
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-215
STALK Programmers GuidebyDavid Levine;� Michael Facello;y Philip Hallstrom;zGreg Reeder;z Brian Walenz;z and Fred StevensxMathematics and Computer Science DivisionTechnical Memorandum No. 215July 1996This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, andby the O�ce of Health and Environmental Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.yComputer Science Department, University of Illinois, Champaign, Illinois.zScience and Engineering Research Semester Program, Argonne National Laboratory, Argonne, Illinois 60439.xCenter for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439.

Contents1 Introduction 12 stalk.ga: Data Structures 12.1 General Atomic Input Information : 12.2 Sidechain Rotations : 22.3 Rotamer Initialization : 42.4 Energy Computation : 52.4.1 Basic Energy Function : 52.4.2 Partitioning : 62.5 Program Structure : 72.6 Compilation : 83 stalk.cave: Data Structures 93.1 Program Datatypes : 93.2 Global Variables : 103.3 Program States : 113.4 Top-Level Functions : 113.5 Program Flow : 113.5.1 Input : 123.5.2 Display Lists : 123.5.3 Display Loop : 133.5.4 Navigation Loop : 133.5.5 Computation Loop : 143.5.6 Program Menus : 143.6 Program Files : 153.7 Compilation : 16References 16
iii

STALK Programmers GuidebyDavid Levine, Michael Facello, Philip Hallstrom,Greg Reeder, Brian Walenz, and Fred Stevens1 IntroductionSTALK is a system that models molecular docking between two proteins. A problem is posed as anoptimization problem where the objective is to minimize the intermolecular interaction energy betweenthe two molecules. The possible number of conformations between the two molecules can be verylarge. A parallel genetic algorithm (GA) is used to explore the conformation space and identify thelow-energy molecular con�gurations. The CAVE, a virtual reality environment, can be used to visualizeand interact with the system while it is executing.STALK consists of two programs: stalk.ga, the docking program that runs the GA, and stalk.cave,the visualization program. The visualization component is optional.2 stalk.ga: Data Structures2.1 General Atomic Input InformationData about the atoms read from the .car �les is stored in parallel arrays (i.e., arrays that are the samesize and indexed similarly by j, an atom index) with n_atoms(i) elements for object (protein) i. Thefollowing arrays store atomic information in the order they occur in the .car �le.� atom { a character string array storing the type of atom (N, CA, O, HA, etc.). Field 1.� location { the three coordinates of the atom. Fields 2{4.� res { a character string array storing the residue type (SER, ASN, TYR, etc.). Field 5.� res_id { a character string array storing the id of the residue. Field 6.� type { atom type (h, hn, o, etc.). Field 7.� elem { element code for the atom (C, H, N, O, etc.). Field 8.� charg { atomic charge. Field 9.� n_atom { number of the atom within the .car �le (the index j)Note that these are really 2-D arrays a(i,j), where i = 1; 2 is a protein index and j = 1; n atoms(i)is the number of atoms in protein i. Here j = 1 is the �rst atom in the .car �le, j = 2, is the secondatom in the .car �le, and so on. 1

