
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-217
PCx User GuidebyJoseph Czyzyk, Sanjay Mehrotra, and Stephen J. WrightMathematics and Computer Science DivisionTechnical Memorandum No. 217March 1997This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 12 The Formulation 23 The Algorithm 44 Linear Algebra 75 The Presolver 106 Speci�cations File 117 Obtaining and Installing PCx 138 Invoking PCx 159 Computational Results 15Acknowledgments 20References 20

iii

PCx User GuidebyJoseph Czyzyk, Sanjay Mehrotra, and Stephen J. WrightAbstractWe describe the code PCx, a primal-dual interior-point code for linear programming.Information is given about problem formulation and the underlying algorithm, along withinstructions for installing, invoking, and using the code. Computational results on standardtest problems are tabulated. The current version number is 1.0.Key words: linear programming, interior-point methods, software.1 IntroductionPCx is a linear programming solver developed at the Optimization Technology Center at ArgonneNational Laboratory and Northwestern University. It implements a variant of Mehrotra's predictor-corrector algorithm [7] with the higher-order correction strategy of Gondzio [4]. This primal-dualapproach has proved to be the most e�cient interior-point method for general linear programs.The bulk of PCx is written in the C programming language. However, its main computationalengine|the sparse Cholesky code of Ng and Peyton [8]|is coded in Fortran 77. Source code forboth PCx and Ng and Peyton's solver is available subject to the quali�cations in the copyrightstatement on the PCx home page on the World Wide Web (see Section 7).Key features of PCx include� a set of high-level data structures for linear programming constructs, designed for possiblereuse in other codes;� ability to be invoked both as a stand-alone program (with input from an MPS �le) and asa callable procedure;� a presolver;� modular structure, which makes it easy for users to modify the code to experiment withvariants of the current algorithm.The current version of PCx performs e�ciently on the standard netlib test problems. Nev-ertheless, PCx should be viewed as work in progress. Features such as �nite termination/basisrecovery and alternative linear algebra solvers (and alternative formulations of the step equations)may be added in future versions. In making the source available, we encourage others to becomeinvolved in the development and extension of PCx.The remaining sections of this guide contain an outline of the underlying algorithm, instruc-tions for installing and using PCx, and computational results on standard test problems. Section2 describes the various linear programming formulations that are accommodated by the datastructures of PCx, including the formulation to which the algorithm is actually applied. Section3 describes the algorithm, including details of termination and infeasibility detection. Section 41

discusses the major computational issue in the code|factorization of a sparse, positive de�nitematrix|including the modi�cations to the Ng-Peyton code [8] needed in this context. Presolvercapabilities are outlined in Section 5. Section 7 contains instructions for installing the code in aUnix environment, while instructions for invoking PCx as a stand-alone solver are given in Sec-tion 8. The user can set various algorithmic options and control the amount and type of outputby means of a speci�cations �le; details are provided in Section 6. Finally, Section 9 reports oncomputational results for the standard netlib test set of feasible and infeasible problems, togetherwith some new problems arising from the NEMS project at Argonne.This guide will be updated continually as new releases of the code are made.2 The FormulationPCx accepts any valid linear program that can be speci�ed in the MPS format. The modeldescribed in the MPS �le may include upper and lower bounds, linear equality constraints, linearinequality constraints and free variables. PCx de�nes a data structure MPStype that contains acomplete speci�cation of a single linear programming problem in this general formulation. Thisdata structure also stores the names assigned to the rows, columns, and objectives of the modelspeci�ed in the MPS �le.For algorithmic purposes, however, it is convenient to work with a simpler formulation of thelinear program. PCx converts the general formulation to the following simpler form:minx2Rn cTx subject to Ax = b 0 � xi; i 2 N0 � xi � ui; i 2 Uxi free; i 2 F ; (1)where N [U [F is a partition of the index set f1; 2; : : : ; ng into \normal," \upper-bounded," and\free" variables, respectively. The PCx data structure LPtype contains a single linear programin the form (1). The transformation from an MPStype formulation to an LPtype formulation iscarried out internally and transparently to the user by PCx. After the solution has been found,the transformation from MPStype to LPtype is inverted to express the solution in terms of theoriginal formulation.Users who circumvent the MPS �le and call the procedure PCx() directly must specify theirproblems in the form (1). That is, they pass an LPtype data structure to this procedure.The current version of PCx carries out one more level of problem transformation beforeinvoking the solution algorithm. The use of a normal equations formulation of the step equations(see below) implies that the model can contain no free variables. Hence, we replace each of thefree variables xi in the LPtype formulation by a pair of normal variables x+i and x�i , making thesubstitution xi = x+i � x�i :After these substitutions are made (and the notation is rede�ned), the linear program has thefollowing form: minx2Rn cTx subject to Ax = b 0 � xi � ui; i 2 U0 � xi; i 2 �U ; (2)where �U = f1; 2; : : : ; ngnU . The split variables are recombined before return from PCx(), so thetransformation between (1) and (2) is transparent to the user. The LPtype data structure is alsoused to store problems in the form (2). 2

The dual problem associated with (2) ismax�2Rm;r2RjUj;s2Rn bT� �Xi2U uiri (3)subject to ATi�� + si � ri = ci i 2 UATi�� + si = ci i 2 �U(r; s) � 0;where � is the Lagrange multiplier vector for the equality constraint Ax = b, and r represents theLagrange multipliers for the upper bounds xi � ui. The Karush-Kuhn-Tucker (KKT) optimalityconditions for (2) and (3) areATi�� + si � ri = ci; i 2 U (4a)ATi�� + si = ci; i 2 �U (4b)Ax = b (4c)xi + wi = ui; i 2 U ; (4d)xisi = 0; i = 1; 2; : : : ; n; (4e)wiri = 0; i 2 U ; (4f)(x; s; r; w) � 0: (4g)(We have introduced a vector w of slack variables for the constraint xi � ui.)Like all infeasible-primal-dual algorithms, the version of Mehrotra's algorithm implementedby PCx generates a sequence of iterates(xk; �k; sk; rk; wk); k = 0; 1; 2; : : : ;that satisfy the strict positivity condition (xk; sk; rk; wk) > 0. However, these points are usuallyinfeasible; that is, the equality conditions (4a),(4b),(4c) are satis�ed only in the limit as k!1.Compliance with the complementarity conditions (4e),(4f) is measured by the duality measure �,de�ned by � = Pi=1;:::;n xisi +Pi2U wirin+ jUj : (5)Note that � is the average value of all the pairwise products xisi, i = 1; 2; : : : ; n, and riwi, i 2 U .For simplicity in describing the algorithm, we assume in the remainder of the paper that allprimal variables have upper bounds, that is, U = f1; 2; : : : ; ng. The primal and dual problemscan be stated in this case asminx2Rn cTx subject to Ax = b; 0 � x � u; (6)and max�2Rm;r2Rn;s2Rn bT� � rTu subject to AT� + s� r = c; (r; s) � 0: (7)The KKT conditions for (6) and (7) areA� + s� r = c; (8a)3

