Users’ Guide to ADIC 1.1*

Paul D. Hovland and Boyana Norris

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA
hovl and@mrcs. anl . gov, norris@mcs. anl . gov

Argonne Technical Memorandum ANL/MCS-TM-225

*This work was supported by the Mathematical, Informatiord @omputational Sciences Division subprogram of the Ofac@ompu-
tational and Technology Research, U.S. Department of Bnengler Contract W-31-109-Eng-38; by the National Aeregpagency under
Purchase Orders L25935D and L64948D; and by the Nationah8eiFoundation, through the Center for Research on HaZalteputation,
under Cooperative Agreement No. CCR-9120008.

Abstract.

This guide describes the use of the Automatic Differerdiain C (ADIC) system. ADIC is a suite of tools and librarieatlautomates
the process of generating derivatives for scientific progran the context of solving PDEs, optimizations, senijtignalysis, and inverse
problems, researchers often require the derivatigg = of a functionf expressed as a program with respect to some input paras)eter(
z. Automatic differentiation (AD) techniques augment thegram with derivative computation by applying the chaireraf calculus
to elementary operations in an automated fashion. ADIC gephisticated compiler techniques to augment the inputd@rams with
derivative computation capability in an automatic fashittralso provides a finer control of derivative code generapirocess via control
scripts and pragmas. Another significant capability of AN @s componentarchitecture, AlF, that allows ADIC’s chitity to be extended
via plug-in modules.

For more information about ADIC, sd#tp://www.mcs.anl.gov/adic

Contents

1 Introduction 1
1.1 Terminology o e e e 1
1.2 Overview ofthe ADIC System e 2

2 Getting Started 3
2.1 SystemRequirements e e 3
2.2 Installation e 3
2.3 Directory Structure e e e e 3
2.4 SettingUpthe Environment L e e 4
2.5 BuildingRuntimeLibraries e 5

3 Running ADIC: An Example 6
3.1 ACIloserLook atthe Preparation 11
3.2 ACIloser Look atthe Generated Code e 11
3.3 ACIloserLookattheDriver e e 14

4 Using ADIC 17
4.1 Preparingthe Source e e 17
4.2 Invoking ADIC e 18

5 The Jacobian Module 20
5.1 Computationoff « M e 21

6 Intrinsic Functions 23

7 Using Control Scripts 24
7.1 [GENERAL] . . . 25
7.2 [MODULES] 26
7.3 [INACTIVELFUNCTIONS] o e e e e e e e e e e 26
7.4 [NOPREFI X.FUNCTIONS] e e e e e e e e e 27
75 [ACTIVEIFUNCTIONS] e e e e e s 27
7.6 [INACTIVELVARI ABLES] e 27
7.7 [INACTIVETYPES] e e e 27
7.8 [INTRINSI CCONTROL] . . . o o ot e e e e e e e e e e e e 28
7.9 [INTRINSICFUNCTIONS] o e e e e e e 28
TA0 [DEFINES] . . . 28

7.11 [UNEXPANDED.MACROS] o o e e e e e e e e e e e 28

10

11

12

13

14

TA2[SOURCEFFILES] o o e e e e 28
7.A3 [STANDARDLI NCLUDES] o e e e e e e e 29
7.4 [NOINLINELINCLUDES] . . v o e 29
7.15 Derivative Modules e 29
Building ADIC-Generated Derivative Code 30
Handling C Preprocessor Directives and Macros 32
Controlling Naming 35
Handling Intrinsic Calls 36
Advanced Control 37
Troubleshooting 38
Known Problems 39

Chapter 1

Introduction

Derivatives play an important role in computational sceeand engineering. Automatic differentiation (AD) is
a technique for evaluating derivatives of a function writés a computer program by applying the chain rule of
differential calculus at the elementary operation levéhc8 AD differentiates algorithms rather than formulas,
it can deal with arbitrary programs representing theseratgus.

ADIC (Automatic Differentiation in C) is an AD tool to get aarate derivatives of programs written in
ANSI-C. Given a set of C source files, ADIC produces a new s&€ sburce files enhanced with derivative
computation capabilities. The generated sources are nsguiartable as possible. In addition to ANSI-C, ADIC
currently supports some C++ programs, although the coeaviihe language is incomplete, notably with regard
to templates, exceptions, and operator overloading. Reade referred to [4] for a system-level overview of
ADIC.

1.1 Terminology

We first define several terms that are used throughout thisiahan
¢ Independent variablegre program input variables with respect to which deriestiare desired.
o Dependent variableare program output variables whose derivatives are desired

o A derivative objectrepresents some derivative information, such as a vectquadial derivatives
(8z/0x, ...,0z/0x,) of some variable with respect to a vector.

¢ Any program variable with which a derivative object is asated is called amactivevariable. Put another
way, aninactivevariable is a floating-point variable that does not have apn@ated derivative object, de-
termined either through analysis or user annotations. A&iiently considers all floating-point variables
as active, unless explicitly specified otherwise by the.Uaercan extend this notion further for functions:
aninactivefunction does not perform any derivative computation, eéféinating-point computations are
involved. The user can also specify inactive user-definpdgy All elements of an inactive type are also
inactive; for example, if a struct that contains floatingrpfields has been declared inactive, no derivative
objects would be associated with its components.

ANSI - G/ C++ Pre- Mai n Post - ANSI - & G+
Code | Processor Proocessor Processor [[= | Code with
\ Derivatives
Al F
Files

ADIC Translator

Libraries, e.g.,

- AlF Mdul e Libraries
- SparslLinC

- ADIntrinsics

User’s
Derivative
Driver

Conpi | e/
Derivative
Program

Figure 1.1: Generating derivative code with ADIC.

1.2 Overview of the ADIC System

The ADIC system comprises various programs, scripts, headed libraries. The processing stages of auto-
matic differentiation using ADIC are shown in Figure 1.1 .€Tinain stages are as follows:

o A list of source files to be differentiated is collected. Tl Along with an optional control script is
submitted to the ADIC system.

o For flexibility, the processing of source code is dividediséveral stages. The sources are first fed into the
preprocessarwhich deals with C preprocessor directives and macro esipas (like the C preprocessor
cpp) but also embeds information required to recreate certéginal directives and macros when gener-
ating the derivative code. The results are fed intorttaén processqrwhich generates the derivative code
with the help ofAIF modules AIF modulesare analogous to PC peripheral cards in the sense that they
can be “plugged” into the ADIC “motherboard”. Each moduleydes a certain defined functionality.
Similarly to peripheral cards, AIF modules can be field iilsthby users. The details of AIF modules and
their types are given in [4] and [3]. Here it is sufficient ta@that AIF modules contain the core “rules”
for performing automatic differentiation. The generatede is then fed into a series pbstprocessors
(in a pipelined fashion) that provide the ability to perfofumther textual transformations. One routinely
used postprocessorpsr se, a component of the ADIntrinsics subsystem to handle isitifunction calls
(e.g.,sgrt andcos).

e The derivative code and a driver are then compiled and linégether to produce the final program. The
ADIC system provides a set of headers and libraries requiredmpile and link the derivative code.

Chapter 2

Getting Started

In this chapter, we show the installation of the ADIC systerd the required setup.

2.1 System Requirements

ADIC uses a standard C preprocessor to expand macros antklpmegrocessor directives. The default pre-
processor i€pp available on most Unix systems. The preprocessor of the @bldompiler may be specified
instead through a command-line option or a control scrifryen

2.2 Installation

The ADIC system is distributed as a compressed archive file:

1. Note the machine and operating system you are using, ake soae you have the correct version of the
software. The format of the ADIC distribution archive is fat.xx-machinetar.gz”, where “x.xx” spec-
ifies the software version armdachinespecifies a particular machine and operating system coitidma
such as Linux for Intel x86 or Solaris on Sparcs. ADIC is supgabon the following platforms: Solaris
(SPARC), Linux (x86), HPUX, AIX (IBM RS6000), and IRIX. It igsually possible to compile ADIC-
generatedcode on architectures not listed here. The source code édiltfaries required for linking is
included in the distribution.

2. Decide where to install the ADIC system. The archive filpaoks into a directory calleddi c. The
following example installs ADIC undémstal | -dir .

%cd install-dir
% gunzip -c adic-x.xx-solaris.tar.gz | tar xvf -

2.3 Directory Structure

In this section, we present an overview of the standard wirgstructure of the ADIC system, which is com-
mon for all platforms. The bin and lib directories contaitbdirectories for each platform where architecture-
dependent files are located. The standard platform dingo@mmes aréri x, | i nux, r s6000, hpux, sol ari s,
andwi n32.

bi n: Various executables and scripts.

bi n/ arch: Architecture-dependent programs.

i ncl ude: Header files for runtime library routines needed during tragilation of the derivative code.

I'i b: Precompiled runtime libraries and necessary files. Archite-dependent files are in subdirectories.
I'i b/ arch: Architecture-dependent library files.

I'i b/ src/ module The source to the runtime libraries of the correspondingutend

modul es/ module Module-specific data are stored under the correspondindulesubdirectory; only modules
that require such data have a subdirectory.

doc, doc/ module Documentation for ADIC and sonmodules

exanpl es, exanpl es/ module Sample codes to test the system and modules.