2.2 Sidechain RotationsTranslation and rotation are performed through linear transformations of the atom coordinates byusing matrix operations. Sidechain rotations can be expressed as the rotation of a certain group ofatoms around an axis. The important arrays are� The array location(i; j) contains the x; y, and z coordinates of the atoms. The term i is aprotein index, and j is an atom index. A third index, not shown in the �gure, is for x; y, or z.The length of the array is n atoms(i), the total number of atoms in protein i.Another array, bew location(i; j), is calculated each time we evaluate a string that has theupdated atom locations.� The array atom CA(i; s) contains the indices in the location array where alpha carbon (CA)atom s of protein i can be found. There are k CA(i) alpha carbons for each protein i (this is thesame as the number of amino acids).� The array sc start(i; s) contains the indices in the location array where the starting atom s(which is always N for nitrogen in .car �le format) of protein i can be found. This array is also oflength k CA(i). (This array might be better named aa start(i; s) because it is really where theamino acid starts, not just the sidechain.)� The array sc angles(i; k) contains the allele index in the GA string where the kth sidechain anglecan be found. As shown in Figure 1, the sidechain has no chiral angles represented in the string.This situation can occur because the amino acid has no chiral angles or because an input erroroccurred and those chiral angles are not variables in the GA. In general, to �nd out how manychiral angles are in sidechain s, subtract the values for sidechain s from sidechain s + 1. If theresult is 0, there are no chiral angles; if 1, there is one chiral angle; and so on. This array containspointers for both proteins. The GA string is of length num angles+6, where num angles is thetotal number of sidechain angles in both proteins and the \6" represents three for translation andthree for rotation.As shown in Figure 1, several arrays store information about the sidechains. Speci�cally, k_CA(s)stores the index of the alpha carbon for the sth sidechain, and sc_start(s) stores the beginning of thesidechain. For each type of amino acid, up to four positions along the sidechain can be rotated. Givena type number t, the array chi_angles(t) stores the pointers to the key atoms along the sidechain fora sidechain of type t. (Note: the sidechain type is given by the function sc_num.) These key atoms areimportant for the rotations and for measuring chiral angles. These pointers assume that the sidechainatoms start at position 1; thus, the o�set of the �rst atom of the sidechain in the location array needsto be added to the numbers in chi_angles. In addition, a chromosome in the GA stores the actualangle values, and the array sc_angles(s) stores a pointer to the �rst angle for sidechain s.Figure 2 shows the contents of the chi angles(t) (chiral angles) array. This array points at thekey atoms (see the appendix in the users guide) in an amino acid that are used to de�ne a chiral angle.For an amino acid with four chiral angles, we can get �1 using chi angles(1){chi angles(4), �2 usingchi angles(2){chi angles(5), �3 using chi angles(3){chi angles(6), and �4 using chi angles(4){chi angles(7). In each case these four atoms de�ne the respective chiral angle.2

s s+1 s+2

Translate Rotate

atom_CA(i)

1 s k_CA(i)

location(i)

1 n_atoms(i)

1 s s+1 k_CA(i)+1

sc_start(i)

sc_angles(i)

1 k_CA(i)+1

string

num_angles+6Figure 1: General Data Structures
3

N CA O CB CGA sidechain of

type t

chi_angles(t)

1 2 3 4 5 6 7 8Figure 2: Chiral Angle Data StructuresThe array sc num(s) provides a mapping into chi angles. To each amino acid s we assign a numberfrom 1 to 20 (e.g., GLY!1, ALA!2,) and we get the t index for chi angles via t = sc num(s).In order to use the above data structures to handle sidechain rotations, the program must assumea speci�c structure for the sidechains. If the input �les do not conform to this structure, the softwarewill give a warning. The program will still run, but the nonconforming sidechain will not be rotated.The speci�c structure expected for each amino acid is given in an appendix in the users guide.2.3 Rotamer InitializationUp to four positions along a sidechain can be rotated. A rotamer is a set of up to four angle values thatuniquely specify the position of the sidechain. These angles are measured according to the standardconvention for de�ning dihedral angles.When rotamer initialization is performed, �rst a random rotamer is chosen for the particular typeof sidechain being considered. Several rotamers can be speci�ed in the input �le, along with theprobability that each will be chosen for initialization. After a rotamer is chosen, a rotation angle mustto be computed for each of the rotation points that will transform the orientation given in the initialdata set to that of the rotamer angles. The function compute_chi_angle computes the current angleat a bond in the sidechain. The di�erence between this and the rotamer angle is used to initialize thechromosome.The array chi_angles de�nes the key atoms along the sidechain used in computing the chiral angles.In some cases, it is not clear which atoms should be used. These cases are cited in the appendix. Shouldthe information in the current chi_angles array be incorrect, it is easy to change the initialization ofthis array in the �le transform.F.Figure 3 shows three arrays used in STALK. The �rst, rot prob, contains cumulative probabilitiesfor the occurrence of the speci�ed rotamer. In the �gure, the probabilities of each rotamers occurringare .2, .3, .3, and .1, respectively, for the cumulative probabilities shown. The probability of randomlygenerating the angles is given by 1.0 minus the �nal cumulative probability (.1 in this example).The array rot angles speci�es the possible rotamer angles. If the angle is in the range [�; �],we interpet that to mean that the user speci�ed the angle; otherwise we generate it randomly. As areminder, all angles in STALK are in radians. 4

