
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-210
The Network-Enabled Optimization System ServerbyMichael Paul MesnierMathematics and Computer Science DivisionTechnical Memorandum No. 210

August 1995This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.



ContentsAbstract 11 Introduction 12 The NEOS Server 22.1 The Initializer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32.2 The Checker : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42.3 The Receiver : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42.3.1 Submissions by e-mail : : : : : : : : : : : : : : : : : : : : : : 52.3.2 Web Submissions : : : : : : : : : : : : : : : : : : : : : : : : : 52.4 The Extractor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.5 The Parser : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.6 The Scheduler : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.7 The Solver : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.8 The Sender : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.9 The Cleaner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103 Optimization Software Library 114 NEOS Tools 114.1 NEOS System Monitor : : : : : : : : : : : : : : : : : : : : : : : : : : 124.2 Updating Tool : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125 Conclusion 13Acknowledgments 13iii



The Network-Enabled Optimization System ServerbyMichael Paul MesnierAbstractMathematical optimization is a technology under constant change and ad-vancement, drawing upon the most e�cient and accurate numerical methodsto date. Further, these methods can be tailored for a speci�c application orgeneralized to accommodate a wider range of problems. This perpetual changecreates an ever growing �eld, one that is often di�cult to stay abreast of.Hence, the impetus behind the Network-Enabled Optimization System (NEOS)server, which aims to provide users, both novice and expert, with a guided tourthrough the expanding world of optimization. The NEOS server is responsiblefor bridging the gap between users and the optimization software they seek.More speci�cally, the NEOS server will accept optimization problems over theInternet and return a solution to the user either interactively or by e-mail. Thispaper discusses the current implementation of the server.1 IntroductionThe Network-Enabled Optimization System (NEOS) is being developed as part ofthe Optimization Technology Center, which is operated jointly by Argonne NationalLaboratory and Northwestern University. The goal of the NEOS server is simple:to direct users quickly to the proper optimization software and, from this software,to generate their solution. Users may communicate with the server in one of twoways: via e-mail or a Web interface. Essentially, then, the server acts as an interfacebetween the users and the optimization software library.The Network-Enabled Optimization System is composed as follows:� Optimization software library - a library of numerical methods.� NEOS server - job handling and interface to software library.� NEOS Guide - a guide to optimization theory and practice.The NEOS Server is implemented as a collection of Perl scripts, each of whichhas been appropriately named to reect the function it performs. The main goalsin implementing the server were speed, dependability, and extendibility. Hence,we sought to maximize the use of concurrency, extensive error-checking, and data1



receiver

extractor

parser

solver

user

e-mail

Figure 1: First server implementationabstraction, respectively. Peripheral to the server are tools intended to enhanceNEOS system administration.Section 2 provides a detailed discussion of the server's components. Section 3 brieydescribes the server interface to the Optimization Software Library. Section 4 focuseson the NEOS tools and their signi�cance to the server.2 The NEOS ServerThe �rst implementation of the server consisted of only four scripts: the receiver,extractor, parser, and solver. With this implementation, there was no concurrency,and only minimal error-detection. Further, all processing was restricted to a singleworkstation. Despite the obvious limitations, this �rst implementation did provideus with a solid base to expand upon. See Figure 1.The current implementation has improved on the prototype with the addition of con-current execution, extensive error-detection, and the ability to use any Unix-basedworkstation on the Internet, regardless of architecture. Moreover, fault tolerancehas been addressed, tools have been added for easier NEOS administration, andWeb submissions are accommodated.The server now consists of seven Perl scripts: initializer, receiver, extractor, parser,scheduler, solver, and sender. The server behaves as a pipeline. In other words,execution proceeds from the initializer through the sender without any exceptions.No script is skipped, and no script is executed more than once.1 Peripheral to theserver are two additional scripts: the checker, which ensures that the initializer isrunning after events such as a system crash or power failure; and the cleaner, which1To be speci�c, no script is executed more than once per session. A session begins with thearrival of new job requests and the call from the receiver to the extractor (explained shortly).2



useruser user

solver solver solver...

sender sendersender ...