In addition, the ADIC distribution currently contains tr@lbwing AIF modules:
Jacobi an: the standard Jacobian module.

Hessi an: the standard Hessian module.

2.4 Setting Up the Environment

Before runningadi C, you must set thaéDl C andADI C_ARCH environment variables and update the search path
(examples below assume the use ofdhbk ort csh shell):

1. Set the environment variabd®l C to the base directory where ADIC is installed. For exampgl&DIC
was unpacked in the /home/user directory, setbieC variable as follows:

setenv ADI C / hone/ user/ adi c

2. Setthe environment variabd® C_ARCHto one of the followingi ri x, | i nux, r s6000, hpux, sol ari s,
orwi n32, for example,

setenv ADI C ARCH sol ari s
Alternatively, set theéA\DI C_ARCH variable to the type returned by tBaDl ¢/ bi n/ adi car ch command:
setenv ADI C_ARCH * $ADI C/ bi n/ adi car ch’

3. Add the ADIC executables directory to the command seaath. T he following example adds the ADIC
executables directory as the first directory to be searched.

set env PATH $ADI C/ bi n/ $ADI C_ARCH: $PATH

2.5 Building Runtime Libraries

Runtime libraries are distributed in compiled form for eatlpported platform (also referred to as a host ma-
chine). If the ADIC-generated derivative code is to be cdetpfor a non-host machine (hereafter referred to as
the target machine), the libraries must be compiled for thathine. The source code for essential libraries is
included in all distributions.

To compile all the runtime libraries:

1. copy thd i b/ src directory to the new platform.
2. typenmake cl ean to clean up the old object files and config files.

3. typenake to build the library. GNU automake and autoconfig are usecetwetate the appropriate make-
files for the given platform.

Generally, in addition to the standard runtime librariest ttome with the ADIC system, each AIF module
also comes with its own set of runtime libraries. Currentig standard ADIC libraries are

e libadic.a: This library is a container for a number of distinct libraritaat may be used with the ADIC-
generated code.

¢ libADIntrinsics-C.a: The source code is inthe b/ src/ adi nt ri nsi cs directory.
¢ libJacobian.a: The source code is in the b/ src/ Jacobi an directory.
¢ libHessian.a: The source code is in the b/ sr ¢/ Hessi an directory.

As additional AIF modules are installed, their librariessnbe built and installed for the desired target
machine.

Chapter 3

Running ADIC: An Example

In this chapter, we show a simple example program that weahdd to differentiate through ADIC. The exam-
ple program consists of four source filésinc_mai n. c, f unc. h, f unc. c, andnor n2. c. We have deliberately
tried to use various C features for illustration purposéee Jource codes of this example come with the standard
ADIC distribution and can be found in tlexanpl es/ Jacobi an subdirectory.

1 #include <stdio. h>
2 #include "func. h"

3

4 int main() {

5 int i, n

6 data_t data;

7 doubl e x[MAXLEN], y[MAXLEN], r;

8

9 /* read in val ues*/

10 scanf ("%", &n);

11 for (i =0; i <n; i++) {

12 scanf ("% f %f", &[i], &I[il]);
13 }

14 data.len = n; data.x = x; data.y =vy;
15

16 /*invoke the function*/

17 cos_angl e(&dat a) ;

18

19 /*print the result*/

20 printf("%e\n", data.r);

21 1}

Figure 3.1: Filef unc_nai n. c.

The program computes the cosine of the angle between tworgectandy. Figure 3.1 shows the main
function that reads in the length and values of the two vedimm the user, packs the data intdst a_t data
structure, calls théunc function that actually computes the value, and finally [ihte result. The header file
containing the definition oflat a_t is shown in Figure 3.2. Thieunc function (shown in Figure 3.3) uses the
formulam to calculatecos 6. It calls thenor n2 function (shown in Figure 3.4) to calculate the 2-norm
of a vector.

Our goal is to generate derivative code that computes thabitat of the result with respect to The steps
are as follows:

©CoOoO~NOURWNPRE

#defi ne MAXLEN 100

typedef struct {
int I en;
doubl e *x, *y, r
} data_t;

voi d cos_angl e(data_t*)
doubl e nornR(int, double*)

Figure 3.2: Filef unc. h.

©CoOoO~NOUR~WNPRE

#i ncl ude <mat h. h>
#i ncl ude "func. h"

voi d cos_angl e(data_t* pdata)

doubl e *x = pdata->x, *y = pdata->y, dotp, normx, normy;
int i

for (dotp = 0.0, i =0; i < pdata->len; i++, dotp += *X++ * *y++)

pdaté->r = dot p/ (nor n2(pdat a- >l en, pdat a- >x) * nor n2(pdat a- >l en, pdat a- >y))
return;

Figure 3.3: Filef unc. c.

O©CoO~NOOThWNPRE

#i ncl ude <mat h. h>
doubl e norn2(int n, double *x)

double norm= 0.0
int i

for (i=0; i<n; i++) {
norm += x[i]*x[i];

}

norm = sqrt(norm;

return norm

Figure 3.4: Filenor n2. c.

1. Properly set the environment variables and the sear¢hfpaADIC executables as specified in Section
2.4,

2. Generate the first-order derivative code for the fundtiby invoking ADIC with the following options
(- v turns on the verbose mode, andl Jacobi an specifies thdacobi an module):

% adi C -vd Jacobi an func.c
% adi C -vd Jacobi an norn2. c

or by combining the source files on the same command line ighst recommended for large source
files):

% adi C -vd Jacobi an func.c norng.c

This generates files callédinc. ad. ¢ andnor n2. ad. ¢ shown in Figure 3.6 and 3.7. In addition, ADIC
also generates a headed, deri v. h (shown in Figure 3.8), which is included in the generatedesod he
generated files have been slightly reformatted for reaitabil

3. (OPTIONAL Instead of, or in addition to, specifying source files at¢benmand line, you can create a
control script called unc. i ni t that lists the files to be differentiated (arbitrary scriptmes can be used,
but the init extension is convenient for distinguishing ADdontrol script files). We want to differentiate
the two functions unc andnor n2. The control script is shown in Figure 3.5. The source fileaalchave
to be listed in the control script; they may be specified orctiramand line following the script name. A
control script can be specified on the command line usingitheption, for example:

% adi C -vd Jacobian -i func.init

[SOURCE_FI LES]
func.c
nornk. c

Figure 3.5: Filéf unc.init.

4. Create a driver, based on ting n function inf unc_nai n. ¢, that calls the derivative function. Figure 3.9
shows the driver, which sets up the independent variabédls, the derivative function, and extracts the
derivative values.

5. Compile and link all the files, making sure the path to therapriate include directory is set and the nec-
essary libraries are linked. Also, define tite GRAD_MAX macro which designates the maximum number
of independent variables. If this is left undefined, the maxin number of independent variables defaults
to 5. An example of compiling and linking the differentiafdds and the driver follows:

% gcc -13$ADI Cinclude -Dad_GRAD_MAX=3 -c func.ad.c nornR.ad.c func_driver.c
% gcc -0 ad_func nornR.ad.o func.ad.o func_driver.o -L$ADI C/|ib/ $ADI C_ARCH
-l ADIntrinsics-C -IJacobian -Im

O©CoO~NOOUWNPRE

/************************** DISCLAINER ********************************/

/* */
/* This file was generated on 01/08/01 15:16: 12 by the version of */
/* ADI C conpiled on 12/18/00 16: 11: 29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Governnent and the University of */

/* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNVENT */
/* NOR ANY AGENCY THERECF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
/* ANY OF THEI R EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* OR | MPLI ED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSI Bl LI TY FOR */
/* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATI ON OR */
/* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OANED RI GHTS. */
* *
;**c
#i ncl ude "ad_deriv.h"
#i ncl ude <mat h. h>
#i nclude "adintrinsics. h"
typedef struct ({
int len;
DERI V_TYPE *x, *y, r;
} data_t;
voi d ad_cos_angl e(data_t *);
voi d ad_nornm2(DERI V_TYPE *ad_var_ret,int ,DERIV_TYPE *);
voi d ad_cos_angl e(data_t *pdata) {
DERI V_TYPE *x = pdata->x, *y = pdata->y, dotp, normx, normy;
int i;
int ad_var_0;
DERI V_TYPE *ad_var_1, *ad_var_2, ad_var_3, ad_var_4;
double ad_loc_0, ad_loc_1;
doubl e ad_adj_0O, ad_adj_1, ad_adj_2, ad_adj_3;
ad_grad_axpy_0(&(dotp));
DERI V_val (dotp) = 0.0;
for (i =0; i < pdata->len;) {

ad_var_0 = i ++;
ad_var_1 = Xx++;
ad_var_2 = y++;
ad_loc_0 = DERIV_val (*ad_var_1) * DERIV_val (*ad_var_2);

ad_loc_1 = DERIV_val (dotp) + ad_l oc_O;
ad_grad_axpy_3(&(dotp), 1.000000000000000e+00, &(dotp), DERIV_val (*ad_var_2),
& *ad_var _1), DERIV_val (*ad_var_1), &(*ad_var_2));
DERI V_val (dotp) = ad_l oc_1;
}
ad_nornm2(&ad_var_3, pdata->len, pdata->x);
ad_nornm2(&ad_var_4, pdata->len, pdata->y);

ad_loc_0 = DERIV_val (ad_var_3) * DERIV_val (ad_var_4);
ad_loc_1 = DERIV_val (dotp) / ad_l oc_O;

ad_adj _0 = -ad_loc_1 / ad_l oc_0;

ad_adj _1 = 1.000000000000000e+00 / ad_Il oc_O;

ad_adj _2 = DERIV_val (ad_var_3) * ad_adj _0;

ad_adj _3 = DERIV_val (ad_var_4) * ad_adj _0;
ad_grad_axpy_3(&pdata->r), ad_adj_1, &(dotp), ad_adj_3,
& ad_var_3), ad_adj_2, &ad_var_4));
DERI V_val (pdata->r) = ad_l oc_1;
}
voi d ad_AD_Init(int arg0) { ad_AD Gradlnit(arg0); }
voi d ad AD Final () { ad AD GradFinal (); }

Figure 3.6: Filef unc. ad. c.

