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IntroductionA Theory Institute� on \Di�erentiation of Computational Approximations to Functions"was held at Argonne National Laboratory on May 18{20, 1998. The institute was organizedby Christian Bischof and Paul Hovland of the Mathematics and Computer Science Divisionat Argonne National Laboratory.The Theory Institute brought together 38 researchers from the United States, GreatBritain, France, and Germany. Mathematicians, computer scientists, physicists, and en-gineers from diverse disciplines discussed advances in automatic di�erentiation (AD) the-ory and software and described bene�ts from applying AD methods in application areas.These areas include uid mechanics, structural engineering, optimization, meteorology, andcomputational mathematics for the solution of ordinary di�erential equations (ODEs) ordi�erential algebraic equations (DAEs).This meeting was the fourth workshop dedicated to automatic di�erentiation. Earliermeetings were the 1991 SIAM conference in Breckenridge, Colorado; the �rst ArgonneTheory Institute on computational di�erentiation in 1993; and the 1996 SIAM conferencein Santa Fe, New Mexico.AD methods can be used whenever gradient information or higher-order derivative in-formation must be computed. The problem is de�ned by a computer program (withoutgradient information) that is able to compute numerical values of some output variables fora given set of input variables. As a result of applying AD methods to this computer pro-gram, a new computer program is generated automatically to compute the derivatives of theoutput variables with respect to the input variables. This|at �rst glance, astonishing|factcan be easily understood by viewing the program from a compiler angle. A complicatedcomputational sequence is split into a sequence of simple operations. Then, to computethe gradients, the chain rule of di�erentiation is applied successively to this sequence|completely automatically. The resultant gradients are accurate up to roundo� errors (whichare always present in numerical evaluations).AD tools traditionally work in two di�erent ways to achieve this augmentation of theoriginal program source. One way is to generate from the original source code new sourcecode for the gradients, for example, by code transformation techniques. The other way isto use operator overloading to rede�ne the required active variables and statements.The algorithmic underpinnings of AD traditionally are de�ned by either the forwardor the reverse mode. The forward mode is easier to implement, and the time to computegradients is proportional to the number of independent variables; the reverse mode requiresmore computer memory, but the computation time for the gradients is independent of thenumber of independent variables and only a small (< 5) multiple of the time to computethe output variables alone. Both methods require no approximation, and the computedgradients are essentially identical.�For more information see http://www.mcs.anl.gov/autodiff/workshop.htmlv



Recent experience with AD tools has shown that both the implementation and algo-rithmic frameworks need to be expanded with an eye toward exploiting the strengths ofthese di�erent approaches. Thus, the myriad possibilities of computing derivatives thatarise from the associativity of the chain rule and the challenges for building systems thatcombine runtime and compile-time techniques provide a fertile ground for future challengingresearch.AD methods are widely used for solving problems in which the output variables arecomputed \directly" from the input variables. However, it is not clear what happens ifthe output variables are computed iteratively or approximately. That is, do \di�erenti-ate" and \approximate" commute? To discuss this issue, the workshop was dedicated tothe di�erentiation of computational approximations to functions. Some observations andexperiences indicate that AD tools often compute correct gradients for approximations with-out any human modi�cation, but some problems have been reported that require a closerinvestigation.During the three-day workshop, 20 talks were presented and extensively discussed. Inaddition, lively discussions took place during the breaks.A. Griewank, one of the pioneers in AD, set the stage by describing in his introductorytalk the turbulent history of automatic di�erentiation during the past few decades. Us-ing the table of contents of his soon-to-appear book on automatic di�erentiation, he alsosummarized current AD-related research.Next, H.-G. Bock discussed the problem of evaluating gradients for functions computedby numerical time integration of ODEs. He presented an internal di�erentiation methodbased on a selective activation of variables during time integration in specialized algorithms.This issue was also discussed by P. Eberhard, who described the di�erentiation of general-purpose integration routines for ODEs used in multibody dynamics, and discussed potentialsources of problems and ways to overcome them. Although this black-box integration oftenis feasible, manual deactivation of di�erentiation of adaptive elements (e.g., stepsize control)sometimes is required.In a related context, L. Petzold explored the use of AD for the solution of DAEs.Typically, inaccurate �nite di�erences are used within DAE solvers, but it has been shownthat the gradients can be computed more e�ciently and accurately with AD. For often-arising problem structures in numerical integration schemes, A. Verma proposed methodsto exploit the structure of continuous problems that, for example, maintain the sparsity ofproblems.As an alternative to DAE methods solely relying on �rst-order derivative information,J. Pryce described the use of Taylor series expansions to solve smooth DAEs. AD is used tocompute the Taylor coe�cients, and interesting consistency conditions can be derived. Thecapability of AD to compute higher-order derivatives accurately and e�ciently also under-pins the work of M. Berz and K. Makino. Berz presented rigorous methods for obtainingvi



