
ANL/MCS-TM-213
Creating a New MPICH Deviceusing the Channel InterfacebyWilliam Gropp and Ewing LuskMathematics and Computer Science DivisionTechnical Memorandum No. 213DRAFTJuly 1996This work was supported by the Mathematical, Information, and Compurational Sciences Division subprogram of the O�ce ofComputational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1

ContentsAbstract 11 Introduction 12 The Bare Minimum 12.1 Bu�ering Issues : 22.2 Message Ordering : 33 Using Nonblocking Operations 34 Di�erent Data Exchange Mechanisms 34.1 Eager : 44.2 Rendezvous : 44.3 Get : 45 Flow Control 45.1 Basic Idea : 55.2 Memory Flow Control : 55.3 Channel Flow Control : 56 Using Message-Passing Systems 67 Polling for Data 78 Special Packet Data 79 Implementation 810 Commentary 810.1 Limitations : 810.2 Advantages : 811 Special Considerations 811.1 Fairness : 811.2 Error Handling : 911.3 Uncompleted Operations : 912 A Simple Test Program 913 Future Developements 10Acknowledgments 10
iii

Creating a New MPICH Deviceusing the Channel InterfacebyWilliam Gropp and Ewing LuskAbstractThe MPICH implementation of MPI uses a powerful and e�cient layered approach to simplify portingMPI to new systems. One interface that can be used is the channel interface; this interface de�nesa collection of simple data-transfer operations. This interface can adapt to additional functionality,such as asynchronous or nonblocking transfers or remote memory operations. This paper describes thisinterface, some of the special issues, and gives instructions on creating a new MPICH implementation byimplementing just a few routines.1 IntroductionImplementing all of MPI is a daunting task. The MPICH implementation of MPI has been designed tosimplify the task of porting MPI to new platforms by providing a multi-level implementation. At one levelis the Abstract Device Interface (ADI), described elsewhere. The ADI contains a few dozen routines, andhandles the bu�ering and queueing of messages. The ADI itself may be implemented on a simpler layer thatdoes simply moves data from one processor to another and does not handle bu�ering and queueing. Thisnote describes this simpler interface.These operations are based on a simple ability to send data from one process to another process. Nomore functionality is required than what is provided by Unix in the select, read, and write operations.The `ADI' code uses these simple operations to provide the operations, such as MPID_Post_recv, that areused by the MPI implementation. The minimum set of these operations can be expressed with just �vefunctions.There are a number of very subtle issues having to do with how much bu�ering is expected of the routinesde�ned here, and exactly how large messages are transmitted. Rather than cover all of the subtle issues�rst, we �rst present a simpli�ed interface that ignores these issues. This interface is then re�ned in the restof the paper. In order to make the de�nition more concrete, we present an implementation in terms of MPIcalls in Section 6.The issue of bu�ering is a di�cult one, and we could have de�ned an interface that assumed no bu�ering,requiring the ADI that calls this interface to perform the necessary bu�er management and
ow-control.The rationale for not making this choice is that many of the systems that are used for implementing theinterface de�ned here maintain their own internal bu�ers and
ow controls, and implementing another layerof bu�er management can impose an unnecessary performance penalty.However,
ow control cannot be entirely ignored. For reasons of performance, it is important to allow for\eager" delivery of messages (described below). These messages use up memory on the destination node, andwithout any
ow control, can cause an application to fail. In addition, some systems (particularly message-passing systems with miniscule bu�ering) do not provide any usable bu�er management and require outside
ow control. The approach to
ow control taken in the channel device is discussed in Section 5.2 The Bare MinimumThe simplest set of routines sends or receives data from another process. All MPI message passing isconverted into these lower-level messages (or data exchanges).Messages are sent in two parts: a control part, containing information on the MPI message tag, size, andcommunicator, as well as information about the message itself, and the data part, containing the actual data.There are separate routines to send and receive the control and data parts, along with a routine to check tosee if any control messages are available. 1