.2 .5 .8 .9rot_prob

rot_angles

X

0

0

0

rot_ptr Figure 3: Rotamer Data Structures2.4 Energy ComputationThe energy function is used to rank the GA strings according to which is the best solution to theproblem at any iteration. The energy computation used computes both the coulombic and Van derWaals energy. In the absence of sidechain rotations, only the energy between the two molecules iscomputed, since the energy within a protein is constant. This is not true if sidechain rotations areallowed.2.4.1 Basic Energy FunctionThe basic energy function computes the intermolecular energy. Let Pi be the set of atoms in protein i,with jPij = ni. Let aij be the jth atom of Pi. Then, letEinterC : : : Coulombic energyEinterV : : : Van der Waals energyqij : : : charge of atom j in protein id(aij ; ai0j0) : : : Euclidean distance between the two atomsD : : : dielectric constantAij ; Bij : : : Van der Waals constants depending totally on the type of atom5

2p 3p 4p-1p-2p-3p-4p-5p 0p

1p

2p

3p

-1p

-2p

-3p(-3,-3)

(-1,-1)

(0,0)
1p
(1,0)

(0,1) (1,1)

Figure 4: Energy FunctionEinterC = n1Xj=1 n2Xj0=1 0:322 q1i q2i0 = (D d(a1j; a2j0))EinterV = n1Xj=1 n2Xj0=1A1j A2j0 = d(a1j ; a2j0)6 �B1j B2j0 = d(a1j; a2j0)12Eintertot = EinterC + EinterVThis formula implies an O(n1n2) time algorithm for computing the energy, which is quite large.Section 2.4.2 presents an approximation technique that requires less computation.2.4.2 PartitioningTo reduce the computation time, we use a three-dimensional subdivision of the space, with the size ofa cell of the subdivision speci�ed by a parameter. The cell containing an atom is computed for eachatom. When the energy is being computed, only pairs of atoms that lie in the same cell or immediatelyadjacent cells contribute to the energy sum.As an example, a two-dimensional partition of partition size p is shown in Figure 4. The x coordinateof a box is from the grid point to the left. The y coordinate of a box is from the grid point below. Tocalculate the energy, we consider only atoms in our nearest neighbor (27-point stencil) boxes. Withthe above data structures we can answer queries such as, What atoms lie in box(i; j; k)?The energy function using this partitioning scheme is de�ned as follows. Given a parameter dmin(indicating that if two atoms are within distance dmin of each other, they should be included in thissum), then 6

1 n_atoms(i)

in_box(i)

n_atoms(i)1

n_atoms(i)1

sort_box(i)

map(i) Figure 5: Energy FunctionCij : : : the set of atoms not in protein i within distance dmin of atom aijEinterC = n1Xj=1 Xa2j02C1j 0:322 ; andq1j q2j0 = (D d(a1j; a2j0))EinterV = n1Xi=1 Xa2j02C1j A1j A2j0 = d(a1j ; a2j0)6 + B1j B2j0 = d(a1j; a2j0)12:Figure 5 shows the arrays involved in holding the partitioned information. The array in box(i)contains the coordinates of which box atom i is in. The array sort box(i) contains pointers to theatoms in in box. These have been sorted lexiographically (we say (x1; y1; z1) < (x2; y2; z2) if (1)x1 < x2, y1 < y2, and z1 < z2, or x1 = x2, y1 < y2, and z1 < z2, or x1 = x2, y1 = y2, and z1 < z2)according to which box they are in. The array map(i)contains the number of atoms in each box (it isof length n atoms, since potentially each atom could be in its own box). In Figure 5 there are 2 atomsin the �rst box, 3 atoms in the next box, and so on.2.5 Program StructureThe program is broken down into nine source �les:aux.F This �le contains auxiliary functions, including several sorting and searching routines.energy.F This �le contains functions for computing energy. There is an implementation of boththe basic energy computation (evaluate2) and the energy computation using the partitioning(evaluate). 7

