ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL/MCS-TM-215

STALK Programmers Guide

by
David Levine,* Michael Facello,! Philip Hallstrom,}
Greg Reeder,t Brian Walenz ¥ and Fred Stevenss

Mathematics and Computer Science Division

Technical Memorandum No. 215

July 1996

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and
by the Office of Health and Environmental Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.

fComputer Science Department, University of Illinois, Champaign, Illinois.

‘Science and Engineering Research Semester Program, Argonne National Laboratory, Argonne, Illinois 60439.

§Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439.

Contents

1 Introduction

2 stalk.ga: Data Structures

2.1 General Atomic Input Information Lo o oo Lo
2.2 Sidechain Rotations e
2.3 Rotamer Initialization0 0 e
2.4 Energy Computationo e

2.4.1 Basic Energy Function L

2.4.2 Partitioning oL e e e e e
2.5 Program Structure L L e e e e

2.6 Compilation

3 stalk.cave: Data Structures

3.1 Program Datatypes. L
3.2 Global Variables oL
3.3 Program States L e
3.4 Top-Level Functions 0 e
3.5 Program Flow L e
3.5.1 Input . ..o e e e e
3.5.2 Display Lists o o e
3.5.3 Display Loop o e
3.5.4 Navigation Loop e
3.5.5 Computation Loop e
3.5.6 Program Menus
3.6 Program Files L e

3.7 Compilation

References

iii

10
11
11
11
12
12
13
13
14
14
15
16

16

STALK Programmers Guide
by

David Levine, Michael Facello, Philip Hallstrom,
Greg Reeder, Brian Walenz, and Fred Stevens

1 Introduction

STALK is a system that models molecular docking between two proteins. A problem is posed as an
optimization problem where the objective is to minimize the intermolecular interaction energy between
the two molecules. The possible number of conformations between the two molecules can be very
large. A parallel genetic algorithm (GA) is used to explore the conformation space and identify the
low-energy molecular configurations. The CAVE, a virtual reality environment, can be used to visualize
and interact with the system while it is executing.
STALK consists of two programs: stalk.ga, the docking program that runs the GA, and stalk.cave,

the visualization program. The visualization component is optional.

2 stalk.ga: Data Structures

2.1 General Atomic Input Information

Data about the atoms read from the .car files is stored in parallel arrays (i.e., arrays that are the same
size and indexed similarly by j, an atom index) with n_atoms(i) elements for object (protein) i. The
following arrays store atomic information in the order they occur in the .car file.

e atom — a character string array storing the type of atom (N, CA, O, HA, etc.). Field 1.
e location — the three coordinates of the atom. Fields 2—4.

e res — a character string array storing the residue type (SER, ASN, TYR, etc.). Field 5.
e res_id — a character string array storing the id of the residue. Field 6.

e type — atom type (h, hn, o, etc.). Field 7.

e clem — element code for the atom (C, H, N, O, etc.). Field 8.

e charg — atomic charge. Field 9.

e n_atom — number of the atom within the .car file (the index j)

Note that these are really 2-D arrays a(¢,j), where ¢ = 1,2 is a protein index and j = 1,n_atoms(¢)
is the number of atoms in protein 7. Here 7 = 1 is the first atom in the .car file, j = 2, is the second
atom in the .car file, and so on.

2.2 Sidechain Rotations

Translation and rotation are performed through linear transformations of the atom coordinates by
using matrix operations. Sidechain rotations can be expressed as the rotation of a certain group of
atoms around an axis. The important arrays are

e The array location(i,j) contains the z,y, and z coordinates of the atoms. The term ¢ is a
protein index, and 7 is an atom index. A third index, not shown in the figure, is for z,y, or z.
The length of the array is n_atoms(i), the total number of atoms in protein 7.