veri�ed results for the simulation of particle accelerators using higher-order remainder al-gebra. Tight bounds are obtainable where the accuracy is determined by the order of theAD-computed Taylor coe�cients. Makino described applications of these techniques toveri�ed quadrature and the integration of ODEs.Several talks were motivated by applications illustrating the need for accurate deriva-tives in engineering contexts and the potential savings that can be achieved by AD-basedapproaches. O. Pironneau gave an introduction to shape optimization applied to wing de-sign and brake water design. The results are very sensitive: it is crucial to detect and toavoid unphysical designs. B. Mohammadi discussed aerodynamical ow control problemsand the use of AD tools for shape optimization. Fixed as well as moving boundaries areconsidered to control the ow. In this context, Mohammadi considered it su�cient andmore e�cient to compute only an approximate gradient, but, of course, one must be ableto rely on the \leading digits." T. Slawig also investigated shape optimization of airfoilsand illustrated the bene�ts of computing the the gradient matrix in the nonlinear BFGSQuasi-Newton method via AD. G. Corliss and J. Walters presented a rigorous global searchprocedure using interval arithmetics and applications in economics. Derivatives must becomputed for both oating-point and interval arithmetics. Fortran 90 is used to interpretcode lists or to do code transformation.Two talks discussed Burger's equation, which is used for advection-di�usion systemsin meteorology and uid dynamics. S. K. Park discussed applications of AD in weathermodeling and presented a new numerical scheme for data assimilation. A. Walther describedinvestigations on computing adjoints of discretizations of Burger's equation. An optimalcheck-pointing scheme was applied successfully to overcome memory restrictions in thereverse mode.While it is tempting to use AD tools in a black-box mode, this is not the most e�cientuse of the technology. In his talk, B. Christianson stated that applications must exposemore of their structure to AD tools. Such an approach not only yields more e�cient code,as shown in examples, but also can help the researcher become aware of potential pitfalls.Moreover, in some cases, black-box mode may be impossible, as illustrated by C. Faure inher talk on the application of the AD tool Odyssee to an industrial thermohydraulic code.Faure showed how to overcome problems such as inaccessible sources for software libraries.She also showed that the results are mostly very accurate, but for some input parametersunphysical oscillations in the derivatives are observed.S. Brown addressed the design of future AD tools. These tools must o�er a high degreeof exibility, for example, to perform mixed-mode computations or specialized evaluationstrategies. There seems to be a trend leading from general black-box tools to more special-ized tools where user knowledge is introduced to optimize time and memory e�ciency. ADtool design was also the focus of N. Di Cesare's talk. He discussed an AD implementationusing operator overloading and expression templates in C++. This approach leads to avery exible tool, at the expense of longer compilation times. The computation of second-vii



order derivatives was the topic of J. Abate's talk. Whereas it is possible to repeatedly useAD tools to compute Hessians, one can do much better by exploiting the structure of thecomputation. If only Hessian-vector products are required, even higher savings are possible.Lastly, P. Hovland's talk illustrated the bene�ts that arise from the di�erentiation ofan algorithm. He described the application of AD to a successive overrelaxation algorithmto solve linear equations, where the relaxation parameter was adaptively modi�ed to im-prove the convergence. To obtain improved values, Hovland used ADIFOR to compute thederivative of a cost function with respect to the relaxation parameter.To summarize, there has been a big change in the AD community during the past decade.In the �rst phase, it was necessary to understand the basic mechanisms and applications ofAD and to develop a \common language," enabling scientists from many di�erent areas tocommunicate. In the second phase, AD was used successfully in some large applications;and, based on this experience, intensive discussions about the best way to design andimplement tools were started. Perhaps we have now entered the third phase, in which allbasic methods and some e�cient tools are available and AD has proven its reliability insome very complex problems. Nevertheless, many open questions remain, and scientistsfrom all over the world are actively seeking solutions and pushing the envelope in thisrapidly developing �eld and by its very nature interdisciplinary �eld. The hope is that inthe not-too-distant future, derivatives can be computed so e�ciently and conveniently thatnobody will understand why, in the late twentieth century, this task was such a seriousproblem in many �elds of research.Peter EberhardChris BischofPaul Hovland
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Computing Second-Order DerivativesUsing Automatic Di�erentiationJason Abateabate@ticam.utexas.eduTexas Institute for Computational and Applied MathematicsThe University of Texas at AustinAustin, Texas, U.S.A.Automatic di�erentiation (AD) provides an e�cient and accurate method to obtainderivatives for use in sensitivity analysis, parameter identi�cation, and optimization. Cur-rent tools are targeted primarily at computing �rst-order derivatives, namely, gradientsand Jacobians. Prior to AD, derivative values were obtained through divided di�erencemethods, symbolic manipulation, or hand coding, all of which have drawbacks when com-pared with AD. Accurate second-order derivatives are even harder to obtain than �rst-orderones; it is possible to end up with no accurate digits in the derivative value when using adivided-di�erence scheme.One can repeatedly apply �rst-order derivative tools to obtain higher-order derivatives,but this approach is complicated and ignores structural information about higher-orderderivatives such as symmetry. Additionally, in cases where a full Hessian, H , is not required,such as with Hessian-vector products (H � V ) and projected Hessians (V T �H �W ) whereV and W are matrices with many fewer columns than rows, it is possible to