Ax = b; (8b)x+ w = u; (8c)xisi = 0; i = 1; 2; : : : ; n; (8d)wiri = 0; i = 1; 2; : : : ; n; (8e)(x; s; r; w) � 0: (8f)We stress that the PCx code actually works with the formulation (2); we use the simpler form(6) in our discussion solely to avoid creating a notational jungle in the next few sections.3 The AlgorithmMehrotra's predictor-corrector algorithm [7] is based on Newton's method for the KKT conditions(4a){(4e), modi�ed to retain positivity of the (x; s; r; w) components, to incorporate a \centering"component in the search direction, and to improve the order of accuracy to which the searchdirection approximates the nonlinear equations (4d) and (4e). We mention just the major elementsof the algorithm in this section and the next. For further details and motivation, see Wright [10].The search direction at each iteration of Mehrotra's algorithm is obtained by solving twosystems of linear equations, which have the same coe�cient matrix but di�erent right-hand sides.If we assume for simplicity that U in (2) is the entire index set f1; 2; : : : ; ng, these step equationshave the form 2666664 0 A 0 0 0AT 0 I 0 �I0 I 0 I 00 S X 0 00 0 0 R W 37777752666664 ���x�s�w�r 3777775 = 2666664 �rb�rc�ru�rxs�rwr 3777775 : (9)Here A is the constraint matrix from the linear program,X = diag(x), S = diag(s),W = diag(w),and R = diag(r). The coe�cient matrix is simply the Jacobian of the nonlinear equations de�nedby (4a){(4e). The right-hand side for the �rst system of equations chooses ru, rc, and rb to bethe residuals for the upper-bound, dual, and primal infeasibilities, respectively; that is,ru = x+ w � u; rc = AT� + s� r � c; rb = Ax� b: (10)For the other right-hand side components, this �rst system usesrxs = XSe; rrw = RWe; (11)so that the solution (�xa� ;��a�;�sa� ;�ra�;�wa�) of this �rst system is the pure Newtondirection for the nonlinear system of equations (4a){(4e). This direction is often known as thea�ne-scaling direction.The second direction is a combined centering-corrector direction, which we denote by(�xcc;��cc;�scc;�rcc;�wcc):To obtain this direction, we set the right-hand side components of (9) as follows:ru = 0; rc = 0; rb = 0; (12)rxs = �Xa��Sa�e � ��e; rrw = �Ra��W a�e � ��e; (13)4

where � is de�ned in (5) and �Xa�, �Sa�, �Ra� , and �W a� are the diagonal matrices con-structed from the a�ne-scaling step components �xa�, �sa� , �ra� , and �wa� , respectively. Thescalar � 2 [0; 1] in (12) is chosen by a complicated heuristic that is based on the ability of thepure a�ne-scaling step to attain large reductions in the duality measure � before reaching theboundary of the positive orthant for the (x; s; r; w) components. Given the a�ne-scaling step, wecalculate the maximum step to this boundary in primal and dual variables from the de�nitions�a� ;P = inff� 2 [0; 1] j (x; w) + �(�xa� ;�wa�) � 0g; (14a)�a� ;D = inff� 2 [0; 1] j (s; r) + �(�sa� ;�ra�) � 0g: (14b)We then compute the duality measure �a� at this point as�a� = 12n h(x+ �a� ;P�x)T (s + �a� ;D�s) + (w + �a� ;P�w)T (r + �a� ;D�r)i : (15)Finally, the value of � is chosen to be � = �a�� !3 : (16)The actual search direction is obtained by simply adding the a�ne-scaling direction to thecentering-corrector direction; that is,(�x;��;�s;�r;�w) = (�xa�;�sa�;�ra�;�wa�) + (�xcc;��cc;�scc;�rcc;�wcc): (17)The step taken by the algorithm is then a fraction of the maximum steps �max;P, �max;D to theboundary in the primal and dual variables, respectively. Similarly to (14), we calculate�max;P = inff� 2 [0; 1] j (x; w) + �(�x;�w) � 0g; (18a)�max;D = inff� 2 [0; 1] j (s; r) + �(�s;�r) � 0g; (18b)and set �P = P � �max;P; �D = D � �max;D; (19)where P and D are two scaling factors obtained from Mehrotra's adaptive steplength heuristic[7, p. 588].Having described all the ingredients, we can summarize the algorithm as follows:Given (x0; �0; s0; r0; w0) with (x0; s0; r0; w0) > 0;for k = 0; 1; 2; : : :if termination test is satis�edstop;Set (x; �; s; r;w) = (xk; �k; sk; rk; wk) and calculate the a�ne-scaling directionfrom (9) by setting the right-hand side as in (10), (11);calculate �a� ;P, �a� ;D, �a� and � from (14), (15), and (16);Calculate the centering-corrector step from (9) by setting the right-handside as in (12);Calculate the search direction from (17);Calculate �P, �D from (18) and (19);Calculate new iterate as 5

(xk+1; wk+1) = (x; w) + �P(�x;�w); (20a)(�k+1; sk+1; rk+1) = (�; s; r) + �D(��;�s;�r); (20b)end (for).Gondzio's [4] higher-order correction strategy is used to enhance the search direction at eachiteration. In this approach, additional centering/correction directions are computed by solving (9)for di�erent right-hand sides. Rather than attempting to correct the current point to the centralpath in a single step, Gondzio's strategy is more conservative, aiming only to bring the pairwiseproducts xisi, i = 1; 2; : : : ; n and riwi, i 2 U that are much larger than the average � more intoline. The number of centering/correction directions depends on the ratio of time required to formand factor the coe�cient matrix of the main linear system (see Section 4) to the time required toperform triangular substitutions with the factors. This ratio is machine dependent and thereforeleads to di�erent results on di�erent architectures. We refer the interested reader to Gondzio'spaper for details. Our implementation draws not only on this paper and also on Gondzio's codeHOPDM (version 2.13), in which slightly di�erent heuristics from those described in the paperare used.Our code applies the scaling technique of Curtis and Reid [2] to the coe�cient matrix A beforesolving. This technique aims to minimize the deviation of the nonzero elements in the matrixfrom 1, which it measures by the objective functionXAij 6=0 log2 jAij j:It �nds row and column scaling factors �i, i = 1; 2; : : : ; m and �j , j = 1; 2; : : : ; n such that thescaled version of A (whose elements are Aij=(�i�j)) minimizes this objective. Conjugate gradientturns out to be very e�ective when applied to the least squares problem of �nding the �i and �jfactors, and convergence to an approximate solution of adequate accuracy is usually achieved inthree or four iterations.Scaling generally improves the e�ciency of the algorithm, but occasionally results in poorerperformance. It can be disabled by the user, as we show in Section 6.The algorithm terminates in one of four states: optimal, infeasible, unknown, and suboptimal.Optimal termination occurs when the current iterate satis�es the following tests:k(rb; ru)k1 + k(bT ; uT)k � prifeastol;krck1 + kck � dualfeastol;���cTx� �bT� �Pi2U uiri����1 + jcTxj � opttol;where prifeastol, dualfeastol, and opttol are three tolerances whose default values are 10�8,10�8, and 10�8, respectively.For the remaining termination conditions, we make use of a merit function � de�ned by�(�; x; s; w; r) = k(rb; ru)kmax(1; k(b; u)k) + krckmax(1; kck) + ���cTx� �bT� �Pi2U uiri����max(1; k(b; u)k; kck) :6