io.F All input and output related functions.main.F All Main driver program. Sets up and initializes MPI communicators. Determines if stalk.caveis to be used.matrix.F This �le contains the matrix and vector operations used in transform.F.partition.F This �le contains the functions for computing the subdivision of the spaced �lled by themolecule.runga.F Calls the initialization routines, calls the GA driver routine, and then calls the clean uproutine.talktocave.F Handles all communication with stalk.cave program.transform.F All procedures for computing the coordinates of a protein after the translation androtation of both the molecule and sidechains as speci�ed by a chromosome.Header �les used areenergy.inc This �le contains global variable declarations. This �le must be included in every functionthat accesses any of these variables.tags.h De�nes parameters used for communication between stalk.ga and stalk.cave.The relevant �les for compiling and building the program arecompile A Unix shell script that calls the Makefile with the proper variables.Make�le Called by compile to actually compile the above �les.In addition the user will need the appropriate MPI and PGAPack header (mpif.h and pgapackf.h)and library �les (libmpi.a and libpgaO.a).2.6 CompilationThis section discusses compiling stalk.ga. For execution information see the STALK users guide[LeFaHaReWaSt95].The source �les, header �les, and compilation �les for stalk.ga are in the directory /home/STALK/source.ga.The subdirectory RCS there is a symbolic link to /home/STALK/source.RCS. This directory contains thesource code in \revision control system" format. These �les must to be checked out before compilationcan occur. (They must also be checked out, in lock mode, before any editing can be done.)In this directory, if one types compile with no parameters you will seeusage: compile <Architecture> <Device> <Visualization>Architecture = { sp2, rs6000, IRIX, sun4 }Device = { ccomm, nexus-tcp, nexus-mpl, p4, mpl }Visualization = { vis, novis } 8

This says that compilemust be called with three parameters|the machine it is being built for (IBMSP, IBM RS6000 workstations, Silicon Graphics workstations, or Sun 4), the communication mechanism(mpl is the only mechanism known to work in the recent past), and whether or not stalk.cave will beused. For example, to build stalk.ga for the IBM SP without a corresponding visualization programuse compile sp2 mpl novis.Here is a complete example where the user edits a �le (runga.F) and rebuilds stalk.ga. First,(runga.F) is checked out of RCS in locked mode, edited, and replaced. Next, all �les needed forcompilation are checked out (not in lock mode) and compile is used to build an executable.In this case, building for the IBM SP, this compilation must be done on either bonnie.mcs.anl.govor clyde.mcs.anl.gov. The compile script will automatically copy the executable (stalk.ga.sp2.mpl)to the correct directory (/home/STALK/bin).cd /home/STALK/source.gaco -l runga.Fvi runga.Fci runga.Fco *.F energy.inc tags.hcompile sp2 mpl novis3 stalk.cave: Data StructuresThe docking package is written in C and runs on an SGI Onyx with three reality engines. (The Onyxdrives the CAVE virtual environment.) The STALK package is written in Fortran and runs on multiplenodes of a 128-node IBM Scalable POWERparallel system. Because these platforms have separate �lesystems, a p4 secure server is started on the machine driving the CAVE. The programs can thencommunicate via MPI (Message Passing Interface) calls.The docking program communicates with the STALK program that drives it, using a version ofMPI. In addition to the MPI library, docking also uses the OpenGL library for the graphics display,and the CAVElib library to drive the CAVE virtual environment.3.1 Program DatatypesThree declared datatypes are used in this program.The structure atom is a link in a linked list. Its elements are the x, y, and z coordinates of anatom; the coordinates of the atom preceding it in the .car �le that it connects to; the element symbol;and a pointer to the next link. There is a separate linked list of atoms for each chain in each molecule,which are linked by the datatype chain.The structure chain is a link in a linked list. Its elements are the x, y, and z coordinates of thealpha carbon that it connects to; the name of the residue it belongs to; a pointer to a list of atoms;and a pointer to the next link. The �rst link points to the molecule's backbone, the next points to the�rst sidechain, and so forth. The coordinates of all the atoms in a chain are relative to coordinates ofits alpha carbon. For the backbone, these coordinates are (0, 0, 0).9

Table 1: stalk.cave Global VariablesType Name Descriptionchain *protein linked list of protein chainschain *drug linked list of drug chainsscinfo *protein info array of info on protein sidechainsscinfo *drug info array of info on drug sidechainsint nsc protein number of protein chains (including backbone)int nsc drug number of drug chains (including backbone)int max menu item length[] length of the longest item in menu iint num menu items[] number of items in menu iGLuint PROTEIN LIST base number for protein display listsGLuint DRUG LIST base number for drug display lists(the following variables are stored in shared memory)double *PPos CAVE coordinates of protein positiondouble *PAngle protein rotations about x, y, and z axesdouble *DPos coordinates of drug relative to proteindouble *DAngle drug rotations relative to proteindouble *energy total energy of systemshort *menu current menu to be displayed (0 = no menu)short *item menu item highlightedshort *action action to take when restarting genetic algorithmshort *stop program terminates when *stop = 1int *sc selected sidechainint *gen genetic algorithm generationshort *state state variable array for parameters (see below)void *Arena shared memory arenaint *ProIndex sidechain angle index array for proteinint *DrugIndex sidechain angle index array for drugint chromlen length of the genetic algorithm chromosomeThe structure scinfo is an element in an array that has information on each sidechain. Its elementsare the x, y, and z coordinates of the alpha carbon the sidechain connects to; the coordinates of the�rst atom in the chain; the name of the residue to which the sidechain belongs; the angle that thesidechain is rotated; and the display mode of the sidechain. The display mode is 0 for normal display,1 for highlighted, or 2 for not displayed.3.2 Global VariablesTable 1 is a list of the global variables in stalk.cave.10

