
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-234
Users Guide for ROMIO: A High-Performance,Portable MPI-IO ImplementationbyRajeev Thakur, Ewing Lusk, and William GroppMathematics and Computer Science DivisionTechnical Memorandum No. 234October 1997This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38; and by the Scalable I/O Initiative, a multiagency project funded by the Defense Ad-vanced Research Projects Agency (Contract DABT63-94-C-0049), the Department of Energy, the NationalAeronautics and Space Administration, and the National Science Foundation.

ContentsAbstract 11 Introduction 12 General Installation Instructions 23 Con�guring and Building ROMIO on Various Machines 23.1 IBM SP : 33.2 Intel Paragon : 33.3 HP/Convex Exemplar : 33.4 SGI Origin 2000, Power Challenge, and Challenge : 33.5 Network of Workstations : 43.6 Miscellaneous Instructions : 44 Compiling and Running MPI-IO Programs 45 Limitations of This Version of ROMIO 66 Usage Tips 67 ROMIO Users Mailing List 78 Reporting Bugs 79 ROMIO Internals 7References 7
iii

Users Guide for ROMIO: A High-Performance,Portable MPI-IO ImplementationbyRajeev Thakur, Ewing Lusk, and William GroppAbstractROMIO is a high-performance, portable implementation of MPI-IO (the I/O chapter in MPI-2).This document describes how to install and use ROMIO version 1.0.0 on various machines.1 IntroductionROMIO1 is a high-performance, portable implementation of MPI-IO (the I/O chapter in MPI-2 [1]).This document describes how to install and use ROMIO version 1.0.0 on various machines.This version of ROMIO includes everything de�ned in the MPI-2 I/O chapter except �le info(Sec. 9.2.8), shared �le pointer functions (Sec. 9.4.4), split collective data access routines (Sec. 9.4.5),support for �le interoperability (Sec. 9.5), I/O error handling (Sec. 9.7), and I/O error classes(Sec. 9.8). Since info is not supported, MPI INFO NULL should be used as the info parameter whereneeded. Since shared �le pointer functions are not supported, the MPI MODE SEQUENTIAL amodeto MPI File open is also not supported. The subarray and distributed array datatype constructorfunctions from MPI-2 Chapter 4 (Secs. 4.14.4 and 4.14.5) have been implemented. They are usefulfor accessing arrays stored in �les. The functions MPI File f2c and MPI File c2f (Sec. 4.12.4)also have been implemented. C, Fortran, and pro�ling interfaces are provided for all functions thathave been implemented.ROMIO 1.0.0 runs on the following machines: IBM SP; Intel Paragon; HP/Convex Exemplar;SGI Origin 2000, Challenge, and Power Challenge; and networks of workstations (Sun4, Solaris,IBM, DEC, SGI, HP, FreeBSD, and Linux). Supported �le systems are IBM PIOFS, Intel PFS,NFS, and any Unix �le system (e.g., SGI's XFS and the HP/Convex Exemplar �le system).ROMIO works with MPICH 1.1.0 (or higher) on any machine. (You can get the latest versionof MPICH from http://www.mcs.anl.gov/mpi/mpich.) On SGI machines, ROMIO works withSGI's MPI 3.0 (or higher), and we recommend that you use it with SGI's MPI instead of MPICH.On the HP/Convex Exemplar, ROMIO works with HP MPI 1.3 (or higher), and we recommendthat you use it with HP MPI instead of MPICH.ROMIO requires that the �le name passed to MPI File open be pre�xed with a string to indicatethe type of �le system. The strings corresponding to PIOFS, PFS, NFS, and UFS �le systems arepiofs:, pfs:, nfs:, and ufs:. An example �le name is nfs:/home/thakur/foo. You can open �leson multiple �le systems in the same program by specifying the type of �le system in the �le name.The user is responsible for ensuring that the directory where the �le is to be opened is accessiblefrom the process opening the �le. For example, a process running on one workstation may not beable to access a directory on the local disk of another workstation, and therefore ROMIO will notbe able to open a �le in such a directory. Note that if you are creating �les on an NFS-mounted1http://www.mcs.anl.gov/home/thakur/romio 1

