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COPS: Large-Scale Nonlinearly Constrained Optimization ProblemsAlexander S. Bondarenko, David M. Bortz, and Jorge J. Mor�eAbstractWe have started the development of COPS, a collection of large-scale nonlinearlyConstrained Optimization ProblemS. The primary purpose of this collection is to pro-vide di�cult test cases for optimization software. Problems in the current version ofthe collection come from uid dynamics, population dynamics, optimal design, and op-timal control. For each problem we provide a short description of the problem, notes onthe formulation of the problem, and results of computational experiments with generaloptimization solvers. We currently have results for DONLP2, LANCELOT, MINOS,SNOPT, and LOQO.1 IntroductionCOPS is a collection of large-scale nonlinearly Constrained Optimization ProblemS. Wedrew these test problems from a variety of sources, including some of the existing col-lections, such as the AMPL problems of Vanderbei [?]; the NETLIB collection of AMPLproblems maintained by Gay [8]; the optimal control problems of Betts, Eldersveld, andHu�man [4]; and the MINPACK-2 collection [3]. We chose problems that arise in appli-cations (for example, uid dynamics, optimal shape design, population dynamics) or thathave interesting features.The aim of COPS is to challenge and test nonlinear optimization software. Users shouldnote that this report describes work in progress. We expect that COPS will evolve andchange as new problems appear and other researchers experiment with this collection. Wewelcome comments and suggestions for future directions.We provide AMPL and C implementations. The problems in COPS are formulated asgeneral constrained optimization problems de�ned by a merit function f : IRn 7! IR andnonlinear constraints c : IRn 7! IRm,min ff(x) : xl � x � xu; cl � c(x) � cug ;where xl and xu are bounds on the variables, and cl and cu are bounds on the constraints.The description of the problem as an optimization problem includes notes on the for-mulation and the structural information in Table 1.1. This information allows users todetermine, in particular, the sparsity of the problem. We also include general comments onspeci�c features and di�culties of the problems.An important component of this report is the inclusion of computational experimentswith several general solvers (DONLP2, LANCELOT, MINOS, SNOPT, and LOQO), andcomments on their behavior. We are well aware that these results will soon become obsoleteas new versions of these packages become available. However, we feel that these results doprovide a reasonable snapshot of the state of optimization software as of September 1998.Finally, we provide plots of the solution for each problem. These are important so thatusers can verify that they obtained the correct solution. We feel that in many cases a plotis more useful and interesting than a measure of optimality.1



Table 1.1: Description of test problemsVariablesConstraintsBoundsLinear equality constraintsLinear inequality constraintsNonlinear equality constraintsNonlinear inequality constraintsNonzeros in r2f(x)Nonzeros in c0(x)Section 14 describes our C implementations, including the data structures used for eachproblem. Implementations in AMPL and in C, along with sample drivers that use the Cimplementation with SNOPT, are available for downloading from our Web site,http://www.mcs.anl.gov/~more/cops.
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2 Largest Small Polygon (Gay [8])Find the polygon of maximal area, among polygons with nv sides and diameter d � 1.FormulationThe merit function isf(r; �) = �12 nv�1Xi=1 ri+1ri sin(�i+1 � �i); rnv = 0; �nv = �;and the constraints arer2i + r2j � 2rirj cos(�i � �j) � 1; 1 � i � nv � 2; i+ 1 � j � nv � 1;�i � �i+1; 1 � i � nv � 2;�i 2 [0; �]; ri 2 [0; 1]; 1 � i � nv � 1:As Graham [9] showed, optimal solution is not usually a regular hexagon. Another in-teresting feature of this problem is the presence of O(n2v) nonlinear nonconvex inequalityconstraints and nonlinear nonconvex objective. We also note that as nv ! 