compute thedesired values much more e�ciently than with the repeated di�erentiation approach.AD by source transformation provides great exibility in implementing sophisticatedalgorithms that exploit the associativity of the chain rule of calculus. Unfortunately, thedevelopment of robust source transformation tools is a substantial e�ort. ADIFOR andADIC, source transformation tools for Fortran and C, respectively, both implement rela-tively simple algorithms for propagating derivatives. Most of the development time so farhas concentrated on producing tools that handle the full range of the language, rather thanon developing more e�cient algorithms to propagate derivatives.No \best" approach to computing Hessians exists; the most e�cient approach to com-puting second-order derivatives depends on the speci�cs of the code and the target platformon which the code will be run. We have timed the execution of the core Hessian kernel oper-ations on a variety of machines, which results in a machine-speci�c performance model. Thismodel is used to select between the Hessian algorithms at code-generation time based on thenumber of independent variables to be used and on the target architecture. This approachhas consistently produced more e�cient code than have machine-independent strategies. Inall cases, however, the generated codes compute derivatives to machine precision on anyplatform. 1



To make it easier to experiment with algorithmic techniques, we have developed AIF,the Automatic Di�erentiation Intermediate Form. AIF acts as the glue layer between alanguage-speci�c front-end and a largely language-independent transformation module thatimplements AD transformations at a high level of abstraction.We have implemented an AIF-based module for computing second-order derivatives.The Hessian module, as we call it, implements several di�erent algorithms and selectivelychooses them in a fashion that is determined by the code presented to it. However, thiscontext-sensitive logic, which is based on machine-speci�c performance models, is trans-parent to the AD front-end. The Hessian module currently interfaces with ADIFOR andADIC.
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Higher-Order Methods andAdjoined Remainder BoundsMartin Berzberz@pilot.msu.eduDepartment of Physics, Michigan State UniversityEast Lansing, Michigan, U.S.A.An overview of higher-order di�erentiation methods is given, addressing some questionsof implementation as well as some important applications. It is then shown how thesemethods can be enhanced to also allow rigorous computation of bounds for the remainderof a high-order expansion. Compared with other veri�ed methods, the resulting TaylorModels yield levels of sharpness that scale with a high order of the width of the domain.Furthermore, for extended calculations, the problem of blow-up typical for many intervalapproaches is signi�cantly reduced. Finally, the methods are advantageous for multidimen-sional applications in that the expense of higher dimensions increases only modestly. Wewill illustrate these points with various veri�ed computations, including global optimizationof complicated blowup-prone functions.
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Internal Numerical Di�erentiation Revisited:Di�erentiation of Adaptive Integrators forODE and DAE, Including Discontinuous ModelsHans-Georg BockSciCom@IWR.Uni-Heidelberg.DeIWR (Interdisciplinary Center for Scienti�c Computing), University of HeidelbergHeidelberg, GermanyNumerical methods for sensitivity analysis, parameter estimation, optimum experimentdesign, or optimal control for DAE or ODE models frequently require the computation of�rst- or second-order derivatives of the solution of initial value problems with respect toinitial values and parameters. Multiple shooting procedures, for example, for these kindsof optimization problems, have been developed since the late seventies.If one uses what we call \external numerical di�erentiation" (END), one tries to ap-proximate these derivatives by the di�erentiation of an adaptive numerical integrator (e.g.,by �nite di�erences or automatic di�erentiation). However, such an integrator containsmany adaptive components that usually cause nondi�erentiabilities or discontinuities of thenumerical result of an integration. The latter result, for example, from stepsize and or-der selection, pivoting in linear system solutions, Newton-type iterations due to projection,implicit schemes, and switching point location. Hence the results of END are generallymeaningless, or at least highly inaccurate.As an alternative one may use what we have called \internal numerical di�erentiation"(IND). The idea is to compute the derivative of the adaptively chosen discretization schemefor an initial value problem while avoiding di�erentiation of the adaptive code components.The adaptive procedure and the discretization must be chosen such that the discretizationscheme approximates not only the solution, but also its required derivatives with a desiredaccuracy. It should also be chosen such that the derivative calculation is as e�cient aspossible.To implement IND in an initial value problem solver with a certain degree of sophisti-cation usually means, however, that is has to be thoroughly rethought and rewritten. Stepand order selection are not di�erentiated; iterative procedures are reformulated and reinter-preted { in the sense of backward analysis { to allow for application of the implicit functiontheorem. Since intermediate coe�cients, matrices, decompositions, and so on may be usedfor the computation of both the solution and its derivatives, high computational savingscompared with END may be gained. Also, since the exact derivative of an approximateproblem solution is computed, IND is stable in the sense of backward analysis and yieldsuseful derivatives even for coarse approximation accuracies.Details of IND implementations and numerical results will be discussed for various in-tegrators for ODE and DAE. 4



URLs of interest:http://www.iwr.uni-heidelberg.de/ agbockhttp://www.iwr.uni-heidelberg.de/iwr/im-net(Network on Industrial Mathematics (monthly digest))