©CoOoO~NOUR~WNPE

/************************** DISCLAINER ********************************/

/* */
/* This file was generated on 01/08/01 15:16: 37 by the version of */
/* ADI C conpiled on 12/18/00 16: 11: 29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Governnent and the University of */

/* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNVENT */
/* NOR ANY AGENCY THERECF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
/* ANY OF THEI R EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* OR | MPLI ED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSI Bl LI TY FOR */
/* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATI ON OR */
/* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OANED RI GHTS. */
* *

;**c
#i ncl ude "ad_deriv.h"
#i ncl ude <mat h. h>
#i nclude "adintrinsics.h"
voi d ad_norm2(DERI V_TYPE *ad_var_ret,int n,DERIV_TYPE *x) {

DERI V_TYPE norm

int i;

int ad_var_0;

double ad_adji_0, ad_loc_0, ad_loc_1;

static int g_filenum= O;
if (g_filenum== 0) {

adintr_ehsfid(&_filenum _ _FILE , "ad_norm");
}

ad_grad_axpy_O(&norm);
DERI V_val (norn) = 0.0;
for (i = 0; i <n; {
ad_loc_0 = DERIV_val (x[i]) * DERIV_val (x[i]);
ad_loc_1 = DERIV_val (norn) + ad_l oc_O;
ad_grad_axpy_3(& norm, 1.000000000000000e+00, &(norm,
DERI V_val (x[i]), &x[i]), DERIV_val (x[i]), & x[i]));
DERI V_val (nornm) = ad_l oc_1;
ad_var_0 = i ++;

DERI V_val (norn) = sqrt(DERIV_val (norm); /*sqrt*/
if (DERIV_val(norm) > 0.0) {

ad_adji_0 =1.0/ (2.0 * DERIV_val (norm);
}

el se {
adintr_sqrt(1, g_filenum __LINE_ , & ad_adji_0);

}

ad_grad_axpy_1(&norm, ad_adji_0, & norm));
ad_grad_axpy_copy(&(*ad_var_ret), & norn));
DERI V_val (*ad_var_ret) = DERIV_val (norm;
return;

Figure 3.7: Filenor n2. ad. c.

10

3.1 ACloser Look at the Preparation

Specifying source files. We do not process the driveunc_nmai n. ¢ through ADIC since it does not contain
any code that needs to be differentiated. We also do notaghaprocess unc. h since the header will be
indirectly processed throudtunc. c, which includes it: ADIC inlines the differentiated headethe generated
code.

Writing a control script. A control script is a text file optionally used to fine-tune thehavior of ADIC.

It contains a set of bindings (key-value pairs) organized sections. For example, the list of functions or
variables that should be made inactive can be specified sctiifgt. Control scripts can be nested. See Chapter 7
for further details and a description of all valid bindings.

Selecting a derivative AIF module. There are many different ways of computing and propagatimiyatives
through exploiting the chain rule associativity. Thesdedéntiation “rules” are embodied in AIF modules.
ADIC makes use of one or more of these modules for generatiagi¢rivative code. The user must select a
module when invoking ADIC. The current distribution inckgltheJacobi an andHessi an modules, which
compute the first and second derivatives, respectively.

3.2 A Closer Look at the Generated Code

ADIC makes the following changes in the course of generatiegode that compute the derivatives. See Chap-
ter 8 for further details on compiling ADIC-generated dative code.

Generated Files. For each source file name with suffix (e.g.,f oo. c), ADIC generates a corresponding
derivative source file with the suffixad. x (e.g.,f oo. ad. c). ADIC also generates a header fikel_deri v. h
(orrather<prefi x>deri v. h, where<pr ef i x> can be specified in the control script, see Chapter 7; thaitiefa
is ad_), automatically included by all the generated source filEse header contains appropriate ADIC type
declarations and prototypes. Different header files aremgead depending on the derivative module chosen
and also the options selected when ADIC is invoked. A comnigredoption can disable the generation of the
header. To see a summary of all command line options, run AIINo arguments.

Type change. ADIC changes the type afoubl e orf | oat variables int®ER V_TYPE defined inad_deri v. h
shown in Figure 3.8. In this casBERI V_TYPE is defined as a structure containing a floating-point valug an
an array of floating-point values, corresponding to the Biaeoof the variable with respect to the independent
variables. The actual definition of the type depends on hoWCAB invoked. The type change results in the
change of any data structure containing an (active) flogtimigt variable. It is possible to disable certain types
from being changed. This can be done either in a controlts(sge Chapter 7 or by changing the type name
in the source file from float or double to InactiveFloat or ti@Double, respectively. This is useful when we
know variables of those types are inactive and thus needawvet &iny associated derivative objects.

Function name change. Attimes, derivative code must coexist with the originaldtians. This is especially
the case in libraries containing both the original and déiféiated versions. In order to reduce name conflicts

*There is an option that specifies that header files shouldmiofined, in which case those header files must be procdssadth ADIC
separately.

11

O©CoO~NOOThWNPRF

/************************** DI SCLAI NER ********************************/

/* */
/* This file was generated on 01/09/01 11:16:01 by the version of */
/* ADI C conpiled on 12/18/00 16: 11: 29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Governnent and the University of */

/* Chicago. NEITHER THE AUTHOR(S), THE UNI TED STATES GOVERNMVENT */
/* NOR ANY AGENCY THEREOF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
/* ANY OF THEIR EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* OR INMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSI BI LI TY FOR */
/* THE ACCURACY, COVPLETENESS, OR USEFULNESS OF ANY | NFORVATION OR */
/* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRIVATELY OANED Rl GHTS. */
* *
;**ll
#if 1defined(AD_DERI V_H)

#define AD _DERIV_H

typedef doubl e | nactiveDoubl e;
typedef float |nactiveFl oat;

#i f !defined(ad_GRAD_PTR)
#define ad_GRAD _PTR 0O

#endi f

#i f !defined(ad_GRAD_MAX)
#define ad_GRAD_MAX 5

#endi f

#define AD_I NI T_MAP()

#def i ne AD_CLEANUP_MAP()
#define AD_GET_DERIV_OBJ(x) ((void*)(&x.val ue+l))
#def i ne AD_FREE_DERI V_OBJ(x)
typedef struct {

doubl e val ue;

doubl e grad[ad_GRAD_MAX] ;

} DERI V_TYPE;

#define DERI V_val (a) ((a).value)
#define DERI V_grad(a) ((a).grad)
#define _FLOAT_IN TIALI ZER (x) { x, 0.0 }

void ad_AD I nit(int);
voi d ad_AD Final ();

#i ncl ude "ad_grad. h"
#define null Func(x) O
#endi f

Figure 3.8: Filead_deri v. h.

12

©CoOoO~NOUR~WNPRE

#i ncl ude "ad_deriv.h"
#i ncl ude <stdio. h>

#def i ne MAXLEN 100
typedef struct {
int I en;
DERI V_TYPE* x, *y, r;
} data_t;
voi d ad_cos_angl e(data_t*);

int main() {
int i, n
doubl e grad[ad_GRAD_MAX], t1, t2;
data_t data;
DERI V_TYPE x[MAXLEN], y[MAXLEN], r;

/*inialize*/
ad_AD | nit(ad_GRAD _MAX);

/* read in val ues*/

scanf ("%", &n);

for (i =0; i <n; i++) {
scanf ("% f %f", &1, &2);
ad_grad_axpy_O(DERI V_grad(x[i]));
DERI V_val (x[i]) = t1;
ad_grad_axpy_O(DERI V_grad(y[i]));
DERI V_val (y[i]) = t2;

}

data.len = n; data.x = x; data.y =vy;

/*set independent vari abl es*/
ad_AD Set | ndepArray(x, n);
ad_AD_Set | ndepDone() ;

/*invoke the function*/
ad_cos_angl e(&dat a) ;

/*extract the gradi ent vector*/
ad_AD Extract Grad(grad, data.r);

/*print the result and partial s*/
printf("%e\n", DER V_val (data.r));
for (i =0; i <n; i++) {

printf ("%e\n", grad[i]); /

[*cl eanup*/
ad_AD Final ();

partial s/

Figure 3.9: Filef unc_dri ver. c.