NEOS System Monitor

e-mail WWWreceiver

extractor

parser

...

scheduler

cleaner

Unix Cron Facility

checkerinitializer

Figure 2: Current server implementationperforms routine garbage collection, archiving of previous job submissions, and loggeneration. See Figure 2.2.1 The InitializerExecution begins with the initializer daemon, whose primary purpose is to initializeall necessary environment variables and call the receiver to check for incoming jobs.Additionally, the initializer must communicate with the NEOS checker (describedbelow). The NEOS directory structure is fully determined in the initializer via acollection of environment variables, each of which gives either an absolute or relativepath to some point within the directory tree. This eliminates any problems incurredby a change in the �le system. Because all subsequent scripts refer to the �le systemonly through these environment variables, any changes in the �le system will be3



to the receiver

daemon process

<environment variable 1>

<environment variable 2>

<environment variable n>

..

.

touch

TAP initializer
remove

checker

Figure 3: The initializer and checkerabsorbed by the initializer.The receiver is invoked every few seconds. The exact time is speci�ed in a �lelocated within the initializer's home directory. Because this �le is read before eachinvocation of the receiver, any changes made to the �le will be instantly realized.NEOS administrators may alter this �le to adjust the frequency with which jobs areprocessed.2.2 The CheckerUnder perfect conditions, the initializer will run forever as a daemon process. Wemust, however, contend with system crashes and the like. To ensure such faulttolerance, the NEOS checker was added. As a companion to the server, the checkeris responsible for checking the initializer and issuing a restart if the initializer isfound dead or possibly in a catatonic state (e.g., inadvertently suspended).The checker is implemented in an extremely simple fashion. Speci�cally, the checkerissues the Unix \touch" command on a �le in the initializer's directory. Theinitializer knows to remove this �le when it appears; neglecting to remove the �le isa direct signal to the checker that the initializer has crashed.Because the checker is cron invoked, this implementation assumes that the Unixcron facility is crash resistant. Under this assumption, the NEOS system achievesa high level of fault tolerance. See Figure 3.2.3 The ReceiverThe call from the initializer to the receiver is simply a check for incoming job re-quests, from either e-mail or the Web. If jobs exist, control is passed on to the ex-tractor; otherwise the pipeline is not entered, and control returns to the initializer.4



job.received

job.received

job.received

job.received

job.received

WWW

WWW

WWW

WWW

WWW

receiver

next_serial_number

e-mail

e-mail

e-mail

e-mail

e-mail

to the extractorFigure 4: The receiverAs mentioned earlier, the extractor signals the beginning of the pipe.NEOS is intended to process multiple jobs and hence operate in a concurrent fashion.This implementation requires each job to be uniquely identi�able from its neighbors.To address this issue, the receiver assigns incoming jobs a unique number, as wellas a directory which serves as a temporary residence for the job as it is processed.From Figure 2, one can see that concurrency is postponed until the scheduler isreached. Prior to this point, jobs are processed in small groups determined by thereceiver. For example, if �ve jobs are waiting in the NEOS mailbox, the receiverassigns job numbers and creates directories for these �ve jobs. These �ve jobs arepassed to the extractor, then to the parser, and �nally to the scheduler. Section 2.6describes the scheduling process and how NEOS achieves concurrent execution.2.3.1 Submissions by e-mailThe NEOS system runs under a standard Unix account and thus collects e-mail fromthe account mailbox. However, entities other than NEOS clients may send mail tothis account (e.g., root, MAILER-DAEMON). Hence, the receiver must maintaina list of usernames that will not be treated as clients. This also provides an easymethod of prohibiting NEOS access to any users who have demonstrated imprudentbehavior in the past.2.3.2 Web SubmissionsThe Web interface to the server communicates directly with the receiver. Just aseach e-mail message is spooled in the account mailbox, NEOS has a directory inwhich Web submissions accumulate, and it checks this directory for requests just asit does the mailbox. 5



