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The Structure of a Moving Vortex LatticeD. W. Braun, G. W. Crabtree, H. G. Kaper, A. E. Koshelev,G. K. Leaf, D. M. Levine, V. M. VinokurAbstractNumerical solutions of the time-dependent Ginzburg-Landau equations showa new mechanism for plastic motion of a driven vortex lattice in a cleansuperconductor. The mechanism, which involves the creation of a defect su-perstructure, is intrinsic to the moving vortex lattice and is independent ofbulk pinning. Other structural features found in the solutions include a re-orientation of the vortex lattice and a gradual healing of lattice defects underthe in
uence of a transport current.1. Introduction and Outline of ResultsRecently, attention has focused increasingly on the dynamic states of a vortex system.Much of the interest concerns the type of motion of a vortex lattice under an applied cur-rent [1{3]. It has been observed that, in a signi�cant region of the phase diagram belowthe vortex lattice melting line, vortex motion is predominantly plastic motion. The ex-planation given in [1,2] relies heavily on the notion that the vortex interactions competewith a randomness in the driven vortex system [4,5]. In this note, we present the resultsof a numerical study of the motion of a vortex lattice in a clean �nite sample and �nd adi�erent mechanism for plastic vortex motion. Past considerations excluded the e�ects ofthe current-induced magnetic �eld. We show that a current increases the vortex spacing inthe direction of vortex motion and enforces the formation of fault lines to accommodate theresulting strains. The fault lines serve as a source of plastic deformations. The mechanism isthe result of the intrinsic behavior of the vortex lattice and is independent of bulk pinning.It may be responsible for plastic motion in very clean superconductors.The structure of a vortex lattice moving under the in
uence of a transport current ina homogeneous superconducting sample depends on the relative strengths of the Lorentzforce and the barrier forces associated with the free surfaces [6]. Numerical solutions ofthe time-dependent Ginzburg-Landau (TDGL) equations [7] show that the barrier forcesdominate at weak currents. Vortex motion is con�ned to the interior of the sample, andthe vortex lattice is essentially static. Its close-packed rows align with the free surfaces.The lattice structure may have defects, whose origin can be traced to the transient phase,but these defects disappear gradually, and a more or less uniform structure with isolateddefects remains. When the Lorentz force dominates, vortices enter and leave through thefree surfaces, and the entire vortex lattice moves steadily across the sample. The latticestructure changes in two ways. We see a change in the orientation of the lattice, where1



the close-packed rows align with the direction of the Lorentz force, and the developmentof a defect superstructure, where one or several distinct \fault lines" separate regions ofapproximately uniform structure. A fault line consists of several aligned dislocations and�nite segments of a 30� boundary. The fault lines remain more or less stationary as thelattice moves. They provide the principal mechanism supporting the gradient of the vortexdensity induced by the self-�eld of the current and serve as a source of plastic deformations.Similar defect structures have been observed in decorations of static vortex lattices withdensity gradients [8,9].2. The Ginzburg-Landau Model of SuperconductivityThe TDGL model of superconductivity consists of an evolution equation for the complexorder parameter  , an expression for the supercurrent density js, and Amp�ere's law, whichconnects the supercurrent density to the vector potential A, @@t + i��! = ��ri� �A�2  + �1� j j2� ; (1)js = 12i�( �r �  r �)� j j2A; (2)�  @A@t +r�! = �r�r�A+ js: (3)Equations (1){(3) are dimensionless: Lengths are measured in units of the penetration depth�; time in units of �2=D (� the coherence length, D the normal di�usion coe�cient); �eldsin units of Hcp2 (Hc the thermodynamic critical �eld); and current densities in units of(cHcp2)=(4��). The order parameter is normalized so  = 1 at equilibrium in the absenceof �elds. At a free surface, js � n = 0.Adopting the zero-electric potential gauge, we enforce the identity � = 0 at all times. Wemaintain gauge invariance by computing the link variables instead