1, we expectthe maximal area to converge to the area of a unit-diameter circle, �=4 � 0:7854. Thisproblem has many local minima. For example, for nv = 4, a square with sides of length1=p2 and an equilateral triangle with another vertex added at distance 1 away from a �xedvertex are both global solutions with optimal value f = 12 . Indeed, the number of localminima is at least O(nv !). Thus, general solvers are usually expected to �nd only localsolutions. Data for this problem appears in Table 2.1.Table 2.1: Largest small-polygon problem dataVariables n = 2(nv � 1)Constraints 18n2 + 14n � 1Bounds nLinear equality constraints 0Linear inequality constraints 12n� 1Nonlinear equality constraints 0Nonlinear inequality constraints 18n2 � 14nNonzeros in r2f(x) 112 n� 8Nonzeros in c0(x) 12n2 � 2PerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Resultsare summarized in Table 2.2. A polygon with almost equal sides was chosen as the standardstarting guess for this problem. Global solutions for several nv are shown in Figure 2.1.LANCELOT and SNOPT were successful at �nding solutions for all nv tried. Wealso believe that these solutions are global solutions. SNOPT was more e�cient thanLANCELOT. MINOS was able to �nd only local solutions for nv � 15.3



Table 2.2: Performance of AMPL solversSolver nv = 6 nv = 10 nv = 20 nv = 50 nv = 100DONLP2 z z 1.5 s No � No �f 0.6749797629 0.7491366103 0.7768527183kc(x)k 1.23396E-06 2.61365E-07 5.8761E-07iterations 12 24 38LANCELOT z z 4 s 140 s 2899 sf 0.6749818114 0.7491373093 0.7768590578 0.7840156583 0.7850313647kc(x)k 7.3288E-06 3.6446E-06 6.5317E-06 2.1506E-06 3.8119E-06iterations 16 18 50 116 228MINOS z z 2 s y 45 s y 600 s yf 0.6749814429 0.7491373458 0.7687882291 0.734825561 0.7624733425kc(x)k 6.4E-13 2.1E-13 2.5E-13 8.5E-13 5.2E-11iterations 30 49 497 1994 6948SNOPT z z 0.2 s 8 s 861 sf 0.6749814429 0.7491373458 0.7768587560 0.7840161480 0.7850565708kc(x)k 2.0E-12 1.8E-11 8.3E-12 1.7E-09 1.4E-09iterations 23 35 73 269 68152LOQO z No 53 s y No Nof 0.6749814367 failure 0.7197409256 failure failuredual f 0.6749814651 0.7197409412iterations 47 10000 537 10000 10000y Local solution z Global solution found in less than 0.1 s � Problem is too largeLOQO was not able to solve the problem for most nv � 10 that we tried with defaultparameters. However, we found that LOQO's performance improved slightly when settingthe mufactor parameter small enough (� 10�4), which is a scale factor for the barrierparameter [14, 15].
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Figure 2.1: Unit-diameter polygons of maximal area4



3 Distribution of Electrons on a Sphere (Vanderbei [13])Given np electrons, �nd the equilibrium state distribution (of minimal Coulomb potential)of the electrons positioned on a conducting sphere.FormulationThe merit function isf(x; y; z) = np�1Xi=1 npXj=i+1 �(xi � xj)2 + (yi � yj)2 + (zi � zj)2��12 ;and the constraints are x2i + y2i + z2i = 1; i = 1; : : : ; npData for this problem appears in Table 3.1.This problem, known as the Thomson problem, involves �nding the lowest energy con�g-uration of np point charges on a conducting sphere. The problem originated with Thomson'splum pudding model of the atomic nucleus. The Thomson problem is representative of animportant class of problems in physics and chemistry of determining a structure with re-spect to atomic positions. This problem has many local minima at which the objectivevalue is relatively close to the objective value at the global minimum. Also, the numberof local minima grows exponentially [7, 10] with np. Thus, it is computationally di�cultto determine the global minimum, and the solvers are usually expected to �nd only a localminimum. Table 3.1: Electrons on a sphere problem dataVariables n = 3npConstraints 13nBounds 0Linear equality constraints 0Linear inequality constraints 0Nonlinear equality constraints 13nNonlinear inequality constraints 0Nonzeros in r2f(x) n2Nonzeros in c0(x) nPerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Resultsare summarized in Table 3.2. A quasi-uniform distribution of the point charges on a unitsphere was chosen as the standard starting guess for this problem.The results in [10] show that most of the found solutions for np � 110 are not global(though SNOPT was able to �nd global minimizers for np = 111; 115; 134; 138; 143; 149; 153).The global solution for np = 153 is shown in Figure 3.1. We note that merit function evalua-tions are expensive and that the Hessian is dense, which makes this problem computationally5