13

with the original source, ADIC prepends each function nam#he source with a prefix. The default prefix is
ad_, but a different prefix may be specified in a control scripe Shaapter 10 for details.

Function type change. ADIC takes each function definition and augments it with iive computations.
As part of this process, if the original function returns aflng-point value, then the function is turned into a
procedure(e.g., a function that doesn’t return a value) that retunesésult through the first argument. All calls
to the function are suitably modified. Ther n2 function shows this process. This modification does notioccu
for overloaded operators in C++.

Intrinsic function calls. Thead_nor n2 function shown in Figure 3.7 contains some extra code in lagthe
sgrt intrinsic call. Functions such asjrt are not continuously differentiable (e.ggrt (x) whenx equals
zero). To alert the user to such an occurrence, ADIC can cfardk and print a warning message. In other
cases, the user may want to skip these checks to improve tfegrpance of derivative computations.

To support checking and reporting of potential exceptigkiB|C includes the headeadi ntri nsi cs. h
whenevemat h. h is included in the source. ADIC also provides a reasonatfiguttevalue for the derivatives
so that the execution can proceed. In fact, in most casesy#ieation of an intrinsic at a point of nondifferen-
tiability does not compromise the overall result.

Generated special functions. ADIC generates two special functionsi_AD.I nit andad_ADFi nal , that
should be called from the driver. These functions are defin¢de first generated source file (for the example,
in func. ad. c file). The user can prevent ADIC from generating these fmatiby using a command line
option. Thead_AD.I ni t function performs initializations necessary before artyeotdifferentiation steps. In
the example above, thed_AD.I ni t function makes a single call tad_AD_G adl ni t which is defined in the
Jacobi an module library. Thead _AD_Fi nal function performs any cleanup that may be necessary.

3.3 A Closer Look at the Driver

The driver sets up independent variables, calls the dard/ainctions, and extracts the derivative values. Inde-
pendent variables can be nominated at runtime, rather thimareslation time. Thus there is no need to rerun
ADIC if the set of independent variables changes. This egsafacilitates the construction of differentiated
libraries in which one cannot know in advance which of theuispwill be elected as independents.

Thef unc_dri ver. c file shownin Figure 3.9 contains the calls to various ADICdtions. The independent
variables are specified through a series of calisitdD_Set | ndepAr r ay andad_AD_Set | ndep, and terminated
by the call toad_AD Set | ndepDone. The call

ad_AD Set | ndepArray(x, n);

specifies thah consecutive elements of the arrayre independent variables. The call
ad_AD ExtractGrad(grad, r);

extracts the Jacobian of the resulinto the arraygr ad. The call
ad_AD ExtractVal (val, r);

extracts the result itself into the floating-point variabés .
Except for the variablegr ad andval , all the other floating-point variables are of typeRl V_TYPE. Man-
ually writing drivers can be tedious and error prone. Fomgxa, we had to make sure thaXLEN defined on

14

line 4 of Figure 3.9 was the same as definetlinc. h. We can use ADIC to ease the task of writing this driver.
First, we rewritef unc_mai n. ¢ to include the necessary calls as shown in Figure 3.10. Naterte declared
grad array asl nact i veDoubl e to make it inactive I(nact i veDoubl e is defined internally by ADIC as an
inactive type). The result of running it through ADIC is showm Figure 3.11. This code can be then directly
compiled and linked.

1 #include <stdio.h>
2 #include "func. h"
3
4 int main() {
5 int i, n
6 data_t data;
7 I nacti veDoubl e grad] MAXLEN], t1, t2, val;
8 doubl e x[MAXLEN], y[MAXLEN], r;
9
10 #if defined(AD C)
11 AD_| ni t (ad_GRAD_MAX) ;
12 #endif
13
14 /* read in val ues*/
15 scanf ("%", &n);
16 for (i =0; i <n; i++) {
17 scanf ("% f %f", &1, &2);
18 x[i]=1t1;
19 y[i] =1t2;
20 }
21 data.len = n; data.x = x; data.y =vy;
22
23 #if defined(AD C)
24 AD_Set | ndepArray(x, n);
25 AD_Set | ndepDone() ;
26 #endif
27
28 /*invoke the function*/
29 cos_angl e(&dat a) ;
30
31 #if defined(AD C
32 AD Extract Grad(grad, data.r);
33 AD ExtractVal (val, data.r);
34 #endif
35
36 /*print the result*/
37 printf("%e\n", val);
38 #if defined(AD C)
39 for (i =0; i <n; i++) {
40 printf ("%e\n", grad[i]); [*partial s*/
41 }
42 AD Final ();
43 #endi f
44 1}

Figure 3.10: Filg unc_mai n2. c.

15

O©CoO~NOOUWNPRE

/************************** DISCLAINER ********************************/

/* */
/* This file was generated on 01/08/01 16: 05: 16 by the version of */
/* ADI C conpiled on 12/18/00 16: 11: 29 */
/* */
/* ADI C was prepared as an account of work sponsored by an */
/* agency of the United States Governnent and the University of */

/* Chi cago. NEI THER THE AUTHOR(S), THE UNI TED STATES GOVERNVENT */
/* NOR ANY AGENCY THERECF, NOR THE UNI VERSI TY OF CHI CAGO, | NCLUDI NG */
/* ANY OF THEI R EMPLOYEES OR OFFI CERS, MAKES ANY WARRANTY, EXPRESS */
/* OR | MPLI ED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSI Bl LI TY FOR */
/* THE ACCURACY, COWVPLETENESS, OR USEFULNESS OF ANY | NFORMATI ON OR */
/* PROCESS DI SCLOSED, OR REPRESENTS THAT | TS USE WOULD NOT | NFRI NGE */
/* PRI VATELY OANED RI GHTS. */
* *
;**c
#i ncl ude "ad_deriv.h"
#i ncl ude <stdi o. h>
typedef struct ({
int len;
DERI V_TYPE *x, *y, r;
} data_t;
voi d ad_cos_angl e(data_t *);
voi d ad_nornm2(DERI V_TYPE *ad_var_ret,int ,DERIV_TYPE *);
int min() {
int i, n
data_t data;
I nacti veDoubl e grad[100], t1, t2, val;
DERI V_TYPE x[100], y[100], r;
int ad_var_0, ad_var_1;
ad_AD | nit(ad_GRAD _MAX);
scanf ("%l", &n);
for (i = 0; i <n;) {
scanf ("% f %f", &1, &2);
ad_grad_axpy_O(&(x[i]));
DERI V_val (x[i]) = t1;
ad_grad_axpy_0(&(y[i]));
DERI V_val (y[i]) = t2;
ad_var_0 = i ++;

data.len = n;

dat a. x ;

data.y y;

ad_AD Set | ndepArray(x, n);
ad_AD_Set | ndepDone();
ad_cos_angl e(&data);

ad_AD Extract Grad(grad, data.r);
ad_AD ExtractVal (val, data.r);
val = DERIV_val (data.r);
printf("%e\n", val);

X

for (i = 0; i <n;) {
printf("%e\n", grad[i]);
ad_var_1 = i ++;

}

ad_AD Final ();
}
voi d ad_AD Init(int arg0) { ad_AD Gradlnit(arg0); }
voi d ad AD Final() { ad AD GradFinal (); }

Figure 3.11: File unc_nmai n2. ad. c.

Chapter 4

Using ADIC

4.1 Preparing the Source

In this chapter we describe the invocation semantics of ADIC

Working with pre-ANSI C. ADIC expects ANSI-C source. If the user program uses the @dRkstyle
function declarations, it should be first run through Gpidtoize to convert to using ANSI-C style declarations
and generate proper function prototypes.

% protoize filel file2 ...

Working with C++. ADIC can also handle some C++ source. However, the coveratfeeC++ language
is not complete at this point. A command-line option must pectfied when processing C++ source. For a
summary of all command line options, run ADIC with no argusen

Working with multiple source files. Multiple source files can be specified with ADIC. Since ADICreutly
does not perform any interprocedural analysis, it makettla diifference whether the source files are specified
all at once or one per invocation. It is recommended, howeabet each nontrivial source file is processed
separately.

Working with header files. The system headers (included us#igcl ude directives with the filename en-
closed in angle brackets) mostly deal with the noncompanatisystem functions and therefore do not need to
be differentiated. ADIC assumes that all functions and glehriables declared inside system headers are inac-
tive, which means that any user code referencing them isepsed accordingly. The sole exceptionas h. h,
which declares intrinsic numeric functions. The declaratiin user headers (included us#igicl ude direc-
tives with the filename enclosed in quotes) are not madeiugaby default (although the user can explicitly
make them inactive through a control script). It is impottdrat all system headeti ncl ude directives use
angle brackets to prevent incorrect code generation oilityaio process the source file.

