
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-223
FLIC: A Translator for Same-Source ParallelImplementation of Regular Grid ApplicationsbyJohn MichalakesMathematics and Computer Science DivisionTechnical Memorandum No. 223

February 1997
This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 12 Overview 22.1 FLIC Input and Output : 32.1.1 Loop Statements : 32.1.2 Global and Local Indices : 42.1.3 Boundary Tests : 62.2 Iterative Scope : 72.3 FLIC Macros : 73 Usage 83.1 Obtaining FLIC : 83.2 Command Line Arguments : 93.3 Directives File : 93.4 Environment : 93.5 Compiling with FLIC : 104 Conclusion 10References 11
iii

FLIC: A Translator for Same-Source ParallelImplementation of Regular Grid ApplicationsbyJohn MichalakesAbstractFLIC, a Fortran loop and index converter, is a parser-based source translation toolthat automates the conversion of program loops and array indices for distributed-memory parallel computers. This conversion is important in the implementation ofgridded models on distributed memory because it allows for decomposition and shrink-ing of model data structures. FLIC does not provide the parallel services itself, butrather provides an automated and transparent mapping of the source code to calls ordirectives of the user's choice of run-time systems or parallel libraries. The amount ofuser-supplied input required by FLIC to direct the conversion is small enough to �tas command line arguments for the tool. The tool requires no additional statements,comments, or directives in the source code, thus avoiding the pervasiveness and intru-siveness imposed by directives-based preprocessors and parallelizing compilers. FLIC islightweight and suitable for use as a precompiler and facilitates a same-source approachto operability on diverse computer architectures. FLIC is targeted to new or existingapplications that employ regular gridded domains, such as weather models, that will beparallelized by data-domain decomposition.Keywords: source translation, same-source strategy, regular grids, weather model-ing, distributed-memory parallel computing, parallel tools.1 IntroductionAdapting simulation codes to distributed-memory parallel computing is di�cult and errorprone, since it involves replacing the single-address space memory model with a distributedone. The task is especially demanding if one wishes to preserve source compatibility with thenon-distributed memory version of the model. Such a same-source approach is desirablebecause it lessens the burden of maintaining the software. It is, however, is di�cult toachieve because the modi�cations required for distributed memory are usually extensive.One critical problem is the handling of loops that iterate over decomposed dimensions,for example, the north/south and east/west loops in an atmospheric model. The startingand ending indices must be adjusted for the fact that each processor has only a sectionof the original domain. Another is the loss of the identity relationship between globaland local indices. A reference U(i,j) in the source model will be wrong on distributedmemory because the i; jth element on the processors is not the i; jth element of the logicaldomain. Although the loss of global/local index identity can be avoided by retaining theoriginal dimensions of the model's data structures, doing so defeats memory scaling. Themodel will not be able to take advantage of the larger aggregate memory available frommore processors unless array dimensions are shrunken to allocate only the memory neededon each processor. Finally, boundary conditions speci�ed implicitly as loop ranges do nothold, because the loop ranges are global whereas the loop variable is used as a local index.1

All of these problems have been successfully addressed using run-time systems and par-allel libraries. A number of available packages [2, 3, 5, 6] provide the necessary looping andindex translation information to the program at run time. However, looping statementsand index expressions must be modi�ed from their original form to use this run-time infor-mation, introducing enough parallel artifact to hinder a same-source software approach.FLIC, a Fortran loop and index converter, is a parser-based pre-compiler that bridgesthe gap between the non-parallel source code and the parallelized version by automaticallygenerating the calls or directives needed by the run-time system. FLIC requires no directivesof its own in the source code; the amount of input required to guide the translation is smallenough to �t on the FLIC command line (within a UNIX Make �le, for example) and generalenough to be speci�able once for all the modules of the program.FLIC requires only that the user enumerate the Fortran-de�ned constants that are usedto specify the size of decomposed array dimensions in the program. If, for example, the statearrays for model variables such as temperature, wind velocity, and moisture are dimensionedIX for the north/south dimension and JX for the east/west dimension, it is su�cient tospecifyflic -mdim=ix -ndim=jx file.FFrom this speci�cation, and by looking at the array references in each loop body, FLICwill identify and convert all the loops that iterate over the m and n dimensions. FLICwill also identify decomposed arrays that are being indexed by nonloop-variable expressionsand generate the correct global-to-local index translation|all without touching the source�le. Thus, the tool avoids the pervasiveness and intrusiveness imposed by directives-basedpreprocessors and parallelizing compilers, in which directives must be scattered throughoutthe source code.Another critical problem for implementing single-address space codes on distributedmemory architectures is interprocessor communication. FLIC does not analyze data depen-dencies and generate communication. However, this is well within the capability of sourcetranslators [1, 4] and is a future enhancement for the FLIC tool.2 OverviewFLIC is a precompiler, as distinguished from a preprocessor. Unlike macro preprocessors|M4, CPP, or Perl|which rely on pattern matching, FLIC is built atop UNIX lex andyacc and contains the full lexical, syntactic, and semantic speci�cation for Fortran77 withextensions (such as Cray POINTER statements). The translator works from an abstractsyntax tree and is fully capable of disambiguating Fortran nuances (e.g., when is an assign-ment statement actually a statement function?), and it has full access to type, class, anddimension information for all identi�ers in the program.Preprocessors do play a role in the translation process. FLIC is more powerful thana preprocessor, but it is also more di�cult to modify. Therefore, FLIC does not generatea full Fortran expansion of the distributed-memory target code. Doing so would unnec-essarily limit the range of possible target expansions. Rather, it generates FLIC macros2

