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Experiences with the PGAPack Parallel Genetic Algorithm LibrarybyDavid Levine, Philip Hallstrom, David Noelle, Brian WalenzAbstractPGAPack is the �rst widely distributed parallel genetic algorithm library. Since its release,several thousand copies have been distributed worldwide to interested users. In this paper wediscuss the key components of the PGAPack design philosophy and present a number ofapplication examples that use PGAPack.1 IntroductionPGAPack is the �rst widely distributed parallel genetic algorithm library. Since its release, severalthousand copies have been distributed worldwide to interested users. Key features in PGAPackare support for multiple data types; parallel portability across uniprocessors, multiprocessors,and workstation networks; Fortran and C interfaces; a simple interface for novice and applicationusers; multiple levels of access for expert users; object-oriented design; extensibility; and multipleGA operators and parameter choices.PGAPack supports parallel and sequential implementations of the single population model. Thepopulation may be updated by using either generational or steady-state replacement schemes, orany of their parameterized variants. The supported crossover operators are one-point, two-point,and uniform crossover. Proportional, stochastic universal, binary tournament, or probabilistic bi-nary tournament selection may be used. Di�erent mutation operators are used with each di�erentdata type. A restart operator is available that reseeds a population by using random variants ofthe best string.Options allow the user to specify the population size and stopping criteria and to whetherduplicate strings should be allowed in the population and whether to mutate or crossover stringsor to mutate and crossover strings. In all cases, defaults are provided if the user does not explicitlyspecify a choice. PGAPack system calls provide, random number generation, output control, errorreporting, and debugging capabilities.In simplest form, a parallel (or sequential) PGAPack program can be written by using only fourPGAPack functions and a string evaluation function. Figure 1 shows such a minimal programand evaluation function for the Maxbit problem. PGACreate initializes PGAPack and returns theaddress of the context variable (see Section 2). The parameters to PGACreate are the programarguments, the data type (PGA DATATYPE BINARY), the string length (100), and the direction ofoptimization (PGA MAXIMIZE). PGASetUp initializes all parameters and function pointers that havenot been explicitly set (none in this example) to default values. PGARun executes the geneticalgorithm. Its second argument is the name of a user-de�ned function (evaluate) that will becalled whenever a string evaluation is required. PGADestroy releases all memory allocated byPGAPack. 1



#include "pgapack.h"double evaluate (PGAContext *ctx, int p, int pop);int main(int argc, char **argv){ PGAContext *ctx;ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);PGASetUp (ctx );PGARun (ctx, evaluate );PGADestroy (ctx );return;}double evaluate (PGAContext *ctx, int p, int pop){ int i, nbits=0, stringlen;stringlen = PGAGetStringLength(ctx);for (i=0; i<stringlen; i++)if (PGAGetBinaryAllele(ctx, p, pop, i))nbits++;return((double) nbits);} Figure 1: PGAPack C Program for the Maxbit ExampleThe evaluation function (evaluate) must be written by the user. PGAGetStringLength returnsthe string length. PGAGetBinaryAllele returns the value of the ith bit of string p in populationpop. The values returned by this function, sometimes called \raw �tness," are automaticallymapped into nonnegative values according to whether any of the raw �tness values are nega-tive, the direction of optimization, and the type of �tness function (identity, ranking, or linearnormalization) used.PGAPack provides functions to encode and decode real and integer values in a binary string.The string representation may be either binary or Gray coded. This capability allows the use ofexisting real- and integer-valued functions with no modi�cation required to the function source.For example, suppose the user has a real-valued function f of three real variables x1, x2, and x3,each constrained on the interval [�10; 10], and wishes to use 10 bits for each and a Gray codeencoding. This may be done as show in Figure 2. Note that the function f need not be modi�ed.The function grayfunc is used as a \wrapper" to decode the real values from the Gray codedstring, pass them as real values to f , and return the corresponding function value.2 Design and ImplementationPGAPack supports four native data types: binary-valued, integer-valued, real-valued, and character-valued strings. A data-hiding capability provides the full functionality of the library to the user,in a transparent manner, irrespective of the data type used. The context variable is the datastructure that provides the data hiding capability. The context variable is a pointer to a C lan-2