In addition, ADIC by default inlines user headers in the seuthat includes them. By using the
command line option, user headers will not get inlined batéad the generated source will contgimc| ude
directives for the differentiated user headers. If thisapis used, the header file must be processed separately
by ADIC. See Chapter 9 for further details.

For the example in Chapter 3, if we use the command

17

% adi C -uv -d Jacobian -i func.init

and add thé unc. h entry to thef unc. i ni t, we get the following unc. ad. ¢ (the body of the function is
omitted since it is unchanged from the previous version):

#i ncl ude "ad_deriv.h"
#i ncl ude <mat h. h>
#i ncl ude "adintrinsics.h"
#i ncl ude "func. ad. h"
voi d ad_cos_angl e(data_t *pdata) {
}
The differentiated headdrunc. ad. h, contains

typedef struct {

int I en;
DERI V_TYPE *x, *y, r
} data_t;

voi d ad_cos_angl e(data_t*)
voi d ad_nornm2(DERI V_TYPE*, int, DERIV_TYPE")

Selecting different prefixes. In order to reduce name conflicts with the original sourceecodiDIC can
prepend each type, function, and variable name in the withefixp Different prefixes may be specified for
different name types. For example, we can specify one prefialf the function names and another for all the
type names. The prefixes are specified in the control scrga.Chapter 10 for details.

Incorporating domain knowledge. The user may know that certain functions do not need to be antgd
with derivatives (for example, debugging functions). Whibkase function names are specified in the control
script, ADIC will not augment them with derivatives. If a fetion is inactive, then all arguments are made
inactive. ADIC ensures that any call to the function withaearguments are properly handled; that is, only the
value part of an active variable is passed, rather than ttiee®&RI V_TYPE.

Checking. If a source contains a call to an intrinsic function suchkias, ensure thatat h. h is included using
angle brackets. Just declaring the proper prototype ofntinmsic function by itself is not enough.

4.2 Invoking ADIC

Invoking ADIC to generate derivative code is quite simplaebasic format is:

% adi C - OPTIONS [filel ...]

When no option or invalid options are specified, the usagarinétion will be printed. The command-line
options are as follows:

-d module.name The user can specify the derivative AIF module that deteesnitie type of derivatives that
will be generated. If this option is not specified, then ADI@ wrint out the available modules.

-v This turns on the verbose mode and details various phaseBIa processing.

18

-a Instead of usingpp preprocessor, the user can instruct ADIC to use the @hltJpreprocessor with this
flag.

-t This specifies that the special initialization and finalmatfunctions should not be created. This option
generally is used when a number of files that will be linkedethgr are being differentiated and only one
of them needs to contain the special function definitions.

-C If the user has a C++ program, this option should be specified.
-i control _file This specifies a control script namedntrol _file.

-l include_dir This specifies a directory to be searched to findl ude files. This directory is searched before
the standard directories. Multipleoptions are allowed.

-k This directs ADIC to regenerate inactive function definiscompletely.

-D This specifies a macro definition that will be passed downeédQlpreprocessor. For example, the user can
use this to select the proper conditional directives. NdlgtiD options are allowed. The macros may also
be specified in the control file (under tbEFI NES section).

-h This specifies that the special header diteder i v. h should not be created.
-g This directs ADIC to use guards around unmodified globalatetions.
-s This specifies the silent operation. It will not print any s&ges, unless there is an error or a warning.

-u This specifies that user header files should not be expantie€.im this case, the user should make sure the
header files are processed through ADIC.

While processing, ADIC generates various working files,alihvill automatically be deleted unless errors
are encounteretl.

*After errors are fixed and ADIC runs successfully, the wogkites will be deleted.

19

Chapter 5

The Jacobian Module

The Jacobi an module can be used to compute the Jacobiaof n» dependent variables with respectsto
independent variables. The cost of the computation is orotHer of n times the function evaluation. By
appropriately initializing the gradient objects of the épeéndent variables (seed matfix), we can actually
compute the product x M at the cost of computing: columns ofA/. Hence, we can directly compute
directional derivatives.

The defaultiacobi an module defines one derivative object caligdid associated with each active variable.
grad is an array of float values. The array size is fixed at compiteetand is equal to thed GRAD_MAX
macro value. The user must define this macro at compile tintee derivative object of is referenced by
DERI V_gr ad(z) .

The following set of bindings is available (specified in tlwtol script). See Chapter 7 for details of the
control script format.

GRAD_INLINE = {no,yeg The accumulation loop may be either inlined or performedulyh a function call.

GRAD_MAX =0..n This value specifies the default maximum size of the gradibject. This value can be
overridden during the compilation stage.

GRAD_CALL _PARAMS = {full,lite } This binding is not used currently.

GRAD _MAX _ARITY =0..n The runtime library that comes with tl#&acobi an module for handling partial
derivative accumulation has an optimized version for eaghbrer of unique variables on the right-hand
side, up ton. Beyond that, a general-purpose routine performs the aglation. The user should not
change this setting in general.

GRAD_NO_OPTIMIZE = {0,1} Except for debugging purposes, this value should always be 0
In order to compute the Jacobian, the following calls may dexlu

ad_AD_SetIndep(var) This call increases the number of independent variablesby Ib sets the variablear
to be theith independent variablevar may be either local or global. It also initializes the detiva
object associated with this variable (e.g., setsitheentry of the derivative object to 1.0 and the rest to
0.0). The order of calls to this function mirrors the ordedatobian values in derivative objects.

ad_AD _SetindepArray(var, n) This call is used to set an array:ofctive variables to be independent variables.
Starting from the first element of the array, each succeeelemment is initialized as the next independent

20

variable (e.g., the derivative objects are initializedreotly). The number of independent variables is thus
increased byu.

ad_AD _SetindepDone() This call signifies that all independent variables have tparified.
ad_AD _ResetIndep() This call can be called to set a new set of independent vasabl

ad_AD _ExtractGrad(grad, var) This call extracts the whole Jacobian frer and copies t@r ad. grad is
an array of inactive floating-point variables.

In the following example, we compute the first derivative afigbler with respect tx, y, andz.
#i ncl ude "ad_deriv.h"

voi d main()

{
I nacti veDoubl e grad[ad_GRAD_MAX] ;
DERI V_TYPE x, vy, z, r;
ad_AD | nit(ad_GRAD _MAX);
set values of x, y, z;
ad_AD_Set | ndep(Xx) ; /*variable x is the independent variable 1*/
ad_AD_Set I ndep(y); /*variable y is the independent variable 2*/
ad_AD_Set I ndep(z); /*variable z is the independent variable 3*/
ad_AD_Set | ndepDone(); /*done setting independent variabl es*/
ad_function(&, x, vy, z); /*invoke the derivative function*/
ad_AD ExtractGad(grad, r); /*extract the Jacobian into grad*/
print(grad); /*grad[0] is dr/dx, grad[1] is dr/dy,
grad[2] is dr/dz; print is a user-defined
routine */
ad_AD Fi nal ()
}

5.1 Computation of.J « M

To support the initialization of the seed matrix, the follogrroutines are provided:
ad_AD _ClearGrad(var) All elements of the derivative object @hr variable are set to zero.

ad_AD _SetGrad(grad, var) This call is the complement afd_AD_Ext r act G- ad: it initializes the Jacobian of
var with gr ad. gr ad is an array of inactive floating-point variables.

To initialize the seed matrix/ with m columns, the following steps can be used (we assumem, where
n is the number of independent variables):

1. Callad_AD Set | ndep for any set ofn independent variables.

2. Use the above routines (i.e.,_ afD_ClearGrad, adAD_SetGrad) to reset the Jacobian of independent
variables to the desired values. Each rowléfcorresponds to a particular Jacobian of an independent
variable.

21

In the following example, we compute Jacobian*Vectdx (v, whereJ/ is a vector and is a column vector)
resulting in a scalar value.

#i ncl ude "ad_deriv. h"

voi d main()

{
I nacti veDoubl e grad[ad_GRAD_MAX] ;
DERI V_TYPE x, y, z, r;
ad_AD | nit(ad_GRAD _MAX);
/* ... set values of x, vy, z; ... */
ad_AD_Set | ndep(Xx) ; /* sel ect any independent vari abl e*/
ad_AD_Set | ndepDone() ; /* done setting independent variabl es*/
/* set seed matrix (a vector with all ones)*/
grad[0] = 1.0;
ad_AD Set Grad(grad, Xx); /* set row 1*/
ad_AD Set Grad(grad, Yy); /* set row 2*/
ad_AD Set Grad(grad, z); /* set row 3*/
ad_function(&, x, vy, 2); /* invoke the derivative function*/
/* extract the Jacobian (really just a value) into grad*/
ad_AD ExtractGrad(grad, r)
/* ... print grad[O]; ...*/ [* print J*V*/
ad_AD Fi nal ()
}

22

Chapter 6

Intrinsic Functions

Two intrinsic functionsrax andni n, usually are defined as macros. They are not definedtih. h. In order
for ADIC to treat them as intrinsic functions, the user musivide prototypes for them. The following code
may be inserted in the code to be differentiated:

#undef max /*remove possible macro definitions*/
#undef mn

doubl e max(doubl e, doubl e) ;

doubl e m n(doubl e, doubl e) ;

Sincen n/ max can be used for nonfloats, instead of overloading theseiting;t i n/ f max may be used
instead. Again, the user must provide the proper prototfgrabem:

doubl e f max(doubl e, doubl e);
doubl e fm n(doubl e, doubl e);

Important: The#i ncl ude directive should becmath.h> rather than "math.h”. If the code to be differen-
tiated has been generated wfittc or a similar tool, the incorrect include directive may be grated and would
need to be fixed manually before applying ADIC.