In order to reduce the latency of short messages, small amounts of data may be sent with the controlpart of the message instead of being sent in a separate data part.MPID ControlMsgAvail Indicates whether a control message is available.MPID RecvAnyControl Reads the next control message. If no messages are available, blocks until one canbe read.MPID SendControl Sends a control message.MPID RecvFromChannel Receives data from a particular channel.MPID SendChannel Sends data on a particular channel.In Unix terms, MPID_ControlMsgAvail is similar to select (with a fd mask of all the �le descriptors thatcan be read for control messages), and MPID_RecvAnyControl is like a select followed by a read, while theothers are similar to read and write on the appropriate �le descriptors.The bindings areint MPID_ControlMsgAvail(void)void MPID_RecvAnyControl(MPID_PKT_T *pkt, int size, int *from)void MPID_SendControl(MPID_PKT_T *pkt, int size, int dest)void MPID_RecvFromChannel(void *buf, int maxsize, int from)void MPID_SendChannel(void *buf, int size, int dest)In these calls, void *buf, int size is a bu�er (of contiguous bytes) of size bytes. The int dest is thedestination process (dest is the rank in MPI_COMM_WORLD of the destination process). The value from isthe source of the message (also relative to MPI_COMM_WORLD). The value MPID_PKT_T *pkt is a pointer to acontrol message (of type MPID_PKT_T; this is called a control packet or packet for short, and is de�ned in the�le `packet.h').2.1 Bu�ering IssuesFor correct operation of the channel interface, it is imperative that send operations not block; that is, thecompletion of an MPID_SendControl should not require that the destination processor read the control databefore the MPID_SendControl can complete.1 It is permissible for MPID_SendControl to copy the messageto a separate bu�er in order to ensure that the call does not block.This is because a control message is sent for any kind of MPI message, whether it is MPI_Send, MPI_Isend,MPI_Ssend, etc. However, in some cases, it may be more e�cient to not require that the control message bedelivered without requiring a matching receive. The routine MPID_SendControlBlockmay be used for this.If this routine is not provided, then MPID_SendControl will be used instead.The binding for MPID_SendControlBlock is the same as for MPID_SendControl.A slight complication is the fact that the control packet itself may contain the message data, if that datais small enough. The reason for this is that it is more e�cient to send the data with the control informationif the data length is short enough (and doing so does not cause the sending of a control message to block).The size of amount of data that will be sent in a control packet, called the payload, can be controlled atcon�gure time with the option -pkt_size=n. For example, -pkt_size=4will limit the payload to four bytes.The length must be greater than zero. The con�gure option -var_pkt allows you to control the allowedpayload size at run time (upto the limit de�ned with -pkt_size or the default value). For most devices, thedefault payload size is 1024 bytes.If you cannot guarantee that sends will not block, then consider using a send that returns an indicationthat it would block. In this case, let the ADI process some incoming messages (by callingMPID_check_incoming(MPID_NOTBLOCKING) , and then trying to send again. In Unix terms, this is similarto checking for an EWOULDBLOCK return from write.2 For example, an implementation of MPID_SendControlthat used Unix write might look something like1This brings up the infamous progress rule; for the purposes of this discussion, it is enough to consider only the case of twoprocesses and a single MPI communicator.2In POSIX systems, that's EAGAIN. 2

#define MPID_SendControl(pkt, size, channel) \{ int err;\MPID_PKT_LEN_SET(pkt,size);\do { \err = write(fd[channel], (char *)(pkt), size);\if (err == -1) {\if (errno == EAGAIN) {\MPID_TCP_check_device(MPID_NOTBLOCKING);\}\else { WriteErrorMsg("Unexpected write error", 1);}}\} while (err == -1);}If the eager protocol is selected (see below), then MPID_SendChannel must not block either.Also see the discussion of other protocols below, particularly the rendezvous protocol in Section 4.2.2.2 Message OrderingControl messages between any pair of processors must arrive in the order in which they were sent. There isno required ordering of messages sent by di�erent processors (but see the discussion on fairness below).When a message is sent using MPID_SendControl and MPID_SendChannel, it is guaranteed that thesending process performs the MPID_SendChannel after the MPID_SendControl for that message and beforeperforming a MPID_SendControl for any other message. In other words, if the connection between twoprocesses is a stream, then the data part of a message immediately follows the control part. This appliesonly when using the eager protocol, described below.3 Using Nonblocking OperationsNonblocking operations provide the ability to both provide greater e�ciency through the overlap of compu-tation and communication and greater robustness by allowing some data transfers to be left uncompleteduntil they can be received at their destination. These are not required, but can be used if they are available.If they are not available, the macros PI_NO_NRECV and PI_NO_NSEND must be de�ned.MPID IRecvFromChannel(buf, size, partner, id) Start a nonblocking receive of data from partner.The value id is used to complete this receive, and is an output parameter from this call.MPID WRecvFromChannel(buf, size, partner, id) Complete a nonblocking receive of data. Note thatin many implementations, only the value of id will be used.MPID RecvStatus(id) Test for completion of a nonblocking receive.MPID ISendChannel(buf, size, partner, id) Start a nonblocking send of data to partner. The valueof id is used to complete this send, and is an output parameter from this call.MPID WSendChannel(buf, size, partner, id) Complete a nonblocking send of data. Note that inmany implementations, only the value of id will be used.MPID TSendChannel(id) Test for completion of a nonblocking send of data.4 Di�erent Data Exchange MechanismsThis section describes the di�erent ways in which data can be transferred from one process to another. Theadvantages and disadvantages of each are also described here.3