Table 2: stalk.cave Program StatesNumber Mnemonic States Description0 GARUN TRUE/FALSE whether genetic algorithm is running1 INFO DISPLAY ON/OFF whether drug info is displayed2 PROTEIN SURFACE ON/OFF whether protein surface is displayed3 DRUG COLOR PURPLE/FULL COLOR how drug is displayed4 SC DISPLAY ON/OFF whether sidechains are displayed5 WANDMOVE DRUG/BOTH what the wand moves6 WHICH SC SELECTED DRUG/PROTEIN which sidechains are selected7 SC SELECT MODE TRUE/FALSE if in select sidechain mode8 SC ROTATE MODE TRUE/FALSE if in rotate sidechain mode9 ENERGY DISPLAY ON/OFF if energy shown3.3 Program StatesTable 2 is a list of the program states in stalk.cave.3.4 Top-Level Functionsvoid preinit(int argc, char **argv) initializes MPI, input data, allocate shared memory, initializeshared data (arc and argv passed to MPI Init)void init(void) sets up OpenGL lighting model and display listsvoid display(void) controls the CAVE display functionvoid navigate(void) handles molecule and menu manipulationvoid Data Transfer(void) handles MPI communication with STALK programcleanup(void) stops the STALK program and MPI3.5 Program FlowThe program follows the basic format for a CAVE program, as described in the CAVE users guide.However, this program forks an additional process for the navigate function, which handles all wandtransformations and menu control. The computation loop is used for MPI communication. Thus, threeprocesses are running: the display routine, the navigation routine, and the computation loop.From main, the preinit function is called. This function initializes MPI, inputs the molecular datafor the protein and drug molecules, allocates shared memory, and initializes shared data. The CAVEis then initialized; and the init function, which sets up the OpenGL lighting model and display listsis passed to CAVEInitApplication. From there, the program starts three separate processes. Thedisplay function is passed to CAVEDisplay, for the �rst process. The second process is forked manuallyand runs the navigate function. The third process is the CAVE computation loop, from which is run11

the Data Transfer function, which handles communication with the STALK program. When \EndSimulation" is selected from the main menu, the cleanup function and CAVEExit are called, and theprogram ends.3.5.1 InputThe input function is called from the preinit function �rst for the protein molecule, then for the drugmolecule. For its input, it takes a pointer to the chain data type. It returns an integer representingthe number of chains (backbone and sidechains) in the molecule.For each molecule, the docking program receives �ve sets of data from the STALK program. The�rst is the number of atoms in the molecule; the second is an array of character strings for the atomtypes; the last three are arrays of doubles for the x, y, and z coordinates.The information for each atom is then placed in the chain linked lists, with the atom types deter-mining which atoms are connected and into which chain the atom is placed. The coordinates are scaledfor the CAVE.3.5.2 Display ListsFour display lists are created for the backbone and each sidechain of each molecule. This con�gurationallows for separate and quick manipulation of individual sidechains. The �rst set of display lists is forthe normal, full-color display mode. The second is for a special mode, which is with a surface for theprotein and ia in magenta for the drug. The third set is for highlighted sidechains in the normal mode.The last set is for highlighted sidechains in the special mode, which is redundant in the case of thedrug molecule, because the atom sizes are the same as in the normal mode. These sets are created bycalling the function Atom List with the proper input values.The Atom List function creates a separate display list for each chain (including the backbone) of amolecule, according to the input parameters. Its inputs are a pointer to the molecule's chain linked-list,a display list base number, a oating-point number to scale the atom sizes, and color vectors for eachatom and for the molecular bonds. For each chain, a new display list is created. For each atom in thechain, a sphere is drawn at the coordinates stored in its link, with the size determined by the atomtype and scaled by the input scale, and its color determined by the input color for that atom type.A line is then drawn in its input color, from the atom's coordinates to the coordinates of the atom itconnects to (cx, cy, and cz in the link).After the molecule display lists are created, the chain data structures for the molecules are no longerneeded, so the sidechain information is transferred to the scinfo arrays, and the memory for the linkedlists is freed up.To access a particular display list, three pieces of information are needed. The �rst is the displaylist base, which is either PROTEIN LIST or DRUG LIST. Second is the mode, which is selected bymultiplying zero, one, two, or three by the number of sidechains in the molecule (nsc protein ornsc drug) and adding this to the display list base. Third is the particular sidechain, which is selectedby adding its number to the result above.A display list is also created for each character in the bitmap font, with a call to the functionmakeRasterFont, which is taken from the OpenGL sample program \font.c".12