23

Chapter 7

Using Control Scripts

Control scripts are text files structured as a series of@@xtiEach section is headed by a section name enclosed
in brackets, followed by a set of control lines called birginA binding represents a particular attribute that we
wish to control and consists of a key and a value. A sectiomd@eéd by a blank line, the beginning of another
section, or the end of the file. Control scripts can includesotontrol scripts.

ADIC defines a set of predefined sections and bindings. Intiaddieach module contributes its own set of
bindings under a section name equivalent to the module nRefer to each module’s manual for the description
of its bindings.

The standard ADIC distribution contains a control scripined adi c. i ni t. This system script is always
read first during ADIC processing.

In the addition to the global script adic.init, an architgetspecific control script for each platform is
provided. The naming convention &li c. i ni t . arch, wherearch is the appropriate platform name (e.g.,
adic.init.solaris for the Solaris distribution). Most comanly, the architecture-specific control files are used
for specifying preprocessor bindings and the location effibrl executable. Some system-specific macros can
also be listed in thg UNEXPANDED_MACROS] section (see Chapter 9 for more details).

Any user-specified control scripts are processed next. Tindings specified in the user-specified control
scripts override the same bindings in the adic.init scniyat he appropriate architecture-specific script.

The general format of script files is

[sectionl]
keyl [= val ue]
key2 [= val ue]

[section2?]
keyl [= val ue]
key2 [= val ue]

On any line, comments begin right after the semicolon andfare ignored. A good way to temporarily
disable a particular binding is to put the semicolon in frofi.

The value portion of bindings should be enclosed in doubkaegilike the C strings if it contains special
characters such as spaces and semicolons. Double qudtesialtie string should be prefixed by the backslash
character. Examples:

24

key = hello
key = "may be"
key2 = "val ue contains \"quotes\" and semni col ons;

The same section may appear multiple times. All the binding® the same section will be collected
together. If the same binding key are repeated, the latelifgrwill override the earlier ones.

In the rest of this chapter, we describe each control sceigtien. The valid range of numeric binding values
is indicated by [begin..end]. Some binding values may oalkgton one of several predefined values. The result
is unpredictable if the value is not one of the predefinedeslu

7.1 [GENERAL]

This control file section contains a grab-bag collectioniafiings that affect the overall operation of ADIC.

include = string When this binding is encountered, the processing of theentigcript file is suspended and the
script file specified by the binding value is processed. Theag be multiple such includes.

prefix = string ADIC prepends each function name with a prefix. This prefid$s aised in generating most
internal variable names. The default prefiath. The user may override the default with this binding. If
the user specifies the prefix binding without the value, thepnefix is prepended. In the case of C++,
the member functions of a class do not get changed (this isagssary because the class name can be
changed; see below).

var_prefix = string By default, ADIC does not change variable names. In that taseriginal function and
the derivative-enhanced version cannot be used withindhreesscope, since ADIC changes the type of
active variables, thus causing type conflicts. To avoid thisuser may define a varefix binding, which
would be used to prepend all variable names in the diffemzdicode.

type_prefix = string Type names such astgpedef name, struct/union tag names, and C++ class hame may
be prepended with a prefix. For C++, in order to distinguisfieen the original class and the ADIC-
processed class, the user should specify this binding. €feull is no prefix, which in some cases may
cause type conflicts (see explanation for paefix).

aif_version = 10..n ADIC implements the AIF interface used by plug-in moduless AF evolves, they are
assigned different version numbers. ADIC notifies the mediaé latest AIF version that it can support.
However, if this binding is present, it will override thig@mnal value. This line is used for testing different
versions of plug-in modules. Normally, the user would natch# modify this binding.

order = 0..n Each derivative module has a default derivative order. Imyneases, each module may sup-
port only a single order. For example, thacobi an module supports only first-order derivatives. The
Hessi an module supports first- and second-order derivatives didfiguio second order. The user may
override the default value with this binding. Other deriv@modules may generate different order deriva-
tives.

include_dir = string The binding value specifies a list of directories to be seatctor included files. The
directories are separated by either colons or commas. Thessories are searched before the standard
directories.

25

7.2 [MODULES]

This control file section contains the specification of adl #vailable plug-in modules. This section is listed in
the system script file. The user normally does not need tovd#athis section except when manually installing
plug-ins. Each binding has the following format:

name = type,order,filepath

Thenameidentifies a particular module and hence must be unique.rticplar, this name is used to specify
a particular module in the ADIC command line. Modules alsy fva embedded into ADIC. Make certain that
the names of internal modules do not conflict with externatiade names. To see the list of both embedded and
external module names, invoke ADIC without any argument fJbe field specifies the type of modules. The
derivative module has the valderiv; there may be different types of modules. Tdrder specifies the default
derivative order for the module. The user should not noyraibange this value. Thidepath tells the file path
of the module. The directory part of the path may be eithetined to the ADIC directory or an absolute path in
which case it must begin witha /.

Example:

[MODULES]
Jacobi an = deriv, 1, bin/sol ari s/ Jacobi an
Hessi an = deriv, 2,/ hone/ ne/ Hessi an/ Hessi an

The install process for a new plug-in usually sets the cofeuding automatically in the system control
script.

7.3 [1 NACTI VE_LFUNCTI ONS]

ADIC normally considers all functions to be active. The usan specify certain functions to be inactive (i.e.,
no derivative computations are to be performed nor any daiatare be changed) by listing the function names
in this section. This will also prevent the name change. Ndignwhen an inactive function definition is
encountered, ADIC will notrecreate the body (since itisatly defined in the original source which presumably
will be linked together), but rather only the prototype is\gmted at the point of the definition. However, this
is not sufficient for static functions as the original stédtinction will not be visible to the generated derivative
source and hence the compiler will produce an error. As amatption, the user can specify that the original
definition be recreated.

ADIC normally considers functions declared within systegadlers to be inactive (this however can be
overridden).

Example:

[1 NACTI VE_FUNCTI ONS]
creat
open
cl ose
wite
printf

The default system control script includes a number of tiiesetion names (such as eat). Although
most of these functions are standard library functions,ynp@mngrams do not contain the proper headers that
declare them. Therefore, ADIC considers them to be regulations and will change the function names. To
prevent this, we have listed common library functions inghstem script.

26

7.4 [NOPREFI X_FUNCTI ONS]

In some cases, the user may wish to prevent certain functiores, whether active or not, from being prefixed,
for example:

[NO_PREFI X_FUNCTI ONS]
mai n

The default system control script includes one functiomnelg mai n, which does not get prefixed (the
function itself may be active).

7.5 [ACTI VE_FUNCTI ONS]

It may be useful in some cases to notify ADIC to treat certaimctions as if they were active. As an example,

the user may have defined its ownof function that should be treated as a normal function by ADNe list

in the example below overrides th&8IACTI VE_FUNCTI ONS list and any functions declared in system headers.
Example:

[ACTI VE_FUNCTI ONS]
at of

7.6 [1 NACTI VE_VARI ABLES]

ADIC normally considers all floating-point variables to betige. The user can specify, however, that certain
global variables are to be made inactive by listing their @suim this section. This will also prevent any name
change.

Example:

[I NACTI VE_VARI ABLES]
varl
var 2

7.7 [NACTI VE_TYPES]

A type is considered active if it is equivalent to a floatingj+ type (e.g., defined with aypedef from a
floating-point type) or contains a subtype that is activg.(e structure containing a float type). The user can,
however, explicitly specify certain type names as inadbiydisting them under this section. Inactive types do
not get modified. Variables of an inactive type are considiénactive. All the components of a compound
inactive type (e.g., a struct) are also considered inactive

Example:

[| NACTI VE_TYPES]

mydoubl e
mySt ruct Type

ADIC predefines two inactive typeispact i veDoubl e andl nact i veFl oat , that are ypedef ed todoubl e
andf | oat, respectively. They may be used to declare inactive vaegainl user code.

27

7.8 [1 NTRI NSI C_.CONTRCOL]

The entries in this control file section controls the behagfdantrinsic function handling.

reporting = verbose,reportonce,counting,terse,perforrmnce When an floating-point exception occurs dur-
ing derivative computation of an intrinsic function, thimding specifies how the exception should be
reported. Theper f or mtance mode turns off checking for many of the possible exceptiamd@ions and
performs a default action (e.g., reportonce).

7.9 [1 NTRI NSI C_FUNCTI ONS]

The names of supported intrinsic functions are listed uigisrsection. The default system script contains a
standard set of intrinsic functions that it currently sugpoNormally, nothing here should be changed, unless
the user has added support for new intrinsics.

