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A General Formula for Rayleigh-Schrodinger Perturbation Energy Utilizing a Power
Series Expansion of the Quantum Mechanical Hamiltonian

by

John M. Herbert

ABSTRACT

Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions
to the Schrddinger equation. Perturbation treatments represent a system’s energy as a power series in which each
additional term further corrects the total energy; it is therefore convenient to have an explicit formulatfer the
order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-
form expression for theth-order energy correction is well known; however, use of a single perturbed Hamiltonian
often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed
Hamiltonian in a power series. This report presents a closed-form expressiomtardiaer energy correction

obtained using Rayleigh-Schiinger perturbation theory and a power series expansion of the Hamiltonian.

[. INTRODUCTION
Since the inception of quantum mechanics, perturbation theory has been an important tool for
analyzing certain molecular systems whose &tihger equations are too complicated to be exactly soluble
[1], provingespecially useful in the study of nuclear motion about or near a molecule’s equilibrium
geometnyf2, 3]. Systems suitable for perturbation treatment can be formulated as arising via the continuous
disturbance or deformation of an “ideal” system whose Schrddinger equation can be solvegiexactly

Standard perturbation-theoretical approaches separate the full quantum mechanical Hamiltonian
operatorI:I into two parts:

H=H® +\H", (1)



where H © represents the Hamiltonian operator for an unperturbed system whose Schrodinger equation
can be solved exactly ant’ comprises the Hamiltonian operator &irdeviations from ideality. The
perturbation paramet@ris arbitrary and may take on values in the interval
0 <A <1, withA = 0 corresponding to the unperturbed system. For certain proldldras,an obvious
physical interpretatiofi]; otherwise, it is simply set equal to unity.
Incorporating the Hamiltonian operator (1), the Schrodinger equation for the perturbed system
becomes
(HO+HW,, =EW,, 2

whereE, and{i, are, respectively, the system’s energy and state function in non-degenerate quantum state
m. SinceH = H(A), the eigenfunctiong, and eigenvalueg,, of H both depend upok, and we may
expand both quantities as Maclaurin series. in

W, =W A DAY+ 3

E,=EY +AEY +N°E(? + .- | (4)
where, for convenience, the symbgls® and EX (thekth-ordercorrections tap,, andE,) are

introduced to represent the proper Maclaurin series coefficiett§,0k = 0, 1, 2, ..[5]. When all state

functions and energies refer to the same quantum state, the subscripted quanturmnsiofiben omitted.

[I. EXPANSION OF THE HAMILTONIAN
While the perturbation expansion (1) of the Hamiltonian is of the form most frequently encountered
in perturbation theory research, this simplistic formulation quite often causes the energy series (4) to
diverge[3]. Instead of constructing the perturbed Hamiltonian as inl-ﬁl)tself can be expanded as a

Maclaurin seriept,6] and written in the form

H=HO + A +A242 + ... 5)

! For degenerate states, the notation becomes slightly more complicated. For details see fefeadfEs
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where once agaiH ©is the Hamiltonian operator for the unperturbed system. Rather than grouping

together all perturbations into a single tekn, an expansion such as (5) represents each individual
perturbation with its own Hamiltonian operator.

Note that a necessary condition convergence of the energy series (%)

|E(k+1)

<|E(k)| (6)

for all k. Using a Hamiltonian of the form in (5), Sprandel and Kgrhave demonstratéidat the

perturbation energy correctioB% for the pure vibration of Hdecrease asymptotically to at least 50th

order (the highest order examined) for each of the nine quantum states investigated. Furthermore, when the
expanded Hamiltonian (5) is used, the difference between theoretical calculations and experimental values
decreased smoothly with increasing order of approximation. In contrast, when a perturbed Hamiltonian

such as (1) was used, the same nine energy series clearly diverged after 30 to 50 terms.

[ll. P ERTURBATION ENERGY
Although the power series formulation (5) of the Hamiltonian has several clear advantages over the

formin (1), it has not been widely adopted, presumably because the numerous terms in (5) lead to

complicated expressions wherevdris involved. Consequently, an explicit formula for title-order
perturbation energ§g®, has not been published.