4.1 EagerIn the eager protocol, data is sent to the destination immediately. If the destination is not expecting thedata (e.g., no MPI_Recv has yet been issued for it), the receiver must allocate some space to store the datalocally.This choice often o�ers the highest performance, particularly when the underlying implementation pro-vides suitable bu�ering and handshakes. However, it can cause problems when large amounts of data aresent before their matching receives are posted, causing memory to be exhausted on the receiving processors.This is the default choice in MPICH.4.2 RendezvousIn the rendezvous protocol, data is sent to the destination only when requested (the control informationdescribing the message is always sent). When a receive is posted that matches the message, the destinationsends the source a request for the data. In addition, it provides a way to for the sender to return the data.This choice is the most robust but, depending on the underlying system software, may be less e�cient thanthe eager protocol. Also, some legacy programs may fail when run using a rendezvous protocol. This is reallya combination of errors in the program (relying on an exhaustible resource) and ine�cient implementationsof MPI_Bsend.This choice can be selected with the con�gure option -use_rndv, which selects the ADI code thatimplements this protocol.4.3 GetIn the get protocol, data is read directly by the receiver. This choice requires a method to directly transferdata from one process's memory to another. A typical implementation might use memcpy.This choice o�ers the highest performance, but requires special hardware support such as shared memoryor remote memory operations. In many ways, it functions like the rendezvous protocol, but uses a di�erentset of routines to transfer the data.To implement this protocol, special routines must be provided to prepare the address for remote accessand to perform the transfer. The implementation of this protocol allows data to be transferred in severalpieces, for example, allowing arbitrary sized messages to be transferred using a limited amount of sharedmemory. The routine MPID_SetupGetAddress is called by the sender to determine the address to send tothe destination. In shared-memory systems, this may simply be the address of the data (if all memory isvisible to all processes) or the address in shared-memory where all (or some) of the data has been copied.In systems with special hardware for moving data between processors, it may be the appropriate handle orobject.5 Flow ControlFlow control is used to control the usage of resources in communicating between two processes. There aretwo fundamental resources to control: the amount of memory used (or available) at the destination processand the amount of memory available in the \channel" connecting the two processes. To understand thislatter, consider one common interconnect|Unix sockets. A socket implementation includes SO_SNDBUF; theamount of data that can be written (by a blocking write) without causing the write to block. There isalso a SO_RCVBUF, which controls the amount of data that can be eagerly received without a recv at thedestination. In any interconnect, it is always possible to send at least a small amount of data before thesending process either blocks or recieves an error return meaning \would block". In the case of sockets, theerror code is EWOULDBLOCK or, in POSIX systems, the less descriptive EAGAIN3. In a sockets implementationwith nonblocking sockets chosen, the sockets implementation itself keeps track of the available bu�er spaceand provides the EWOULDBLOCK/EAGAIN error to indicate that there is no more memory available in thechannel between processes. When such information is available from the underlying system, we wish to useit rather than adding an additional layer on top of it.3To receive the error rather than blocking in sockets requires setting the socket as nonblocking.4

