
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-216
MolView Users GuidebyBrian P. WalenzMathematics and Computer Science DivisionTechnical Memorandum No. 216June 1996This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38, and by the Argonne Director's Individual Investigator Program.

ContentsAbstract 11 Introduction 12 Execution 22.1 Advanced Execution : 22.1.1 MPICH, p4 Device : 32.1.2 Nexus : 33 Driver Programs 53.1 PDB Driver : 53.2 Ion Driver : 54 The CAVE Interface 74.1 Main Menu : 74.2 Options Menu : 84.3 Frame Menu : 85 For the Programmer 95.1 Directory Structure : 95.2 Building MolView : 106 Driver Responsibility and Creation 106.1 Driver Initialization : 116.2 Data Formats : 116.3 Data Transmission : 126.3.1 MV AddMolecule() : 136.3.2 MV AddFrame() : 136.3.3 MV Exit() : 137 CAVE Program Modi�cation 137.1 MolView Structures : 147.2 MPI Datatypes : 157.3 Driver to CAVE Transfer Functions : 157.4 CAVE Receive Functions : 157.4.1 ReceiveMolecule() : 157.4.2 ReceiveFrame() : 167.5 Display Routine : 167.6 Menu System : 16References 16iii

MolView Users GuidebyBrian P. WalenzAbstractA system for viewing molecular data in a CAVE virtual reality environment is pre-sented. The system, called MolView, consists of a frontend driver program that preparesthe data and a backend CAVE program that displays the data. Both are written sothat modi�cations and extensions are relatively easy to accomplish.1 IntroductionMolView is an extensible system for viewing molecular data in the CAVE virtual realityenvironment. The user can view the molecule as if it were a physical model, rotating andviewing the object from di�erent angles.The MolView system consists of a backend CAVE program, and several routines that al-low a frontend driver program to easily send data to the CAVE program. All communicationis done via MPI, allowing the driver to be executed on a wide variety of machines.MolView is capable of storing and displaying an arbitrary number of datasets, each ofwhich may have an arbitrary number of time steps, or frames. Thus, there are four generaltypes of data that can be viewed:� Single dataset, single time step� Single dataset, multiple time steps� Multiple datasets, single time step per dataset� Multiple datasets, multiple time steps per datasetMolView can currently only display data. There are no mechanisms to allow the CAVEuser to modify a dataset and send it back to the driver program for later computation.The remainder of this document examines the execution of MolView applications (Sec-tion 2), two example driver programs, ion and pdb (Section 3), and the CAVE interface(Section 4).Section 5 introduces the programming level details of MolView. Sections 6 and 7 explainhow to create custom drivers and modify the CAVE program to accept new data fromcustom drivers 1

2 ExecutionIt is the responsibility of the driver program to supply the CAVE with data to show. How adriver generates the data is arbitrary; some drivers simply read a data �le, whereas otherscompute the solution to a problem in real time.For drivers that execute on a machine that the display trusts � execution is straightfor-ward: MolView driver options [...] displaynameHere, driver is a path to the driver executable that is to be used, options are theoptions to the driver, and displayname is the name of the display that the CAVE programis executed on, chosen from one of four forms, as shown below:Display Type Actionlocal Displays on the local monitor, equivalent to using \:0.0"machine:display.screen Displays on a remote monitorcave Starts the CAVEidesk Starts the ImmersaDeskFor example, to run the pdb driver program in bin to show all the pdb �les in~/proteinsand display them on the display attached to vogon, cd to the MolView home directory andtype MolView bin/pdb ~/proteins/* vogon:0.0The display type cave will perform all the magic that is necessary to start MolViewin the CAVE; check �rst that the CAVE is free for use. The display type idesk will startMolView and show the display on the ImmersaDesk; you must ensure that the ImmersaDeskis free and take the projector out of standby mode. y Both cave and idesk are Argonnespeci�c. See the MolView script itself for low-level execution details.2.1 Advanced ExecutionWhen the driver is executed on a machine that is not trusted, or is a parallel program, theMolView script will not work. The �rst problem is solved by making the machine trustedor by using a secure server. Consult your support sta� or a local MPI guru for help.�An easy way to tell if machine A trusts machine B is to attempt a remote shell from machine B tomachine A, for example, rsh A date.yPoint the projector remote control at the ImmersaDesk screen and press and hold the \standby" button.Repeat to turn o�|just be sure to hold the button down!2