A logical point of origin for an energy formula is the Salinger equation,
HY =EY . (7)
In this case,I:I, Y, andE are represented by the series (3-5). Substituting these series into Equation (7)

and collecting powers a@f, one obtains

2 For the rigorous conditions under which (4) converges for a power series expansion of the Hamiltonian, sedtgference
3 When the perturbation is written as a single teh:kh such a formula is known; see referefide

4



300, (0 _ (0,0 CRTE! T 9 (9 (L (P

(H™ g EVQ7) +A(H Y +H Y EVYr BV +
+)\n(|:|(0)llJ (n) +|:|(1)qJ(n—D + ... +|:|(n)qJ(Q —E(QllJ(n) _E(J)LIJ(H—J — . E(n)qJ(O) (8)
+ ... +)\n+n(|:|(0)llJ (n+n) 4+ ... +|:|(n+n)qJ(0) —E(O)llJ (n+n) _ . _E(n+n)l.|J(0)) =0 .

Assuming that this series converges, Equation (8) will be true if and only if each of the coefficdnts of
k=0, 1, 2, ..., is separately z€sp. Applying this condition to the first+1 coefficients, one obtaifg the

following perturbation equations:

|:|(0)qJ(0) - E(O)LIJ(Q (9)
2 (HU-EDp ™ =0 (10)

Notice that the zero-order perturbation equation (9) is simply the Schrédinger equation for the unperturbed
system. The remaining perturbation equations serve to relate the separate Iélr,mﬁ,@fndE, and need
not have any independent physical significgare

Multiplying the n"-order perturbation equation (10) by and integrating over all

configuration space, one obtains

WOIAO ™)+ o + (PR =EO(PO|P™) + oo +EO (POt ?), (11)
where
WO AT ) = [y RO @2
and
(W <i>|q,<i>>sJ'qJ<i>DqJ“>dr . (13)

Since the unperturbed Schinger equation (9) is soluble (by hypothesis), the complete set of
wave functions{qJ ,(no)} is fully known. Moreover, eacmn(f) is an eigenfunction of the Hermitian operator

H © so {qJ ,(no)} is an orthogonal s¢d]. Finally, one may assume that the unperturbed wave functions

are normalized to integration, so that



(welwe) =3, (14)
whered, ; Is the Kronecker delta function. Applying Condition (14) to Equatiort,(@} finds that the

nth-order energy correction is given by the recursive relation

EM = <llJ )

|:|(O)|QJ(n)>+ +<qJ(0) |:|(n)|w(o>

—E‘°)<qJ(°)|qJ(”)>_ ‘E(n_D<UJ(°|lIJ“)> _ (15)

IV. RAYLEIGH -SCHRODINGER PERTURBATION THEORY
Equation (15) can be simplified considerably by resorting to the Rayleigheuer form of

perturbation theory. If the system of interest is roughly modeled by an unperturbed system with

Hamiltonian operatoH © " then it is reasonable to assume that the comple{elﬁ,é’} of unperturbed

wave functions forms a basis for the Hilbert space of the Hermitian opéqiatcmresponding to the

perturbed systen(9]; this assumption is the foundation of Rayleigh-Sdimger perturbation theofyln

light of this assumption, one may express all perturbed wave funqli,&)nsSIinear combinations of the
basis functions belonging 1{11) ,‘no)} :

Wy = c’w® (16)

J
where thec§’, ¢, ¢§’, ... are constants.
The linear expansion (16) precipitates an important result that greaplyfigsnperturbation
theory calculations. It can be shosng] that the coefficient!) in (16) does not affect any of the

perturbation energy corrections, so this coefficient will be assigned a value of zero. Thus,

P = (17)

J#m

4 Recall that all wave functions in (11) refer to the same quantum state, so (14) is applicable.
® Note that the Rayleigh-Schtinger assumption is most likely to be valid when the perturbation from ideality is small; thus,
Rayleigh-Schrdinger perturbation theory is not suited for the study of highly-excited quantum states.
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and

WOW) =Y (W] w®)

J#m

=5 s,

JZm

(18)

by (17) and (14). Note that the summation in (18) preclpdes, so that6mle = 0. Hence, one obtains

the condition

WPwd) =3, (19)
for all n.