Table 3.2: Performance of AMPL solversSolver np = 50 np = 75 np = 100 np = 150 np = 200DONLP2 14 s 88 s 497 s 1453 s 4911 sf 1055.182315 2454.369689 4448.350634 10236.43514 18438.92538kc(x)k 1.5423E-11 3.1587E-12 3.23075E-14 1.06827E-11 1.3968E-08iterations 171 314 781 743 1141LANCELOT 8 s 42 s 52 s 322 s 649 sf 1055.1823011 2454.369574 4448.350119 10236.26938 18438.99582kc(x)k 2.5892E-08 3.8406E-05 2.3241E-07 8.1215E-07 1.9401E-06iterations 56 77 71 152 156MINOS 20 s No No No Nof 1055.1823147 failure failure failure failurekc(x)k 1.2E-11iterations 804SNOPT 6 s 36 s 60 s 167 s 841 sf 1055.1823147 2454.369689 4448.350634 10236.25782 18439.32467kc(x)k 9.0E-12 2.6E-11 1.4E-11 6.7E-11 2.0E-11iterations 357 748 722 817 1528LOQO 125 s No No No Nof 1056.604860 failure failure failure failuredual f 1056.604851iterations 335 10000 10000 10000 10000intensive and hard to solve for np � 100. DONLP2, LANCELOT, and SNOPT were ableto �nd a local solution for all values of np tried. MINOS could not solve the problem fornp � 75, exiting with the message Unbounded problem or bad initial guess. LOQO was notable to �nd any solution for np � 75, exceeding the iteration limit (stagnation or very slowprogress toward a solution in all cases).
Figure 3.1: Optimal distribution of electrons on a conducting sphere, np = 1536



4 Sawpath Tracking (Vanderbei [13])Given a list of points f(xi; yi)gNi=0 describing the centerline of a wood piece, �nd the poly-nomial p of degree at most d that minimizes the di�erence between fyig and fp(xi)g whenp satis�es the following constraints:� the polynomial p must go through the �rst point (x0; y0) of the list;� the initial slope of the polynomial p must be M ;� the radius of curvature at every point must not exceed the radius R.FormulationThe merit function is f(a) = NXi=00@ dXj=0 ajxji � yi1A2 ;and the constraints are dXj=0 ajxj0 = y0dXj=1 jajxj�10 = M0@R dXj=2 j(j � 1)ajxj�2i 1A2 � 0B@1 +0@ dXj=1 jajxj�1i 1A21CA3 ; i = 0; 1; : : : ; NWe generalized this problem, as given in Vanderbei [13], from a polynomial of fourth degreeto a polynomial of arbitrary degree d. In this formulation we followed [13] by modifyingthe curvature constraint to a constraint on the square of the radius. Data for this problemappears in Table 4.1. Table 4.1: Sawpath tracking problem dataVariables n = d+ 1Constraints N + 3Bounds 0Linear equality constraints 2Linear inequality constraints 0Nonlinear equality constraints 0Nonlinear inequality constraints N + 1Nonzeros in r2f(x) (d+ 1)2Nonzeros in c0(x) (N + 3)d + 1This problem has relatively few variables, but the presence of many nonlinear nonconvexinequality constraints makes it di�cult to solve. If there are d + 1 distinct data points xi,then f is strictly convex and coercive. Thus, this problem has a unique solution.7



PerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Resultsare summarized in Table 4.2 for the dataset from Vanderbei [13] with N = 195, R = 2500.Solutions for several values of d are shown in Figure 4.1.Table 4.2: Performance of AMPL solvers, N = 195Solver d = 2 d = 3 d = 4 d = 5 d = 6DONLP2 No No No No Nof 1152.737587 665.5803272 1091.265064 1023.788643 1194.409377kc(x)k 0.0E+00 1.81832E-06 2.77686E-15 2.13134E-09 0.0E+00iterations 9 10 6 7 4LANCELOT No No No No Nof failure failure failure failure failurekc(x)kiterations 517 352 58 9 9MINOS y y 1.4 s No Nof 1152.706916 401.4899556 181.5729928 z zkc(x)k 0.0E+00 1.6E-15 2.2E-16iterations 6 18 87SNOPT No y 11.3 s No Nof failure 401.4899555 181.5729928 z zkc(x)k 3.0E-14 2.2E-16iterations 3717 1408 20512LOQO y y 0.3 s 0.5 s 0.3 sf 1152.706890 401.4899495 181.5729922 151.2582871 64.72368379dual f 1152.706916 401.4899547 181.5729929 151.2582882 64.72369331iterations 31 34 28 32 22y Solution found in less than 0.1s z Incorrect gradient or JacobianA major computational di�culty in this problem is the bad scaling when increasing d.The original data from Vanderbei [13] has data points xi ranging from 0 to 500, thus creatingfairly bad scaling even for d � 5. DONLP2 stopped prematurely with the message relaxedKKT conditions satis�ed, or unknown termination reason for all d tried. LANCELOTiterates seemed to be diverging away from the solution even when the initial point wasnear the solution. MINOS and SNOPT gave warnings that the gradient of the objectiveand the Jacobian of the constraints were not correct and that the problem was not smooth(possible e�ects of the bad scaling). Yet, MINOS and SNOPT converged to a solution ford = 2; 3; 4, using gradients provided by AMPL. LOQO was able to �nd solutions for all dtried (d = 2; : : : ; 9) in under 1 second. We also noticed that the problem becomes harderto solve as we increase the minimum radius of curvature R.