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Toward Second-GenerationAutomatic Di�erentiationStephen BrownS.Brown@herts.ac.ukNumerical Optimisation Centre, University of HertfordshireCollege Lane, Hat�eld, Hertfordshire, United KingdomThe majority of AD tools in use today evaluate derivatives using either the forward orreverse mode. The selection of evaluation strategy is usually based on the number of inde-pendent and dependent variables and, to a lesser degree, the structure of the mathematicalproblem. However, it appears that a trend is emerging whereby AD is applied to problemsof increasing complexity (in terms of the number of oating-point operations used to eval-uate the dependent variables). In this context, AD applied naively takes too much time (inthe case of the forward mode) and too much space (in the case of the reverse mode). It alsoappears that there is a general agreement among the AD development community that ifthe challenges of large problem evaluation is to be met, the next generation of tools shouldprovide at least the following:� Mixed-mode evaluation selected at the program construct level� Control ow and data analysis� Specialized evaluation strategies applied to recognized program con�gurations� Dynamic mode and evaluation strategy selection� E�cient use of memory through careful use of temporary variable management, in-terface checkpointing, and invertible code� Intuitive user interfacesIt is our view that the information required to achieve these goals is best obtained notby using AD library calls, but by analyzing the intermediate data structures generated bythe compilation process.In this talk, we shall show that if the intermediate data structures are opened out, theremay be many exciting opportunities to develop the theoretical foundations of AD (at theprogram level), harness the complexities of AD, and begin to apply AD code optimizationsand transformations. 6



How to MakeDi�erentiate and Approximate CommuteBruce ChristiansonB.Christianson@herts.ac.ukNumerical Optimisation Centre, University of HertfordshireHat�eld, United KingdomDo we want the derivative of the function we actually calculated, or an approximationto the derivative of the function we are approximating, and when does it matter? We lookat some technical results involving iterative processes and suggest the following:Optimization applications must expose more of their structure to AD tools; in particular,the equations being solved should be explicitly coded, not just the code to solve them.Optimization codes must signal explicitly to the AD software what use they intend tomake of derivative information, and the accuracy to which they require it.AD software must be capable of exploiting this additional information, and should makeavailable various by-products of the di�erentiation process.As an example, we consider the function z� of u de�ned by z� = f(y)�);  (y�; u) = 0.Let y be an approximate solution to the implicit equation, with  (y; u) = w and reverseaccumulate �u = @z=@u.If, on the reverse pass, we �nd � such thatk� y(y; u)� �yk � kwk;then (i) z� = f(y)� �w to O(kwk2)and (ii) @z�@u = �� u(y; u) to O(kwk):In the linear case, where we solve Ay = b approximately for y, this amounts to �nding vsuch that kvA� �yk � kAy � bk. Thenz� = f(y)� v(Ay � b); �b = v; �A = �yv:Retaining an LU decomposition for A to �nd v can result in an order-of-magnitude speedupover naive reverse mode. 7



CD in Support ofRigorous Global OptimizationGeorge F. Corlissgeorgec@mscs.mu.eduJames Walterswalters@mscs.mu.eduDepartment of Mathematics, Marquette UniversityMilwaukee, Wisconsin, U.S.A.R. Baker Kearfottrbk@usl.eduDepartment of Mathematics, University of Southwestern LouisianaLafayette, Louisiana, U.S.A.We are developing for Sun Microsystems a rigorous global search software package usinginterval arithmetic. The algorithms solve nonlinear systems and (unconstrained, equalityor inequality constrained) global optimization problems. We compute narrow boxes inwhich the roots or optima are guaranteed to lie. As part of the e�ort, we are working onseveral industrial applications including problems from MacNeal-Schwindler (�nite elementanalysis), Banc One (portfolio management), Swiss Bank (currency trading), GE MedicalSystems (MRI instrument design - ODE PID), and Genome Therapeutics (gene search -neural networks).Of course, computational di�erentiation is a fundamental enabling technology. We needgradients of objective function and constraints, Hessian information for the objective, andhigher-derivative information for problems whose solutions form manifolds in the solutionspace. What is unusual about our CD needs is that we must be able to evaluate thederivative objects in both oating-point and interval arithmetics.Objective functions and constraints are coded in Fortran 90 by using overloaded op-erators to record the code list. The semantics of IF statements are even less understoodfor intervals than for CD, so data-dependent branching is supported only by our own CHIfunction. We support user coding of large-scale nodes in the computational graph (e.g., dotproduct). The code list may be di�erentiated symbolically and passed to a code optimiza-tion step.From there, we use both interpreted code lists and code transformation techniques.The optimization algorithm may call about 15 di�erent functions, each of which interpretsthe code list in a di�erent way. Interpreters use either forward or reverse modes; provide�rst-, second-, or higher-derivative information; and work in either oating-point or intervalarithmetic.Alternatively, we use code templates to generate from the code list either Fortran 90or g77 + intervals code to replace the 15 di�erent interpreters. That is, instead of gener-8



ating Fortran code for gradients, we generate seven di�erent Fortran codes for objective,constraints, gradients, Hessians, slopes, and so forth, all in both oating-point and inter-val arithmetics. Then, the optimization algorithm calls the generated code instead of theinterpreters.In our initial experiments, the global optimization algorithm execution times are roughlyin the following ratio:� Interpreted code list: 1� Generated F90 code 0.9 - 1.1� Generated g77 code 0.5 - 0.9For more details, seewww.mscs.mu.edu/~globsol/,especially www.mscs.mu.edu/~globsol/Marquette/autodiff.html.