Equation (19)— which implies that each perturbed wave function is orthogonal to the unperturbed
basis function corresponding to the same state— is often misquoted as the fundamental assumption of
Rayleigh-Schrdinger perturbation theory. As shown in (18), this orthogonality condition is actually a
consequence of the Rayleigh-Sakinger condition (16).

V. REDUCED FORMULAE
As a consequence of orthogonality condition (19), all overlap integrals in the energy expression

(15) disappear, leaving

EWZZ@mewww_ (20)

This expression for theth-order energy correction involvasl different wave functions, while in general
it is possible to express thepf2l)st perturbation energy in terms of only the wave functions
POp®, ... ,w® 8. Thus, the challenge is to reduce (20) to an expression involving the minimum
possible number of wave functions.
To accomplish this reduction, first consider the case whexedd; that isn = 2k+1 for
k=0,1,2, .. From (20),

E(2k+1) - <llJ (0 |:|(2<+3)

WO+ (WO A® P + o (PO AR P 21)



since

<llJ (0)

HO|lg @) =0 (22)

by (9) and (19). Substitution fdd ©@ @ H& 2@ .. HOP O from the firstk perturbation

equationsand use of (19) provides

(243 K (2

E (2k+D =<llJ(0) ‘JJ(°>+ +<llJ(° llJ(k)> +<LIJ” Ek- X _|:|(k—n|w(k+)1>
+<llJ (2)|E(k—2) _|:|(k—2)|w(k+1)> + e <ljJ(k)|E(° _|:|(o|w(k+1> (23)
+ ... +<llJ (1)|E(0) —|:|(0)|l]J(2k)> ’

which still contains wave functions of order higher tkarf o eliminate these, substitute for
(E@ -HO) &3 (E@ Oy &2 (EO - O > from the nexk perturbation
equations. This step yields

(243 K (2

ECKD = (O WO+ o+ W)
FHPOEED D g ®2) 4 (g *?ED —HO
FHPO[AED —EEDgO) 4y ®

w(k+1>
|:|(]) _E(3)|qJ(k)> (24)

K (20 —E(2k)|l]J(Q>-+ e PO RO —EO|g 2

+<qJ (€]
All matrix elements in (24) containing “* g **2 ... .4 ¥ cancel out of this expression, affording

w(k)>

E(2k+1) :<w(0)|H(2k+1) |:|(k+1

l.IJ(0>+ +<qJ(Q

+<llJ ()| &k _ g ke qJ(0)>+ +<UJ(k) KO —E“)|llJ(k)>
+<llJ (-D || (k+2) _ g (k+2) w(@>+ +<UJ“H) H(? —E(2)|llJ(k)>
+<llJ @ |52 —E‘2k)|qJ‘-@> (25)
k
- 0) |:|(2k+]) (9 (i) |:|(2k+1—2i) _E(2<+1—2) (i)
W AL w)

k k
+ZZ Z<w (j-D |H(2k—I—J+2) _ E(2k—| -j +2
J:

1i1=)

qJ(i)> )

® Thek™ perturbation equation is equation (10) witk k.



Sincen = 2k+1, application of (19) to Equation (25) provides
7(n-1) 3(n-1)

|:|(n—2i)|w(i)>+2 <qJ(J—1)
)

$(n=1) 3(n-1)

3(n-D)
- E2D WO lg®)y=2 E@=iD (=D |y
2ETWOWT)-25 5 (02 ]g)

|:| (n—i—j+1)

p®)
(26)

3(n-1)

EM = Z<¢ 0]

1=0

for oddn. While Equation (25) perhaps has a simpler form, Equation (26) separatts thder

perturbation energy into its separate contributors: Hamiltonian matrix elements, overlap

integrals, and lower-order perturbation energies.