Another array, bew_location(s,j), is calculated each time we evaluate a string that has the
updated atom locations.

o The array atom_CA(¢,s) contains the indices in the location array where alpha carbon (CA)
atom s of protein ¢ can be found. There are k_CA(7) alpha carbons for each protein ¢ (this is the
same as the number of amino acids).

e The array sc_start(i,s) contains the indices in the location array where the starting atom s
(which is always N for nitrogen in .car file format) of protein ¢ can be found. This array is also of
length k_CA(7). (This array might be better named aa_start(i,s) because it is really where the
amino acid starts, not just the sidechain.)

o The array sc_angles(i, k) contains the allele index in the GA string where the kth sidechain angle
can be found. As shown in Figure 1, the sidechain has no chiral angles represented in the string.
This situation can occur because the amino acid has no chiral angles or because an input error
occurred and those chiral angles are not variables in the GA. In general, to find out how many
chiral angles are in sidechain s, subtract the values for sidechain s from sidechain s+ 1. If the
result is 0, there are no chiral angles; if 1, there is one chiral angle; and so on. This array contains
pointers for both proteins. The GA string is of length num_angles+6, where num_angles is the
total number of sidechain angles in both proteins and the “6” represents three for translation and
three for rotation.

As shown in Figure 1, several arrays store information about the sidechains. Specifically, k_CA(s)
stores the index of the alpha carbon for the sth sidechain, and sc_start(s) stores the beginning of the
sidechain. For each type of amino acid, up to four positions along the sidechain can be rotated. Given
a type number ¢, the array chi_angles(?) stores the pointers to the key atoms along the sidechain for
a sidechain of type t. (Note: the sidechain type is given by the function sc_num.) These key atoms are
important for the rotations and for measuring chiral angles. These pointers assume that the sidechain
atoms start at position 1; thus, the offset of the first atom of the sidechain in the location array needs
to be added to the numbers in chi_angles. In addition, a chromosome in the GA stores the actual
angle values, and the array sc_angles(s) stores a pointer to the first angle for sidechain s.

Figure 2 shows the contents of the chi_angles(t) (chiral angles) array. This array points at the
key atoms (see the appendix in the users guide) in an amino acid that are used to define a chiral angle.
For an amino acid with four chiral angles, we can get x7 using chi_angles(1)-chi_angles(4), y2 using
chi_angles(2)-chi_angles(5), x3 using chi_angles(3)-chi_angles(6), and y4 using chi_angles(4)-
chi_angles(7). In each case these four atoms define the respective chiral angle.

1 S k_CA(i)
somcad [] [\ []
1 \\ n_atoms(i)
V
location(i)
A /J
sc_start(i) | | |' |/ | | |
1 s s+l k_CA(i)+1
1 S s+l st2 k_CA(i)+1
x_angles) L] NN ||
DM
string ﬂ W
|

NN

Translate

Rotate

Figure 1:

General Data Structures

num_angles+6

asdechanot (NN] Ted | o] &e| |

typet /

ciengesty T[T T T]
1 2 3 4 5 6 7 8

Figure 2: Chiral Angle Data Structures

The array sc_num(s) provides a mapping into chi_angles. To each amino acid s we assign a number
from 1 to 20 (e.g., GLY—1, ALA—2,) and we get the ¢ index for chi_angles via ¢t = sc_num(s).

In order to use the above data structures to handle sidechain rotations, the program must assume
a specific structure for the sidechains. If the input files do not conform to this structure, the software
will give a warning. The program will still run, but the nonconforming sidechain will not be rotated.
The specific structure expected for each amino acid is given in an appendix in the users guide.

2.3 Rotamer Initialization

Up to four positions along a sidechain can be rotated. A rotameris a set of up to four angle values that
uniquely specify the position of the sidechain. These angles are measured according to the standard
convention for defining dihedral angles.

When rotamer initialization is performed, first a random rotamer is chosen for the particular type
of sidechain being considered. Several rotamers can be specified in the input file, along with the
probability that each will be chosen for initialization. After a rotamer is chosen, a rotation angle must
to be computed for each of the rotation points that will transform the orientation given in the initial
data set to that of the rotamer angles. The function compute_chi_angle computes the current angle
at a bond in the sidechain. The difference between this and the rotamer angle is used to initialize the
chromosome.