local 0spnode2 1 /sphome/walenz/ION/ion.xspnode3 1 /sphome/walenz/ION/ion.xspnode4 1 /sphome/walenz/ION/ion.xspnode5 1 /sphome/walenz/ION/ion.xalaska.mcs.anl.gov 1 /afs/fl/home/walenz/ION/bin/StartMolViewCaveFigure 2.1: Sample procgroup �le using 5 SP nodes and showing the results in the CAVEWhen the driver is executed in parallel on a trusted machine, startup will need to behandled explicitly. This process depends heavily on which communication device is beingused, and that depends on which machine the driver is being run on. The next two sectionsexplain two common methods at Argonne.2.1.1 MPICH, p4 DeviceThe MPICH communication method exists for most machines and is relatively easy to use.First, a procgroup �le must be created where the driver is executed. This �le contains alist of machines and the program they should run. A sample procgroup �le is shown inFigure 2.1. The �rst column contains the name of the machine, the second is the numberof processes to run on this machine, and the last is the executable to run. The �rst entry,local 0 says to run 0 additional copies on the current machine.The p4 device uses Unix sockets to perform the actual communication. This strategyallows it to run on a wide variety of machines, but also means that performance is notoptimal.Once the procgroup �le is created, the application is launched with driver -p4pgprocgroup. Note that this will fail if the machines listed do not trust the local machine,usually returning permission denied.2.1.2 NexusFor better performance when using a multiprocessor driver on the IBM SP, Nexus MPI maybe used. Instead of using p4 for all communication, Nexus uses MPL for communicationbetween SP nodes, and p4 between the SP and the CAVE.Like MPICH p4, Nexus needs a list of what to run. Since two di�erent methods ofcommunication are being used (MPL and p4), two di�erent lists of processors are needed.Jobs started using the MPL startup routines are speci�ed in much the same way that normalMPL jobs are speci�ed; the user de�nes a set of envrionment variables.For machines that are not started via the MPL startup routines, Nexus consults adatabase �le (Figure 2.2). Like the p4 procgroup, this �le tells Nexus what executable3

alaska.mcs.anl.gov \startup_dir=/afs/fl/home/walenz/WORK/ION/bin \startup_exe=StartMolViewCaveflying.mcs.anl.gov \startup_dir=/afs/fl/home/walenz/WORK/ION/bin \startup_exe=StartMolViewIdeskFigure 2.2: Sample Nexus database �leto run on various machines. The example in Figure 2.2 has two entries: the CAVE onalaska.mcs.anl.gov, and the ImmersaDesk on flying.mcs.anl.gov. Which one is useddepends on the command line used to start the jobs.#!/bin/shMP_HOSTFILE=/sphome/$LOGNAME/SPnodes.`getjid`MP_PROCS=`cat $MP_HOSTFILE | wc -l`MP_PULSE=0MP_EUILIB=usexport MP_HOSTFILE MP_PROCS MP_PULSE MP_EUILIBion.x -mpi -dbfile ~/SP/demo.rdb -nodes alaska.mcs.anl.gov -nonameexpandFigure 2.3: Sample Nexus startup scriptThe script in Figure 2.3 will start the multiprocessor driver on the SP and the CAVEon alaska.mcs.anl.gov.The magic behind Nexus startup is in the command line (\ion.x -mpi ..."):� -mpi tells Nexus that the remaining arguments are for it.� The Nexus database �le is /sphome/walenz/SP/demo.rdb.� In addition to the MPL job startup, start a job on alaska.mcs.anl.gov. Theparameters for the job are de�ned in the database �le.� Do not use the name ion.x when starting the alaska.mcs.anl.gov job.4