of the vector potential.Details of the numerical procedure are described in [10]. In all computations reported here,the Ginzburg-Landau parameter � = 4 and the normal conductivity � = 1. In our system ofdimensionless variables,Hc1 = (ln�+0:5)=(2�) = 0:24, Hc = 1=p2 = 0:71, andHc2 = � = 4.The BCS depairing-current density is jBCS = (2p3=9); see [11, Eq. (4-36)].The computations were done for a homogeneous pin-free superconducting sample, in�nitein the z direction, periodic in the y direction, and bounded in the x direction. The magnetic�eld is in the positive z direction, and any transport current is in the positive y direction.Thus, the only variations occur in the (x; y) plane, and any Lorentz force acts in the positivex direction. The free surfaces are along the left and right edges of the sample. A transportcurrent J in the positive y direction is induced by a �eld di�erential between the left andright surface: Hl = H0 +�H, Hr = H0 ��H, where �H = 12J .2



3. Con�guration and Procedural DetailsUnless otherwise noted, all results refer to a standard con�guration, whose cross sectionin the (x; y) plane measures 32 � 48 (units of �). Our standard choice for the appliedmagnetic �eld is H0 = 0:8 (H0 � 1:13Hc in dimensional terms), with �H = 0 (no current),�H = 0:125 (\weak" current), �H = 0:250 (\intermediate" current), or �H = 0:500(\strong" current). The corresponding current densities are approximately 0, 2, 4, and 8%of the BCS depairing-current density.The numerical algorithm uses a one-step forward Euler time integration technique; the(dimensionless) time step is 0.0025 units of time. Starting from the Meissner state, estab-lished at H0 = 0:01, we increase the strength of the applied �eld to H0 = 0:8, apply thetransport current as appropriate, and let the system evolve through the transient phase. Asa working de�nition, we assume that the steady state is reached when the time variation inthe total number of vortices in the sample is less than 1% over 200 units of time (80,000time steps). The average number of vortices in the steady state varies from 230 (no current)to 660 (strong current). The steady state is usually well established after about 4,500 unitsof time (1.8 million time steps). Only at that time do we begin to record data, normallyat intervals of 10 units of time (4,000 time steps), for approximately 1,500 units of time(600,000 time steps). The recorded data are stored for postprocessing.In the postprocessing phase, we �rst compute the magnetic induction as a function ofx (along the Lorentz force), taking averages in the y direction (along the current). Foreach recorded time step, we then determine the position of every vortex in the sample fromthe order parameter and assemble these positions into vortex trajectories. The trajectoriesindicate the nature of the vortex motion. The structure and evolution of the vortex latticeare analyzed by means of a Delauney triangulation [12], which is constructed at each recordedtime step. Each vortex in the bulk with fewer or more than six neighbors is identi�ed witha defect in the lattice.4. Computational ResultsThe results of the numerical computations for the standard con�guration are summarizedin Figs. 1 and 2.4.1. No Transport CurrentIn the absence of a transport current, 230 vortices enter the sample to form a dilute vortexstructure with an average lattice spacing a0 = 2:58�. The average magnetic induction in thesample is B = 0:27, considerably less than the applied �eld H0 = 0:8. The lattice is static.Its structure remains defective; the major types of defects are isolated dislocations (pairs ofdefects|one with �ve, the other with seven neighbors) and �nite segments of 30� boundaries(strings of three or more contiguous dislocations). The vortex region is separated from thefree surfaces by a vortex-free region of width 2:1�. The Meissner current 
ows entirelywithin these vortex-free regions. 3
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Fig. 1. Magnetic induction pro�les (averaged over y) obtained from computations (solid lines)and theory (dashed lines); (a) no current, (b) weak current, (c) critical current, (d) intermediatecurrent, (e) strong current. Left inset: Computed values of (Hl; Bl) and (Hr; Br), with stabilityboundaries for the left (dashed line) and right (solid line) surface. Right inset: Magnetic inductionpro�le near the right edge of the sample for critical current.