that are expanded by using M4, CPP, or another preprocessor. Users who do not wishto write expansions for the macros FLIC generates can take advantage of the ready-madesets of macro expansions included in the FLIC distribution. Users who develop new macroexpansions and wish to have them included are invited to contact the author.2.1 FLIC Input and OutputIn addition to a �le containing Fortran source code, FLIC requires a small amount ofadditional information from the user. The primary information required is a list of thede�ned constants that are used to declare the decomposed dimensions of model arrays.Additionally, FLIC also needs to know whether the routine being translated is called fromwithin a loop over a decomposed dimension.The principal advantage of this approach is that a great deal of relevant knowledgeabout the program can be inferred from a very small amount of information, namely, theset of de�ned constants that are used to declare decomposed array dimensions. Even in alarge model, the number of these constants is comparatively quite small. For example, inthe 50,000-line PSU/NCAR MM5 code, about a dozen de�ned constants, easily listed onthe FLIC command line, are used to declare the north/south and east/west dimensions ofthe hundreds of arrays in the model.2.1.1 Loop StatementsTo properly translate loop statements, FLIC needs enough information to be able to tellwhether a given loop in the routine is over one of the decomposed dimensions. If it is, itshould be translated; otherwise it is left alone. The current version of FLIC allows up totwo dimensions of a domain to be decomposed; these are referred to as M and N. In anatmospheric model, for example, the north/south and east/west dimensions are candidatesfor decomposition over processors; one of these would be designated M and the other N.FLIC uses this rule:A loop is over a decomposed dimension if, within the body of the loop, a decom-posed dimension of an array is indexed by an expression that depends on thevalue of the loop variable. The loop is converted provided the ending loop rangeis not an expression of the de�ned constant that declared the array dimension.Since FLIC has ready access to the loop variable from the source code and can staticallyinfer whether index expressions are dependent on it, the only missing piece of informationis which dimensions of the array being indexed are over decomposed dimensions. ProvidingFLIC with the list of de�ned constants that are used to declare the M and N decomposeddimensions of model arrays allows it to look for these among the array declarations in theroutine and to categorize each array accordingly. For example,REAL UA(IX,JX,KX)...DO 10 J = 2, JL-1 3

DO 10 K = 1, KLDO 10 I = 2, IL-1UA(I,J,K) = ...10 CONTINUE...is a fragment containing a triply nested loop that contains a reference to the three-dimensionalmodel array UA. The tool has no way of inferring from the code itself that the I loop andthe J loop are decomposed over M and N, respectively. If, however, we inform the tool thatIX is used to declare the M dimension and JX is used to declare the N dimension, the toolcan infer everything else from the rule stated above, generatingREAL UA(IX,JX,KX)...FLIC_DO_N(J,2,JL-1)DO K = 1, KLFLIC_DO_M(I,2,IL-1)UA(I,J,K) = ...10 CONTINUEFLIC_ENDDOENDDOFLIC_ENDDO...The beginnings and ends of the loops over I and J are replaced with FLIC macros; the Kloop is left alone. In the case of the I loop, an index expression dependent on the loopvariable was found as the �rst index of UA in the loop body. The �rst dimension of UA isknown to be over M because it is de�ned with IX. Therefore, the I loop is inferred to be overM, a decomposed dimension. Since the ending loop range is not an expression of IX (whichwould imply that the loop is already speci�ed over the local and not global dimension), theloop is translated (likewise, with the J loop). Within the body of the converted loop, theloop variable is considered to be local and hence may be used as-is to index local arrays. Ifthe loop variable appears in a logical expression, it may be converted to global.Note that the tool also unravels the common termination on a labeled CONTINUEstatement. That statement is left intact, within the innermost loop body, on the chancethat the loop body contains a GOTO statement to that label.2.1.2 Global and Local IndicesIn addition to identifying and translating loops over decomposed dimensions, FLIC mustidentify and correctly handle instances where global indices must be converted to localindices, and vice versa.Global values appearing as indices to local arrays must be converted to the correct localvalue, for example, 4