Clearly, points (�; x; s; w; r) at which (x; s; w; r) � 0 and � = 0 are primal-dual solutions of (6),(7) and vice versa. When applied to feasible linear programs (for which a primal-dual solutionis known to exist), � typically decreases steadily to zero after perhaps oscillating during the �rstfew iterations. We also maintain an array �min whose kth element is the smallest value of �encountered up to iteration k; that is,�min[k] = min`=0;1;:::;k �(�`; x`; s`; w`; r`):Infeasible problems (that is, problems for which no primal-dual solutions exist) can be detectedfairly reliably by a sharp increase in �. We terminate the algorithm at iteration k with statusinfeasible if it fails the optimality test above but satis�es�(�k; xk; sk; wk; rk) � max(10�8; 105�min[k]):In other situations, the code is unable to resolve the question of feasibility. It exhibits slowconvergence, or else the improvement in duality measure � far outstrips the improvement inprimal and dual infeasibility (k(rb; ru)k and krck, respectively), causing � to lose its relationshipto the true gap between the primal and dual objective function values. In both these cases, weterminate the algorithm with status unknown. The slow convergence test is�min[k � 30] � 12�min[k] and k � 30:Blowup in infeasibility-to-duality ratio is agged if we havek(rkb ; rku)k1 + k(bT ; uT)k > prifeastol or krkc k1 + kck > dualfeastol;and, in addition, max(k(rkb ; rku)k; krkck)=�kmax(k(r0b ; r0u)k; kr0ck)=�0 � 106:Finally, we terminate in suboptimal status if the algorithm exceeds its allotted maximumnumber of iterations (see iterationlimit in Section 6) without satisfying any of the conditionsabove.4 Linear AlgebraThe coe�cient matrix in (9) is sparse and highly structured. With the exception of the A andAT blocks, all blocks are either zero or diagonal. By performing simple block elimination onthis system, we obtain the following alternative formulation of the step equations, known as theaugmented system form:" �D�2 ATA 0 # " �x�� # = " �rc �W�1rwr +X�1rxs +W�1Rru�rb # ; (21)where D is the positive diagonal matrix de�ned by D = �S�1X +W�1R�1=2. The remainingcomponents �w, �r, and �s of the solution vector can be recovered as follows:�w = �ru ��x�r = �W�1(R�w+ rwr) (22)�s = �X�1(S�x+ rxs):7

The system (21) can be reduced to an even more compact form as follows by eliminating �x toobtain AD2AT�� = �rb +AD2(�rc �W�1rwr +X�1rxs +W�1Rru): (23)The component �x can be recovered from�x = D2(AT�� � (�rc �W�1rwr +X�1rxs +W�1Rru)); (24)while the remaining step components can be obtained as before from (22).PCx uses the formulation (23), which is often known as the normal equations form. A sparseCholesky algorithm is used to factor the coe�cient matrix AD2AT , and the solution �� isobtained by performing triangular substitutions with the Cholesky factor L. These factorizationsand triangular substitutions dominate the computational cost of the algorithm. The factorizationis carried out with the sparse Cholesky code of Ng and Peyton [8], modi�ed slightly to handlethe small pivot elements that frequently arise during later iterations of the interior-point method.This code produces a factorization of the formP (AD2AT)PT = LLT ; (25)where P is a permutation matrix (determined independently of the numerical values in AD2ATduring an ordering step) and L is a lower triangular matrix.Ng and Peyton's code uses a multiple minimum degree ordering strategy identical to the one inSPARSPAK. This strategy was introduced by Liu [5]. The scheme used for symbolic factorizationis partly described by Liu [6] and Gilbert, Ng, and Peyton [3]. The numerical factorization isperformed by a left-looking block sparse Cholesky algorithm, as described by Ng and Peyton[8]. The code exploits hierarchical memory by splitting the supernodes into blocks that �t intoavailable cache. (Cache size is passed to the code as a parameter.) Loop unrolling is used tomake better use of registers.The release of Ng and Peyton's code used here is version 0.4 of May 1995.Since the nonzero structure of the matrix that we factor is the same at each interior-pointiteration, the ordering and symbolic factorization operations are carried out just once, duringcomputation of the initial point. At each interior-point iteration, the numerical factorization isperformed once. Two back-substitutions are performed with these computed factors: one for thea�ne-scaling step, and one for the corrector-centering step.Our modi�cation of the Ng-Peyton code for small pivots requires just a handful of additionallines of Fortran. A candidate pivot M (i�1)ii is deemed to be \small" ifM (i�1)ii � 10�30 maxj=1;2;���;mM2jj ; (26)where M (i�1) is the remaining submatrix after i � 1 steps of the Cholesky factorization and Mis the original symmetric positive semide�nite matrix. Each small pivot is replaced by the verylarge number 10128. This substitution causes the o�-diagonal elements in the ith column of theCholesky factor L to be extremely small (essentially zero) and causes the ith component of thesolution vector to be extremely small. Analysis of this technique has been performed by Wright[9]. A similar pivot modi�cation strategy is used by the MATLAB-based code LIPSOL (see Zhang[11],[12]), which also uses Ng and Peyton's code as its computational engine.8

If the matrix A contains dense columns, the product AD2AT may be much denser thanA itself, causing the unadorned normal equations strategy to be ine�cient. We modify thisstrategy by excluding the dense columns from the computation of AD2AT and accounting forthem instead by using the Sherman-Morrison-Woodbury inverse updating formula. At the startof the PCx algorithm, during computation of the initial point, we partition A into \sparse" and\dense" column submatrices Asp and Aden, respectively. The diagonal weighting matrix D canbe partitioned accordingly into Dsp and Dden, so we can writeAD2AT = AspD2spATsp + AdenD2denATden =M + AdenD2denATden; (27)where we have de�ned M in an obvious way. By applying the Sherman-Morrison-Woodburyformula to (27), we �nd that[M + AdenD2denATden]�1= M�1 � (M�1Aden) hD�1den +ATdenM�1Adeni�1ATdenM�1: (28)We apply the sparse Cholesky procedure to M alone, to obtainPMPT = LLT ; (29)(cf. (25)). The solution of a linear system with coe�cient matrix M and right-hand side r cannow be written as(AD2AT)�1r= PTL�T �I � L�1PAden hD�2den+ ATdenPTL�TL�1PAdeni�1ATdenPTL�T�L�1Pr:Given L and P , the major costs of applying this formula are the cost of computing (L�1PAden);the cost of a triangular substitution with L and one with LT|a total cost of nden+ 2 triangularsubstitutions, where nden is the number of columns in Aden. For additional systems with thesame coe�cient matrix but di�erent right-hand sides, the marginal cost is just two triangularsubstitutions.To determine which columns are to be classi�ed as \dense," we sort in decreasing orderan array whose components are the number of nonzeros in each column. We then look at thecolumns for which the proportion of nonzeros is at least � , where � = 1 for m < 500, � = 0:1for 500 < m � 2000, and � = 0:05 for m > 2000, and try to identify a gap in the sequenceof nonzero counts. (In our experience, most problems that bene�t from special handling of thedense columns exhibit such a gap.) Columns whose nonzero counts lie on the high side of the gapare classi�ed as \dense."Another feature of PCx version 1.0 is the use of a preconditioned conjugate gradient (PCG)algorithm to improve the accuracy of computed solutions for the linear system (23). Essentially,we use the computed Cholesky factorization (25) (or (29)) as the preconditioner and treat thecomputed solution as the �rst iteration of a PCG algorithm. The PCG algorithm is activated if thecomputed solution fails to reduce the residual by a factor primalfeastol or better (see Section 6),and if no small pivot modi�cations are required during the Cholesky factorization. If densecolumns are detected in A, PCG terminates when the residual reduction factor primalfeastolis achieved, or after a maximum of 10nden PCG iterations, whichever comes �rst. If no densecolumns are present in A, at most 10 PCG iterations are allowed.9