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Fig. 2. Lattice structure in standard (32 � 48) sample (bulk only); H0 = 0:8; lattice defectsare marked. Top left: no current, top right: weak current, bottom left: intermediate current, andbottom right: strong current. 5



4.2. Weak Transport CurrentA weak current (�H = 0:125) almost doubles the average number of vortices to 459. Thevortices form an almost ideal crystal structure, with a0 = 1:88�. The lattice is again static,but slightly displaced to the right edge, so the vortex-free region near the right surface issigni�cantly narrower than near the left surface. The supercurrent density at the left edge ofthe sample is approximately equal to the BCS depairing-current density. The close-packeddirection of the lattice is again aligned with the free surfaces. The remaining defects are theremnants of a misoriented grain in the center of the sample, whose origin goes back to thetransient phase and which gradually heals during the recording period.4.3. Intermediate Transport CurrentSo far, the Lorentz force has been too weak to overcome the surface barrier at the rightedge. The vortices move only internally within the sample, and the lattice remains essen-tially static. This picture changes dramatically when we apply an intermediate transportcurrent (�H = 0:250). The surface barrier at the right edge is broken, and the lattice movessteadily in the positive x direction. At the left edge, vortices penetrate into the sample in ahighly organized manner: A penetrating vortex triggers successive nucleations, which prop-agate along the surface of the sample in the direction of the current (\zipper" penetration).Vortices exit through the right surface, where the vortex-free region has disappeared com-pletely. The average number of vortices in the sample increases to approximately 565; thisnumber oscillates in time, but the amplitude of the oscillation is always less than 1%. Theclose-packed direction of the moving lattice is oriented along the direction of motion. Areorientation of a moving vortex lattice was observed in early experiments [13] and, morerecently, in YBCO [14]. A mechanism for the reorientation in the presence of bulk pinningwas proposed in the context of collective pinning theory in [15]. Our investigation indicatesthat the reorientation also can be caused by the free surfaces of the sample. Approximatelyone third of the transport current now 
ows in the interior the sample, supporting thesteady motion of the lattice. The resulting small gradient in the vortex density leads to anexpansion of the lattice as x increases.4.4. Critical Transport CurrentAn estimate of the critical value of the current at which the vortex lattice begins tomove can be obtained from the theories of Shmidt [16], Ternovskii and Shekhata [17], andClem [18]. According to these authors, there are two critical curves in the (H;B) plane as-sociated with any free surface of a type-II superconductor, H = Hmax(B) and H = Hmin(B).As long as H > Hmax(B), vortices will break through the surface to enter the sample, thusincreasing the magnetic induction just inside, until H = Hmax(B). Similarly, as long asH < Hmin(B), vortices will break through the surface to leave the sample, thus decreas-ing the magnetic induction just inside, until H = Hmin(B). Approximate (dimensionless)expressions for Hmax(B) and Hmin(B) in the range Hc1 < B < Hc2 are6



Hmax(B) � �B2 +H2p�1=2 ; Hmin(B) � B �B0; (4)where B0 = (2�p3)=(48�) [17]. Usually, it is assumed that Hp = Hc.The values of the applied and induced �eld near the left (subscript l) and right (subscriptr) surfaces for the various currents are given in Table 1; the corresponding points are markedin Fig. 1 (left inset). A best �t of a curve H = Hmax(B) through the data (Hl; Bl) for nocurrent, weak current, and intermediate current yields Hp � 0:78; hence, our computationssuggest that the penetration �eld in the Meissner state is Hp � 1:1Hc. The dashed line inFig. 