Flow control for the messages that have been received must be handled in a di�erent way. These messagesare no longer in the \channel" connecting the processes, and hence require
ow control at the channelimplementation level (or higher).To provide
ow control, the communicating processes need to exchange information that provides basicinformation on the resources that each process will devote to the communication. In addition, they may needto send messages to keep each other up-to-date on the amount of resources used and to reallocate resources(for example, to another process that has started a connection).5.1 Basic IdeaoutlineKeep track of how much you've used of partner's memory and how much partner has used of your own.With each regular message, include an update (since last message, I've received 128 bytes of network packetsand received 128K of unexpected messages).Because there may occasionally not be a regular MPI message to send to the partner, send special
ow-control only messages when necessary (see below).To reduce the number of bits needed (since it increases the latency of all messages), make all measures�t in a 32bit unsigned integer; do this by using blocks of some size and rounding up to the next block. Forexample, if the block is 256 bytes and 260 bytes are sent, record that as two blocks. Di�erent block sizesmay be used for memory and channel
ow control.5.2 Memory Flow ControloutlineNote that total memory is the resource that must be controlled; dividing this amoung the connectionsrequires some care. For concreteness, consider the case of n bytes of memory and p processors. The mostobvious way to divide the memory up is with n=p per processor (possible channel). Unfortunately, in anyscalable application, each processor will communicate with very few other processors directly (almost byde�nition); dividing the memory this way is wasteful. In fact, if the amount of memory is limited, or p islarge, this approach is ine�cient, since it limits the ability to send messages eagerly.Another approach is to divide all of the memory amoung the \active" connections; when a processor notprevious heard from starts communicating, memory must be reassigned from the existing connections. Thisensures that all of the memory is available for active communications, but can impose lengthy delays whena new communication pattern starts.A comprimise approach unevenly preallocates space, favoring the �rst k active connections; in addition,it may allow for dynamic reallignment of space. A simple way to implement the preallocation is the \Zeno'sParadox" approach: half of the memory is allocated to the �rst k connections; half of what remains to thenext k, and so on, with the last k connections getting all of the remainder.In addition to these automatic approaches, the user can be allowed to specify either k or a particular setof connections to optimize space for; a similar approach has been use by the NX communications library onthe Intel Paragon.Sender: increments memory used on partner for all eagerly sent messages and for all envelopes (even forrendezvous).Receiver: decrements memory used by partner for all messages received.If threshold reached, ...? When do we \deselect" the channel when that is possible? Do we do that instead of using any
owcontrol messages?5.3 Channel Flow Controloutlineeach system knows the amount of bu�ering available. Assume at least one (two) packets. Note that thisconstrains the eager packet data size (and if too small indicates a tradeo� against performance).5

As packets are consumed, recompute amount of data since last update. Send in next message to partner.If amount exceeds threshold, send control message.6 Using Message-Passing SystemsThe �rst implementations of MPICH were on top of existing message-passing systems, and these are stillsome of the most important implementations. This section gives an example by showing how the basicMPICH Channel interface can be implemented. Rather than use a particular vendor's system, we use a fewMPI routines within MPI_COMM_WORLD. These do not illustrate the macros necessary to use the get protocol,since MPI does not support remote memory operations.The approach used here is to send control messages (envelopes) always with message tag zero. Data onchannels is sent with a message tag of the sender's rank in MPI_COMM_WORLD plus one (this simpli�es portingto message passing systems that do not implement selection by source). Transfers are sent with a messagetag that is chosen dynamically, starting at 1024.int flag;MPI_Status status;#define MPID_RecvAnyControl(pkt, size, from) \{ MPI_Recv(pkt,size,MPI_BYTE,MPI_ANY_SOUCE,0,MPI_COMM_WORLD,\&status); *from = status.MPI_SOURCE;}#define MPID_RecvFromChannel(buf, size, channel) \MPI_Recv(buf,size,MPI_BYTE,channel,1+channel, channel, \MPI_COMM_WORLD, &status);#define MPID_ControlMsgAvail() \(MPI_Iprobe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, \&flag, &status),flag)#define MPID_SendControl(pkt, size, channel) \MPI_Bsend(pkt,size,MPI_BYTE,channel,0, MPI_COMM_WORLD);#define MPID_SendControlBlock(pkt, size, channel) \MPI_Send(pkt,size,MPI_BYTE,channel,0, MPI_COMM_WORLD);#define MPID_SendChannel(buf, size, channel) \MPI_Send(buf,size,MPI_BYTE,channel,1+channel, \MPI_COMM_WORLD);Note the use of MPI_Bsend instead of MPI_Send when sending control packets. This emphasizes that sendinga control packet should not block the program.The nonblocking operations are very easy; the communication id is just an MPI_Request object.#define MPID_IRecvFromChannel(buf, size, channel, id) \MPI_IRecv(buf, size, MPI_BYTE, channel, 1+channel,MPI_COMM_WORLD, &(id))#define MPID_WRecvFromChannel(buf, size, channel, id) \MPI_Wait(&(id), &status)#define MPID_RecvStatus(id) \(MPI_Test(&(id), &flag, &status), flag)#define MPID_ISendChannel(buf, size, channel, id) \MPI_Isend(buf, size, MPI_BYTE, channel, 1+myid,MPI_COMM_WORLD, &(id));#define MPID_WSendChannel(buf, size, channel, id) \MPI_Wait(&id, &status)#define MPID_TSendChannel(id) \(MPI_Test(&(id), &flag, &status), flag)The out-of-band operations are also very simple; they are just nonblocking MPI calls with a message tagthat is allocated for each operation. Note the use of the MPI \ready send" to return the requested data.6