Example:

[I NTRI NSI C_FUNCTI ONS]

| og
sqrt
cos
sin

7.10 [DEFI NES]

In order to process source files, all C macros must be propefiged. C macro definitions can be listed either
under this section or on the command-line with tfeflag. The generated code does not contain any macros
other than those that are explicitly specified (see the resttan).

Example:

[DEFI NES]
DEBUG
MAX_SI ZE = 20

7.11 [UNEXPANDED_MACROS]

In order to prevent certain macros from being expanded bgitgrocessor, their names and optional definitions
may be added under this section. See Chapter 9 for furthalislahd the motivation behind this option.
Example:

[UNEXPANDED_MACROS]

putc = "int putc(char, FILE*);"
getc = "int getc(FILE*);"

7.12 [SOURCE_FI LES]

The set of source files to be processed can be listed either timd section or on the command line. The first
source is considered the “master” file and will contain thiénitéons of special functions (e.gd_AD_I ni t ()).
Example:

28

[SOQURCE_FI LES]
sourcel.c
source2.c
header 1. h

7.13 [STANDARD._| NCLUDES]

Certain user header files have properties similar to thosystem header files. Examples are common non-
numeric library headers, such@gs . h. The user can notify ADIC to treat certain header files assysteader
files by listing them under this section.

Example:

[STANDARD_| NCLUDES]
mpi . h

7.14 [NOJI NLI NE_I NCLUDES]

If the inlining of user headers option is chosen (this is thfadlt), then all user headers are inlined. To prevent
certain headers from being inlined, the user can list thedeuthis section.
Example:

[NO_I' NLI NE_I NCLUDES]
portabl e.h

7.15 Derivative Modules

Each module can have a section that has the same name as thie maxahe under which it defines its own set
of bindings. If a module defines any bindings, its manual gigscthe valid values of these bindings.

29

Chapter 8

Building ADIC-Generated Derivative
Code

In order to integrate the derivative code into a larger sysieto turn it into a standalone program, an appropriate
driver must be written.

All floating-point variables are converted into tbERI V_TYPE unless they have been listed as inactive in a
control script or have been declared aact i veDoubl e orl nacti veFl oat . In general, th®ERI V_TYPE will
be a structure type. The “value” of an active variabls referenced bER V_val (z) . Each derivative module
defines one or more named derivative objects associatecdagthactive variable. A particular derivative object
of an active variable is accessed bPERI V_nane(x) wherenamespecifies the name of the particular derivative
object.

A typical process in writing the driver involves the follavg:

1.

Declare all input floating-point variables to be refehby the derivative function (either as parameters
or as globals) as typeERI V_TYPE.

. Toinitialize a variable: to value 2.0, use

DERI V_val (x) = 2.0;

. Call the initialization function generated by ADIC, tgplly calledad_AD.I ni t () (the actual name de-

pends on the prefix string).

. Specify independent variables, and initialize them. @&kect procedure depends on the particular deriva-

tive module to be used.

. Invoke the derivative function(s).
. Extract the derivative values. The exact procedure apeidds on the particular derivative module chosen.

. Call the finalization function generated by ADIC, typlgatalled ad_AD_Fi nal () (the actual name de-

pends on the prefix string).

In the following example, we compile and link two filelsync. ad. ¢ anddri ver.c. We generated the
derivatives using th@acobi an module. We also set the maximum number of independent Vasiab 5.

30

% gcc -1$(ADIC)/include -Dad_GRAD MAX=5 -c¢ func.ad.c driver.c
% gcc -0 programfunc.ad.o driver.o -L$(ADI C)/1i b/ $(AD C_ARCH)
-1 Jacobian -1 ADintrinsics-C-Im

31

Chapter 9

Handling C Preprocessor Directives and
Macros

The C preprocessing facility allows macros and directivebe defined. The portability and flexibility of C
programs derive in part from this preprocessing facilityowéver, a translator typically sees the source only
after it has been run through the preprocessor, convettingpilegal ANSI-C translation units, which then can
be correctly parsed. Hence, any preprocessor directivemaro names will be lost in the translated source. In
most instances, no problems result. However, some of thalgtity and flexibility provided by the preprocessor
facility are lost. The areas where this loss can occur armmed below:

e Preprocessor conditional directives are used to selégtimelude or leave out groups of lines within
source files at compile time. However, this decision must bdemat the time of translation rather than
be deferred until the compile time of the translated soufbe directives are often used for debugging or
handling sections of the source that are machine specific.

e #i ncl ude directives are used to include the contents of the standargser header files. Since the
implementation of the standard headers is system spetifir,dontents are not portable across machines
in general.

e A macro can represent any text. A functionlike macro can #d&e arguments, performing argument
substitutions during the preprocessing stage. Wherevemntaicro name occurs in the source, it gets
expanded. The expansion of macros does not present anyeprabthe translated source is compiled
on the same system. However, the expanded macros may notthblp@cross machines or even across
compilers. For example, some of the macros defined in thelatdrheaders are system-dependent. In
fact, a name may be declared differently depending on thersysA typical example isl LE, declared in
st di 0. h standard header file. It is a macro hame in SunOS bypadef name in HPUX.

To deal with these potential problem areas, ADIC performamlver of steps to ensure more portability of
the augmented source. ADIC has a preprocessing stage tleatrgats” the source before it is run through the
C preprocessor and sent on to the parsing stage.

¢ ADIC must be run separately for each desired choice of cadit directives. To ensure that the C
preprocessor will select the appropriate text block, prapacro values can be passed to ADIC, which
will in turn pass them on to the preprocessor. Macro valueg Ineaspecified either via the control file or
through a command-line option.

32

In the following example, the original source can eitherrdaup or count down depending on the value
of the COUNT_MODE macro.

#i f COUNT_MODE

for (i =0; i <n; i++) { //count up
#el se
for (i =n-1; i >=0; i--) { //count down
#endi f
func(i, k);

}

We must push forward the choice of value fBBUNT_MCDE to the translation stage by using the control
file segment:

[DEFI NES]
COUNT_MODE = 1

or via the command-line option:

% adi C -v -d Jacobi an - D COUNT_MODE=1 source. c

To handle theti ncl ude directive problem, ADIC marks the locations of any includext and stores the
names of the original header files. When ADIC is generatiegtigmented source, the entire contents of
the standard headers are replaced with the original dieecti

In the case of user headers, in most cases, it is not necdss@gonstruct the originai ncl ude direc-
tives since it is assumed that the user headers are writt@ipartable fashion. However, the user could
specify a command line option), which will perform the reconstruction, with one diffe@n The
reconstructedti ncl ude directive is changed to include the augmented header filaguke standard
naming scheme. For example, names are changed as follows:

#i ncl ude "nyi ncl ude. h" => #i ncl ude "nyincl ude. ad. h"
#i ncl ude "comoncode. c" = #i ncl ude "comoncode. ad. c"

With the- u option, the header files must be processed separately by AllitBout this option, the header
files need not be processed by ADIC.

In order to prevent expansion of certain macros, the ADI(pbpeessing stage can either remove the
macro definition if defined within a user include (when theoption is used) or undefine it immediately
after its definition in a standard header. Hence, the C pogssor will not see the macro definition and
thus will not expand the macro used in the source. To turn theronname into a syntactically valid C
construct, the user has to specify a suitable replaceméntta® (e.g., a variable declaration or a function
prototype).

The list of unexpanded macro names along with their replaoérdefinitions can be specified in the
control file under theJNEXPANDED_MACRCS section. The replacement definition does not need to make
semantic sense, the only requirement is that it can be parseectly. For example, suppos&_MAX is
defined in terms obBL_MAX, which is a system-dependent maximum double-precisiohidae (defined

in the standard headgr oat . h):

#define MY_MAX DBL_MAX/2.0

33

To preserve this name wherever it is used instead of expgiidirto the actual number (since DBUAX
will get expanded also), the following binding can be added:

[UNEXPANDED _MACROS]
MY_MAX = [static double MY_MAX;]

In essence we are movingy_MAX defined in the macro name space into a static floating-poiiahia in
the C name space. Itis important that we turn it into a vaeahther than a constant, since ADIC might
optimize a constant away.

As another example, a functionlike macro can be handled!Es\v&

[UNEXPANDED_MACROS]
getc = [extern int getc(FILE*);]

In this fashion we turn thget c() macro (defined irst di 0. h) into a function prototype declaration.
Actually, for ANSI-C source processing (but not for C++), agument information need be provided.
Hence, the following works just as well:

[UNEXPANDED_MACROS]
getc = [extern int getc();]

To handle a macro that represents a type, we can do the foldgpwi

[UNEXPANDED_MACROS]
FI LE = [typedef struct _iobuf FILE;]

If the user does not have an idea about what a proper defirgtionld be, the user can manually run the
source through the C preprocessor (egp) and check the expansion, then make the appropriate binding

A potential problem can occur by undefining macros. In sorderadystems, the definition of a macro is
used to determine whether a standard header has alreadyrichetted or not. If that macro is the one
undefined, then the header may be included again, causirtgptawefinition conflicts. For example, on
BSD, the definition ofFl LE is checked to determine whethetrdi o. h has already been included. To
prevent this from happening, the preprocessing stage aépkrack of encountered standard headers and
will ensure that it is not included twice.