#include "pgapack.h"double grayfunc (PGAContext *ctx, int p, int pop);double f (double x1, double x2, double x3);: :double grayfunc (PGAContext *ctx, int p, int pop){ double x1, x2, x3, v;x1 = PGAGetRealFromGrayCode (ctx, p, pop, 0, 9, -10., 10.);x2 = PGAGetRealFromGrayCode (ctx, p, pop, 10, 19, -10., 10.);x3 = PGAGetRealFromGrayCode (ctx, p, pop, 20, 29, -10., 10.);v = f(x1,x2,x3);return(v);} Figure 2: Using Legacy Code for Function Evaluationguage structure, which is itself a collection of other structures. These (sub)structures contain allthe information necessary to run the genetic algorithm, including the data type to use, parametervalues, the functions to call, operating system parameters, debugging 
ags, initialization choices,and internal scratch arrays.All the functionality of PGAPack is provided through function calls. Typically, users callhigh-level, data-type-neutral functions, which themselves call data-type-speci�c functions thatcorrespond to the data type used. The data-type-speci�c functions use addresses and o�sets ofthe population data structures. The user-level routines, however, provide the abstraction of datatype neutrality and an integer indexing scheme and can be called independent of the data type.PGAPack maintains two populations: an old one and a new one. Formally, string p in popula-tion pop is referred to by the 2-tuple (p,pop) and the value of gene i in that string by the 3-tuple(p,pop,i). To aid the user abstractions, two symbolic constants, PGA OLDPOP and PGA NEWPOP,always refer to the last generation and new generation, respectively.PGAPack provides multiple levels of control to support the requirements of di�erent users.The simplest level, shown in Figure 1, encapsulates the genetic algorithm \machinery" within thesingle function PGARun. The user need specify only three parameters: the data type, the stringlength, and the direction of optimization. All other parameters have default values.At the next level, the user calls data-type-neutral functions explicitly (e.g., PGASelect,PGACrossover, PGAMutation). This mode is useful when the user wishes more explicit con-trol over the steps of the genetic algorithm or wishes to hybridize the genetic algorithm with ahill-climbing heuristic.At the third level, the user can customize the genetic algorithm by supplying function(s) tocustomize a particular operator(s) while still using one of the native data types. Finally, at thelowest level of usage, the user can de�ne a new data type, write the data-type-speci�c low-levelGA functions (e.g., crossover, mutation), and have these functions executed by the high-leveldata-type-neutral functions. 3



foreach generation

   select

   crossover

   mutation

endfor

Master SlavesFigure 3: PGAPack Master-Slave ModelPGAPack is written in ANSI C. A set of interface functions allows user-level PGAPack func-tions to be called from Fortran. Message-passing calls follow the MPI (see Section 3) standard.Nonoperative versions of the MPI functions are supplied if the user does not have an MPI imple-mentation for his machine. These allow the PGAPack library to be built (for sequential use) inthe absence of an MPI implementation.3 Parallel ComputingThe �rst release of PGAPack was targeted primarily at application developers and supports a par-allel (and sequential) implementation of the single population model. This initial choice was madebecause in most real applications, the dominant computational cost is executing function evalu-ations. Being able to execute these in parallel should signi�cantly reduce the elapsed computingtime.The single population model may be parallelized by executing in parallel the loop iterationsthat create generation t + 1 from generation t. Most steps in this loop|crossover, mutation,evaluation|can be executed in parallel. The execution e�ciency, however, depends upon thecomputer architecture and parallel execution overhead, the number of new population memberscreated each generation (the degree of parallelism), and the computational cost of the steps beingexecuted in parallel (the granularity).The parallel implementation in PGAPack uses a master/slave algorithm in which one process,the master, executes all steps of the genetic algorithm except the function evaluations, which areexecuted by slave processes. A master/slave implementation is shown in Figure 3.4