static int CurTag = 1024;static int TagsInUse = 0;#define MPID_CreateSendTransfer(buf, size, partner, id) {*(id) = 0;}#define MPID_CreateRecvTransfer(buf, size, partner, id) \{*(id) = CurTag++;TagsInUse++;}#define MPID_StartRecvTransfer(buf, size, partner, id, rid) \MPI_Irecv(buf, size, MPI_BYTE, partner, id, MPI_COMM_WORLD, &(rid))#define MPID_EndRecvTransfer(buf, size, partner, id, rid) \{ MPI_Wait(&(rid), &status);\if (--TagsInUse == 0) CurTag = 1024; else if (id == CurTag-1) CurTag--;}#define MPID_TestRecvTransfer(rid) \(MPI_Test(&(rid), &flag, &status), flag)#define MPID_StartSendTransfer(buf, size, partner, id, sid) \MPI_Irsend(buf, size, MPI_BYTE, partner, 1+id,MPI_COMM_WORLD, &(sid))#define MPID_EndSendTransfer(buf, size, partner, id, sid) \MPI_Wait(&(sid), &status)#define MPID_TestSendTransfer(sid) \(MPI_Test(&(sid), &flag, &status), flag)Note that this code makes little attempt to reuse the special tags; if, however, all tags are accounted for, itresets the CurTag counter to the initial value. More sophisticated (and costly) methods could keep track ofthe tags in use. More careful code would check for tag over
ow. These have been left out to simplify theexample.7 Polling for DataMPI was designed to allow a variety of implementation strategies. In particular, it does not require `im-mediate' response to an MPI_Recv (which might require an interrupt). However, this strategy may requirethe device to be polled relatively frequently. The ADI macro MPID_CHECK_DEVICE should be used for this; ifyour new device needs polling, you should modify this macro.Currently, there is no provision for providing periodic polling (e.g., using SIGALRM). Note that since Unixmakes no provision for sharing or chaining signal handlers, any package that uses a Unix signal e�ectivelyboth denies the use of that signal to other libraries and to the user, and depends on no libraries or the userrede�ning the signal(s). This was judged too fragile and anti-social to depend upon.8 Special Packet DataThe format of the control message has some optional elements that can be includedMPID PKT INCLUDE LINK Provide a pointer to MPID_PKT_T in the packet.MPID PKT INCLUDE LEN Provide the length of the packet in bytesMPID PKT INCLUDE SRC Include to source (rank of the sender in MPI_COMM_WORLD in the packet.You can use MPID_PKT_LEN_GET(MPID_PKT_T *)pkt,len) to set len to the number of bytes in the packet(note that this is a macro with the e�ect l = (pkt)->pkt_len). A sample that uses this is in`mpich/mpid/ch_tcp/tcppriv.c'.See `packet.h' for more details on the packet formats and macros.7