A similar derivation for evem yields

In-1 In-13n-1
EM = IZO@ 0] |:|(n—2i)|qJ(i)>+ZJZl ;mJ(J-l) K (n-i-i+ llJ(i)>
In-1 In-1}n-1
M [JEnHpEmY) —9 EM=i=i) (=D |y ® 27
* 3 WOIRGlp) 23 3 B0 yt) @)

n-1

Nl

I
1.
2N 1

- Z E‘”‘Z‘)<qJ (i)|¢(i)>— E(%n—i)<¢(i)|w(%n)> _

1=1 =1

The sole difference between (26) and (27) is the coefficients of the overlap integrals and

Hamiltonian matrix elements wher n.
For some applications, it is useful to possess a formula that is valid fior/dl above, let

. ,l]J(k)} is the smallest set of

k=2n forevemnandk =3 (n—1) for oddn. Then {llJ O,

wave functions spanninbE(O),E(l), ,E(”)} . Incorporatingk and the Kronecker delta function, one

may combine Equations (26) and (27) into a single perturbation energy formula:
[ e T Ep AR
=0

C < ( ) (n=i=j+1) /o (3D [y, () < (=20 /oy ) {1y (D
- 2 _6n i E n=i—j+L -1 i _ E n-2i i i
> 3 [-s.)e e -5 B Ow)

l_Al(n—i—j+l)

E(n) -
(28)

k
j=1i

k
1=11=]
=21

[ R ®) - )-8, 8,

forn> 0.



The generalized energy formula (28) is recursive, sincetitherder energy is a function of lower-
order energies. Elimination of these lower-order energies from (28) is tedious, but in principle it is possible
to expres€™solely in terms of overlap integrals and Hamiltonian matrix elements. This procedure,
however, results in an energy formula involving an infinite number of separate summations (only finitely
many of which are non-zero for a given Thus, only as a recursive relation canritieorder
perturbation energy be expressed in a compact, closed form. Ultimately, the recursive nature of (28) poses
no additional burden, since the entire sequence of perturbations eBIgi ..., E™ should be

calculated in order to investigate the convergence behavior of the energy series (4).
Note also that Equations (26-28) contain overlap integrals of the(fth(w () .

Wheni = 0, such integrals are equal to unity, since the unperturbed wave functions are assumed

to be normalized. Imposing the restriction that the total wave fungtjotbe normalized and

substituting fonp ., from (3) provides

WO+ o AP

PO AL+ YD) =1 (29)

Expanding (29), collecting powers ®f and applying (19), one obtaipns the following set of

equations:

YW wi)=0 (30)

=0
These equations demonstrate that in ger{grd! |w{) # 1 for i > 0, so normalization of the total wave

function ), precludes normalization of the perturbed wave functions. nces the wave function of

an actual physical system, its normalization condition will be retéined.

VI. CONCLUSION

" Recall that the perturbed wave functions, when taken individually, need not correspond to an actual physical system.
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The energy expression (28) is extremely general, for its derivation involved few assumptions. The

first assumption— that the total wave function and the unperturbed wave functions are normalized— is

trivial, and the assumption that may be expanded as a power series is the foundation of this particular
approach to perturbation theory. While the Rayleigh-Sthger condition (16) is certainly not trivial, it

was used in this context only to derive the orthogonality condition (19). In the absence of Conditions (16)
and (19), Equation (25)— along with an analogous expression foneves still valid.

Beyond these assumptions, however, the form of the expansiony{3) @fquires that quantum
statem of the unperturbed system be non-degenerate, Binge U, = q;n&f” only for non-degenerate

statean[5]. While Equation (28) is therefore valid only when the unperturbed system is non-degenerate,
modifications can be made to accommodate degen¢4agy

In light of the superior convergence behavior of perturbation energies when a power series
Hamiltonian is used, a general formula such as (28) is extremely important. In subsequent work, the

Rayleigh-Schrdinger condition (16) will be used to express all wave functions in (28) as linear
combinations of the state functions in the complet{lséf)} . Since the wave functions of this set are

fully known (by hypothesis), the perturbation energy can thus be calculated (to arbitrarily high order)
without knowledge oény perturbed wave functions. Furthermore, since empiricaf3lataggest that use
of Equation (28) will lead to asymptotically decreasing perturbation energies, one simply incraaties

the energy corrections fall below an appropriate tolerance. The system'’s total energy is then given by (4).
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