�le system, you must specify nfs: in the �le name; ufs: may not work, particularly if multipleprocesses write to a common �le.An MPI-IO �le created by ROMIO is no di�erent from any other �le created by the underlying�le system. Therefore, you may use any of the commands provided by the �le system to access the�le, for example, ls, mv, cp, rm, ftp.Please read the limitations of this version of ROMIO that are listed in Section 5 of this document(e.g., MPIO Request object, �le size less than 2 Gbytes, restriction to homogeneous environments).2 General Installation InstructionsUntar the tar �le asgunzip -c romio.tar.gz | tar xvf -ORzcat romio.tar.Z | tar xvf -THENcd romio./configure -file_system=nfs -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/sun4/ch_p4/libmpi.a(ONLY AN EXAMPLE. SPECIFIC configures FOR VARIOUS MACHINES ARE GIVEN BELOW.)makecd testmakeRun the examples as you would run any MPI program. Each program takes the �lename asa command-line argument \-fname filename". The �lename must be pre�xed with a string toindicate the type of �le system (nfs:, ufs:, pfs:, piofs:). An example �lename is nfs:test.3 Con�guring and Building ROMIO on Various MachinesHere we discuss how ROMIO is commonly con�gured and built on various machines. For yourparticular machine environment, you may need to specify some other options to configure. Forthe entire list of options, do./configure -h | moreYou can con�gure and build ROMIO for multiple �le systems by specifying the names and using`+' as a separator, for example, ./configure -file system=ufs+nfs ...2

3.1 IBM SPOn an IBM SP using MPICH 1.1.0 (or higher) and PIOFS �le system (specify appropriate mpiincdirand mpilib for your system):./configure -file_system=piofs -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/rs6000/ch_mpl/libmpich.amake3.2 Intel ParagonOn an Intel Paragon using MPICH 1.1.0 (or higher) and PFS �le system (specify appropriatempiincdir and mpilib for your system):./configure -arch=paragon -file_system=pfs -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/paragon/ch_nx/libmpi.amake3.3 HP/Convex ExemplarOn an HP/Convex Exemplar using HP MPI 1.3 (or higher) and the Exemplar �le system:./configure -file_system=ufs -mpi=hpmakeOn an HP/Convex Exemplar using MPICH 1.1.0 (or higher) and the Exemplar �le system(specify appropriate mpiincdir and mpilib for your system):./configure -file_system=ufs -mpi=mpich -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/hpux/ch_shmem/libmpi.amake3.4 SGI Origin 2000, Power Challenge, and ChallengeOn an SGI Origin 2000, Power Challenge, or Challenge using SGI's MPI 3.0 (or higher) and XFS�le system:./configure -file_system=ufsmakeIf you need to generate a particular version that corresponds to the -64, -n32, or -32 com-piler/linker options, you can specify the options to be passed to the compiler as./configure -file_system=ufs -cc="cc -64" -fc="f77 -64"or./configure -file_system=ufs -cc="cc -n32" -fc="f77 -n32"or./configure -file_system=ufs -cc="cc -32" -fc="f77 -32"To con�gure for networks of SGI workstations, see Section 3.5.3