The array chi_angles defines the key atoms along the sidechain used in computing the chiral angles.
In some cases, it is not clear which atoms should be used. These cases are cited in the appendix. Should
the information in the current chi_angles array be incorrect, it is easy to change the initialization of
this array in the file transform.F.

Figure 3 shows three arrays used in STALK. The first, rot_prob, contains cumulative probabilities
for the occurrence of the specified rotamer. In the figure, the probabilities of each rotamers occurring
are .2, .3, .3, and .1, respectively, for the cumulative probabilities shown. The probability of randomly
generating the angles is given by 1.0 minus the final cumulative probability (.1 in this example).

The array rot_angles specifies the possible rotamer angles. If the angle is in the range [, 7],
we interpet that to mean that the user specified the angle; otherwise we generate it randomly. As a
reminder, all angles in STALK are in radians.

rot_prob 2 5 8 9

rot_angles

olo|o|x

rot_ptr

Figure 3: Rotamer Data Structures

2.4 Energy Computation

The energy function is used to rank the GA strings according to which is the best solution to the
problem at any iteration. The energy computation used computes both the coulombic and Van der
Waals energy. In the absence of sidechain rotations, only the energy between the two molecules is
computed, since the energy within a protein is constant. This is not true if sidechain rotations are

allowed.

2.4.1 Basic Energy Function

The basic energy function computes the intermolecular energy. Let F; be the set of atoms in protein i,
with |P;| = n;. Let a;; be the jth atom of P;. Then, let

Eénter Coulombic energy
E%/nter ... Van der Waals energy
¢ij ... charge of atom j in protein :
d(a;;, ayy) ... Euclidean distance between the two atoms
D ... dielectric constant
Ai;, Bi; ... Van der Waals constants depending totally on the type of atom

3p

2p
01 | (1D
1p

©00) (1,0

-1,-1
D |

.2p

('31'3) .3p

Figure 4: Energy Function

ny N2

EEET — NN 0,322 g1 goi /(D danj, aggr))
J=15'=1
R nq no
E%/nter = Z Z A1] A2j’ / d(alj, 612]‘/)6 — B1] sz/ /d(alj, a2]‘/)12
J=15'=1
Einter _ Einter 1 Einter
tot - C 14

This formula implies an O(nqng) time algorithm for computing the energy, which is quite large.
Section 2.4.2 presents an approximation technique that requires less computation.

2.4.2 Partitioning

To reduce the computation time, we use a three-dimensional subdivision of the space, with the size of
a cell of the subdivision specified by a parameter. The cell containing an atom is computed for each
atom. When the energy is being computed, only pairs of atoms that lie in the same cell or immediately
adjacent cells contribute to the energy sum.

As an example, a two-dimensional partition of partition size pis shown in Figure 4. The z coordinate
of a box is from the grid point to the left. The y coordinate of a box is from the grid point below. To
calculate the energy, we consider only atoms in our nearest neighbor (27-point stencil) boxes. With
the above data structures we can answer queries such as, What atoms lie in box(7, j, k)?

The energy function using this partitioning scheme is defined as follows. Given a parameter d,,;,
(indicating that if two atoms are within distance d,,;, of each other, they should be included in this

sum), then

1 n_atoms(i)

in_box(i)
1 n_atoms(i)
sort_box(i)
1 n_atoms(i)
map(i)
Figure 5: Energy Function
Ci; ... the set of atoms not in protein ¢ within distance d,,;, of atom a;;
. 71
Eénter = Z Z 0.322 ,andq; g2 / (D d(aq;, agjr))
j:l a2]/eOlj
- 71
E%/n er = Z Z A1] AQ]" / d(alj, azj/)6 —|— B1] sz/ / d(alj, a2]‘/)12
=1 a2]/eOlj