5 The PresolverLinear programming models frequently contain redundant information, as well as other informa-tion and structure that allows some components of the solution to be determined without recourseto a sophisticated algorithm. The purpose of presolve or preprocessing routines is to detect andhandle these features of the input, producing a (smaller) problem to be solved by the actual linearprogramming algorithm. Presolvers signi�cantly enhance the e�ciency and robustness of bothsimplex and interior-point codes.The presolver in PCx works with the formulation (1) stored in the LPtype data structure.It makes use of techniques described by Andersen and Andersen [1], checking the data for thefollowing features:Infeasibility. Check that ui � 0 for each upper bound ui, i 2 U , and that a zero row of A hasa corresponding zero in the right-hand side vector b.Empty Rows. If the matrix A has a zero row and a corresponding zero in the b, it can beremoved from the problem.Duplicate Rows. When a row of A (and the corresponding element of the right-hand side b) issimply a multiple of another row, we can delete it without a�ecting the primal solution.Duplicate Columns. When a column of A is a multiple of another column, and if the twovariables xi and xj are \normal" (that is, i; j 2 N in the formulation (2)), the two columnscan be combined. The primal variable for the combined column is either normal or free,depending on whether the columns are positive or negative multiples of each other.Empty Columns. The corresponding element xi can be �xed at either its lower or upper bound,depending on the sign of the cost vector coe�cient ci. If the required bound does not exist,the problem is declared to be primal unbounded.Fixed Variables. If the variable has lower and upper bounds both zero, it can obviously be�xed at zero and removed from the problem.Singleton Rows. If the ith row of A contains the single nonzero element Aij , we clearly havexj = bi=Aij , so this variable can be removed from the problem. The ith row of A (andhence the dual variable �i) can also be removed.Singleton Columns. When Aij is the only nonzero in column j of A, and xj is a free variable,we can express xj in terms of the other variables represented in row i of A and eliminateit from the problem. Even if not free, xj can be eliminated if its bounds are weaker thanthose implied by the ranges of the other elements represented in the row Ai�.Forced Rows. Sometimes, the linear constraint represented by row i of A forces all its variablesto either their upper or lower bounds. An example would be the constraint 10x3 � 4x10 +x12 = �4 subject to the boundsx3 2 [0;+1); x10 2 [0; 1]; x12 2 [0;+1):In this case, we must have x3 = 0, x10 = 1 and x12 = 0, so these three variables (and thecorresponding row of A) can be eliminated.10

The presolver makes multiple passes through the data, checking for each of the above featuresin turn. Problem reductions on one pass frequently uncover further reductions that are detectedon subsequent passes. The presolver terminates when a complete pass is performed withoutdetecting further opportunities for reduction. Each reduction operation is pushed onto a stack,which is subsequently popped after the solution of the reduced linear program is found. The e�ectof popping the stack is to express the solution in terms of the original, unreduced formulation.Despite the complexity of the code, the presolver requires little CPU time in comparison witha single iteration of the interior-point solver.Code for the presolver can be found in the �le presolve.c. The data structures are de�nedin pre.h. This code can be used on a stand-alone basis, independently of the PCx solver, topresolve any linear program supplied in the LPtype format.6 Speci�cations FilePCx allows many algorithmic parameters and options to be set by the user. These quantities arestored internally in a data structure of type Parameters.If the user provides input to PCx via an MPS �le (rather than invoking PCx() directly via asubroutine call), the Parameters data structure is allocated automatically by the program anddefault values are assigned to all parameters. You can override the default values by de�ning aspeci�cations �le, which contains a number of keywords and numerical values.PCx searches for the speci�cations �le in a number of locations. If the name of the MPS input�le is probname.mps, PCx looks for the following �les, in order:probname.spc, probname.specs, spc, specs, PCx.specsIf more than one of these �les exist, PCx uses the �rst �le in the list above and ignores the others.The following is a list of keywords that can be used in the speci�cations �le, together withtheir default settings. The �le should contain one such keyword per line, together with itscorresponding numerical value or option, if appropriate. The �le is processed sequentially fromtop to bottom, so the e�ect of any line in the �le can be undone by a later line. For keywordswith a yes/no argument, omission of the argument will be taken to mean yes. (The defaultsetting is not necessarily yes.) In the descriptions below, we assume that PCx is invoked withthe commandPCx probnameboundname fnameg Request the bound to be the speci�c column name in probname.mps. Default:the �rst BOUND in the MPS �le is used.cachesize fvalueg Input the size of the cache on the machine, in Kilobytes. Any value in therange 0{2048 is acceptable. Specify 0 for Cray machines. This parameter is used by theNg-Peyton sparse Cholesky code. Default: 16.centerexp fvalueg Specify the exponent to be used for calculation of the centering parameter� in (16). Any real value in the range 1.0{4.0 is allowable. Default: 3.0.dualfeastol fvalueg Specify a dual feasibility tolerance. Default: 10�8.11

history fyesg/fnog Request that a history �le be written (yes) or not written (no). If yes,the �le probname.log is written to the working directory (see Section 8).HOCorrections fyesg/fnog Request that Gondzio's [4] higher-order corrections be used to en-hance the search direction. Default: yes.inputdirectory fnameg Give the directory here if PCx is to search for the MPS input �les insome directory other than the working directory, give the directory here. Remember toinclude a trailing \/". If PCx cannot �le the �le in the speci�ed input directory, it will lookin the working directory. Whether or not an inputdirectory is speci�ed, the output andhistory �les are written to the working directory.iterationlimit fvalueg An upper limit on the number of iterations. Any positive integer isallowable. Default: 100.max Maximize the objective.MaxCorrections fvalueg If HOCorrections = yes, the parameter MaxCorrections is an upperlimit on the number of Gondzio's higher-order corrections allowed at each iteration. Ifvalue=0, the maximum is determined automatically by PCx according to the relative costof factorization and solve operations. If HOCorrections = no, MaxCorrections is ignored.Default: 0.min Minimize the objective (default).objectivename fnameg Request the objective cost vector to be the speci�c row name in probname.mps.Default: the �rst row of type \N" in probname.mps is taken to be the objective.opttol fvalueg Specify an optimality tolerance. Default: 10�8.preprocess fyesg/fnog Synonymous with presolve.presolve fyesg/fnog Request that presolving be performed (yes) or not performed (no) (seeSection 5). Default: yes.prifeastol fvalueg Specify a primal feasibility tolerance. Default: 10�8.rangename fnameg Request the range to be the speci�c column name in probname.mps. Default:the �rst range encountered in the MPS �le is used.refinement fyesg/fnog Perform preconditioned conjugate gradient re�nement of the computedsolution to the linear system (23) if it has a relative residual larger than the parameterprifeastol (yes) or don't perform any iterative re�nement (no) (see Section 4). Default:no.rhsname fnameg Request the right-hand side to be the speci�c column name in probname.mps.Default: the �rst RHS encountered in the MPS �le is used.scaling fyesg/fnog If yes, row and column scaling is performed on the constraint matrix.Default: yes. 12