8
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5 Hanging Chain (H. Mittelmann, private communication)Find the chain (of uniform density) of length L suspended between two points with minimalpotential energy.FormulationThis problem requires determining a function x(t), the shape of the chain that minimizesthe potential energy Z 10 xp1 + x02 dtsubject to the constraint on the length of the chain,Z 10 p1 + x02 dt = L;and the end conditions x(0) = a and x(1) = b. Discretization of this problem leads to anoptimization problem with merit functionf(x) = h n+1Xi=1 xi + xi�12 s1 + �xi � xi�1h �2and constraint h n+1Xi=1 s1 + �xi � xi�1h �2 = L;where h = 1=(n+ 1), x0 = a and xn+1 = b. Data for this problem appears in Table ??.Table 5.1: Hanging chain problem dataVariables nConstraints 1Bounds 0Linear equality constraints 0Linear inequality constraints 0Nonlinear equality constraints 1Nonlinear inequality constraints 0Nonzeros in r2f(x) 3n � 2Nonzeros in c0(x) nThis problem has a nonconvex nonlinear merit function and one nonconvex nonlinearconstraint. The solution to this problem seems to be unique.PerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Resultsare summarized in Table 5.2 with a = 1, b = 3, L = 4. A piecewise linear chain of length Lwas chosen as the standard starting guess. The solution for n = 200 is shown in Figure 5.1.10



Table 5.2: Performance of AMPL solversSolver n = 50 n = 99 n = 100 n = 200 n = 400DONLP2 1 s 2 s 2 s 12 s 72 sf 5.068577962 5.068505564 5.068505062 5.068486411 5.068481694kc(x)k 2.84217E-14 4.54747E-13 1.13687E-13 0.0E+00 6.82121E-13iterations 105 182 188 413 830LANCELOT 8.9 s 33 s 46 s 190 s 1311 sf 5.068577968 5.068505567 5.068505065 5.068486411 5.068481697kc(x)k 1.5230E-08 4.9220E-08 5.3919E-08 2.9043E-07 3.6684E-07iterations 1862 3472 4902 9054 25252MINOS 0.5 s 2.3 s 2.4 s 11 s 55 sf 5.068577962 5.068505564 5.068505062 5.068486411 5.068481694kc(x)k 6.2E-10 9.4E-11 3.0E-11 1.6E-10 3.9E-10iterations 293 557 572 1077 1948SNOPT 0.9 s 10 s 77 s 150 s 2175 sf 5.068577962 5.068505564 5.068505063 5.068486413 5.068481697kc(x)k 6.3E-10 1.1E-09 1.1E-09 1.9E-09 4.2E-10iterations 248 702 4205 1949 4667LOQO No No No No Nof failure failure failure failure failurekc(x)kiterations 553 920 1631 595 534In general, DONLP2 and MINOS computed the solution much faster than LANCELOTand SNOPT. SNOPT was designed for the problems with few degrees of freedom in theconstraints, and in this problem the degrees of freedom grow linearly with the problemsize n; hence, this behavior of SNOPT is expected. We also noticed that SNOPT solvedproblems with n odd much faster than problems with n even. LOQO was unable to solvethis problem even for n � 50. LOQO seems to converge to a solution and then suddenlydiverges to a point far from the solution, declaring the problem infeasible.