Figure 5 shows the arrays involved in holding the partitioned information. The array in_box(¢)
contains the coordinates of which boz atom 7 is in. The array sort_box(i) contains pointers to the
atoms in in_box. These have been sorted lexiographically (we say (w1,y1,21) < (@2,y2,22) if (1)
1 < X2, y1 < Y2, and 2 < 2, Or T = X2, Y1 < Y2, and 2 < 2z, OF T = g, Y1 = Y2, and z; < z3)
according to which box they are in. The array map(¢)contains the number of atoms in each box (it is
of length n_atoms, since potentially each atom could be in its own box). In Figure 5 there are 2 atoms
in the first box, 3 atoms in the next box, and so on.

2.5 Program Structure
The program is broken down into nine source files:

aux.F This file contains auxiliary functions, including several sorting and searching routines.

energy.F This file contains functions for computing energy. There is an implementation of both
the basic energy computation (evaluate2) and the energy computation using the partitioning
(evaluate).

io.F All input and output related functions.

main.F All Main driver program. Sets up and initializes MPI communicators. Determines if stalk.cave
is to be used.

matrix.F This file contains the matrix and vector operations used in transform.F.

partition.F This file contains the functions for computing the subdivision of the spaced filled by the
molecule.

runga.F Calls the initialization routines, calls the GA driver routine, and then calls the clean up
routine.

talktocave.F Handles all communication with stalk.cave program.

transform.F All procedures for computing the coordinates of a protein after the translation and
rotation of both the molecule and sidechains as specified by a chromosome.

Header files used are

energy.inc This file contains global variable declarations. This file must be included in every function
that accesses any of these variables.

tags.h Defines parameters used for communication between stalk.ga and stalk.cave.
The relevant files for compiling and building the program are

compile A Unix shell script that calls the Makefile with the proper variables.

Makefile Called by compile to actually compile the above files.

In addition the user will need the appropriate MPI and PGAPack header (mpif.h and pgapackf.h)
and library files (1ibmpi.a and libpga0.a).

2.6 Compilation

This section discusses compiling stalk.ga. For execution information see the STALK users guide
[LeFaHaReWaSt95].

The source files, header files, and compilation files for stalk.ga are in the directory /home/STALK/source.ga.
The subdirectory RCS there is a symbolic link to /home/STALK/source.RCS. This directory contains the
source code in “revision control system” format. These files must to be checked out before compilation
can occur. (They must also be checked out, in lock mode, before any editing can be done.)

In this directory, if one types compile with no parameters you will see

usage: compile <Architecture> <Device> <Visualization>

Architecture = { sp2, rs6000, IRIX, sun4 }
Device = { ccomm, nexus-tcp, nexus-mpl, p4, mpl }
Visualization = { vis, novis }

This says that compile must be called with three parameters—the machine it is being built for (IBM
SP, IBM RS6000 workstations, Silicon Graphics workstations, or Sun 4), the communication mechanism
(mpl is the only mechanism known to work in the recent past), and whether or not stalk.cave will be
used. For example, to build stalk.ga for the IBM SP without a corresponding visualization program
use compile sp2 mpl novis.

Here is a complete example where the user edits a file (runga.F) and rebuilds stalk.ga. First,
(runga.F) is checked out of RCS in locked mode, edited, and replaced. Next, all files needed for
compilation are checked out (not in lock mode) and compile is used to build an executable.

In this case, building for the IBM SP, this compilation must be done on either bonnie.mcs.anl.gov
or clyde.mcs.anl.gov. The compile script will automatically copy the executable (stalk.ga.sp2.mpl)
to the correct directory (/home/STALK/bin).

cd /home/STALK/source.ga
co -1 runga.F

vi runga.F

ci runga.F

co *.F energy.inc tags.h
compile sp2 mpl novis

3 stalk.cave: Data Structures

The docking package is written in C and runs on an SGI Onyx with three reality engines. (The Onyx
drives the CAVE virtual environment.) The STALK package is written in Fortran and runs on multiple
nodes of a 128-node IBM Scalable POWERparallel system. Because these platforms have separate file
systems, a pd secure server is started on the machine driving the CAVE. The programs can then
communicate via MPI (Message Passing Interface) calls.