job.received

job.received

job.received

job.received

job.received

job.address job.body

job.address job.body

job.address job.body

job.address job.body

job.address job.body

ending_serial_numberstarting_serial_number

extractor

to the parserFigure 5: The extractorWeb submission did not appear until later in the server's development, and by thistime the server was accustomed to handling submissions in e-mail format. In orderto preserve the integrity of the server and adhere to the piping implementation, Websubmissions appeared no di�erently from e-mail submissions. With exception of thereceiver, Web submission is completely transparent to the server. See Figure 4.2.4 The ExtractorThe call to the extractor begins the breakdown of the job submission into its in-dividual components. The extractor is concerned only with (1) the client's e-mailaddress and (2) the body of the mail message. As mentioned earlier, NEOS sub-mission tool and Web submissions are identical to that of e-mail; hence, a \From:"�eld is manually appended to the top of all these submissions to make them appearas a regular e-mail. 2The �rst task of the extractor is to extract the return address from this \From:"�eld and place it into a �le for later use by the NEOS sender. If the extractorfails to extract the return address, the job receives no further processing, yet stillremains in the pipeline. Subsequent scripts are noti�ed of this failure when theextractor issues the Unix \touch" command on a �le within the job's directory(e.g., \touch ABORT"). Such an abortive feature allows the job to progress throughthe remainder of the pipe yet receive no operations.Second, the extractor extracts the message body and places it in a �le for laterprocessing by the NEOS parser. Unlike the address, this extraction will never fail.At worst it will create an empty �le if no message body exists. See Figure 5.2This feature is actually handled by the NEOS and Web interfaces, not the NEOS server.6



2.5 The ParserFollowing a successful extraction, the parser further breaks apart the job submissionby dividing the message body, referred to from here on as the job body, into itscomponent parts. The only standard imposed here is that each component withinthe body be delimited by either one or two tokens. The following excerpt from anactual job submission illustrates the di�erence:Type UMBegin.commentThis is an Unconstrained Minimization submission.End.commentThe �rst token, \Type," delimits the information requesting the job type (i.e.,the class of software in the optimization library). The second two tokens \Be-gin.comment" and \End.comment" delimit the text in between.Each method in the optimization software library may tailor these tokens to what-ever con�guration serves them best. This information is speci�ed in a �le describingeach token, the type of information it delimits, and the name of the �le to place theinformation in. Other responsibilities imposed by the NEOS server on the individualmethods within the software library are discussed in Section 3.The parser needs only to know which method is being requested so that the propertoken con�guration �le can be retrieved. This information is provided with a singletoken. For example, the type \UM" directs the parser to select the \UM" tokencon�guration �le and use this �le to parse the remainder of the job body. If no\TYPE" token is found or an invalid method is requested, appropriate error mes-sages will be returned to the user. Moreover, if a valid type is speci�ed but invalidtokens (e.g., \begin.omment" instead of \begin.comment") are used, parsing errorsare return to the user.Any job that is unsuccessfully parsed will receive no further processing. Instead,the parser will issue an \ABORT" in the same manner as the extractor, signalingsubsequent scripts to ignore the job and merely pass it through the pipe.2.6 The SchedulerThe scheduler is the �rst of the scripts to use concurrency. Since certain optimizationproblems may run for hours, a concurrent approach was implemented to preventbottlenecking. The scheduler is responsible for selecting a workstation to solve theproblem on, and executing a separate NEOS solver for each of the jobs it receives.7



job.body

job.body

job.body

job.body

job.body

<token 1> <token n>...

<token 1> <token n>...
<token 1> <token n>...

<token 1> <token n>...