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6 Shape Optimization of a Cam (Anitescu and Serban [1])Maximize the area of the valve opening for one rotation of a cam. The cam must be convexand the curvature of the cam must not exceed the curvature limit parameter �. The radiusof the cam must be between Rmin and Rmax.FormulationWe assume that the shape of the cam is circular over an angle of 65� of its circumference,with radius Rmin. The design variables ri, i = 1; : : : ; n , represent the radius of the cam atequally spaced angles distributed over an angle of 25�. Rv is a design parameter related tothe geometry of the valve.Anitescu and Serban [1] show that the requirement that the cam be convex is equivalentto �ri�1ri � riri+1 + 2ri�1ri+1 cos(��) � 0; i = 0; : : : ; n+ 1;where r�1 = r0 = Rmin, rn+1 = Rmax, rn+2 = rn, and �� = 2�=5(n+ 1). The curvaturerequirement is expressed by �ri+1 � ri�� �2 � �2; i = 0; : : : ; nsquaring the actual curvature constraints to make them smooth. The merit function isf(r) = ��R2v nXi=1 ri;and the constraints are�R2min �Rminr1 + 2Rminr1 cos(��) � 0�Rminr1 � r1r2 + 2Rminr2 cos(��) � 0�ri�1ri � riri+1 + 2ri�1ri+1 cos(��) � 0 i = 2; : : : ; n� 1�rn�1rn � rnRmax+ 2rn�1Rmax cos(��) � 0�2Rmaxrn + 2r2n cos(��) � 0(r1 �Rmin)2 � (���)2 � 0(ri+1 � ri)2 � (���)2 � 0 i = 1; : : : ; n� 1(Rmax� rn)2 � (���)2 � 0Rmin � ri � Rmax i = 1; : : : ; n:Data for this problem appears in Table 6.1.Since the optimal cam shape is symmetric, we consider only half of the design angle.The problem was originally [1] formulated for the full angle of 4�=5. This is a simple staticmodel for the optimal shape design of a cam.We used discretization with uniform angle partitions, which can be made more e�cientby introducing angle partitions as variables as well. Introducing dynamic components intothe model will complicate the problem and make it a lot harder to solve.12



Table 6.1: Optimal design of a cam problem dataVariables nConstraints 2n + 3Bounds nLinear equality constraints 0Linear inequality constraints 1Nonlinear equality constraints 0Nonlinear inequality constraints 2n + 2Nonzeros in r2f(x) 0Nonzeros in c0(x) 5nPerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Resultsare summarized in Table 6.2. Default values for the model constants were used: Rmin = 1:0,Rmax = 2:0, Rv = 1:0, � = 1:5. We used a standard starting guess of ri = Rmin, i = 1; : : : ; n,as suggested in [1]. Solutions for n = 200 with several values of � are shown in Figure 6.1.Table 6.2: Performance of AMPL solversSolver n = 10 n = 50 n = 100 n = 200 n = 400DONLP2 2 s 14 s 438 s No y No yf -43.8599479 -214.760855 -428.4147433kc(x)k 1.04878E-08 2.26649E-07 3.70297E-07iterations 12 156 576LANCELOT 0.3 s 10 s z z zf -43.85989689 -215.1835506 -430.1620796 -863.0490577 -1810.253285kc(x)k 1.4863E-07 8.4264E-06 4.4204E-06 2.3595E-06 4.7278E-06iterations 66 338 554 820 1121MINOS 0.1 s No � No � No � No �f -43.85994780kc(x)k 4.4E-16 6.6E-01 1.1E-01 7.2E-02 7.9E-03iterations 43 796 788 1583 1870SNOPT 0.1 s 0.5 s 1.2 s 6.1 s Nof -43.85994884 -214.758660 -428.420412 -855.700093 -2436.977949kc(x)k 5.7E-08 1.3E-14 2.4E-05 5.3E-09 1.5E-02iterations 43 728 1410 3735 12676LOQO 0.1 s 0.8 s 4.8 s 20 s 84 sf -43.85994830 -214.7608486 -428.4147089 -855.7000451 -1710.275390dual f -43.85994844 -214.7608470 -428.4147221 -855.7000511 -1710.275397iterations 40 168 386 534 704y Problem is too large z Step is too small � Infeasible problemLANCELOT computed a shape very close to the optimal shape for n � 100, but stoppedpremataurely with the message Step is too small. MINOS was not able to solve this problemfor n � 20, exiting with the message Infeasible problem (or bad starting guess). SNOPToutperformed the other solvers for smaller n. Surprisingly, SNOPT did not solve the problemfor n = 400 (stopped at an infeasible point with the exit condition The current point cannot13



be improved). We note that the number of active constraints increased with � increasingup to a threshold of �1 � 3:0, after which increasing � did not change the optimal solution.The problem became harder to solve as we decreased � down to a threshold of �0 � 1:25,after which the problem was declared infeasible by all solvers.