9 ImplementationOne of the main advantages of the channel device is that any changes (bug �xes or performance improve-ments) to the ADI or MPI routines can be tracked nearly automatically.The command NewDevicemay be used to create a new ADI device that is based on this channel interface.The commandscd mpich/mpidNewDevice -raw mydevcreate a directory `ch_mydev' that contains a new device.4 You may need to make some small changes toseveral of the �les (in addition to `channel.h'). To con�gure an MPICH for this new device, simply useconfigure -device=ch_mydevThis will work as long as con�gure can correctly deduce the compiler, options, and libraries. If you needspecial options, you may need to modify `configure' directly (if you have autoconf version 1.6, you canmodify `configure.in' instead and regenerate the `configure' �le from that).Now, edit the following �les: `channel.h' (de�nitions of routines described in this document), `mpid.h'(features of packets), `mydevpriv.c' (any routines you need).10 CommentaryThe channel interface is very simple to implement, but does have some disadvantages and restrictions.10.1 Limitations1. The rendezvous, get, and eager protocols are mutually exclusive.2. Control packets must not block (the exception is for MPID_SendControlBlock).3. The eager protocol allocates space (potentially large) for unexpected messages as they arrive.10.2 Advantages1. No signals used (other than those used by the routines that the \channel" operations are de�ned with).2. High performance if adequate bu�ering supported by the channel operations.3. No special code is required for the MPI synchronous send, ready send, non-blocking, or persistentoperations (and no special advantage is taken of these modes).4. If the underlying system does not support sending data to itself, you can de�neMPID_ADI_MUST_SENDSELF; the ADI implementation will handle this case automatically.11 Special ConsiderationsThis section discusses some issues that need to be considered when constructing a channel-based implemen-tation.11.1 FairnessThe implementation of MPID_RecvAnyControl should be fair; that is, if messages are available from morethan one sender, there should be no bias in selecting which one is received.This can be di�cult to provide e�ciently on some systems.4When -raw switch is not present, NewDevice attempts to use a message-passing version of channel.h and to automaticallyreplace the message passing calls in the channel.h �le. This requires you to have a version of Chameleon for the messagepassing system. 8

11.2 Error HandlingThe MPI standard gives an implementationwide latitude on handling errors. In the MPICH implementation,there are a few cases that should be handled by the channel interface. The most important case is that ofmessage truncation: receiving more data than will �t in the user-speci�ed bu�er.The MPID device de�nition will change in the near future to place MPI error codes where they can befound by the MPI routines (in the request).11.3 Uncompleted OperationsIn the case of the get and rendezvous protocols, when a process enters MPI_Finalize, it may still need tocomplete a get or rendezvous operation. This needs to be provided on a device by device basis.12 A Simple Test ProgramThis section contains a simple test program for the channel operations that can be used to test their operation.It also show exactly how they are used. (This section is NOT YET CORRECT!)This test program does not test that the MPID_SendControl is non-blocking. It does test that messagescan be sent between two processes, and that large numbers can be sent. This helps test for possible resourceexhaustion in the implementation of the routines.The message packet types (MPID_PKT_*_T) are de�ned in the �le `packets.h'. The �le channel.hcontains a typical implementation in terms of message passing.#include "mpid.h"#include <stdio.h>/* Set to stdout to get trace */static FILE *MPID_TRACE_FILE = 0;int main(argc,argv)int argc;char **argv;{MPID_PKT_SHORT_T pkt;int from, ntest, i;ntest = 10000;MPID_Devinit(argc, argv);if (MPID_WorldSize != 2) {fprintf(stderr, "\n", MPID_WorldSize);}for (i=0; i<ntest; i++) {if (MPID_MyWorldRank == 0) {MPID_SendControl(&pkt, sizeof(MPID_PKT_SHORT_T), 1);from = -1;MPID_RecvAnyControl(&pkt, sizeof(MPID_PKT_SHORT_T), &from);if (from != 1) {fprintf(stderr,"0 received message from %d, expected 1\n", from);}}else {from = -1;MPID_RecvAnyControl(&pkt, sizeof(MPID_PKT_SHORT_T), &from);if (from != 0) { 9

fprintf(stderr,"1 received message from %d, expected 0\n", from);}MPID_SendControl(&pkt, sizeof(MPID_PKT_SHORT_T), 0);}}MPID_Devend();return 0;}13 Future DevelopementsThe de�nition of this interface is changing slowly as more devices are added and as we continue to workfor better performance. The areas that are likely to change the most include (a) collective operations, (b)support for faster MPI_Bsend, (c) enhanced support for systems with limited or inadequate bu�ering, and(d) special support for systems that can not send messages to themselves. We solicit comments for theseand other changes.AcknowledgmentsThe design of this interface has bene�ted from discussions with many people, including Jim Cownie of Meiko,Lloyd Lewins of Hughes, Eric Salo and Greg Chesson of SGI, Bjarne Herland of University of Bergen, Norway,and Erik Sharakan of Thinking Machines.

10