REAL UA(IX,JX,KX)...DO J = 1, JXDO K = 1, KXUA(3,J,K) = ...END DOEND DOThis construct would be found in sections of code that set boundary values. The value usedas the �rst index of UA is wrong because \3" refers to the position in the undecomposeddomain, whereas that index in local memory refers to another cell entirely. FLIC is able torecognize this situation using the following rule:When a decomposed array dimension is indexed by an expression that is notdependent on the value of a loop variable, that expression will be consideredglobal and in need of conversion.In the example above, the �rst dimension of UA is a decomposed dimension, and theconstant \3" is clearly not dependent on either of the loop variables, J or K. Therefore, theexpression \3" must be treated as global and transformed accordingly.A simple transformation would be to replace the index in-place. However, for e�ciency,FLIC de�nes and sets temporary variables outside the loop, if possible, to avoid recalculatingthe constant index expression each time through the K loop:REAL UA(IX,JX,KX)...IFLIC_0 = FLIC_G2L_M(3,IX)DO J = 1, JXDO K = 1, KXUA(IFLIC_0,J,K) = ...END DOEND DOWith regard to the actual generation of local indices from global indices, this is up tothe particular set of macro expansions. The ready-made set of macros that maps to theRSL parallel library will expand FLIC G2L M(3,IX) tomin(max(3+idif,1),IX)IDIF is a variable whose value is set by RSL at run time to the di�erence between a globalindex and a local index on each processor. Adding IDIF to \3" gives the local index. Ofcourse, this is the local index only if the processor actually has the subrange of the Mdimension containing the third element; hence, the min/max calls. If the processor has thiselement from the global dimension, the local index will fall between 1 and IX, the size ofthe local dimension. Otherwise, the resulting value will be either 1 or IX, and these can be5

treated as garbage values in the decomposed data structure. Again, this is an example of onepossible expansion for the G2L macro; certainly other techniques are possible, dependingon the needs of the underlying parallel software. The important point, however, is that theappearance of the source code is una�ected.2.1.3 Boundary TestsBoundary tests present the inverse problem: local indices will appear in statements wherethey should be global. In the case where the boundary conditions are implicit in a looprange, the conversion is handled as part of the overall loop conversion, since the startingand ending ranges are included as arguments to the FLIC DO M and FLIC DO N macrosthat replace the loop statements.However, expressions that depend on loop variables often may be found in the logi-cal expressions of conditional statements to test for position in the global domain beforeexecuting (or not executing) a set of statements:REAL UA(IX,JX,KX)...DO 100 J = 1, JXDO 100 K = 1, KXIF (J .EQ. 1) THENUA(I,J,K) =ENDIF100 CONTINUEFLIC will generate the following transformation, using the rule:An instance a loop-variable over a decomposed dimension occurring in a logicalexpression will be converted from local to global.FLIC will translate the above code toREAL UA(IX,JX,KX)...FLIC_DO_N(J,1,JX)DO K = 1, KXIF (FLIC_L2G_N(J) .EQ. 1) THENUA(I,J,K) =ENDIF100 CONTINUEEND DOFLIC_ENDDOA possible expansion for FLIC L2G N(J), again from the RSL/FLIC mapping, is (J-JDIF).6