3.5.3 Display LoopThe display function is called twice per frame (once for each eye) for each wall. It �rst clears theviewing screens to black, then draws the view according the program states. If a menu is selected,it calls display menu with the current menu and item numbers. The function display menu drawsthe menu with the entries given by the function menu entry and highlights the input item. If theSTALK program has sent the initial drug position, the display function calls the function display info.The function display info displays the generation number at the top center of the front wall, and, ifselected, the drug position and total energy. Finally, the molecules are displayed by calls to the functiondisplay molecule.The function display molecule displays a molecule according to the input parameters. Its inputsare the position, angle, and sidechain information arrays for the molecule; the number of chains in themolecule; the display list base number; a number signifying which display mode the molecule is to bedrawn in (normal or special); and the sidechain selected (or 0, if no sidechain is selected). First, thebackbone is drawn at its location and orientation, according to the display mode. Then, each sidechainis drawn at its relative position and orientation, according to its individual display mode, the overalldisplay mode, and whether or not the sidechain is currently selected.3.5.4 Navigation LoopThe navigate function runs on a separate process and exits, without returning, when \End Simulation"is selected from the main menu. It is used to manipulate the program by using the wand. Whatthe wand manipulates is based on the program states. The possibilities, in order of preference, aresidechain selection, sidechain rotation, menu control, and movement of molecules.In the sidechain selection mode, the navigate function calls the nav select function with the numberof protein chains if protein sidechains is selected, or the number of drug sidechains otherwise. The otherinput to this function is a pointer to the selected sidechain number. If button 1 on the wand is pressed,the function increments this number. If button 2 is pressed, the number is decremented. If button 3 ispressed, the sidechain selection mode is exited.In the sidechain rotation mode, the navigate function calls the nav rotate function with the proteinscinfo array if protein sidechains is selected, or the drug scinfo array otherwise. The other input tothis function is the selected sidechain number. While button 1 is pressed, the function increases thesidechain angle, rotating it counterclockwise. While button 2 is pressed, the angle decreases, rotatingthe sidechain clockwise. If button 3 is pressed, the sidechain rotation mode is exited.If neither of the above modes is in e�ect and a menu is selected, the function nav menu is called,with pointers to the menu and item numbers. If button 1 is pressed, the item number is incremented.If button 2 is pressed, the item number is decremented. If button 3 is pressed, the menu action fromthe function menu action is taken for the selected item.If neither of the above modes is in e�ect and no menu is selected, the function nav molecule iscalled, with a number signifying whether to move just the drug molecule or both molecules. Whilebutton 1 is pressed, the molecules are translated by the motion of the wand. While button 2 is pressed,the molecules are rotated by the orientation of the wand. If button 3 is pressed, the main menu isselected. If the drug molecule is moved by itself, the energy is blanked until a new energy evaluation13