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A Flow Control Problem UsingAutomatic Di�erentiation in C++Nicolas Di C�esar�eNicolas.Dicesare@ann.jussieu.frLaboratoire d'Analyse Num�erique, Universit�e Pierre et Marie CurieParis, FranceThis work deals with a simple implementation of automatic di�erentiation in direct modeusing operator overloading and expression templates. We apply this tool to an optimalcontrol problem: minimize the drag of a cylinder, in subsonic unsteady turbulent ow,by controlling the boundary conditions of the cylinder. The NSC2KE Fortran code of B.Mohammadi was converted to C++. Then, using the C++ template feature, we providean easy way to use the code in black box without any modi�cation. The code can be usedin \normal" or in \automatic di�erentiation" mode. Maximum exibility is achieved.
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Di�erentiation of Ordinary Di�erentialEquations and Numerical Integration AlgorithmsPeter Eberhardpe@mechb.uni-stuttgart.deUdo Piramup@mechb.uni-stuttgart.deInstitute B of Mechanics, University of StuttgartStuttgart, GermanyOften dynamical problems are described by sets of di�erential equations. For compli-cated nonlinear systems these equations cannot be solved explicitly, but there exist reliableand e�cient integration algorithms that help to obtain at least a numerical solution.For optimization problems where time-dependent criteria have to be optimized, thesituation becomes complicated. The problem formulation for complex systems, for example,in vehicle dynamics or robotics, often leads to a large set of nonlinear equations, and theoptimization procedures used have to be e�cient. Fast converging optimization algorithmsalways require the computation of sensitivity functions. Thus, not only the system behaviorand the criteria have to be evaluated, but also their sensitivities with respect to designvariables.Automatic di�erentiation tools allow to di�erentiate arbitrary algorithms given by com-puter programs, but several pitfalls exist. For such a tool an algorithm is basically de-termined by its inputs (e.g., the design variables) and its outputs (e.g., the integral typeperformance criteria). The duty of the tool is then \simply" to �nd the total derivative ofthe outputs with respect to the inputs. Obvious problems occur if the derivative of non-di�erentiable algorithms should be computed, but these ill-posed problems can usually beavoided by the user or can be recognized by the tool using exception handlers. A remainingquestion is, what happens if iterative or recursive algorithms such as numerical integrationalgorithms are di�erentiated?Several widely used integration schemes have been di�erentiated and analyzed. Fromthis, several sources of problems have been encountered. Nevertheless, solutions seem tobe possible. Mainly the di�erentiation of the stepsize- and approximation order-control hasto be studied and corrected carefully. The results of the generated code is veri�ed usingthe adjoint variable approach, an e�cient and approximation-free method to compute thesensitivities.In the talk an example is shown where sensitivities for an ICE high-speed train arecomputed in order to optimize parameters for improved damping of vibrations. Here theODE for the sensitivities is solved, and no di�erentiation of the integration algorithm isrequired. However, in applying this approach, a highly specialized algorithm has to beused. 11



Finally, we report on current work di�erentiating NEWSIM, our multibody systemsimulation program. This will allow us to include properties of deformable bodies into theoptimization. Later, this will even require the \di�erentiation" of a FEM preprocessor thatcomputes some necessary matrices de�ning, for example, mass and sti�ness properties.