The docking program communicates with the STALK program that drives it, using a version of
MPI. In addition to the MPI library, docking also uses the OpenGL library for the graphics display,
and the CAVEIlib library to drive the CAVE virtual environment.

3.1 Program Datatypes

Three declared datatypes are used in this program.

The structure atom is a link in a linked list. Its elements are the z, y, and z coordinates of an
atom; the coordinates of the atom preceding it in the .car file that it connects to; the element symbol;
and a pointer to the next link. There is a separate linked list of atoms for each chain in each molecule,
which are linked by the datatype chain.

The structure chain is a link in a linked list. Its elements are the z, y, and z coordinates of the
alpha carbon that it connects to; the name of the residue it belongs to; a pointer to a list of atoms;
and a pointer to the next link. The first link points to the molecule’s backbone, the next points to the
first sidechain, and so forth. The coordinates of all the atoms in a chain are relative to coordinates of
its alpha carbon. For the backbone, these coordinates are (0, 0, 0).

Table 1: stalk.cave Global Variables

Type Name Description

chain *protein linked list of protein chains

chain *drug linked list of drug chains

scinfo *protein_info array of info on protein sidechains

scinfo *drug_info array of info on drug sidechains

int nsc_protein number of protein chains (including backbone)
int nsc_drug number of drug chains (including backbone)
int max_menu_item_length[] length of the longest item in menu i

int num_menu_items | number of items in menu i

GLuint PROTEIN_LIST base number for protein display lists

GLuint DRUG_LIST base number for drug display lists

(the following variables are stored in shared memory)

double *PPos CAVE coordinates of protein position

double *PAngle protein rotations about x, y, and z axes
double *DPos coordinates of drug relative to protein

double *DAngle drug rotations relative to protein

double *energy total energy of system

short *menu current menu to be displayed (0 = no menu)
short *item menu item highlighted

short *action action to take when restarting genetic algorithm
short *stop program terminates when *stop = 1

int *sc selected sidechain

int *gen genetic algorithm generation

short *state state variable array for parameters (see below)
void *Arena shared memory arena

int *Prolndex sidechain angle index array for protein

int *Druglndex sidechain angle index array for drug

int chromlen length of the genetic algorithm chromosome

The structure scinfois an element in an array that has information on each sidechain. Its elements
are the z, y, and z coordinates of the alpha carbon the sidechain connects to; the coordinates of the
first atom in the chain; the name of the residue to which the sidechain belongs; the angle that the
sidechain is rotated; and the display mode of the sidechain. The display mode is 0 for normal display,
1 for highlighted, or 2 for not displayed.

3.2 Global Variables

Table 1 is a list of the global variables in stalk.cave.

10

Table 2: stalk.cave Program States

Number Mnemonic States Description
0 GARUN TRUE/FALSE whether genetic algorithm is running
1 INFO_DISPLAY ON/OFF whether drug info is displayed
2 PROTEIN_SURFACE ON/OFF whether protein surface is displayed
3 DRUG_COLOR PURPLE/FULL_COLOR how drug is displayed
4 SC_DISPLAY ON/OFF whether sidechains are displayed
5 WANDMOVE DRUG/BOTH what the wand moves
6 WHICH_SCSELECTED DRUG/PROTEIN which sidechains are selected
7 SC_SELECT_MODE TRUE/FALSE if in select sidechain mode
8 SC_ROTATE_MODE TRUE/FALSE if in rotate sidechain mode
9 ENERGY_DISPLAY ON/OFF if energy shown

3.3 Program States

Table 2 is a list of the program states in stalk.cave.