is done.3.5.5 Computation LoopThe function Data Transfer is called by the CAVE computation loop. The loop exits when \EndSimulation" is selected from the main menu.The Data Transfer function handles all MPI communication with the STALK program, after theinitial input. In the normal running mode, on each iteration the function sends a signal to the STALKprogram, requesting that it send the best chromosome and its energy evaluation. The function thenreceives these values and extracts the drug position and orientation from the chromosome, scaling thecoordinates for the CAVE. The coordinates and angles are also added to the protein's, so that thedrug's position and orientation are relative to the protein. The individual sidechain rotations are alsoextracted.When the user suspends the algorithm, a signal is sent to the STALK program telling it to waitfor the drug's new position and orientation to be sent back. These will be sent back with the proteininformation subtracted out and the coordinates unscaled. The information will be sent with a tagtelling the STALK program what action to take. The possible actions are as follows:Energy evaluation Evaluate the drug's energy at this position, send the evaluation back, and waitto receive the information again.Replace worst member Restart the algorithm, replacing the worst member with the returned chro-mosome, and wait for a request.Reseed population Restart the algorithm, reseeding the population with the returned chromosome,and wait for a request.Restart algorithm Restart the algorithm without changing anything, and wait for a request.If a request for an energy evaluation was sent, the function receives this information and sends anew chromosome, when the time comes. Otherwise, it returns to the normal running mode.3.5.6 Program MenusThe program menus allow the user to change certain parameters of the program. The number ofmenus, number of items in each menu and maximum length of a menu entry for each menu, are de�nedin the global variables max menu item length[] and num menu items[]. Max menu item length[i] isthe maximum length of an entry for menu i. Num menu items[i] is the number of items in menu i.Max menu item length[0] and num menu items[0] are always 0. The features of the individual menuitems are de�ned in the functions menu entry and menu action.The function menu entry is called for each item in the current menu, from the display menu functionin the display loop. Its inputs are the current menu number and an item number. The menu numberis used by a switch statement to choose a nested switch statement for that menu. The item number isused by that switch statement to choose what to display for that entry.14

The function menu action is called from the nav menu function in the navigation loop when button 3of the wand is pressed. Pointers to the numbers of the selected menu and item are its inputs. Themenu number is used by a switch statement to choose a nested switch statement for that menu. Theitem number is used by that switch statement to choose the action to take for the item chosen.Currently three menus are used by the program. Menu 1 (the main menu) is brought up bypressing button 3 of the wand when no menu is displayed; it controls overall program parameters.Menu 2 (sidechain operations) is brought up by selecting \Sidechain Operations" from the main menu;it controls the parameters of individual sidechains. Menu 3 (restart options) is brought up when thegenetic algorithm is restarted from the main menu; it controls how the algorithm is to be restarted.Menus 1 and 2 are exited by selecting \Exit Menu"; menu 3 is exited by selecting any item.To add an item to an existing menu, one simply adds a case statement for the item in the appropriateswitch statement for the menu to which it will be added, in both the menu entry and menu actionfunctions. Then, the entry is updated in num menu items for the appropriate menu. If the item addedhas a longer entry than any existing items in the menu, the appropriate entry of max menu item lengthmust be updated.To add a new menu, a switch statement for the menu is added in both the menu entry andmenu action functions. Then entries for the menu are added in num menu items and max menu item length.3.6 Program FilesThe project directory for the docking program is /afs/fl/home/levine/STALK. There is also a test di-rectory at /afs/fl/home/levine/STALK/util/CAVE2. The program header �les are in the source.cavedirectory. These are listed below:stalk.cave.h program includes, de�nes, and typedefsglobals.h all global variablesfonts.h bitmap de�nition of the font used for menu and data displayThe program source code is in the source.cave directory. The functions in each �le are listedbelow:main.c main program looppreinit.c preinit, cleanupinit.c init, Atom List, SolidSphere, Squaredisplay.c display, display menu, display info, display moleculenav.c navigate, nav select, nav rotate, nav menu, nav moleculecomp.c Data Transferinput.c input 15

menu.c menu entry, menu actionfont.c makeRasterFont, printString3.7 CompilationThis section discusses compiling stalk.cave. For information on running it, refer to the users guide.If one types compilewith no parameters in the directory /afs/fl/home/levine/STALK/source.caveyou will seeusage: compile <Architecture> <Device> <Visualization>Architecture = { sgi }Device = { ccomm, nexus, p4 }Visualization = { sim, cave }This says that compile must be called with three parameters|the machine it is being built for(The Silicon Graphics Onyx is the only choice currently), the communication mechanism (nexus is theonly mechanism that works with stalk.ga's mpl), and whether to use the CAVE (cave) or CAVEsimulator (sim).References[Le95a] D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm Library. Argonne NationalLaboratory, ANL-95/18, January 1996.[Le95b] D. Levine. A public-domain parallel genetic algorithm library. Available by anonymous ftpfrom info.mcs.anl.gov in the directory pub/pgapack, �le pgapack.tar.Z[LeFaHaReWaSt95] D. Levine, M. Facello, P. Hallstrom, G. Reeder, B. Walenz, and F. Stevens. STALKUsers Guide. ANL/MCS-TM-214, Argonne National Laboratory, 1996.
16