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7 Isometrization of �-pinene (MINPACK-2 test problems [3])Determine the reaction coe�cients in the thermal isometrization of �-pinene. The linearkinetic model proposed for this problem isy01 = �(�1 + �2)y1y02 = �1y1y03 = �2y1 � (�3 + �4)y3 + �5y5 (7.1)y04 = �3y3y05 = �4y3 � �5y5;where �1; : : : ; �5 are the unknown coe�cients. Initial conditions for (7.1) are known. Vectorsof concentration measurements zj are given for y at eight time points �1; : : : ; �8, where y isthe solution to (7.1). The �-pinene problem is to minimize8Xj=1 ky(�j ; �)� zjk2; (7.2)where � is the vector with components �1; : : : ; �5 of unknown reaction coe�cients. Thisformulation is based on the work of Box et al.citeGEPB73.FormulationA k-stage collocation method approximates the solution of (7.1) by a vector-valued functionu : [0; tf ] 7! IR5, where each component of u is a polynomial of order k+1 in each subinterval[ti; ti+1] of a partition 0 = t1 < t2 < � � � < tnh < tnh+1 = tf ;where tf � �m, and �m is the largest time measuremet. Thus u is de�ned in terms of5nh(k + 1) parameters. These parameters are determined by requiring that u 2 C[0; tf ]and that u satisfy (7.1) at a set of k collocation points in each interval [ti; ti+1]. We choosethe collocation points �i as the roots of the kth degree Legendre polynomial to guaranteesuperconvergence at the mesh points ti.Our formulation of the �-pinene problem as an optimization problem follows [12, 3]. Weuse a uniform partitioning of the interval [0; tf ] and the standard [2, pages 247{249] basisrepresentation, us(t) = vis + kXj=1 (t� ti)jj! hj�1 wijs; t 2 [ti; ti+1];of the sth component of the piecewise polynomial approximation u. The constraints in theoptimization problem are the 5 initial conditions in (7.1), the continuity conditions, and thecollocation equations. The continuity equationsu(t�i+1) = u(t+i+1); 1 � i < nh;15



are a set of 5(nh�1) linear equations. The collocation equations are a set of 5knk nonlinearequations obtained by requiring that u satisfy (7.1) at the collocation points �ij = ti + h�jfor i = 1; : : : ; nh and j = 1; : : : ; k. Data for this problem appears in Table 7.1.Table 7.1: Isomerization of �-pinene dataVariables n = 25nh + 5Constraints 25nhBounds 5Linear equality constraints 5nhLinear inequality constraints 0Nonlinear equality constraints 20nhNonlinear inequality constraints 0Nonzeros in r2f(x) � 1600Nonzeros in c0(x) 262nh � 25This is a typical parameter estimation problem that arises in the modeling of physicalphenomena with a parameter-dependent system of di�erential equations. We note thatnh and k can be speci�ed, while other parameters are dependent on the problem. In ourformulation we use k = 4. Arbitrarily large-dimensional test problems can be generated byselecting larger values of nh. Note that this problem has only 5 degrees of freedom.PerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Weused a starting point with zeros for the parameters and a piecewise constant approximationto (7.1) based on the linear interpolation of the measurement data onto the mesh points ti.Results are summarized in Table 7.2. The solution for nh = 200 is shown in Figure 7.1.DONLP2 stopped with the message relaxed KKT conditions satis�ed: singular pointfor smaller problems and was able to get a good �t to the data, but stopped short of theoptimal solution. Since the problems were too large for DONLP2 when nh > 28, we didnot include DONLP2 in Table 7.2.LANCELOT stopped with the message step is too small, very near the solution for allnh we tried (projected gradient norm was on the order of 10�4 for nh = 100; 150; 200 withdefault optimality tolerance of 10�5). Parameters estimated by LANCELOT were fairlyaccurate compared with the parameters obtained with SNOPT. MINOS and SNOPT wereable to solve the problem for all nh tried, but SNOPT was more e�cient by about a factorof 2. LOQO was not able to solve problems with small nh, but the performance improvedfor larger nh. LOQO was slower than MINOS and SNOPT. In the iteration log of LOQOthe message dependent rows appeared often near the solution, which might explain thedegraded performance. All solvers were able to estimate reaction parameters with enoughaccuracy for practical purposes.The choice of the �nal time tf had a signi�cant e�ect on the performance of the solvers.As tf increased, the problem became harder to solve, and performance of all solvers de-graded. In some cases, LOQO and MINOS were not able to solve the problem at all.16