3.5 Network of WorkstationsOn a network of Sun4, Solaris, IBM, DEC, FreeBSD, or Linux workstations using MPICH 1.1.0(or higher) and NFS �le system (specify appropriate mpiincdir and mpilib for your system):./configure -file_system=nfs -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/sun4/ch_p4/libmpi.amakeOn a network of SGI or HP workstations using MPICH 1.1.0 (or higher) and NFS �le system(specify appropriate mpiincdir and mpilib for your system):./configure -file_system=nfs -mpi=mpich -mpiincdir=/usr/local/mpi/include \-mpilib=/usr/local/mpi/lib/IRIX64/ch_p4/libmpi.amake3.6 Miscellaneous InstructionsIf any error occurs during the build, try./configure -hfor further options to con�gure, or send e-mail to romio-maint@mcs.anl.gov with a detaileddescription of the error.After building a speci�c version, you can install it in a particular directory withmake install PREFIX=/usr/local/romio (or whatever directory you like)or justmake install (if you used -prefix at configure time)If you intend to leave ROMIO where you built it, you should not install it; make install isused only to move the necessary parts of a built ROMIO to another location. The installed copywill have the include �les, libraries, man pages, and a few other odds and ends, but not the wholesource tree. It will have a test directory for testing the installation and a location-independentMake�le built during installation, which users can copy and modify to compile and link against theinstalled copy.To rebuild ROMIO with a di�erent set of con�gure options, domake cleanallto clean up everything, including the Make�les created by configure. Then run configure againwith the new options.4 Compiling and Running MPI-IO ProgramsFollowing are instructions for compiling an MPI-IO program on various machines using ROMIO.The Make�le in the romio/test directory also illustrates how to compile and link to ROMIO onthe particular machine you are using.You need to include the �le mpio.h for C or mpiof.h for Fortran in your MPI-IO program. Ifyour Fortran compiler does not accept the -I option that speci�es the include directory, you willneed to copy (or soft link) the �les mpif.h (from the MPI implementation) and$(ROMIO HOME)/include/mpiof.h to the directory where you are compiling your program.4

AssumeCC = C compilerF77 = Fortran compilerMPI_LIB = full path to MPI libraryMPI_INCDIR = directory where mpi.h and mpif.h files are locatedROMIO_HOME = top-level directory where ROMIO is installedARCH = type of machineINCLUDE_DIR = -I$(ROMIO_HOME)/include -I$(MPI_INCDIR)LIBS = $(ROMIO_HOME)/lib/$(ARCH)/libmpio.a $(MPI_LIB)You can compile MPI-IO programs on various machines as follows:On an IBM SP for PIOFS file system:$(CC) -O $(INCLUDE_DIR) -bI:/usr/include/piofs/piofs.exp test.c $(LIBS)$(F77) -O $(INCLUDE_DIR) -bI:/usr/include/piofs/piofs.exp test.f $(LIBS)On an Intel Paragon:$(CC) -O $(INCLUDE_DIR) test.c $(LIBS) -nx$(F77) -O $(INCLUDE_DIR) test.f $(LIBS) -nxOn an HP/Convex Exemplar using HP MPI:mpicc -O -I$(ROMIO_HOME)/include test.c $(ROMIO_HOME)/lib/$(ARCH)/libmpio.ampif77 -O -I$(ROMIO_HOME)/include test.f $(ROMIO_HOME)/lib/$(ARCH)/libmpio.aOn HP workstations or Exemplar machines using MPICH:$(CC) -O $(INCLUDE_DIR) -Aa -D_POSIX_SOURCE test.c $(LIBS) -lV3$(F77) -O $(INCLUDE_DIR) test.f $(LIBS) -lV3On SGI machines using SGI's MPI:$(CC) -O -I$(ROMIO_HOME)/include test.c $(ROMIO_HOME)/lib/$(ARCH)/libmpio.a -lmpi$(F77) -O -I$(ROMIO_HOME)/include test.f $(ROMIO_HOME)/lib/$(ARCH)/libmpio.a -lmpiOn SGI machines using MPICH:$(CC) -O $(INCLUDE_DIR) test.c $(LIBS)$(F77) -O $(INCLUDE_DIR) test.f $(LIBS)On Sun 4, IBM RS6000, FreeBSD, and Linux workstations:$(CC) -O $(INCLUDE_DIR) test.c $(LIBS)$(F77) -O $(INCLUDE_DIR) test.f $(LIBS)On Solaris workstations:$(CC) -O $(INCLUDE_DIR) test.c $(LIBS) -lsocket -lnsl -laio -lthread$(F77) -O $(INCLUDE_DIR) test.f $(LIBS) -lsocket -lnsl -laio -lthread5