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Oscillation in the Derivatives?Christ�ele FaureChristele.Faure@sophia.inria.frINRIA Sophia AntipolisSophia-Antipolis, FranceThe automatic di�erentiation tool Odyssee has been used to compute gradients of theindustrial thermal-hydraulic in bundles code called Thyc-3D. A �rst study has demonstratedthe feasibility on a mockup of this code called Thyc-1D (see [1, 2] for more details).Two di�culties have been encountered in di�erentiating Thyc-1D and Thyc-3D. First,the program has black-box subroutines, whose code is not available. Second, Thyc containslinear solvers implementing iterative algorithms with stopping tests, so that the numberof iterations is not known beforehand and depends on the value given to the independentvariables. The derivatives of the black-box subroutines have been hand coded, using (accu-rate) �nite di�erences to approximate the derivatives. For the linear solvers, one can supplythe associated subroutines to Odyssee or let it generate the code. Supplying the associatedroutine simpli�es the code generation and makes the resulting code very e�cient.On Thyc-1D, we have demonstrated that using derivatives of the linear solvers generatedby Odyssee was as accurate as using hand-coded ones. But is it always the case, or doautomatically generated derivatives of such solvers sometimes introduce oscillations on thederivatives?References[1] C. Duval, P. Erhard, C. Faure, and J. C. Gilbert. Application of the automatic di�er-entiation tool odyss�ee to a system of thermohydraulic equations. In J.-A. D�esid�eri, P.Le Tallec, E. O~nate, J. P�eriaux, and E. Stein, editors, Proc. of ECCOMAS'96, volumeNumerical Methods in Engineering'96, pages 795{802. John Wiley & Sons, September1996.[2] C. Faure and C. Duval. Automatic di�erentiation for sensitivity analysis: A test case.In K. Chan, S. Tarantola, and F. Campolongo, editors, Proceedings of Second InternationalSymposium on Sensitivity Analysis of Model Output (SAMO'98), volume EUR report 17758,pages 107{110. EN, Luxembourg, 1998.
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Introducing Computational Di�erentiation by BookAndreas Griewankgriewank@math.tu-dresden.deInst. of Scienti�c ComputingTechnical University DresdenMommsenstr. 13D-01062 Dresden, GermanyBruce ChristiansonB.Christianson@herts.ac.ukNumerical Optimisation Centre, University of HertfordshireHat�eld, United KingdomThe authors are currently involved in a valiant e�ort to write an introductory yetcomprehensive book entitled Evaluating Derivatives, Principles and Techniques of Com-putational Di�erentiation. Postscript versions of the current draft can be obtained in thedirectory ftp/pub/cdbook on ubtj02.math.tu-dresden.de. Comments and suggestions areneeded and appreciated, especially with regard to the basic framework and terminology.Issues of particular concern are the relation between mathematical variables and programvariables, models for the quanti�cation of computational complexity, and the discussion ofimplementation strategies for the forward and reverse mode.
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Adaptive SOR: Di�erentiation ofAlgorithms Can Be Bene�cialPaul Hovlandhovland@mcs.anl.govMathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL, U.S.A.Michael HeathDept. of Computer Science, University of Illinois at Urbana-ChampaignUrbana, IL, U.S.A.Many science and engineering codes include parameters that a�ect their behavior andrunning time. An example is the relaxation parameter ! in the successive overrelaxation(SOR) algorithm for solving systems of linear equations. If some �gure of merit, such asa residual, is di�erentiated with respect to such a parameter, the resulting informationcan be used to adjust the parameter to a more favorable value. We apply this idea toformulate a new adaptive SOR algorithm, using automatic di�erentiation (AD) to obtainthe necessary derivatives. Unlike previous adaptive SOR algorithms, which attempt toachieve good asymptotic behavior by approximating the largest eigenvalue of the Jacobiiteration matrix, our algorithm seeks maximum near-term improvement in the residual.Empirical results indicate that under the conditions that prevail when SOR is used as apreconditioner, this new adaptive SOR algorithm converges faster than standard SOR usingthe asymptotically optimal value for !. Other parameterized algorithms may bene�t fromsimilar use of AD.
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Di�erential Algebraic Methods on Taylor ModelsKyoko Makino and Martin Berzmakino@nscl.msu.edu and berz@pilot.msu.eduDepartment of Physics, NSCL/Cyclotron Laboratory, Michigan State UniversityEast Lansing, Michigan, U.S.A.The method of Taylor models is augmented to a di�erential algebraic framework bythe introduction of the operator del inverse for integration. Within this framework, severalproblems typically addressed by di�erential algebraic techniques can be treated, includingone- and higher-dimensional quadrature, the solution of ODEs and their ows, and the so-lution of PDEs. We begin with applications in veri�ed quadrature of up to four dimensions.Next, a framework for the veri�ed integration of ODEs is developed. Based on Schauder's�xed-point theorem and other functional analysis tools, it allows the rigorous bounding ofsolutions, including their dependence on initial conditions. Applications from the �eld ofbeam physics are given.