1 (left inset) is the graph of Hmax with Hp = 0:78. In Table 1, we have also listed thedata (Hl; Bl) for the strong current (discussed below). The corresponding point in Fig. 1 (leftinset) lies very close to the critical curve H = Hmax(B)|an indication that the expressionfor Hmax(B) given in Eq. (4) remains a good approximation when the lattice moves faster.The solid line in Fig. 1 (left inset) is the graph of Hmin for � = 4.The critical current Jcr, at which the surface barrier at the right edge is �rst broken, canbe estimated from Eq. (4), Jcr = 2(�H)cr = H2p2H0 +B0 +B0: (5)For H0 = 0:8, we �nd Jcr � 0:42. Computations with �H = 0:175; 0:195; 0:200 showthat vortices �rst break through the surface barrier at the right edge when �H = 0:200.The average lattice spacing decreases from a0 � 1:84� at �H = 0:175 to a0 � 1:74� at�H = 0:200. The values of the applied and induced �eld near the free surfaces at the criticalcurrent are included in Table 1, and the corresponding points are marked in Fig. 1 (left inset).Also included in Fig. 1 (right inset) is a blow-up of the �eld pro�le for the critical current nearthe right edge of the sample. As predicted by Eq. (4), the value of Br exceedsHr by the smallpositive quantityB0. This resolves the discrepancy about the sign of the correction in [17,18].Table 1. Values of the applied and induced �eld near the left and right free surfaceCurrent Hl Bl Hr Brno 0.800 0.27 0.800 0.27weak 0.925 0.52 0.675 0.52critical 1.000 0.640 0.600 0.615intermediate 1.050 0.70 0.550 0.55strong 1.300 1.04 0.300 0.30
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The data (Hr; Br) for no current and weak current lie below the graph|an indicationthat the surface barrier at the right edge has not been broken and the lattice is stationary.The data (Hr; Br) for the intermediate and strong current lie on the line B = H. Thesurface barrier at the right edge of the sample has been broken, and the barrier force has noe�ect on the moving lattice.4.5. Field Pro�lesWhen the vortex lattice moves steadily across the sample, as for the intermediate current,the total current J splits into a surface contribution, Js, and a bulk contribution, Jb. Theself-�eld of the bulk transport current induces a gradient of the magnetic induction and,therefore, a gradient of the vortex density, and this gradient leads in turn to a deformationof the vortex lattice.The �eld pro�le in the bulk can be found from the force balance equation for the over-damped steadily moving elastic vortex lattice, �nv = r� $�. Here, � is the viscosity of thevortex lattice, n = B=�0 the vortex density, and v is the vortex velocity. The elastic stresstensor $� is related to the strain tensor $" via the matrix of elastic moduli Cij, which varynonlinearly with B. In the case of uniaxial compression in the x direction, the only nonzerocomponent of the elastic strain tensor is "xx, so�nv = C11(B)d"xxdx : (6)For a steadily moving vortex lattice, the 
ux nv is coordinate independent, so the expressionin the left member is constant, equal to 
=(8�), say. The elastic strain tensor relates thevariation in the magnetic �eld to the local value of the �eld, �B = "xxB, so d"xx=dx =�(1=B)(dB=dx). A good approximation for C11(B) in the rangeHc1 < B � Hc2 is C11(B) =(B2=(4�))(1 � 1=(4�B)). Thus, B satis�es the di�erential equation�2B �1� 14�B� dBdx = 
: (7)The equation can be integrated, for example, from the right edge, where B = Br, into thebulk. The constant 
 is then determined by the condition that B = Bl at the left edge ofthe bulk. Identifying the width of the bulk with the width of the sample, d, we �nd thefollowing expression for the magnetic �eld in the bulk:B(x) = 14� +  �Br � 14��2 + 
d�1� xd�!1=2 ; (8)where 
d = (Bl�Br)(Bl+Br�1=(2�)). Substitution of the expressions Br = Hr = H0� 12Jand Bl = Hl � Js = H0 + 12J � Js gives B(x) in terms of H0, J , and Js. The dashed linesin Fig. 1 show the excellent agreement with the �eld pro�les found in the computations.The agreement also demonstrates that the expression for C11(B) used in the derivation ofEq. (8) remains valid, even though the condition B � Hc2 is not really satis�ed.8