solution fyesg/fnog Request that a solution �le be written (yes) or not written (no). If thesolution �le is written, it is named probname.out and is placed in the working directory(see Section 8). Default: yes.stepfactor fvalueg Specify a value in the range (0; 1) that is used in Mehrotra's adaptivesteplength heuristic from [7, p. 118]. This value is a lower bound for P and D in (19).Default: 0:9.unrollinglevel fvalueg Specify the level of loop unrolling. Allowable values are 1, 2, 4, and8. (This parameter is used only in the Ng-Peyton sparse Cholesky code.) Default: 4.If you call PCx() directly from your own code, you must �ll out the Parameters data structureexplicitly. This task is easier if you use the routine *NewParameters() to allocate the storage,since this routine assigns default values to all parameters. You can then make any desiredalterations before passing the data structure to the PCx() routine.7 Obtaining and Installing PCxPCx contains material protectable under copyright laws of the United States. Permission ishereby granted to use, reproduce, prepare derivative works, and redistribute to others at nocharge, provided that any changes are clearly documented and that the original PCx copyrightnotice, Government license and disclaimer are retained; however, any entity desiring permission toincorporate this software, or a work based on this software, into a product for sale must contactPaul Betten at the Industrial Technology Development Center, Argonne National Laboratory,Argonne, IL 60439 (phone: 630/252-4962, fax: 630/252-5230, email: betten@anl.gov). For furtherinformation, refer to the copyright notice on the software.The source code and documentation for PCx can be obtained through the World Wide Weband anonymous ftp. The PCx home page ishttp://www.mcs.anl.gov/home/otc/Library/PCx/This page lists the Unix systems on which PCx has been compiled and tested, and also containsthe copyright statement. The PCx home page also links to the following three �les:PCx.tar.gz: A gzipped tar �le containing the source code, a Make�le, and a README �lecontaining installation instructions. It also contains a postscript version of this user guide.PCx-user.ps: A postscript version of this user guide.results.ps: The tables of computational results from Section 9 of this guide.Executables for PCx for the SunOS, Solaris, IBM RS/6000 AIX, and SGI IRIX Unix envi-ronments can be built from source via the following procedure. Download the �le PCx.tar.gzand place it in its own subdirectory (referred to henceforth as the \working directory"). Fromthe working directory, unzip the �le by typinggunzip PCx.tar.gz11gunzip can be downloaded from ftp://quest.jpl.nasa.gov/pub/ for compilation on a variety of architectures.13

and then un-tar the resulting �le by typingtar xvf PCx.tarThe subdirectories SRC/, DOC/, MAKEARCH/, Ng-Peyton/, mps/ will be created by the tar com-mand. A sample speci�cations �le named PCx.specs and a number of executable script �les willalso appear. To create the executable PCx in the working directory, typebuildBecause of architectural and environmental di�erences, it is necessary to have a slightly di�er-ent compilation procedure for each machine. The build script de�nes an environment variablePCx ARCH and assigns it a value to indicate the architecture. build then invokes the make proce-dure, with architecture-dependent portions of the make�le being retrieved from the subdirectoryMAKEARCH/. Since the variable PCx ARCH must be de�ned for compiling, one should always usebuild instead of make to compile the program.Executables are also available for the SunOS, Solaris, AIX, and IRIX systems. The PCx Webpage also contains links to these �les.To test PCx it on one of the input �les in the directory mps/, modify the sample speci�cations�le PCx.specs if desired, then typePCx afiroor PCx 25fv47The program and documentation �les can also be retrieved via anonymous ftp. Go toftp.mcs.anl.gov and cd to pub/neos/PCx. The �les mentioned above can be found at:ftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx.tar.gzftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx-user.psftp://ftp.mcs.anl.gov/pub/neos/PCx/results/results.psThe executables can be found at the following URLs:ftp://ftp.mcs.anl.gov/pub/neos/PCx/sun4/PCxexe.tar.gz (SunOS)ftp://ftp.mcs.anl.gov/pub/neos/PCx/solaris/PCxexe.tar.gz (Solaris)ftp://ftp.mcs.anl.gov/pub/neos/PCx/rs6000/PCxexe.tar.gz (RS/6000 AIX)ftp://ftp.mcs.anl.gov/pub/neos/PCx/irix/PCxexe.tar.gz (SGI IRIX)ftp://ftp.mcs.anl.gov/pub/neos/PCx/hp/PCxexe.tar.gz (Hewlett-Packard HPUX)ftp://ftp.mcs.anl.gov/pub/neos/PCx/linux/PCxexe.tar.gz (PC Linux)These executables can be gunzip-ed and tar-ed as described above to produce an executablenamed PCx.The transfer mode should be set to binary by using the bin command in ftp before attemptingto transfer PCx.tar.gz or any of the executable �les.14

8 Invoking PCxBy downloading and installing PCx on one's system (see Section 7), the user will have an ex-ecutable PCx, a Makefile and a build script in the current working directory, together with anumber of subdirectories containing source �les for PCx, object �les, documentation, and source�les and a library for the Ng-Peyton sparse Cholesky code.To solve a linear program contained in the MPS �le probname.mps, one should go to theworking directory (that is, the directory in which the executable PCx resides) and typePCx probnameThe �le probname.mps can reside either in the working directory or in an \input directory" de�nedin the speci�cations �le (see Section 6). PCx �rst searches the input directory (if speci�ed) forthe given �le. It searches for the �le name both with and without the .mps extension. If it doesnot �nd the �le in the input directory, it searches the working directory.PCx optionally produces two output �les named probname.out and probname.log, accordingto the options supplied by the user in the speci�cations �le (see Section 6). These �les are writtenin the working directory. They contain, respectively, the primal-dual point returned by the algo-rithm (provided the termination status is not infeasible), and a summary of iteration history,timings, preprocessor results, and sparsity statistics for the Cholesky factorization. Output is alsowritten to standard output during execution of PCx. Essentially, the on-screen output consistsof the information written to the �le probname.log, together with error messages and warnings.When PCx is executed as a standalone system and a runtime error is detected, the codereturns a nonzero integer to the operating system. The return status indicates the type of error,as follows:1: invocation error for PCx;2: memory allocation error (usually, insu�cient storage available);3: error in the MPS input �le;4: error in the speci�cations �le;5: error detected during presolve; or6: error encountered during matrix factorization, conjugate gradient iteration, sparse matrixmultiplication, or dense column linear algebra.The subroutine PCx() can also be invoked directly from user-written code. In this case, theuser should �ll out data structures that de�ne the linear program and the algorithmic parameters.See the source code and the comments therein for details of this mode of use.9 Computational ResultsWe have executed PCx version 1.0 successfully in a variety of Unix environments, includingIBM RS6000/370 workstation running AIX, with 128 MB main memory and 350 MB swapspace, running AIX; 15