Table 7.2: Performance of AMPL solvers (tf = 37421)Solver nh = 20 nh = 50 nh = 100 nh = 150 nh = 200LANCELOT 182 s y 359 s y 1289 s y 2987 s y 6674 s ykc(x)k 1.7435E-06 3.7917E-06 7.9404E-06 3.3050E-06 1.8053E-06f 19.68852651 19.5489803 19.20467754 19.55026906 19.68888546iterations 140 124 135 183 216MINOS 13 s 10 s 52 s 134 s 230 sf 19.87208041 19.87216637 19.87216714 19.87216694 19.87216692kc(x)k 1.1E-12 5.0E-13 2.6E-10 1.9E-10 8.1E-11iterations 531 780 1499 2129 2770SNOPT 1.4 s 6.6 s 30 s 64 s 118 sf 19.87208041 19.87216637 19.87216700 19.87216697 19.87216696kc(x)k 9.7E-13 8.4E-13 6.9E-12 1.4E-11 1.4E-11iterations 524 1301 2571 3897 5202LOQO No 116 s 2139 s 378 s 2054 sf failure 19.87216631 19.87216641 19.87216637 19.87216692dual f 19.87216636 19.87216695 19.87216649 19.87216686iterations 10000 57 166 42 66y Step is too small
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8 Marine Population Dynamics (Rothschild et al. [11])Given estimates of the abundance of the population of a marine species at each stage (forexample, nauplii, juvenile, adult) as a function of time, determine stage speci�c growth andmortality rates. The model for the population dynamics of the ns-stage population (for theshort time periods) used in [11] isy0j = gj�1yj�1 � (mj + gj)yj ; 1 � j � ns; (8.1)where mi and gi are the unknown mortality and growth rates at stage i with g0 = gns = 0.This model assumes that the species eventually dies or grows into the next stage, withthe implicit assumption that the species cannot skip a stage. Initial conditions for thedi�erential equations are unknown, since the stage abundance measurements at the initialtime might also be contaminated with experimental error. We minimize the error betweencomputed and observed data, nmXj=1 ky(�j;m; g)� ujk2;where m and g are, respectively, vectors of mortality and growth rates with componentsm1; : : : ; mns and g1; : : : ; gns�1, and nm is the number of the stage abundance measurements.FormulationWe use a k-stage collocation method to formulate this problem as an optimization problem.In this approach the solution to (8.1) is represented by a vector-valued function u : [0; tf ] 7!IRns , where each component of u is a polynomial of order k+ 1 in each subinterval [ti; ti+1]of a partition of [0; tf ], where tf � �nm and �nm is the largest time measurement. We use auniform partitioning of [0; tf ], and the standard [2, pages 247{249] basis representation,us(t) = vis + kXj=1 (t� ti)jj! hj�1 wijs; t 2 [ti; ti+1];of the sth component of u. The constraints in the optimization problem are the continuityconditions and the collocation equations. The continuity equations are a set of ns(nh � 1)linear equations. The collocation equations are a set of k ns nk nonlinear equations obtainedby requiring that u satisfy (8.1) at the collocation points �ij = ti + h�j for i = 1; : : : ; nhand j = 1; : : : ; k.The parameters in the optimization problem are the nsnh initial conditions, the nsmortality rates, the ns�1 growth rates, and the knsnh parameters wijk in the representationof u. Data for this problem, with k = 4, appears in Table 8.1.We do not impose any initial conditions on the di�erential equations, since initial mea-surements are usually contaminated with experimental error. Introducing these extra de-grees of freedom into the problem formulation should allow solvers to �nd a better �t to thedata. A signi�cant di�erence between this problem and the �-pinene is that the populationdynamics data usually contains large observation errors.18