2.2 Iterative ScopeFLIC automatically handles routines that contain iteration over both the M and N dimen-sions using the rules described in the preceding sections. Sometimes, however, a routinemay be called from within a loop; in other words, at least one of the loop statements thatsets indices within the routine is outside the de�nition of the routine. For example, a rou-tine containing I loops may be called from within a J loop of another routine and havethe J index passed in as an argument. Such a routine is slab callable, since a full sweep ofthe domain involves calling the routine once for each J-indexed I slab. Although only theI loops are visible to the translator, the J index must also be handled, even though the Jloop itself is inaccessible. Whole program analysis, such as is performed by the APR tools,is the ultimate solution to this problem. However, with some additional guidance from thecommand line, FLIC can handle this situation.The -m=list and -n=list options provide a way of specifying an externally de�ned loopand loop variable on the command line. For example, for the routine described in theprevious paragraph, the external J loop is be speci�ed asflic -n=j file.fThis indicates that the routine in �le.f is called from within a loop over the decomposeddimension N and that the loop variable is J inside the routine. Speci�cations may be givenfor �les containing more than one routine using entries of the form routine:variable, forexample,flic -n=sub1:j,sub2:j file.fIn this case, only the routines SUB1 and SUB2 would be considered slab callable. Otherroutines in the �le would be una�ected by the option.2.3 FLIC MacrosThis section describes the macros that FLIC generates in the target code:
7

FLIC DO M(var, start, end) Replaces DO loops over the M decomposeddimension. Var is the loop variable; start andend are the starting and ending global indices.FLIC DO N(var, start, end) Replaces DO loops over the N decomposeddimension.FLIC ENDDO Replaces ENDDO or labeled CONTINUEstatement at the end of a converted loop.FLIC G2L M(index-expr) Converts index-expr from global to local forM indices.FLIC G2L N(index-expr) Converts index-expr from global to local for Nindices.FLIC L2G M(index-expr) Converts index-expr from local to global forM indices.FLIC L2G N(index-expr) Converts index-expr from local to global for Nindices.de�ne(INSIDE MLOOP) This M4 de�nition is generated by FLIC forroutines that are callable within a loop overM. It is a
ag to the preprocessor that theFLIC DO N macros may need to be expandeddi�erently.de�ne(INSIDE NLOOP) This M4 de�nition is generated by FLICfor routines that are callable within a loopover N. It is a
ag to the preprocessor thatthe FLIC DO M macros may need to be ex-panded di�erently.These macros are then expanded to the appropriate distributed-memory target codeby using a macro preprocessor such as CPP or M4 (preferred because it allows multilineexpansions). FLIC is distributed with ready-made macro packages. This section providesthe speci�cation for the FLIC macro interface, which may be used to construct new macros.Users who develop new macro expansions and wish to have them included are invited tocontact the author.3 UsageThis section describes how FLIC can be integrated and used in the compilation mechanismfor a model. Input to the tool includes the source code and speci�cations that will be usedto direct the transformation. These speci�cations may come from the command line, a �le,or the user environment.3.1 Obtaining FLICFLIC is available on the World Wide Web athttp://www.mcs.anl.gov/Projects/FLIC8

This page also contains installation information and the latest usage information for thetool.3.2 Command Line ArgumentsThe following is a command line summary for the tool.-extend Allow extended source lines (to 132 characters).-m=list-n=list Specify externally set loop indices for slab-callable routinescalled from within an M or N loop. List is a comma separatedlist of [routine:]loop-var items. Loop-var is the name of theexternally set loop variable as it is known within the routine.Routine is the name of the routine the speci�cation appliesto. If routine is not given, the speci�cation applies to allroutines in the source �le.-mdim=list-ndim=list Specify a comma-separated list of identi�ers that are used tospecify the M or N decomposed dimension when arrays aredeclared.-F=�le Specify a �le containing FLIC directive information. Speci�-cations in the �le will supersede command line settings.-H=string Include string, indented to column 7, at the beginning of thedeclarations section of the module.-CPP=string Include string, prepended with a # character, at the begin-ning of the declarations section of the module.-toolname=string Use a di�erent string than FLIC in the macro names.3.3 Directives FileFLIC may read the transformation speci�cations from a �le whose name is speci�ed usingthe -F option on the command line. The speci�cations in the �le will supersede those fromthe command line or the environment. FLIC directives begin with C in the �rst column sothat they may be treated as comments, should the user opt to include these in the Fortransource. In this case, the -F option must specify the source �le itself; otherwise the directiveswill be ignored. The syntax for the directives is as follows:c
ic m=listc
ic n=list Same e�ect as the -m and -n command line options.c
ic mdim=listc
ic ndim=list Same e�ect as the -mdim and -ndim command line options.3.4 EnvironmentThe transformation speci�cations may be speci�ed in the environment by using shell envi-ronment variables. Settings from the environment are superseded by command line settingsand by input from a directives �le. 9