3 Driver Programs3.1 PDB DriverThe PDB driver pdb will accept several input .pdb �les, which can be compressed (namesending with \.gz" or \.Z") or uncompressed (names ending with anything else). The pro-gram will parse the �le and send a list of atoms to the CAVE that are sized and colored asfollows: Atom Type Color Relative SizeNitrogen Blue 0.58Hydrogen White 0.58Carbon Green 0.73Sulfur Yellow 0.90Oxygen Red 0.50Unknown Dark Gray 0.25To change these values modify the pdb driver code and recompile.Note: No bonds are shown between atoms.Because of speed considerations, only the �rst 2000 atoms are used. If more than 2000atoms are present in a given �le, a warning message is printed, and the rest are ignored.This approach is taken because showing large numbers of atoms is exceptionally slow.The pdb driver accepts any number of command line arguments. All of them are treatedas names of .pdb �les to show.3.2 Ion DriverThe ion driver ion will read in a data �le of ion positions, process the data to determine ashell structure, color each shell di�erently, and send this processed molecule to the CAVE.The ion driver allows all four types of execution described in the introduction.The general format of the data �le is shown in Figure 3.1, and a sample input �le is inFigure 3.2.The ion driver has one mandatory command line argument, the name of the data �le toshow. An optional argument, -d, forces ion to use a distance-based coloring scheme ratherthan the default shell-based scheme, and is useful for viewing data sets with more than oneframe that do not have a shell structure|the visualization of a minimization procedure,for example. It prevents, (or tries to prevent) the color scheme from changing rapidly whileviewing the minimization process. In some cases, it will come close to coloring each shelldi�erently; in others, a single shell might have two di�erent colors. The -d argument mustbe the �rst argument on the ion command line.5

f NAME OF MOLECULENUMBER OF ATOMS IN MOLECULE, nf \FRAME"ENERGY OF THIS CONFIGURATIONLIST OF x, y, z POSITIONS OF n ATOMSg\END OF MOLECULE"gFigure 3.1: General ion input �le format. The brackets represent blocks in the input �le.Each block must be included at least once. There is no limit on the number of blocksOneFrame5FRAME.33057547E+02-.65301218E+00 .57223214E+00 -.12000438E+01.10593340E+01 .56625598E+00 .86668641E+00.48532373E+00 .13598468E+01 -.39817273E+00-.14570831E+00 -.96484823E+00 -.11143683E+01-.26061340E+00 -.17363993E+00 .14477256E+01END_OF_MOLECULETwoFrames4FRAME.39404080E+02-.11071736E+01 .51080004E+00 -.94137694E+00.47903853E+00 .55072851E+00 .13601102E+01-.10358628E+00 -.84134423E+00 .12899959E+01.12626000E+01 .92686556E+00 .81957154E-01FRAME.46088283E+02-.10480169E+01 -.12001274E+01 .14769891E+00-.22749490E-01 .80373052E+00 -.13834594E+01.59944587E+00 -.14829747E+01 -.43713973E-01.22749490E-01 -.80373052E+00 .13834594E+01END_OF_MOLECULE Figure 3.2: Sample data �le for the ion driver6

4 The CAVE InterfaceMolView uses the CaveMenu system [4]. Briey, interaction with the menus is done bypointing the wand at a menu gadget and pressing the third (right) button.The menus in MolView are grouped by function. Each menu is callable from the mainmenu by selecting the appropriate button.4.1 Main MenuThe main menu (Figure 4.1) consists of a few buttons to call other menus (options, frame),buttons to toggle modes (rotation, translation), a slider to change what data set is shown,and the \Quit" button.
Figure 4.1: The main menuSelecting Options or Frame will bring up the options menu (Section 4.2) or frame menu(Section 4.3), respectively.Rotate and Translate toggle the ability to rotate and translate the molecule in the CAVE.When Rotate is selected, pressing the left wand button and rotating the wand will rotatethe molecule. If the left button is released while the wand is still rotating, the moleculewill continue to rotate at a constant rate. To stop the molecule from rotating, either holdthe wand steady and release the left button, or turn o� the Rotate menu button. WhenTranslate is selected, holding the middle wand button and moving the wand will move themolecule in the CAVE.The main menu also contains a slider gadget that allows you to select the dataset toview. Clicking on the slider knob allows you to drag the knob, while clicking on the sliderbeams will snap the slider knob to that position. Clicking on the ends of the slider bars willmove the knob in that direction one step.Selecting Quit will quit the application. 7

