplesThis section shows the code generated by bfort with various command-line switches.The command bfort add.c produces/* add.c *//* Fortran interface file for sun4 */int add_(a1, a2)int*a1,*a2;{return Add(*a1,*a2);} The command bfort -anyname add.c produces/* add.c *//* Fortran interface file */#ifdef FORTRANCAPS#define add_ ADD#elif !defined(FORTRANUNDERSCORE) && !defined(FORTRANDOUBLEUNDERSCORE)#define add_ add 5

#endifint add_(a1, a2)int*a1,*a2;{return Add(*a1,*a2);} The command bfort -ansiheader foo.c produces/* add.c */extern int Add ANSI_ARGS((int, int));For a more sophisticated example, here is the result of bfort -ferr -mpi -mnative -mapptr -ptrprefixMPIR_ -anyname -I pubinc send.c for the MPI routine MPI_Send (implemented in the �le send.c, from theMPICH implementation). The �le `pubinc' contains the single line #include "mpiimpl.h"./* send.c *//* Fortran interface file */#include "mpiimpl.h"#ifdef POINTER_64_BITSextern void *MPIR_ToPointer();extern int MPIR_FromPointer();extern void MPIR_RmPointer();#else#define MPIR_ToPointer(a) (a)#define MPIR_FromPointer(a) (int)(a)#define MPIR_RmPointer(a)#endif#ifdef MPI_BUILD_PROFILING#ifdef FORTRANCAPS#define mpi_send_ PMPI_SEND#elif defined(FORTRANDOUBLEUNDERSCORE)#define mpi_send_ pmpi_send__#elif !defined(FORTRANUNDERSCORE)#define mpi_send_ pmpi_send#else#define mpi_send_ pmpi_send_#endif#else#ifdef FORTRANCAPS#define mpi_send_ MPI_SEND#elif defined(FORTRANDOUBLEUNDERSCORE)#define mpi_send_ mpi_send__#elif !defined(FORTRANUNDERSCORE)#define mpi_send_ mpi_send#endif#endifvoid mpi_send_(buf, count, datatype, dest, tag, comm, __ierr)void *buf;int*count,*dest,*tag;MPI_Datatype datatype;MPI_Comm comm; 6

int *__ierr;{*__ierr = MPI_Send(buf,*count,(MPI_Datatype)MPIR_ToPointer(*(int*)(datatype)),*dest,*tag,(MPI_Comm)MPIR_ToPointer(*(int*)(comm)));} Note that the -mapptr option has caused the generated code to call routines to convert the integers inFortran to valid pointers. The option -ptrprefix changed the names of the routines to be MPIR_ToPointerand MPIR_FromPointer. The option -mpi informed bfort that MPI_Datatype and MPI_Comm were pointersrather than nonpointers. The option -ferr converted a routine MPI_Send that returns an error code to aFortran subroutine that returns the error code in the last argument.6 Installing bfortThe bfort program is part of the PETSc package of tools for scienti�c computing, but can be installed with-out installing all of PETSc. The program is available from `info.mcs.anl.gov' in `pub/petsc/textpgm.tar.Z'.Additional information is available through the World Wide Web at http://www.mcs.anl.gov/petsc.Please send any comments to petsc-maint@mcs.anl.gov.AcknowledgmentThe author thanks Lois Curfman McInnes and Barry Smith for their careful reading and vigorous use of thebfort manual and program.References[1] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journal ofSupercomputing Applications, 8(3/4), 1994.[2] William Gropp. Users manual for doctext: Producing documentation from C source code. TechnicalReport ANL/MCS-TM-206, Argonne National Laboratory, March 1995.
7