<token 1> <token n>...

ending_serial_numberstarting_serial_number

parser

to the schedulerFigure 6: The parser
job.station

job.station

job.station

job.station

job.station

job.type job.type

job.type

job.type job.type

scheduler

to the solver to the solver to the solver

starting_serial_number ending_serial_number

...Figure 7: The schedulerA feature recently added to the scheduler is the ability for each method within thesoftware library to request exactly which workstations their jobs should be scheduledon. The methods can, however, accept the set of default workstations maintainedby the scheduler.Each job must wait in the scheduler until a workstation becomes available. We haveimposed a \one job per workstation" limit to prevent any one workstation frombecoming overworked. However, this limit be overridden by explicitly requesting acertain workstation in the job body. This feature is useful for software developersdebugging their code; it should be disabled once the code is made publicly available.Not using the scheduling facilities of the server puts a workstations at risk of beingoverloaded with NEOS requests.2.7 The SolverThe NEOS solver prepares each job for its venture into the optimization softwarelibrary. As complicated as this may sound, the process is actually quite trivialbecause of the restriction that each method within the software library state to theserver exactly one executable that is responsible for launching its code. The jobof the solver is simply to call this executable and wait for its completion. Upon8



solver
required files

job.type

<token 2><token 1> <token n>...

job.results

serial_number

to the senderFigure 8: The solvercompletion of the selected method, the solver retrieves the �le containing the jobresults. To this �le the solver then attaches a friendly NEOS header providinginformation pertinent to the server (e.g., time received, time completed, workstationselected).The simplicity of this call to the software library may be deceiving. The executableis merely the front end to an often large set of algorithms. As far as the server isconcerned, however, this call to the library does nothing more than produce a single�le to which it attaches the NEOS header.Until now, we have assumed all software within the optimization library to be run-ning on the same �le system. However, the NEOS solver can access software librarieson any �le system and, hence, on any Unix-based network. This is the purposebehind the entire server: it simply acts as a liaison between the client and the op-timization software, regardless of location. In brief, if methods do not reside on thesame �le system in which NEOS is running, they must specify their location (i.e.,IP address) and instruct the solver to perform a �le transfer. See Section 3 for acomplete discussion.2.8 The SenderThe sender is responsible for mailing job results back to the user whose address waspreviously extracted by the extractor. Further, because the sender marks the end ofthe pipeline, and thus the end of the NEOS process, a signal is sent to the cleanerto log and archive the job directory. 9



job.results

job.address

job_serial_number

sender e-mailFigure 9: The sender
job_handling.logjob.log

job.log

job.log

job.log
cleaner

DONE?

job.log
job.log

job directory

job directory

job directoryjob directory

job directory job directory

to the trash canFigure 10: The cleaner2.9 The CleanerThe NEOS cleaner is responsible for archiving old job directories and creating a job-handling log. As each job was being processed, the individual scripts echoed theirsuccess or failure to a �le within each of the local job directories. It is these �lesthat the cleaner uses in log generation. The exact �les maintained by the cleanerare located in the NEOS administration directory. All other �les within the jobdirectories are placed in an archive for future reference.As mentioned earlier, the sender signals the cleaner when a job has been completed.The exact signal is once again the \touching" of a �le (e.g., \DONE") by the sender.Until this �le appears, the cleaner will not remove the directory. In addition, thecleaner will clean only if there exists a �le in the cleaner's home directory (e.g.,\CLEAN") that gives the cleaner permission to tidy things up. This implementa-tion provides NEOS administrators with an easy method of enabling/disabling thecleaning process.Just as the NEOS checker is called by the Unix cron daemon, so is the cleaner . SeeFigure 10. 10