3.4 Top-Level Functions

void preinit(int argc, char **argv) initializes MPI, input data, allocate shared memory, initialize
shared data (arc and argv passed to MPI_Init)

void init(void) sets up OpenGL lighting model and display lists

void display(void) controls the CAVE display function

void navigate(void) handles molecule and menu manipulation

void Data_Transfer(void) handles MPI communication with STALK program

cleanup(void) stops the STALK program and MPI

3.5 Program Flow

The program follows the basic format for a CAVE program, as described in the CAVE users guide.
However, this program forks an additional process for the navigate function, which handles all wand
transformations and menu control. The computation loop is used for MPI communication. Thus, three
processes are running: the display routine, the navigation routine, and the computation loop.

From main, the preinit function is called. This function initializes MPI, inputs the molecular data
for the protein and drug molecules, allocates shared memory, and initializes shared data. The CAVE
is then initialized; and the init function, which sets up the OpenGL lighting model and display lists
is passed to CAVEInitApplication. From there, the program starts three separate processes. The
display function is passed to CAVEDisplay, for the first process. The second process is forked manually
and runs the navigate function. The third process is the CAVE computation loop, from which is run

11

the Data_Transfer function, which handles communication with the STALK program. When “End
Simulation” is selected from the main menu, the cleanup function and CAVEExit are called, and the
program ends.

3.5.1 Input

The input function is called from the preinit function first for the protein molecule, then for the drug
molecule. For its input, it takes a pointer to the chain data type. It returns an integer representing
the number of chains (backbone and sidechains) in the molecule.

For each molecule, the docking program receives five sets of data from the STALK program. The
first is the number of atoms in the molecule; the second is an array of character strings for the atom
types; the last three are arrays of doubles for the z, y, and z coordinates.

The information for each atom is then placed in the chain linked lists, with the atom types deter-
mining which atoms are connected and into which chain the atom is placed. The coordinates are scaled

for the CAVE.

3.5.2 Display Lists

Four display lists are created for the backbone and each sidechain of each molecule. This configuration
allows for separate and quick manipulation of individual sidechains. The first set of display lists is for
the normal, full-color display mode. The second is for a special mode, which is with a surface for the
protein and ia in magenta for the drug. The third set is for highlighted sidechains in the normal mode.
The last set is for highlighted sidechains in the special mode, which is redundant in the case of the
drug molecule, because the atom sizes are the same as in the normal mode. These sets are created by
calling the function Atom _List with the proper input values.

The Atom_List function creates a separate display list for each chain (including the backbone) of a
molecule, according to the input parameters. Its inputs are a pointer to the molecule’s chain linked-list,
a display list base number, a floating-point number to scale the atom sizes, and color vectors for each
atom and for the molecular bonds. For each chain, a new display list is created. For each atom in the
chain, a sphere is drawn at the coordinates stored in its link, with the size determined by the atom
type and scaled by the input scale, and its color determined by the input color for that atom type.
A line is then drawn in its input color, from the atom’s coordinates to the coordinates of the atom it
connects to (cz, cy, and cz in the link).

After the molecule display lists are created, the chain data structures for the molecules are no longer
needed, so the sidechain information is transferred to the scinfo arrays, and the memory for the linked
lists is freed up.

To access a particular display list, three pieces of information are needed. The first is the display
list base, which is either PROTEIN_LIST or DRUG_LIST. Second is the mode, which is selected by
multiplying zero, one, two, or three by the number of sidechains in the molecule (nsc_protein or
nsc_drug) and adding this to the display list base. Third is the particular sidechain, which is selected
by adding its number to the result above.

A display list is also created for each character in the bitmap font, with a call to the function
makeRasterFont, which is taken from the OpenGL sample program “font.c”.

12

3.5.3 Display Loop

The display function is called twice per frame (once for each eye) for each wall. It first clears the
viewing screens to black, then draws the view according the program states. If a menu is selected,
it calls display_menu with the current menu and item numbers. The function display_menu draws
the menu with the entries given by the function menu_entry and highlights the input item. If the
STALK program has sent the initial drug position, the display function calls the function display_info.
The function display_info displays the generation number at the top center of the front wall, and, if
selected, the drug position and total energy. Finally, the molecules are displayed by calls to the function
display_molecule.