4.2 Options MenuThe options menu (Figure 4.2) has three sliders. From the top, there are sliders to changethe detail level of atoms, size of atoms, and size of the molecule.
Figure 4.2: The options menuThe top slider controls how smooth the atoms appear. By increasing the detail, morepolygons are used to draw each sphere. Be forewarned; beauty comes at a large price.The CAVE can draw only a �nite number of polygons per second, so increasing the detaillevel will directly a�ect the response time. The result might not be so terrible when usingthe CAVE simulator, but when in the CAVE every move will (usually) change the viewingangle. If the response time is very high, the CAVE will appear to be jumpy; if the responsetime is low, the CAVE can smoothly keep up with your movements, giving a more realisticthree-dimensional illusion.The middle slider changes the size of all atoms in the molecule. This can be used totransform the molecule to a space-�lling model.The bottom slider scales the molecule, either bringing the atoms closer together orspreading them farther apart. This is useful for making large molecules manageable andsmall molecules large enough to see. Note that changing the size of the molecule not changethe size of the atoms.4.3 Frame MenuFor molecules with more than one frame, the frame menu (Figure 4.3) allows you to cyclethrough all the frames in the dataset.Two methods exist for viewing other frames: using the slider, or clicking on Reverse orForward. By using the slider, you can quickly view the entire sequence of frames, but usingReverse or Forward will iterate through the sequence of frames like a movie. Toggling Cyclewill let Forward and Reverse loop from end to end.Faster and Slower change the speed that Reverse and Forward iterate through the frames.8

Figure 4.3: The frame menuTo stop playback, either turn o� Reverse or Forward (whichever is on), or select Stop.5 For the ProgrammerThe remainder of this document describes MolView from a programmer's perspective. First,the directory structure and compilation of MolView are explained. Next, driver responsi-bilities and driver creation are discussed. Finally, the internals of the CAVE componentof MolView and techniques for extending MolView to show di�erent styles of data aredescribed.5.1 Directory StructureThe directory structure is simple:bin Binaries and the MolView execution scriptdrivers Driver source codeinclude Header �leslib Driver library �les|libMolView.aobj Object code from building MolViewsrc MolView CAVE and library source codeIn include are the following:MolView.h Datatype de�nitionsMolViewCave.h CAVE internal datatypes9

In src are the following:CleverMath.C Some mathematicsDatatypes.c Handles the creation of MPI datatypes for sending and receiving dataDisplay.C The CAVE draw routineDisplayList.C User display list creation functionInitialize.C Initialization and memory handing routinesMenus.C Menu creation and handlingReceive.C Routines for receiving data from driver programsRemote.c Routines for sending data from drivers to the CAVECave.C Main CAVE routine5.2 Building MolViewTo build MolView, one simply types make from the MolView root directory. This will buildMolViewCave in bin/, libMolView.a in lib/, and any drivers in drivers/. If the buildis being done on a multiprocessor machine, a parallel build will be done if the PARALLELenvironment variable is set to the number of steps to perform concurrently.The command make clean will remove the object �les, and make distcleanwill removeeverything that is generated by make, including libraries and executables.6 Driver Responsibility and CreationDriver programs are responsible for one important task|creating data for the CAVE toshow. This task comprises three pieces, although the line between each piece is fuzzy.1. Create the data. This task can be done by the driver program, for example, by em-bedding the MolView system into a prewritten computational program. Alternatively,the driver program can just read a data �le.2. Massage the data into the MolView data structures (Section 6.2).3. Transfer the data to the CAVE (Section 6.3).These do not need to be distinct steps and, in some cases, must not be distinct. Thesimplest example here is a driver program that computes the data using MolView datastructures: computation and packaging step are merged. An example merging all threesteps is a driver that minimizes the energy of a molecule and sends the molecule to theCAVE after each minimization step. 10

6.1 Driver InitializationTo ease the pain of creating a multiprocessor driver, every driver (even uniprocessor!) mustcall MV SplitCommunicator() (or MVF SplitCommunicator() if in Fortran) immediatelyafter calling MPI Init(). This routine will create a new MPI communicator consistingof all the nodes that are driver nodes, allowing the driver to do collective communicationbetween driver processors only.Failure to call this routine will result in the CAVE locking up immediately after startup.6.2 Data FormatsThree data structures exist for driver to CAVE communication: struct MoleculeData,struct FrameData, and struct AtomData, all of which are de�ned in include/MolView.h.The struct MoleculeData data structure contains book-keeping information necessaryto tell the CAVE about each molecule. MoleculeID is how a driver refers to a CAVEmolecule and thus should be unique. The CAVE stores molecules in increasing MoleculeIDorder.A description string is provided; however, its use is not mandatory. If a description isnot needed, the string should the set to zero length.struct MoleculeData {int MoleculeID;char Desc[81];}; The struct FrameData data structure is an atom-level description of the molecule.Since frames are added independently of molecules, each frame needs both a FrameID anda MoleculeID. The FrameID allows the CAVE to order the frames, while the MoleculeIDtells the CAVE which molecule this frame is a part of.NumAtoms is the number of atoms that this frame contains. No atoms are stored inFrameData; instead, they are passed in separately to MV AddFrame() (Section 6.3.2).Center is the coordinate that the CAVE uses to rotate about. To have the moleculerotate about the center of mass, Center should be set the the center of mass. Likewise, torotate about a speci�c atom, Center should be the location of that atom.struct FrameData {int FrameID;int MoleculeID;int NumAtoms;float Center[3];}; 11