3 Optimization Software LibraryWith a full understanding of the NEOS server in hand, let us now concentrate on theexact interface between the server and the optimization software library. Speci�cally,each method within the library must provide the following to the server:� A unique solver name (e.g., Unconstrained Minimization = UM).� The e-mail address of the software maintainer.� The title of the method.� An abstract of the method.� The �le that will serve as the token con�guration �le for the NEOS parser.� The absolute path to the executable that will launch the code.� The IP address of the remote workstation if the method resides on a di�erent�le system.� An optional list of workstations if the method chooses to override the defaultset of workstations maintained by the scheduler.All of the above �les are to be placed in a \solvers" directory determined by theNEOS server, under a subdirectory with the unique solver name. For example,all Unconstrained Minimization �les are located in the \solvers" directory underthe subdirectory \UM." To activate a particular solver, the unique name must beappended to a \solver list" within this \solvers" directory. Once solver is activated,if any of the information listed above is missing, then the server must notify themethod owner.Here it becomes quite evident that the NEOS \solvers" directory essentially containslinks to the software library, which may or may not reside on the local �le system. Norestrictions are imposed upon the developers of the software library. Furthermore,adhering to this protocol shields the software library developers from any changes inthe NEOS server and, more important, frees them from worrying about the internalstructure of the server.4 NEOS ToolsIn addition to the server and its peripherals, two additional tools have proved usefulthroughout the development of NEOS: the NEOS system monitor and the NEOSupdating tool. These tools were developed as an aid for NEOS administrators.11



4.1 NEOS System MonitorSection 2.9 discussed how logs are generated, but did not mention the methods ofaccess. Prior to the inception of the NEOS monitor, the NEOS sta� had to �ndthe directory containing the logs and carefully view the logs (i.e., make sure notto edit or delete the �les). Granted, these are two simple steps, but two steps webelieved to be unnecessary. Ideally, we wanted a friendly system monitor, whichcould capitalize on the amenities of an X-Window application.Our answer was to develop a Tcl/Tk application, appropriately named the NEOSsystem monitor. Since two versions of NEOS are running continually, NEOS andTest-NEOS, this application o�ers log perusing from either system by way of asimple point and click. Each system currently o�ers the following logs:� System run-time log: system messages pertinent to the execution of NEOS.� Job-handling log: log of all submitted jobs.� User log: log of all NEOS users.� Cleaning log: account of the cleaner's whereabouts.� Checker log: noti�cation of system restarts.4.2 Updating ToolAs mentioned, NEOS comprises two distinct systems: the test version and thepublicly available version. All system development occurs in the test version whereit receives a battery of tests prior to going online. Initially, updating the NEOSsystem was a trivial matter, since we managed only a few Perl scripts. Now, however,NEOS contains hundreds of �les, making a system update quite complex.To alleviate the pain of an update, we introduced the NEOS updating tool. Es-sentially, this tool maintains a list of �les composing the entire NEOS application.This list must be maintained by the software developers. Updating then becomesthe domain of the updating tool, which compares all �les common to both NEOSand Test-NEOS, updating those that have been modi�ed. If �les within this man-aged �le list exist in the Test-NEOS system only, the updating tool will ask for itsinclusion in NEOS.What was becoming an increasingly laborious process is now completely automatedby the NEOS updating tool. Moreover, the hazards introduced from manual update(e.g., deleted �les) have been eliminated.12



5 ConclusionWe expect that the NEOS server will continue to enjoy future growth. NEOS wascreated to be expandable; hence, the power behind the NEOS server lies in its abilityto e�ciently manage an ever growing library of numerical software.Optimization has long been a tool of mathematicians. Now, however, we are seeinga growing demand for optimization in both the private and the public sectors. TheNetwork-Enabled Optimization System is designed to meet this demand.AcknowledgmentsThe design of the NEOS Server was developed in consultation with Joe Czyzyk, BillGropp and Jorge Mor�e. Others contributing to this e�ort include Ali Bouaricha,Steve Wright, and Ciyou Zhu. The Web interface to the server was developed byRichard Marynowski. Many others have indirectly contributed to the NEOS Server;in particular, the developers of ADIFOR 2.0.

13