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Analysis of Shape Optimization andFlow Control Problems Using an AD ToolBijan MohammadiBijan.Mohammadi@inria.frUniversity of Montpellier and INRIAMontpellier, FranceWe aim to show how to use a gradient-based shape optimization tool, �rst designed forsteady con�guration, as a tool for aerodynamical ow control. The gradients are provided,in discrete level, using automatic di�erentiation by program. We use AD tools to analyzethe di�erent contribution to the gradient. This approach showed that in the evaluationof the gradients of cost functions and constraints lying on the shape, the sensitivity withrespect to the state can be neglected.Cost functions being often based on boundary integrals, the previous situation is cur-rently the case in applications. A cheap evaluation of the gradient avoiding the ow solverdi�erentiation is possible.In the past, we have used this approach and the approximate gradient for shape op-timization on various 2 and 3D incompressible and compressible con�gurations of inviscidand viscous turbulent ows [1,2,3].In control problems, the aim is to minimize some unsteady cost function using the sameapproximation of the gradient we use for steady ows. This gives a control law to beapplied by available control devices: piezoelectric or injection/suction devices. However,for a control law to be e�cient and realizable by such control mechanism, the amount ofthe required deformation or injection/suction velocity has to be as small as possible. Forthis reason, we use transpiration boundary conditions rather than an ALE formulation tosimulate the equivalent shape deformation.Using the approximate gradient we introduced above, we obtain control laws to beapplied through existing control devices (e.g., injection or piezoelectric). This is therefore acheap alternative to feedback laws obtained through control theory. One advantage is thatthis approach does not require any evaluation of the ow to build the transfer function.Indeed, the control law is built in real time.This approach has been used to control various 2 and 3D inviscid and viscous turbulentows. Both �xed and moving geometries have been considered. The moving geometry caseis based on either forced movements of the structure or on aeroelastic simulations. Theelastic behavior of the structure has been taken into account by using a spring-based elasticmodel coupling structure movements and aerodynamical forces.References[1] B. Mohammadi (1997), Practical Applications to Fluid Flows of Automatic Di�erentia-tion for Design Problems, VKI lecture series, 1997{05.17



[2] B. Mohammadi (1997),A New Optimal Shape Design Procedure for Inviscid and ViscousTurbulent Flows, Int. J. for Numerical Meth. in Fluid, vol. 25, 183{203.[3] G. Medic, B. Mohammadi, and S. Moreau (1998), Optimal Airfoil and Blade Design inCompressible and Incompressible Flows, AIAA-98-124.

18



Fast 4-D VariationalData Assimilation Usingan Inverse Linear ModelSeon Ki Parkspark@rossby.ou.eduCooperative Institute for Mesoscale Meteorological Studies, University of OklahomaEugenia Kalnayekalnay@rossby.ou.eduSchool of Meteorology, University of OklahomaNorman, Oklahoma, U.S.A.The idea of accelerating 4DVAR (four-dimensional variational data assimilation) usingthe inverse TLM (tangent linear model) has been introduced by Wang et al. (1997), andmade more general and far simpler by Kalnay and Pu (1998). The inverse TLM meansrunning the TLM backward in time (i.e., with negative time steps). In the backwardintegration, the quasi-inverse TLM includes the dissipative terms with the sign reversed tosuppress numerical instability, while the exact-inverse TLM includes them with the signunreversed.We have developed an algorithm for the fast 4DVAR and tested with a simple advection-di�usion system (Burgers' equation) using both quasi- and exact-inverse TLMs. It is demon-strated that our method performs the 4DVAR in much fewer iterations and CPU timecompared with the conventional method, which requires running an adjoint model and aminimization algorithm (LBFGS in this case). We will show that our method is equivalentto using the Newton algorithm without the need to compute the Hessian. We will also dis-cuss the possibility of parallel computation of this fast 4DVAR scheme to generate ensembleset of optimal initial conditions.ReferencesKalnay, E., and Z.-X. Pu, 1998: Application of the quasi-inverse method to accelerate4-D VAR. Preprints, 12th Conf. on Numerical Weather Prediction, 11{16 January 1998,Phoenix, AZ, Amer. Meteor. Soc., 41{42.Wang, Z., K. K. Droegemeier, L. White, and I. M. Navon, 1997: Application of a newadjoint Newton algorithm to the 3D ARPS storm-scale model using simulated data. Mon.Wea. Rev., 125, 2460{2478.
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Automatic Di�erentiation in theNumerical Solution and Sensitivity Analysis ofDi�erential Algebraic EquationsLinda Petzoldpetzold@chameleon.ucsb.eduComputational Science and Engineering Group, University of CaliforniaSanta Barbara, California, U.S.A.Douglas Clanceyclancey@cs.umn.eduDepartment of Computer Science, University of MinnesotaMinneapolis, Minnesota, U.S.A.In this talk we explore the use of automatic di�erentiation (AD) in the numerical so-lution and sensitivity analysis of di�erential-algebraic equations (DAEs). A new interfaceis introduced that enables the seamless use of DASPKSO with code generated by the ADsoftware package Adifor2.0. Results in accuracy and e�ciency are reported for severalapplication problems.
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Optimal Shape Design andAutomatic Di�erentiationOlivier PironneauOlivier.Pironneau@inria.frLaboratoire d'Analyse Numerique, University of ParisParis, FranceAutomatic di�erentiation (AD) is ideal for optimal shape design problems because theanalytical derivation of derivatives for these problems is very di�cult. Indeed, the variablesare the shape of the domain of partial di�erential equations, i.e. the node position for theirparametric representation.In this talk a survey of applications with partial of full results will be given for� Drag reduction� Brake water optimization� Optimal shapes in electromagnetism� Wing designThen one example will be given for the derivation of derivatives. A few implementationsusing semi-automatic computation of derivatives will then be shown with and without meshadaption. Finally, we will discuss the problem of the choice of the norm and scalar productin the optimization algorithm.