void MV AddMolecule(MoleculeData *M)void MV AddFrame(FrameData *F, AtomData *A)void MV Exit(void)Figure 6.1: C driver to CAVE interfaceMVF AddMolecule(MoleculeID)integer MoleculeIDMVF AddFrame(MoleculeID, FrameID, NumberOfAtoms, CenterAtomPositions, AtomColors, AtomSizes)integer MoleculeID, FrameID, NumberOfAtomsdouble precision(3) Centerdouble precision(*) AtomPositions, AtomColors, AtomSizesMVF Exit()Figure 6.2: Fortran driver to CAVE interfaceThe AtomData data structure contains a complete description of a single atom in themolecule. At the very least, this description must contain the position, color and size of theatom.struct AtomData {float Position[3];float Color[4];float Size;};6.3 Data TransmissionA driver program uses three routines to communicate with the CAVE: one to create amolecule, one to add a frame to a previously created molecule, and one to tell the CAVEthat the driver is done. Since Fortran is not able to use C structures, separate routinesexist for C (Figure 6.1) and Fortran (Figure 6.2).For low-level details, see the code in Remote.c and Datatypes.c, as well as Section 7.This section explains only how to use the routines in a driver program and assumes thatthe required data structures are completely and correctly created.Several sample drivers are provided in drivers/; simpledriver.c, framedriver.c,and simplefort.f. 12

6.3.1 MV AddMolecule()MV AddMolecule() requests that the CAVE allocate space for a new molecule with IDMoleculeID. No frames are transmitted or allocated.From Fortran, it is not possible to pass a description string to the CAVE.6.3.2 MV AddFrame()MV AddFrame() adds a frame to the molecule with ID MoleculeID. If the molecule has notbeen created, the CAVE will print an error message and fail.The atom list does not need to be sorted, but several optimizations can be made if itis. See the code in DisplayList.C for ideas.The choice of double precision in the Fortran interface is reasonably arbitrary. Lookin Remote.c for details on what needs to be changed to use real.6.3.3 MV Exit()This routine should be called when the driver is done sending data to the CAVE. Oncecalled, the driver may proceed with any cleanup it needs to do, then call MPI Finalize(),and exit. The CAVE will continue to allow the user to view the data.7 CAVE Program Modi�cationThe structure of the CAVE portion of MolView roughly consists of two parts: initializationand communication. Everything else is handled through callback routines by the CaveMenuor CAVE library.Them main loop (in cave.C) performs several initialization tasks:� Starts MPI, and creates a driver-only communicator.� Allocates a large chunk of shared memory for the menus and MolView data.� Initializes the basic MolView data structures.� Creates the menus.� Con�gures the CAVE, and sets the callback routines.Once initialized, MolView enters a loop where it receives data from the driver untileither the ESC key is pressed or the driver announces it is done.The behavior of MolView is changed by modifying the MolView data structures andthen modifying the various callback routines that act on the data structures. The callbackroutines that need to be modi�ed are in: 13