The function display_molecule displays a molecule according to the input parameters. Its inputs
are the position, angle, and sidechain information arrays for the molecule; the number of chains in the
molecule; the display list base number; a number signifying which display mode the molecule is to be
drawn in (normal or special); and the sidechain selected (or 0, if no sidechain is selected). First, the
backbone is drawn at its location and orientation, according to the display mode. Then, each sidechain
is drawn at its relative position and orientation, according to its individual display mode, the overall
display mode, and whether or not the sidechain is currently selected.

3.5.4 Navigation Loop

The navigate function runs on a separate process and exits, without returning, when “End Simulation”
is selected from the main menu. It is used to manipulate the program by using the wand. What
the wand manipulates is based on the program states. The possibilities, in order of preference, are
sidechain selection, sidechain rotation, menu control, and movement of molecules.

In the sidechain selection mode, the navigate function calls the nav_select function with the number
of protein chains if protein sidechains is selected, or the number of drug sidechains otherwise. The other
input to this function is a pointer to the selected sidechain number. If button 1 on the wand is pressed,
the function increments this number. If button 2 is pressed, the number is decremented. If button 3 is
pressed, the sidechain selection mode is exited.

In the sidechain rotation mode, the navigate function calls the nav_rotate function with the protein
scinfo array if protein sidechains is selected, or the drug scinfo array otherwise. The other input to
this function is the selected sidechain number. While button 1 is pressed, the function increases the
sidechain angle, rotating it counterclockwise. While button 2 is pressed, the angle decreases, rotating
the sidechain clockwise. If button 3 is pressed, the sidechain rotation mode is exited.

If neither of the above modes is in effect and a menu is selected, the function nav_menu is called,
with pointers to the menu and item numbers. If button 1 is pressed, the item number is incremented.
If button 2 is pressed, the item number is decremented. If button 3 is pressed, the menu action from
the function menu_action is taken for the selected item.

If neither of the above modes is in effect and no menu is selected, the function nav_molecule is
called, with a number signifying whether to move just the drug molecule or both molecules. While
button 1 is pressed, the molecules are translated by the motion of the wand. While button 2 is pressed,
the molecules are rotated by the orientation of the wand. If button 3 is pressed, the main menu is
selected. If the drug molecule is moved by itself, the energy is blanked until a new energy evaluation

13

is done.

3.5.5 Computation Loop

The function Data Transfer is called by the CAVE computation loop. The loop exits when “End
Simulation” is selected from the main menu.

The Data_Transfer function handles all MPI communication with the STALK program, after the
initial input. In the normal running mode, on each iteration the function sends a signal to the STALK
program, requesting that it send the best chromosome and its energy evaluation. The function then
receives these values and extracts the drug position and orientation from the chromosome, scaling the
coordinates for the CAVE. The coordinates and angles are also added to the protein’s, so that the
drug’s position and orientation are relative to the protein. The individual sidechain rotations are also
extracted.

When the user suspends the algorithm, a signal is sent to the STALK program telling it to wait
for the drug’s new position and orientation to be sent back. These will be sent back with the protein
information subtracted out and the coordinates unscaled. The information will be sent with a tag
telling the STALK program what action to take. The possible actions are as follows:

Energy evaluation Evaluate the drug’s energy at this position, send the evaluation back, and wait
to receive the information again.

Replace worst member Restart the algorithm, replacing the worst member with the returned chro-
mosome, and wait for a request.

Reseed population Restart the algorithm, reseeding the population with the returned chromosome,
and wait for a request.

Restart algorithm Restart the algorithm without changing anything, and wait for a request.

If a request for an energy evaluation was sent, the function receives this information and sends a
new chromosome, when the time comes. Otherwise, it returns to the normal running mode.