Sun SPARCstation-5 running SunOS4.3, with 32 MB main memory;Sun UltraSparc 2 running Solaris 2.x, with 200 MHz processor, 1 MB cache and 256 MB ofmain memory;SGI workstation running IRIX 5.3, with 250 MHz processor, 2 MB L2-cache, 64 MB mainmemory.HP9000-735 workstation running HPUX-9.05, with 128 MB main memory and 125 MHzPA7150 chip.Pentium Pro PC running PC Linux, with 48 MB main memory.We report results from the SGI machine. On this machine, the code was compiled with the defaultFortran and C compilers (xlf and cc, respectively), using the -O optimization ag in both cases.We solved a large set of test problems, both feasible and infeasible, taken for the most part fromthe familiar netlib set. Results obtained with the default parameter settings are shown in Tables1{3. Each row in the tables contains the dimensions of the problem before and after presolving,measures of infeasibility and complementarity, the primal objective of the point returned by PCx,the maximum number of additional centering/corrector steps allowed at each iteration (over andabove the single centering/corrector step of Mehrotra's algorithm), the number of iterations, andthe CPU time. The tabulated infeasibility measure is a relative measure de�ned asmax� k(rb; ru)k1 + k(bT ; uT)k ; krck1 + kck� ;where rb, ru and rc are the residuals at the �nal point. The tabulated complementarity measureis de�ned as xT s+ (u� x)Tr1 + jcTxj :Results for the feasible problems are shown in Table 1. In most cases, PCx correctly identi�edthe problem as feasible and returned an optimal solution. In four cases, the code terminated withstatus unknown, though in three of these cases the point returned by the code is quite close tooptimality. No problems were incorrectly agged as infeasible.Results for the infeasible problems appear in Tables 2. In two cases, PCx terminates withstatus unknown; the correct status infeasible is reported for all other problems. In two othercases, infeasibility was detected by the preprocessor, so the interior-point solver did not need tobe called at all.The NEMS problems are instances of models in the National Energy Modeling System (NEMS)of the Energy Information Administration of the United States Department of Energy [13]. Theseproblems are taken from NEMS modules which are used to model electricity capacity planning,petroleum marketing, and coal marketing. PCx solved these problems e�ciently, as shown inTables 3.The improvements obtained by using higher-order corrections are not too dramatic. Part ofthe reason is that the factorization routine is more e�cient relative to the solution routine thanis the case in, for example, HOPDM (see Gondzio [4]). It follows that there is less to be gainedby economizing on matrix factorizations. Signi�cant improvements can however be observed onseveral problems, including dfl001, pds-10, NEMSemm1, and NEMSwrld.16

Computational results for the netlib test set and the NEMS problems on SGIworkstation (250 MHz processor, L2-cache 2MB, Main memory 64MB, running IRIX 5.3)Legend: � = terminated with unknown status,y = infeasibility detected during preprocessing,max = maximation problemsTable 1: netlib: Feasible netlib ProblemsBefore After Max CPUPreprocessing Preprocessing Relative Relative Primal Add. TimeName Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]25fv47 821 1876 788 1843 1.8e-11 1.3e-07 5.501846e+03 1 22 3.9880bau3b 2262 12061 2140 11066 1.1e-11 7.6e-07 9.872244e+05 0 37 13.07adlittle 56 138 55 137 8.2e-14 3.4e-11 2.254950e+05 0 12 0.05a�ro 27 51 27 51 1.9e-11 7.2e-15 -4.647531e+02 0 8 0.01agg 488 615 390 477 2.5e-09 2.7e-12 -3.599177e+07 0 19 0.87agg2 516 758 514 750 3.4e-11 4.8e-10 -2.023925e+07 1 20 1.97agg3 516 758 514 750 4.5e-11 3.1e-11 1.031212e+07 1 19 1.99bandm 305 472 240 395 6.1e-13 3.5e-12 -1.586280e+02 0 17 0.38beaconfd 173 295 86 171 3.7e-12 2.4e-13 3.359249e+04 1 10 0.16blend 74 114 71 111 4.6e-13 5.7e-15 -3.081215e+01 0 10 0.06bnl1 643 1586 610 1491 1.2e-11 3.2e-08 1.977630e+03 0 39 2.45bnl2 2324 4486 1964 4008 4.4e-09 8.2e-08 1.811237e+03 1 31 17.07boeing1 351 726 331 697 2.9e-11 1.8e-11 -3.352136e+02 0 20 0.75boeing2 166 305 126 265 2.1e-08 1.1e-09 -3.150187e+02 0 14 0.17bore3d 233 334 81 138 4.2e-14 4.8e-13 1.373080e+03 0 16 0.11brandy 220 303 133 238 1.0e-05 6.1e-15 1.518510e+03 1 16 0.37capri 271 482 241 436 9.6e-11 1.4e-12 2.690013e+03 0 19 0.40cycle 1903 3371 1420 2773 5.7e-09 4.9e-11 -5.226393e+00 0 23 6.06czprob 929 3562 671 2779 3.7e-10 1.1e-07 2.185197e+06 0 26 1.61d2q06c 2171 5831 2132 5728 4.7e-08 2.8e-07 1.227842e+05 1 24 25.33d6cube 415 6184 403 5443 2.4e-09 4.5e-09 3.154917e+02 1 16 10.07degen2 444 757 444 757 7.4e-14 8.4e-13 -1.435178e+03 1 11 1.19degen3 1503 2604 1503 2604 5.6e-10 8.0e-09 -9.872940e+02 1 16 22.79d001 6071 12230 5984 12143 1.5e-11 2.7e-08 1.126640e+07 3 46 2857.07e226 223 472 198 429 1.6e-12 9.0e-10 -2.586493e+01 0 18 0.44etamacro 400 816 334 669 1.4e-14 3.1e-08 -7.557152e+02 0 25 0.98��f800 524 1028 322 826 5.8e-10 7.4e-08 5.556796e+05 1 25 1.91�nnis 497 1064 438 935 4.2e-12 1.1e-08 1.727911e+05 0 25 0.81�t1d 24 1049 24 1049 9.0e-14 1.7e-07 -9.146377e+03 1 17 1.66�t1p 627 1677 627 1677 3.3e-09 4.6e-08 9.146378e+03 0 17 2.00�t2d 25 10524 25 10524 4.7e-14 2.4e-08 -6.846429e+04 1 23 25.10�t2p 3000 13525 3000 13525 4.4e-08 1.8e-06 6.846441e+04 0 19 16.09forplan 161 492 121 447 3.8e-08 3.9e-10 -6.642190e+02 1 20 0.82ganges 1309 1706 1113 1510 4.4e-07 9.7e-09 -1.095857e+05 0 17 2.25gfrd-pnc 616 1160 590 1134 9.7e-15 2.2e-11 6.902236e+06 0 18 0.55greenbea � 2392 5598 1933 4164 1.5e-05 1.2e-08 -7.255525e+07 0 48 13.97greenbeb � 2392 5598 1932 4154 1.3e-05 3.4e-09 -4.302260e+06 0 39 11.33grow15 300 645 300 645 3.3e-07 8.4e-15 -1.068709e+08 1 21 1.32grow22 440 946 440 946 4.1e-05 2.1e-10 -1.608343e+08 1 22 2.27grow7 140 301 140 301 4.6e-09 1.6e-09 -4.778781e+07 1 17 0.50israel 174 316 174 316 1.4e-12 1.3e-08 -8.966448e+05 1 19 1.30kb2 43 68 43 68 3.0e-10 2.0e-16 -1.749900e+03 0 13 0.04lot� 153 366 133 346 7.4e-10 1.0e-15 -2.526471e+01 0 15 0.15maros 846 1966 655 1437 2.8e-08 7.1e-11 -5.806374e+04 0 20 1.54maros-r7 3136 9408 2152 7440 7.6e-11 2.2e-09 1.497185e+06 1 15 89.20mod2 � 34774 66409 28760 56347 1.7e-05 4.5e-05 4.656998e+07 0 78 554.80modszk1 687 1620 665 1599 7.4e-09 1.6e-12 3.206196e+02 0 22 1.18nesm 662 3105 654 2922 3.4e-12 1.4e-07 1.407604e+07 0 27 4.20NL 7039 15325 6665 14680 1.6e-12 9.9e-07 1.229265e+06 1 35 84.69pds-10 16558 49932 15648 48780 2.6e-10 3.5e-06 2.672717e+10 3 35 1651.5917