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AD Aspects of SolvingDAEs by Taylor SeriesJohn D. PryceJ.D.Pryce@rmcs.cranfield.ac.ukComputer Information Systems Engineering Dept, Royal Military College of ScienceShrivenham, Swindon, United KingdomWe present a method of solving smooth DAEs by expanding the solution as a Taylorseries. The method involves a pre-analysis stage where one solves an assignment problem(AP) as de�ned, for example, in Bertsekas's Linear Network Analysis (1991). The resultingstructural data is essentially equivalent to that produced by the algorithm of Pantelides(1988) but easier to reason about. It depends only on the sparsity structure of the system,and in particular it computes the structural index.If the method succeeds in computing a series, the point of expansion is necessarilyconsistent for the DAE, the series locally converges to the unique solution through thatpoint, and the computed index equals the uniform index. The way in which the methoddetermines consistent initial values and thereafter keeps the underlying constraints satis�edis similar to the index reduction method described in Mattsson and S�oderlind (1993).Despite this relation with existing techniques the method has something new to o�er:1. The resulting series generator can be used to convert software for validated ODEsolution into software for validated DAE solution.2. We believe the method, with its built-in symbolic understanding of the DAE system,has the potential to compete with traditional numerical DAE methods on appropriateproblems.The talk addresses the appropriate (AD and other) technology needed to realize thispotential.
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Shape Optimization of a Multi-Element Airfoil Using ADThomas Slawigslawig@math.tu-berlin.deDepartment of Mathematics, Technische Universit�at Berlin MA 6-2Strasse des 17, Juni 136D-10623 Berlin, GermanyWe study the dependency of drag and lift of a four-element airfoil con�guration withrespect to the position and/or angle of some of the elements. A 2-D compressible Navier-Stokes or Euler computation using explicit or implicit method is used. The Jacobian inthe nonlinear solver is computed with automatic di�erentiation. Moreover, we perform anoptimization of drag and lift with respect to the design parameters position and angle. Weuse a BFGS quasi-Newton method. The gradient information is again supplied by automaticdi�erentiation.
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Structured Automatic Di�erentiation forNumerical Integration MethodsArun Vermaverma@cs.cornell.eduhttp://www.cs.cornell.edu/home/verma/AD/research.htmlComputer Science Department, Cornell UniversityIthaca, New York, U.S.A.We present a positive result about using AD for numerical integration schemes.A lot of computations dealing with continuous physical models are actually carriedout numerically on a grid by means of a �nite di�erence or �nite element method. Thesenumerical schemes compute only a computational approximation to the continuous function.We attempt to answer a fundamental question in this regard, namely, how do the derivativesof such approximate computer models (as they are computed with AD) relate to the truederivatives of the mathematical function?We show that the \direct" derivatives (with AD) of the computer models share niceproperties of the model the compute function itself (e.g., stability and convergence), whilethe \adjoint" derivatives in general do not have these properties.We also present a novel scheme to \exploit structure" in the continuous problems de-�ned by di�erential equations. The scheme deals with the actual numerical scheme onlyabstractly, thus generalizing the notion of structure by Coleman and Verma to handle ab-stract \processes". We present a few examples.
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Adjoining Discretizations of Burgers' EquationAndrea Walther and Andreas Griewank[awalther,griewank]@math.tu-dresden.deInstitute of Scienti�c ComputingTechnical University DresdenGermanyIn control theory and for the identi�cation of parameters, adjoint or costate equationsplay an important role. They can be derived from the direct equation in a conditions settingand subsequently discretized. Alternatively, one may form the adjoint of the discretizeddirect equation in the sense of reverse automatic di�erentiation.We study the relationship between both approaches for various discretizations of inviscidand viscous Burgers' equation.In the inviscid case, three conservative schemes based on the uxes due to Lax-Friedrichs,Godunov, and Roe are considered. Whereas the Lax-Friedrichs scheme turns out to be self-adjoint, the other two leave adjoints that are stable and consistent with the same order butdo not represent conventional discretizations of the costate equations. These theoreticalresults are con�gured by our numerical experiments. In the singularly perturbed case, wealso observe convergence for two discretization schemes, even though it does not appear to betheoretically guaranteed. Since the time integrations were performed up to 5000 steps, theforward trajectory cannot be saved for the subsequent reverse integration. Instead, we useour checkpointing software treeverse, which dramatically reduces the memory requirement,at a marginal increase in the operation count.Web site: http://www.math.tu-dresden.de/wir/institut.htmlSoftware:ADOL-C: http://www.math.tu-dresden.de/wir/institut.htmltreeverse: ftp://ftp.math.tu-dresden.de/pub/TREEVERSE
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