On DEC Alpha workstations:$(CC) -O $(INCLUDE_DIR) test.c $(LIBS) -laio$(F77) -O $(INCLUDE_DIR) test.f $(LIBS) -laioRun the program as you would run any MPI program on the machine. If you use mpirun, makesure you use the correct mpirun for the MPI implementation you are using. For example, if you areusing MPICH on an SGI machine, make sure that you use MPICH's mpirun and not SGI's mpirun.5 Limitations of This Version of ROMIO� The status argument is not �lled in any function. Consequently, MPI Get count andMPI Get elements will not work when passed the status object from an MPI-IO operation.� All nonblocking I/O functions use a ROMIO-de�ned MPIO Request object instead of the usualMPI Request object. Accordingly, two functions, MPIO Test and MPIO Wait, are provided totest and wait on these MPIO Request objects. They have the same semantics as MPI Testand MPI Wait.int MPIO Test(MPIO Request *request, int *flag, MPI Status *status);int MPIO Wait(MPIO Request *request, MPI Status *status);The usual functions MPI Test, MPI Wait, MPI Testany, and so forth, will not work for non-blocking I/O.� This version works only on a homogeneous cluster of machines, and only the \native" �ledata representation is supported.� This version works only for �les of size less than 2 Gbytes. Accordingly, MPI Offset is oftype integer, and Fortran programs must use �le o�sets, �le displacements, and so on, oftype integer (not integer*8).� All functions return only two possible error codes|MPI SUCCESS on success and MPI ERR UNKNOWNon failure.6 Usage Tips� When using IBM's PIOFS �le system, open the �le with the MPI MODE UNIQUE OPEN amodewhenever possible. Certain collective I/O optimizations cannot be done if this amode is notused.� When using ROMIO with SGI's MPI implementation, you may sometimes get an error mes-sage from SGI's MPI: \MPI has run out of internal datatype entries. Please set the envi-ronment variable MPI TYPE MAX for additional space." If you get this error message, add thefollowing line to your .cshrc �le:setenv MPI TYPE MAX 65536Use a larger number if you still get the error message.� If a Fortran program uses a �le handle created using ROMIO's C interface, or vice versa,you must use the functions MPI File c2f or MPI File f2c (see Sec. 4.12.4 in [1]). Such a6

situation occurs, for example, if a Fortran program uses an I/O library written in C withMPI-IO calls. Similar functions MPIO Request f2c and MPIO Request c2f are also provided.� For Fortran programs on the Intel Paragon, you may need to provide the complete path tompif.h in the include statement, for example,include '/home/mpich-1.1.0/include/mpif.h'instead ofinclude 'mpif.h'The reason is that the -I option doesn't work on the Paragon Fortran compiler if77. Italways looks in the default directories �rst and, therefore, may pick up Intel's mpif.h, whichis actually the mpif.h of an older version of MPICH.7 ROMIO Users Mailing ListPlease register your copy of ROMIO with us by sending e-mail to majordomo@mcs.anl.gov withthe messagesubscribe romio-usersThis will enable us to notify you of new releases of ROMIO as well as bug �xes.8 Reporting BugsIf you have trouble, �rst check the users guide. Then check the on-line list of known bugs andpatches at http://www.mcs.anl.gov/home/thakur/romio. Finally, if you still have problems,send a detailed message containing:� the type of system (often uname -a),� the output of configure,� the output of make, and� any programs or teststo romio-maint@mcs.anl.gov.9 ROMIO InternalsA key component of ROMIO that enables such a portable MPI-IO implementation is an internalabstract I/O device layer called ADIO [2]. Most users of ROMIO will not need to deal with theADIO layer at all. However, ADIO is useful to those who want to port ROMIO to some other �lesystem. The ROMIO source code and the ADIO paper [2] will help you get started.References[1] Message-Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. July1997. On the World-Wide Web at http://www.mpi-forum.org/docs/docs.html.[2] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device Interface for Implementing PortableParallel-I/O Interfaces. In Proceedings of the 6th Symposium on the Frontiers of MassivelyParallel Computation, pages 180{187, October 1996.7