Before After Max CPUPreprocessing Preprocessing Relative Relative Primal Add. TimeName Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]perold 625 1506 593 1374 7.2e-07 2.8e-11 -9.380755e+03 0 34 3.35pilot 1441 4860 1368 4543 2.4e-07 4.5e-07 -5.574897e+02 1 32 72.18pilot.ja 940 2267 810 1804 2.5e-05 3.0e-08 -6.113136e+03 1 29 9.42pilot.we 722 2928 701 2814 2.4e-11 1.2e-07 -2.720107e+06 0 46 4.27pilot4 410 1123 396 1022 4.8e-05 5.1e-09 -2.581139e+03 1 46 4.74pilot87 2030 6680 1971 6373 1.3e-06 6.7e-07 3.017105e+02 2 30 216.32pilotnov 975 2446 848 2117 4.0e-06 1.3e-11 -4.497276e+03 1 16 4.98radex 16 26 15 25 3.7e-13 6.2e-14 3.584229e+05 0 8 0.01recipe 91 204 64 123 1.9e-10 3.9e-16 -2.666160e+02 0 9 0.05sc105 105 163 104 162 8.7e-09 1.5e-16 -5.220206e+01 0 10 0.04sc205 205 317 203 315 1.1e-11 1.1e-13 -5.220206e+01 0 11 0.10sc50a 50 78 49 77 2.4e-11 9.5e-16 -6.457508e+01 0 8 0.02sc50b 50 78 48 76 2.8e-09 7.4e-11 -7.000000e+01 0 6 0.02scagr25 471 671 469 669 2.9e-12 2.2e-13 -1.475343e+07 0 18 0.39scagr7 129 185 127 183 1.8e-13 7.9e-09 -2.331390e+06 0 14 0.08scfxm1 330 600 305 568 1.2e-06 1.6e-09 1.841676e+04 0 17 0.45scfxm2 660 1200 610 1136 2.2e-08 5.3e-13 3.666026e+04 0 20 1.13scfxm3 990 1800 915 1704 5.1e-08 3.6e-12 5.490125e+04 0 20 1.65scorpion 388 466 340 412 5.0e-14 6.2e-16 1.878125e+03 0 12 0.20scrs8 490 1275 421 1199 6.9e-13 1.1e-08 9.042970e+02 0 22 1.42scsd1 77 760 77 760 7.3e-15 2.1e-15 8.666667e+00 0 9 0.18scsd6 147 1350 147 1350 1.1e-14 2.8e-09 5.050000e+01 0 12 0.42scsd8 397 2750 397 2750 6.4e-15 9.2e-08 9.050001e+02 0 11 0.75sctap1 300 660 284 644 1.0e-13 9.7e-14 1.412250e+03 0 16 0.29sctap2 1090 2500 1033 2443 2.3e-15 4.0e-15 1.724807e+03 0 14 1.21sctap3 1480 3340 1408 3268 8.4e-16 1.3e-13 1.424000e+03 0 15 1.65seba 515 1036 448 901 4.7e-13 6.8e-09 1.571160e+04 2 12 6.97share1b 117 253 112 248 2.6e-08 3.4e-10 -7.658932e+04 0 19 0.18share2b 96 162 96 162 2.1e-11 1.6e-14 -4.157322e+02 0 17 0.12shell 536 1777 487 1451 3.5e-13 1.6e-11 1.208825e+09 0 21 0.72ship04l 402 2166 292 1905 5.8e-14 2.8e-13 1.793325e+06 0 13 0.58ship04s 402 1506 216 1281 1.0e-11 7.0e-09 1.798715e+06 0 13 0.38ship08l 778 4363 470 3121 5.7e-14 8.9e-11 1.909055e+06 0 16 1.19ship08s 778 2467 276 1604 3.1e-13 3.0e-11 1.920098e+06 0 12 0.48ship12l 1151 5533 610 4171 4.3e-14 2.0e-07 1.470188e+06 0 16 1.50ship12s 1151 2869 340 1943 5.0e-14 3.6e-13 1.489236e+06 0 13 0.60sierra 1227 2735 1212 2705 4.8e-16 8.0e-10 1.539436e+07 0 21 2.05stair 356 614 356 532 1.3e-09 2.6e-08 -2.512670e+02 1 13 1.02standata 359 1274 314 796 6.7e-15 5.4e-09 1.257700e+03 0 13 0.27standgub 361 1383 314 796 6.7e-15 5.4e-09 1.257700e+03 0 13 0.27standmps 467 1274 422 1192 2.9e-14 3.2e-15 1.406017e+03 0 26 0.79stocfor1 117 165 102 150 4.5e-13 3.6e-11 -4.113198e+04 0 12 0.06stocfor2 2157 3045 1980 2868 8.4e-11 1.0e-07 -3.902441e+04 0 20 2.37stocfor3 16675 23541 15362 22228 2.3e-09 6.1e-08 -3.997678e+04 0 31 35.66truss 1000 8806 1000 8806 1.5e-13 1.8e-09 4.588158e+05 0 20 6.61tu� 333 628 257 567 3.0e-09 2.9e-13 2.921478e-01 0 20 0.82vtp.base 198 346 72 111 1.5e-08 2.6e-09 1.298315e+05 0 11 0.05wood1p 244 2595 171 1718 3.4e-11 2.6e-11 1.442902e+00 2 20 12.31woodw 1098 8418 708 5364 6.2e-11 1.2e-10 1.304476e+00 0 31 6.13world � 34506 67147 28652 58027 8.6e-03 1.1e-04 6.986991e+07 0 67 514.91
18