We chose a master/slave algorithm for two reasons. First, since function evaluation time isthe dominant cost in most GA runs, the performance bene�ts from parallel execution may beachieved by parallelizing only this step. Second, since we use a message-passing programmingmodel to implement the master/slave algorithm, there may be a signi�cant parallel executionoverhead; focusing only on parallelizing the function evaluations allows for modest data distribu-tion requirements (just the strings to be evaluated) and minimal synchronization requirements.PGAPack is implemented by using the message-passing interface (MPI) standard [5]. MPI isa speci�cation of a message-passing library for parallel computers and workstation networks; itde�nes a set of functions and their behavior. Implementations of MPI exist for both sequen-tial (uniprocessors) and parallel (multiprocessors, multicomputers, and workstation networks)computer hardware, thereby allowing PGAPack to run on all these machines without any codechanges. MPI o�ers a number of useful features that were used in PGAPack including collectivecommunication operations, routines to con�gure the logical topology of the processors, barriers,a unique message namespace for library messages, and the ability to send and receive arbitrarystructures.The parallel implementation will produce the same result as the sequential implementation,usually faster. The choice of sequential or parallel execution depends on the number of processesspeci�ed when the program is started. If one process is speci�ed, a sequential implementationis used. If two processes are used, both the master process and the slave process will computethe function evaluations. If more than two processes are used, the master executes all GA stepsexcept the function evaluations, and the slaves execute the function evaluations.There are two primary considerations in determining the performance advantage of using themaster/slave model. First, the speedup will vary according to the amount of computation asso-ciated with a function evaluation and the computational overhead of distributing and collectinginformation to and from the slave processes. Second, the number of function evaluations thatcan be executed in parallel will limit the speedup. This number depends on the population sizeand the number of new strings created each generation. In a generational replacement model, theentire population may be evaluated in parallel. In the more popular steady-state model, however,typically only one or two new strings are produced, and the degree of parallelism is minimal. Bydefault, PGAPack replaces 10% of the population. In our experience this percentage usually pro-vides an acceptable degree of parallelism, while retaining the superior performance characteristicsof the steady-state model.4 Application ExperiencesIn this section we present examples of several projects that have used PGAPack. Our focus is onparallel execution and custom extensions to PGAPack.4.1 Molecular DockingSTALK [7] is a system for molecular docking that uses PGAPack. The goal in molecular dockingis to predict the conformation (location and orientation) of a ligand (a small molecule) in a proteinactive site (the part of the protein that the ligand binds to).5



Table 1: Solution Time vs. No. of ProcessorsCompute TimeProc. (sec.) Speedup1 263581 1.02 148666 1.83 87208 3.06 46950 5.613 22150 11.925 12831 20.550 7193 36.6100 4181 63.0Molecular docking may be formulated as a nonlinear optimization problem, where the goal is tomaximize the intermolecular interaction energy. Typically, the solution space has a large numberof possible conformations and many local minima. The energy function is highly nonlinear andcomputationally expensive to evaluate; being able to compute these in parallel is highly desirablefor solving realistic problems.STALK uses a rigid backbone model. The protein is �xed in space, and the position of theligand determined by the GA. The six degrees of freedom of the ligand are translation and rotationabout the protein's center of mass.Table 1 contains performance results for a test problem with approximately 300 ligand atomsand 1500 protein atoms. The Compute Proc. column is the number of IBM SP processors thatexecute function evaluations. The Time column is the average over six runs of the total time spentby the master process (executing the GA, packing and sending data to the slave processes, andwaiting for results). The Speedup column is the ratio of the time to execute the one-processor caseto the time to execute with that number of processors. The speedup achieved is fairly constant,although not ideal. Several solutions with better energy values than the x-ray crystallographicsolution were found.A novel feature of STALK is the use of virtual-reality (VR) technology to provide an interactivecomputational steering capability. In the CAVE [4], a room-sized VR environment that commu-nicates with the IBM SP through an SGI Onyx workstation front-end, the best conformation inthe population and associated energy are displayed. Using a pointing device in the CAVE, theuser may translate and/or rotate the ligand. The updated ligand coordinates are sent to theIBM SP running the GA which uses the GA's evaluation function to calculate and return thecorresponding intermolecular energy. The user then has the option of using the \hand-docked"solution to replace the worst conformation in the population, to reseed the entire population usingrandom perturbations of the hand-docked solution, or to make no changes at all.4.2 Quantum Chemistry Parameter OptimizationIn [3] PGAPack was used to study chemical reactions in the condensed phase. The goal was todevelop a quantum mechanical (QM) simulation code that could determine accurate values forcertain molecular properties (e.g., the heat of formation, dipole moments, atomic bond lengths,6