Datatypes.c MPI datatypes.Remote.c Driver to CAVE transfer functions.Receive.C CAVE receive functions.Display.C CAVE display list generation routine.Menus.C The Menu system.Such modi�cations, even for moderate extensions, are not excessively involved. As anexample, look through the ION code. All the \shell" operations are essentially an extensionto the base MolView system.Note: Referring to the code while reading this section will greatly enhance comprehen-sion.7.1 MolView StructuresThe MolView structures speci�c to the CAVE contain an instance of the appropriate driverstructure (CAVEAtom contains AtomData, for example) and any additional storage that theCAVE needs.CAVEAtom currently does not contain any additional information. Later, for example, ifone wishes to draw sticks to connect atoms, an array of pointers to other CAVEAtoms couldbe added.Note that if the AtomData data structure is modi�ed, ReceiveFrame()must be modi�edas well. See Section 7.4.2 for an explanation.struct CAVEAtom {AtomData Data;}; CAVEFrame contains a list of the atoms in this frame and a pointer to the next frame inthe sequence.struct CAVEFrame {FrameData Data;CAVEAtom *Atoms;CAVEFrame *next;}; NumFrames, CurrentFrame, cF, and Frames are used to keep track of which frame iscurrently being shown, and should be included in all derived data structures.struct CAVEMolecule { 14

MoleculeData Data;int NumFrames;int CurrentFrame;CAVEFrame *cF;CAVEFrame *Frames;CAVEMolecule *next;};7.2 MPI DatatypesThe routines in Datatypes.c are responsible for informing MPI about the data that oneintends to send. These routines are critical. If they are incorrect, MPI will (probably) sendjunk data to the CAVE.Basically, MD Create*Datatype() determines the size and relative position of every blockof data. A block of data is any number of structures that all have the same type, so fourint variables in a row is one block.When modifying the MolView structures, one simply modi�es MD Create*Datatype()so that the blocks of data are speci�ed. For more information, see an MPI manual such as[1, 2].7.3 Driver to CAVE Transfer FunctionsThe driver to CAVE transfer functions are in Remote.c. They create the MPI datatype(s)needed and call MPI Send(). All the work is done by the MPI datatype. These functionsprobably will not need to be modi�ed.7.4 CAVE Receive FunctionsThe CAVE receive functions in Receive.C are responsible for receiving the data from adriver and placing it in the CAVE data structures. While doing this, they could optimizethe data, for example, taking array indices and translating them to C pointers.7.4.1 ReceiveMolecule()The molecule receive function should need very little attention. The molecule data structureis responsible for holding all the CAVE related book-keeping information. Any user-de�neddata generally is held in struct MoleculeData, which is received directly to the CAVEdata structure. 15

7.4.2 ReceiveFrame()The frame receive function is not nearly as friendly as the molecule receive function. Atomsare stored in the frames as an array. CAVEFrame contains an array of CAVEAtom to allowfor CAVE local data in an atom (a list of pointers to other atoms, for example). SinceCAVEAtom and AtomData generally will be di�erent, atom data must be copied manuallyto the array in CAVEFrame. Thus, any changes to struct CAVEAtom must be propagatedthrough to ReceiveFrame().7.5 Display RoutineModi�cation of the display routine should consist just of changing the display list creationroutine, ComputeDisplayList(), in DisplayList.C. Anything that is legal in an OpenGLdisplay list is legal here, but everything that is done here will be treated as part of themolecule|they will rotate and translate with the molecule. If the behavior of the moleculeneeds to be modi�ed, then Draw() in Display.C will need to be modi�ed.Note: since each processor must have its own local copy of the display list, each processormust call ComputeMoleculeDisplayList() whenever the molecule changes. Failure to doso will result in the correct molecule being displayed on one CAVE wall, and something elseon other CAVE walls.See the OpenGL Programming Guide [3] for details on display list creation.7.6 Menu SystemMenu routines are in Menus.C and can be modi�ed according to [4].Sliders merit special attention: they must be updated whenever the values they areassociated with change. Currently, they are updated whenever something happens, not justwhen their value changes. Ambitious programmers could �gure out when the sliders mustbe updated, and only update there, but most programmers will realize that the overheadfor updating constantly is low.Also meriting attention is RemakeMolecule(). This function tells the display processesto create a new display list, in addition to updating sliders.References[1] M. P. I. Forum, MPI: A message-passing interface standard, International Journal ofSupercomputing Applications, 8 (1994).[2] W. Gropp, E. Lusk, and A. Skjellum, USING MPI Portable Parallel Programmingwith the Message-Passing Interface, The MIT Press, Cambridge, 1994.16

[3] M. W. J. Neider, T. Davis,OpenGL Programming Guide, Addison-Wesley PublishingCompany, Reading, Massachusetts, 1993.[4] B. Walenz. Unpublished information, Argonne National Laboratory, 1996.

17