Table 2: netlib: Infeasible netlib ProblemsBefore After Max CPUPreprocessing Preprocessing Relative Relative Primal Add. TimeName Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]bgdbg1 348 629 249 509 1.8e+02 4.0e+00 4.155802e+01 0 6 0.12bgetam 400 816 334 669 8.4e+01 1.2e+01 -3.571285e+04 0 7 0.35bgindy 2671 10880 2657 10866 4.6e+01 2.6e+00 1.059302e+09 1 8 32.32bgprtr 20 40 20 40 1.9e-01 3.3e-01 8.008869e+06 0 6 0.01box1 231 261 231 261 5.9e-02 1.0e+00 5.775809e+02 0 4 0.05ceria3d 3576 4400 3576 4400 8.0e-02 7.4e-02 -9.975419e-01 1 12 13.60chemcom 288 744 288 744 4.9e+02 1.9e+00 3.908033e+05 0 8 0.21cplex1 3005 5224 3005 5224 5.0e+07 9.2e+00 -2.701093e+09 0 5 1.09cplex2 � 224 378 224 378 3.1e-06 8.4e-06 6.550750e-01 0 35 0.49ex72a 197 215 197 215 4.2e-01 1.0e+00 4.579770e+02 0 4 0.03ex73a 193 211 193 211 4.1e-01 1.0e+00 4.449144e+02 0 4 0.03forest6 66 131 66 131 9.2e+01 6.5e-01 4.139797e+05 0 11 0.03galenet 8 14 5 9 4.7e+01 9.4e-01 0.000000e+00 0 5 0.00gosh 3792 13455 3479 12502 1.7e+01 1.1e+01 4.141377e+02 1 13 31.34gran y 2658 2525greenbea-i 2393 5596 1933 4153 1.1e+04 7.7e+00 2.433071e+03 0 10 3.87itest2 9 13 9 13 2.0e+01 4.6e-01 0.000000e+00 0 5 0.00itest6 11 17 10 15 5.0e+05 1.1e+00 8.730497e+05 0 5 0.01klein1 54 108 54 108 3.1e+03 9.2e+00 0.000000e+00 0 32 0.22klein2 477 531 477 531 3.0e+04 3.7e+02 0.000000e+00 2 22 14.73klein3 � 994 1082 994 1082 9.6e+04 1.4e+03 0.000000e+00 2 31 157.42mondou2 312 604 259 467 8.0e+00 4.0e+00 6.313890e+08 0 8 0.11pang 361 741 333 685 1.1e-02 3.6e+00 2.108127e+04 0 28 0.82pilot4i 410 1123 396 1022 1.5e+04 5.7e-01 -1.377993e+03 1 33 3.50qual 323 464 305 441 2.2e+00 4.8e-03 -5.835719e+04 0 35 0.82reactor 318 808 269 602 9.9e+00 6.4e-01 -3.285658e+05 0 9 0.23re�nery 323 464 303 439 3.5e+01 6.4e-01 -5.227856e+04 0 20 0.53vol1 323 464 305 441 2.7e+00 5.9e-02 -6.099720e+04 0 31 0.73woodinfe y 35 89 Table 3: NEMS ProblemsBefore After Max CPUPreprocessing Preprocessing Relative Relative Primal Add. TimeName Rows Cols Rows Cols Infeas Compl Objective Corr. Iters [secs]NEMSafm 334 2348 322 1402 1.2e-14 1.7e-11 -6.792374e+03 0 17 0.47NEMScem 651 1712 479 1540 3.3e-10 1.9e-08 8.977233e+04 0 19 0.75NEMSemm1 3945 75352 3230 41048 4.9e-15 3.6e-06 5.129614e+05 1 64 516.40NEMSemm2 6943 48878 4526 26754 1.6e-10 2.2e-06 5.810806e+05 0 37 35.52NEMSpmm1max 2372 8903 2227 7145 2.4e-08 4.8e-08 3.274158e+05 1 38 32.48NEMSpmm2max 2301 8734 2081 7944 3.0e-08 1.9e-07 2.917948e+05 1 40 38.86NEMSwrldmax 7138 28550 5621 23706 7.3e-13 1.7e-06 -2.603093e+02 2 41 546.08
19

AcknowledgmentsWe acknowledge the contribution of Marc Wenzel, who programmed the dense-column-handlingand conjugate gradient re�nement features that were added for the beta-2.0 release. We aregrateful also to Doug Moore for various advice and for pointing out and repairing many memoryleaks in the beta-1.0 release, and to Hans Mittelmann for running many of the benchmark testsand for compiling on various architectures, including DEC Alpha and Linux. Thanks also toErling Andersen for helpful advice and comments.References[1] E. D. Andersen and K. D. Andersen, Presolving in linear programming, MathematicalProgramming, 71 (1995), pp. 221{245.[2] A. R. Curtis and J. K. Reid, On the automatic scaling of matrices for Gaussian elimi-nation, J. Inst. Maths Applics, 10 (1972), pp. 118{124.[3] J. R. Gilbert, E. Ng, and B. W. Peyton, An e�cient algorithm to compute row andcolumn counts for sparse cholesky factorization, SIAM Journal on Matrix Analysis and Ap-plications, 15 (1994), pp. 1075{1091.[4] J. Gondzio,Multiple centrality corrections in a primal-dual method for linear programming,Computational Optimization and Applications, 6 (1996), pp. 137{156.[5] J. W.-H. Liu, Modi�cation of the minimum degree algorithm by multiple elimination, ACMTransactions on Mathematical Software, 11 (1985), pp. 141{153.[6] , The role of elimination trees in sparse factorization, SIAM Journal on Matrix Analysisand Applications, 11 (1990), pp. 134{172.[7] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journalon Optimization, 2 (1992), pp. 575{601.[8] E. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessorcomputers, SIAM Journal on Scienti�c Computing, 14 (1993), pp. 1034{1056.[9] S. J. Wright, The Cholesky factorization in interior-point and barrier methods, PreprintMCS{P600{0596, Mathematics and Computer Science Division, Argonne National Labora-tory, Argonne, Ill., May 1996.[10] , Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia, Pa., 1997.[11] Y. Zhang, User's Guide to LIPSOL, Department of Mathematics and Statistics, Universityof Maryland Baltimore County, Baltimore, Md., July 1995.[12] , Solving large-scale linear programs by interior-point methods under the MATLAB en-viroment, Technical Report TR96-01, Department of Mathematics and Statistics, Universityof Maryland Baltimore County, Baltimore, Md., 1996.[13] Annual Energy Outlook 1996, Energy Information Administration, U. S. Department of En-ergy, Washington, DC 20585, 1996. Document DOE/EIA-0383(96).20