dihedral angles).To calibrate the parameters of the QM simulation code, a GA was used to �nd values for theseparameters that resulted in calculated molecular properties that were in close agreement with theexperimentally determined results. Formally, if Yp(exp) is the value for property p known fromthe experimentally determined results and Yp(calc) the value for property p to be calculated, thenthe evaluation function is to minimize the sum of weighted errors given byXM Xp jYp(calc)� Yp(exp)jwpwhere wp is a weighting factor.As a test case, the energetics of a proton transfer reaction in gas-phase and aqueous solutionwere studied. The basis set of molecules consisted of methanol, imidazole, methoxide, and imi-dazolium. A real-valued GA was run for 15,000 steady-state iterations. Parallelism was appliedwithin each individual function evaluation by determining Yp(calc) for each molecule indepen-dently. Message passing was used to distribute and collect the function evaluation components.Using the parameter values determined by the GA, we were able to calculate more accurate valuesfor the molecular properties of the proton transfer reaction with the QM simulation code thanhad been previously determined by other methods.4.3 Timber Harvest SchedulingThe goal in adjacency constrained timber harvest scheduling (ACTHS) is to �nd near optimaltree harvesting schedules, subject to constraints on the clear-cut opening size and the level oftimber harvests from schedule period to period. ACTHS is a di�cult combinatorial optimizationproblem; a problem with N stands and M planning periods has MN integer solutions (includinginfeasible solutions). A typical operational scheduling problem has 10{20 periods and 500{1000stands.In [8] the authors compare a traditional GA that represents solutions directly on the chro-mosomes with an order-based GA that represents permutations of the stand identi�cation num-bers on the chromosomes and uses each permutation as an order list for scheduling stands, withMonte Carlo integer programming (MCIP). PGAPack was used to implement both the traditionaland order-based GAs. For the order-based GA, custom PGAPack operators were developed fororder-based crossover, position-based crossover, partially matched crossover, order-based muta-tion, position-based mutation, and scramble mutation.Test data ranged from 42 to 849 stands and 10 to 15 time periods. The results showed theorder-based GA was superior to the other methods, averaging 2.2% better than the traditionalGA, and 3.5% better than the MCIP. This project was so successful that the order-based GA isnow the in-house production planning system for ACTHS at Rayonier Corp.4.4 Vehicle ClusteringIn [9] the authors describe the application of PGAPack to the Multiple-Depot Vehicle RoutingProblem (MDVRP). The MDVRP is an extension of the vehicle routing problem, with the cus-7