34

Chapter 10

Controlling Naming

The original source declares names (identifiers) in vanamsespaces. Typical names may be function, variable,
or type names. In the process of augmentation, the semaifititsse names are changed. For exanygaebl e
variable may be changed inb&Rl V_TYPE variable. In other cases, the semantics remain the samexdarple,
ani nt variable is unchanged. A conflict may occur if the originalim@ and the augmented source are used
(e.g., linked) together causing semantic or syntactic cxsfl

To handle these conflicts, names may be systematically eldamg prepending them with a certain prefix.
Depending on the type of names, we need to handle them diffgre

¢ Function namesEach derivative enhanced function must have its name clahtjee original function

is also to be used in the same program. The default solutioptad by ADIC is to always prepend all
occurrences of function names (both use and definition) thighprefix. The prefix is controlled by the
pr ef i x binding. There are two exceptions to prefixing function nguriérst, in the case of the standard
library routines, the names should not be changed. Sinceaweot easily know the names of all the
standard library routines, we store the names of all libragtines declared inside any standard header
included in the source. Whenever such a name is encountéeednction is considered inactive and
hence its name does not get modified. Second, the calls tdasthmath library routines are handled
specially. The names of the standard math routines arel listhe control script file.

o TypedefsTypedefs are effectively an alias of some other type, a Baad for a type composition. If the
base type contains a float type somewhere, then we may widmatgye the name. Theype_prefi x
binding may be used to attach a prefix to all type names.

e structs, unions, and classeStruct and union tag names can also be attached with a prediugh the
t ype_pref i x binding.

e C++ Methods: Since class methods are declared with respect to a partidialss, these need not and
should not change, especially the overloaded operators.

o Variable namesOnly global variables need to be changed, and only if botlotlggnal and the derivative
functions are to be used in the same program. The prefix isated byvar _prefi x binding.

All identifiers declared inside standard headers shoulda@hanged, since the derivative code will include
the same standard headers. In the case of external nunidrieales such as the BLAS, either the source must
be available to be run through ADIC or the differentiatedsi@n must be available. In future versions, ADIC
distributions may include the derivative-enhanced versiaf popular numerical libraries.

35

Chapter 11

Handling Intrinsic Calls

Invoking an intrinsic function through a function pointeayncause problems, since all intrinsic functions must
be handled specially and replaced by a specific section &.cblde problem arises from the lack of an address
associated with this section of code.
The solution is to create a wrapper function that calls therigic function. Whenever an address of an
intrinsic function is taken, it should be changed into thdrads of the corresponding wrapper function.
Eventually, ADIC will automatically perform this step. Foow, the user must do this step manually.

36

Chapter 12

Advanced Control

This section is for advanced users. Our current focus is aendjjug global declarations.

Global declarations such as enums, and any typedefs/l@siatructs declared as inactive can be guarded
by ADIC-generated unique #ifdef directives. This also ab®$ the need for changing the enum values.

To generate guards, specify the flagwhen invoking adiC.

The guard will be added only to header files; it doesn’t makesase¢o guard the generated source code. To
determine whether afile is a header or not, ADIC uses the qudfixe. The header filename must have the suffix
.hor .H.

The guard macro is distinct for each header file; otherwisauder must include original headers for each
differentiated header included even if the user may beésted in using only one of the original headers.
A bigger problem is that different make rules must be addedi$er codes that include the original and the
differentiated headers, and for ADIC-generated code thatudes only the differentiated code. To solve this
problem and the extra hassle of keeping track of which macrogfine, ADIC uses the fact that most headers
have guards themselves; these same guards are used forposg@as well. The naming scheme of these guards
is usually based on some rule (e.ghasenamssuffix__). The user can specify this type of rule in the control
script using a printf-like format string.

[GENERAL]
guard = __ % _%__ ; (generates the above rule)
guard = __ 9B %5 ; (generates the above rule w th uppercasing
;the letters)
% -- base name (e.g., xx in xx.yy, and X.y in x.y.z)
% -- suffix (yyin xx.yy, and z in x.y.z)
9B -- uppercased base nane
%5 -- uppercased suffix nane

Output filename generation rule: The filename generatiom usks the same format string as the guard
format.

[GENERAL]
filenane_trans
filenane_trans

%. ad. %s ;(the default rule)
ad_%. % ; (generates what the user wants)

37

Chapter 13

Troubleshooting

In this section, potential problems are discussed and lplessplutions offered:

If (supported) intrinsic function calls with the prefix (.9d_si n) are generated, the user must make sure
thatmat h. h is included using angle brackets.

If the collection of source files is too large, ADIC will not ladle to handle them due to lack of memory.
In this case, the user must invoke ADIC separately for eaahcgo

If multiple definitions are generated after processing esmirce separately, the user must make sure to
use-t option for all sources except one.

ADIC tries to ensure that any function referenced in the se@nd is declared within standard headers
does not get prepended with the prefix. However, it is possitat some function gets prefixed (especially

when only a partial or no prototype info is given). When thisurs, the user must manually put the name

of the function in the NACTI VE_FUNCTI ONS section. This problem usually occurs when many source
files are processed together.

ADIC expands/processes all macros during derivative geiogr, unless those macros are specified under
the UNEXPANDED_MACRCS section. If the source contains C preprocessor directivelss f def i ned(XXX)
and these macros are defined through the compiler commaeadiiguments, the user must make sure to
define the proper macro definition either through ADIC comdiline or through the control scripts. If
the macro definitions change, ADIC would need to be run again.

When testing new modules, the user must make sure the congisyg control section associated with the
new module is set up correctly.

38

Chapter 14

Known Problems

In this section, known problems and possible workarouneslmcussed:

¢ In C++ mode, the parser does not recognize the external émegspecifier “C++". This problem will
break some standard C++ headers sudhoasr eam h. Also, default arguments cannot be handled. No
workaround.

¢ In ANSI C, goto labels have function scope. ADIC expects dabzl names to be unique within each
translation unit.

¢ Currently, C++ keywords such agwanddel et e are recognized as reserved tokens even when process-
ing C files. Hence, make sure these names are not used.

Check the ADIC web site for a more current list of problems aadkarounds.

39

Bibliography

[1] Martin Berz, Christian Bischof, George Corliss, and Aeak Griewank.Computational Differentiation:
Techniques, Applications, and TooBIAM, Philadelphia, 1996.

[2] Christian Bischof, Alan Carle, Peyvand Khademi, and fevdMauer. ADIFOR 2.0: Automatic differen-
tiation of Fortran 77 program$EEE Computational Science & Engineerirg(3):18-32, 1996.

[3] Christian Bischof and Lucas Roh. The automatic difféieion intermediate form (AIF), 1996. Unpub-
lished Information.

[4] Christian Bischof, Lucas Roh, and Andrew Mauer. ADIC — Emtensible Automatic Differentiation
Tool for ANSI-C. Preprint ANL/MCS-P626-1196, Mathematarsd Computer Science Division, Argonne
National Laboratory, 1996.

[5] S. Brown. OPRAD - a users guide to the OPtima Reverse AatmDifferentiation tool. Technical report,
Numerical Optimization Centre, University of Hertfordsg1995.

[6] Andreas Griewank. On automatic differentiation. Miathematical Programming: Recent Developments
and Applicationspages 83—-108, Amsterdam, 1989. Kluwer Academic Pubksher

[7] Andreas Griewank, David Juedes, and Jean Utke. ADOL{iackage for the automatic differentiation of
algorithms written in C/C++ACM Transactions on Mathematical Softwa?2@(2):131-167, 1996.

[8] William Gropp, Ewing Lusk, and Anthony SkjellumJsing MPI — Portable Parallel Programming with
the Message Passing InterfaddIT Press, Cambridge, 1994.

[9] Andrew Mauer, Christian Bischof, and Alan Carle. The Alnsics system for handling automatic dif-
ferentiation of Fortran 77 intrinsics, 1996. Unpublishefibrmation, Argonne National Laboratory.

[10] Michael Monagan and Rene R. Rodoni. An implementatioihe forward and reverse mode of automatic
differentiation in Maple. In Martin Berz, Christian Bisch@&eorge Corliss, and Andreas Griewank, edi-
tors,Computational Differentiation: Techniques, Applicatipand Toolspages 353-362. SIAM, Philadel-
phia, 1996.

[11] Louis B. Rall. Automatic Differentiation: Techniques and Applicatipmslume 120 ofLecture Notes in
Computer ScienceSpringer Verlag, Berlin, 1981.

[12] Nicole Rostaing, Stephane Dalmas, and Andre Galligautoatic differentiation in OdysseeTellus
45a(5):558-568, October 1993.

40

[13] Dimitri Shiriaev and Andreas Griewank. ADOL-F: Autotiadifferentiation of Fortran codes. In Martin
Berz, Christian Bischof, George Corliss, and Andreas Gaidwy editorsComputational Differentiation:
Techniques, Applications, and Togbages 375-384, Philadelphia, 1996. SIAM.

41