FLIC M stringFLIC N string Same e�ect as -m and -n command line options.FLIC MDIMstringFLIC NDIM string Same e�ect as the -mdim and -ndim command line options.3.5 Compiling with FLICFLIC is designed to be used during compilation of a model, typically from within a UNIXMake �le. The following fragment is an example rule for make that compiles model source�les name.F down to relocatable object form name.f.OBJ=solver.o ...all : (OBJ)(LINK) -o model $(OBJ)F.o: cpp $(INCLUDES) -C -P $*.F | flic -F=FLICFILE > $*.flicm4 FLIC2RSL.m4 $*.flic | cpp -C -P >$*.f$(FC) -c $(OPTIM) $(DEBUG) $(F77_FLAGS) $*.fIn this example, the source �le solver.F contains CPP directives that are independent of theparallelization (#include directives and conditional compilation directives, for example).The �rst line passes solver.F through the C preprocessor, cpp; the output is piped intoFLIC. 1 The piped-in code that FLIC sees will be entirely Fortran (no CPP directives) andcompletely expanded. FLIC recognizes and expands normal Fortran INCLUDE statements,so it is not necessary to use CPP as a preprocessor to FLIC if the only concern is expansionof included �les. FLIC transforms the source �le, using directives in the �le FLICFILE;output is directed to a temporary �le, solver.
ic. This �le is then input to the M4 macropreprocessor, along with a set of macros targeting RSL, in the �le FLIC2RSL.m4. Thisparticular set of macro expansions generates a small number of additional directives thatare expanded by piping M4 output to a second call to cpp. Output is directed to a �lesolver.f, which is then input to the Fortran compiler.4 ConclusionFLIC transforms loops and array indices in a Fortran source �le for implementation ondistributed-memory parallel computers. FLIC analyzes the code, identifying loops overdecomposed dimensions and local and global index expressions, and generates a small set of1Note the use of the -C and -P options to cpp. The -C option makes the preprocessor ignore andpass through things that might look like C-style comments. This prevents occurrences of the string \/*"in a Fortran FORMAT statement from voiding the remainder of the �le. The -P option suppresses thegeneration of line control information in the cpp output. These are highly recommended whenever cpp isused to preprocess Fortran source. 10

in-line macros that are then easily expanded to target the user's distributed-memory libraryor run-time system of choice. A number of macro-expansions are provided with the FLICdistribution. The tool is lightweight enough to be included in a Make �le, so that only thecompiler need ever see the transformed code. The tool does not address data dependency orinterprocessor communication, but still provides considerable savings in programmer timeand e�ort, since loop and index translations are by far the most extensive and error-pronemodi�cations required to convert a code to distributed memory. Providing access to theseprogram loops and index expressions through macros as a precompiling step also facilitatesother translations such as cache blocking.Because it is built using a fully enabled Fortran parser, FLIC is able to perform thenecessary transformations using unaltered Fortran source �les and a very small amountof input data from the command line or a small �le, as opposed to tools that rely onpattern matching and that require directives scattered throughout the code. This capabilityeliminates the need to modify the source code, and enables a same-source approach todevelopment and maintenance of codes for multiple computer architectures.References[1] R. Friedman, J. Levesque, and G. Wagenbreth, Fortran Parallelization Hand-book, Applied Parallel Research Inc., Sacramento, California, June 1995.[2] R. Hempel and H. Ritzdorf, The GMD communications library for grid-orientedproblems, Tech. Rep. GMD-0589, German National Research Center for InformationTechnology, 1991.[3] S. R. Kohn and S. B. Baden, A Parallel Software Infrastructure for Structured Adap-tive Mesh Methods, in Proceedings of Supercomputing '95, IEEE Computer SocietyPress, 1996.[4] S. Kothari, Parallelization Agent for Legacy Codes, draft technical report, Iowa StateUniversity, Ames, Iowa, 1996.[5] J. Michalakes, RSL: A Parallel Runtime System Library for Regular Grid Finite Dif-ference Models Using Multiple Nests, Tech. Rep. ANL/MCS-TM-197, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Illinois, December1994.[6] B. Rodriguez, L. Hart, and T. Henderson, A Library for the Portable Parall-lelization of Operational Weather Forecast Models, in Coming of Age: Proceedings ofthe Sixth ECMWF Workshop on the Use of Parallel Procesors in Meteorology, WorldScienti�c, River Edge, NJ, 1995, pp. 148{161.
11