4.6. Strong Transport CurrentWe proceed to the case of a strong transport current, �H = 0:500. The vortex latticenow moves very fast across the sample, and we observe several interesting new phenomena.The self-�eld of the transport current inside the sample induces a signi�cant density gradient:The density near the left edge is approximately three times the density near the right edge(see Fig. 1). The lattice experiences a signi�cant strain in the left part of the sample.Slightly beyond the center, it can no longer bear the strain, and plastic deformation occurs.A defect boundary (\fault line") appears, which consists of several aligned dislocations and�nite segments of a 30� boundary. The fault line remains more or less stationary as thelattice moves across the sample. The critical strain "pl, at which the lattice yields, canbe estimated from the stretch in the horizontal bonds from the left edge to the fault line,"pl � 0:35.4.7. Plastic DeformationThe current at which the lattice �rst shows plastic deformation, Jpl, can be estimated.As long as the strain near the right edge of the sample, "xx = (Bl � Br)=Bl, is less thanthe plastic limit for uniaxial stretching, "pl, the lattice is deformed elastically throughoutthe bulk. The fault line �rst appears at the right edge when Bl � Br = "plBl. WithBl �Br = Jpl � Js and Bl = H0 + 12Jpl � Js, we �ndJpl = (1� "pl)Js + "plH01 � "pl=2 : (9)At stronger currents, plastic deformations appear at a �nite distance xpl from the left edge.This distance can be estimated from the relation Bl�B(xpl) = "plBl. Using Eq. (8) for the�eld, we �nd xpld = "plBl (2� "pl)Bl � 1=(2�)(Bl �Br)(Bl +Br � 1=(2�)) : (10)Here, Bl �Br = J � Js and Bl = H0 + 12J � Js.5. Defect Superstructure in Wider SamplesThe development of a stationary defect superstructure in a moving vortex lattice is one ofthe main �ndings of our computations. Further computations have shown that, in a widersample, this superstructure is even more developed. Figure 3 shows the lattice structureat the �nal recorded time step in a wide sample, whose cross section in the (x; y) planemeasures 48 � 32. The value of the applied �eld at the right edge and the gradient of theapplied �eld (that is, the transport current density) across the sample are the same as inthe case of the strong current for the standard sample (H0 = 1:05, �H = 0:75). Severalfault lines are necessary to support the large density di�erential across the sample. Figure4 shows the magnetic induction pro�le as found in the computations and as theoreticallypredicted by Eq. (8). 9



Fig. 3. Lattice structure in wide (48� 32) sample (bulk only); H0 = 1:05, �H = 0:75; latticedefects are marked.
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Fig. 4. Magnetic induction pro�le (averaged over y) in wide sample; H0 = 1:05, �H = 0:75;obtained from from computations (solid line) and theory (dashed line).The defect superstructure is even more developed in the very wide sample shown inFig. 5. The sample measures 72 � 32 in cross section. Again, the applied �eld is chosen sothe transport current density is the same as in the case of the strong current for the standardsample (H0 = 1:425 and �H = 1:125). In both the wide and the very wide sample, thedefect superstructure remains more or less stationary while the vortices stream across thesample. Note that the close-packed direction rotates each time a fault line is encountered.10



Fig. 5. Lattice structure in very wide (72� 32) sample (bulk only); H0 = 1:425, �H = 1:125;lattice defects are marked.6. SummarySummarizing, we have shown a new mechanism for plastic motion of a driven vortexlattice in a clean superconductor. The mechanism involves the creation of a superstructureof lattice defects, which supports the gradient in the vortex density induced by the self-�eld of the current. Although the lattice moves across the sample, the defect superstructureremains static. We have also shown a dynamic reorientation of the lattice. When the currentis weak, the lattice is essentially static, and its close-packed direction is aligned with the freesurfaces. When the current exceeds a critical value, the lattice moves, and its close-packeddirection is aligned with the direction of motion. Finally, we have shown a gradual healingof the lattice defects under the in
uence of a transport current.
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