3.5.6 Program Menus

The program menus allow the user to change certain parameters of the program. The number of
menus, number of items in each menu and maximum length of a menu entry for each menu, are defined
in the global variables max_menu_item_length[] and num_menu_items[]. Max_menu_item_length[:] is
the maximum length of an entry for menu ¢. Num_menu_items[i] is the number of items in menu .
Max_menu_item_length[0] and num_menu_items[0] are always 0. The features of the individual menu
items are defined in the functions menu_entry and menu_action.

The function menu_entry is called for each item in the current menu, from the display_menu function
in the display loop. Its inputs are the current menu number and an item number. The menu number
is used by a switch statement to choose a nested switch statement for that menu. The item number is
used by that switch statement to choose what to display for that entry.

14

The function menu_action is called from the nav_menu function in the navigation loop when button 3
of the wand is pressed. Pointers to the numbers of the selected menu and item are its inputs. The
menu number is used by a switch statement to choose a nested switch statement for that menu. The
item number is used by that switch statement to choose the action to take for the item chosen.

Currently three menus are used by the program. Menu 1 (the main menu) is brought up by
pressing button 3 of the wand when no menu is displayed; it controls overall program parameters.
Menu 2 (sidechain operations) is brought up by selecting “Sidechain Operations” from the main menu;
it controls the parameters of individual sidechains. Menu 3 (restart options) is brought up when the
genetic algorithm is restarted from the main menu; it controls how the algorithm is to be restarted.
Menus 1 and 2 are exited by selecting “Exit Menu”; menu 3 is exited by selecting any item.

To add an item to an existing menu, one simply adds a case statement for the item in the appropriate
switch statement for the menu to which it will be added, in both the menu_entry and menu_action
functions. Then, the entry is updated in num_menu_items for the appropriate menu. If the item added
has a longer entry than any existing items in the menu, the appropriate entry of max menu_item length
must be updated.

To add a new menu, a switch statement for the menu is added in both the menu entry and
menu_action functions. Then entries for the menu are added in num menu_items and max menu_item_length.

3.6 Program Files

The project directory for the docking program is /afs/f1/home/levine/STALK. There is also a test di-
rectory at fafs/f1l/home/levine/STALK/util/CAVE2. The program header files are in the source.cave
directory. These are listed below:

stalk.cave.h program includes, defines, and typedefs
globals.h all global variables

fonts.h bitmap definition of the font used for menu and data display

The program source code is in the source.cave directory. The functions in each file are listed
below:

main.c main program loop

preinit.c preinit, cleanup

init.c init, Atom_List, SolidSphere, Square

display.c display, display_menu, display_info, display_molecule
nav.c navigate, nav_select, nav_rotate, nav_menu, nav_molecule
comp.c Data_Transfer

input.c input

15

menu.c menu_entry, menu_action

font.c makeRasterFont, printString

3.7 Compilation

This section discusses compiling stalk.cave. For information on running it, refer to the users guide.
If one types compile with no parametersin the directory /fafs/f1/home/levine/STALK/source.cave
you will see

usage: compile <Architecture> <Device> <Visualization>
Architecture = { sgi }
Device { ccomm, nexus, p4 }

{ sim, cave }

Visualization

This says that compile must be called with three parameters—the machine it is being built for
(The Silicon Graphics Onyx is the only choice currently), the communication mechanism (nexus is the
only mechanism that works with stalk.ga’s mpl), and whether to use the CAVE (cave) or CAVE
simulator (sim).

References

[Le95a] D. Levine. Users Guide to the PGA Pack Parallel Genetic Algorithm Library. Argonne National
Laboratory, ANL-95/18, January 1996.

[Le95b] D. Levine. A public-domain parallel genetic algorithm library. Available by anonymous ftp
from info.mcs.anl.gov in the directory pub/pgapack, file pgapack.tar.Z

[LeFaHaReWaSt95] D. Levine, M. Facello, P. Hallstrom, G. Reeder, B. Walenz, and F. Stevens. STALK
Users Guide. ANL/MCS-TM-214, Argonne National Laboratory, 1996.

16