tomers being served from multiple depots instead of a single, central depot. The MDVRP issolved by using a genetic clustering method that clusters customers using route primitives.The genetic clustering is done using PGAPack. Once the clusters for the customers are obtained,the clusters are improved by using a branch-exchange procedure. The �nal solution obtainedby the branch exchange procedure serves as the �tness value for the string. Because of thecomputationally expensive nature of the branch exchange procedure, a hash function was writtenfor PGAPack that prevents previously evaluated strings from being evaluated again. The additionof the hash function reduced the processing time approximately 30%.4.5 Evolutionary RoboticsThe work in [2] describes the use of genetic algorithms to design neural network controllers for asimulated, box-pushing robot. The world of the robot is a small grid with blocks randomly placedon it. The goal is to have the robot push blocks into the corners, placing blocks near the cornerblocks when the corners are �lled.The evaluation function for this problem is very expensive. Each robot must be evaluated inmore than one initial con�guration, and each con�guration requires several hundred time steps. Aparallel version of PGAPack was installed on an SGI workstation network and used to corroborateprevious results.In addition, a version of niching based on the work in [6] was added to PGAPack to supportmulti-objective optimization. A custom function was written that performed selection by choosingtwo strings randomly from the population and returning the one which dominates a random sampleof the population. If neither string dominates, the string with the fewest neighbors is returned.4.6 Finite Element Mesh OptimizationIn �nite-element analysis, structures are modeled as meshes of elements and nodes that match thegeometry, rigidity, and loading of each structure. While a very �ne uniform mesh will give accurateresults, it usually leads to unacceptably high computational loads. Therefore, a nonuniform meshwith higher resolution is used in parts of the structure where the stress gradients are high, andwith lower resolution where the stress gradients are low is desired.In the work in [1], a GA is used to search for an optimal mesh. Initially, a uniform meshis imposed on a loaded structure with a small number of degrees of freedom that are not com-putationally burdensome. An energy-based error norm is calculated and used as an objectivefunction to be minimized. In the main loop, randomly perturbed node positions are generated,the �nite-element mesh is regenerated by using the new node positions, and the objective func-tion is recalculated. The mesh regeneration is stopped when the objective function has reached astationary (assumed to be minimum) value.This approach has been implemented on simple beams and plates by using PGAPack on acluster of eight Sun workstations. The results appear promising for the simple cases tried. Areal-coded GA is used that has a specialized function to regenerate elements around the per-turbed positions of the nodes. This function eliminates all meshes that result in malformed (e.g.,high aspect ratio, concave or physically impossible) elements before mutation and crossover are8



attempted.5 Conclusions and Future WorkThe number of users and the applications they have implemented underscores the fact thatPGAPack has met with widespread acceptance. We attribute this success to four key factors.First is ease of use. Many users use PGAPack as a black-box; parameter and operator choiceshave robust default values, and their details are encapsulated in a few simple function calls. Theobject-oriented interface, coupled with the user-level abstractions, allows the user to concentrateon functionality and not data structure details.The second important attribute is portability. PGAPack has been successfully installed on mostworkstations, workstation clusters, and parallel computers. The ANSI C language PGAPack iswritten in is standardized and fully portable. A small set of link options provides a compatibleFortran interface. From a parallel computing perspective, the message-passing programmingmodel maps easily onto both shared- and distributed-memory hardware. Additionally, MPI isnow a fully accepted message-passing standard, with versions available for all current workstationsand parallel computers.The third reason for PGAPack's success is the task parallel master/slave model. All real appli-cations we have worked on, and most others we are aware of, are dominated by the computationalcost of the function evaluations. The performance improvement from executing these evalua-tions simultaneously can provide signi�cantly improved turnaround. In some cases the improvedperformance is critical to being able even to apply GAs.Finally, the fourth reason for PGAPack's success is extensibility. Although PGAPack supportsmultiple data types and their common operators, problem-speci�c functionality is sometimesneeded. PGAPack provides a simple means to replace any operator with a user function. Also,users may de�ne a new data type by writing the low-level data-structure-speci�c functions, butstill take advantage of the high-level data-structure-neutral functions in PGAPack. Finally, bypassing the context variable as a parameter to a user function, the user has complete access tosolution and parameter values, and may develop any custom functionality desired.Prototype implementations of several new features have been developed for future incorporationinto PGAPack. These include an island model GA, a genetic programming implementation, anda meta-GA for optimizing parameter choices. In addition, we plan to incorporate the additionalfunctionality that has been developed and contributed by our users.PGAPack is freely available and may be obtained by anonymous ftp from info.mcs.anl.gov in�le pub/pgapack/pgapack.tar.Z, or via the World Wide Web at the following URL:http://www.mcs.anl.gov/home/levine/PGAPACK/index.html.
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