Table 8.1: Marine population dynamics problem dataVariables n = 5nsnh + 2ns � 1Constraints 5nsnh � nsBounds 2ns � 1Linear equality constraints ns(nh � 1)Linear inequality constraints 0Nonlinear equality constraints 4nsnhNonlinear inequality constraints 0Nonzeros in r2f(x) � (nsnm)2Nonzeros in c0(x) 58nsnh � 28nh � 6nsPerformanceWe provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Weused a simulated dataset with ns = 8 stages. We used a standard initial starting point withzeros for the parameters and a piecewise constant approximation to the solution of (8.1)based on the linear interpolation of the measurement data onto the mesh points ti. Resultsare summarized in Table 8.2. We used the default options for the solvers, except for settingiteration and variable limits high enough for the problem size. The solution for ns = 8 isshown in Figure 8.1. Table 8.2: Performance of AMPL solversSolver nh = 25 nh = 50 nh = 100 nh = 150 nh = 200LANCELOT y y y y yf 19746526.87 19746529.70 19746529.24 19746528.57 19746529.52kc(x)k 2.8021E-06 1.8881E-06 5.4092E-06 8.6955E-06 1.1871E-06iterations 556 283 276 289 332MINOS 20 s No z No z No Nof 19746526.83 90765626.58 38788064.26 298683521.2 520276498.4kc(x)k 8.0E-12 3.7E-11 6.8E-11 1.0E-05 1.0E-01iterations 1058 1780 2031SNOPT 14 s 28 s 79 s 209 s 479 sf 19746526.83 19746529.71 19746529.72 19746529.72 19746529.72kc(x)k 5.2E-12 4.5E-12 3.4E-12 1.1E-11 1.1E-11iterations 1652 2672 4795 6915 9507LOQO No No No No Nof failure failure failure failure failuredual fiterations 10000 968 10000 719 758y Step is too small z Possibly a local minimizerSince this problem was too large for DONLP2 even with nh = 20, results are notincluded for DONLP2. LANCELOT found solutions for all nh. We note that LANCELOTused about 10 times more memory to solve this problem than did the other solvers. MINOSsolved the problem for nh = 25, but stopped at a suboptimal point for other nh tried. Fornh = 50; 100 MINOS claimed to stop at an optimal point. For nh = 150; 200, MINOS19



stopped with the message the current point cannot be improved at a suboptimal point.SNOPT successfully found solutions for all nh. LOQO did not solve the problem for anynh, either running over the iterations limit with no signi�cant progress toward a solutionor stopping with the message primal or dual infeasible. In the iteration log of LOQO themessage dependent rows appeared often near the solution, which might explain the degradedperformance of LOQO.As in the �-pinene problem, we noticed that performance is slightly sensitive to thechoice of the �nal time tf . Choosing tf very close to the last measurement time �nm madethe problem easiest to solve, but LOQO or MINOS still could not solve the problem.
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9 Flow in a Channel (MINPACK-2 test problems [3])Analyze the ow of a uid during injection into a long vertical channel, assuming that theow is modeled by the boundary value problem,u0000 = R (u0u00 � uu000) ; 0 � t � 1;u(0) = 0; u(1) = 1; u0(0) = u0(1) = 0; (9.1)where u is the potential function, u0 is the tangential velocity of the uid, and R is theReynolds number.FormulationWe use a k-stage collocation method to formulate this problem as an optimization problemwith a constant merit function and equality constraints representing the solution of (9.1).We approximate the solution of (9.1) by a piecewise polynomial u. We use a uniformpartitioning ftig of [0; 1], and the standard [2, pages 247{249] basis representation,u(t) = mXj=1 (t� ti)j�1(j � 1)! vij + kXj=1 (t � ti)j+m�1(j +m� 1)! hj�1wij ; t 2 [ti; ti+1]for u. Note that u 2 Cm�1[0; 1], where m = 4 is the order of the di�erential equation.The constraints in the optimization problem are the initial conditions in (9.1), thecontinuity conditions and the collocation equations. There are m = 4 initial conditions.The continuity equations are a set of m(nh� 1) linear equations. The collocation equationsare a set of k nh nonlinear equations obtained by requiring that u satisfy (8.1) at thecollocation points �ij = ti + h�j for i = 1; : : : ; nh and j = 1; : : : ; k. The collocation points�j are the roots of the kth degree Legendre polynomial.Table 9.1: Flow in a channel problem dataVariables n = 8nhConstraints 8nhBounds 0Linear equality constraints 4nhLinear inequality constraints 0Nonlinear equality constraints 4nhNonlinear inequality constraints 0Nonzeros in r2f(x) 0Nonzeros in c0(x) 62nh � 13The parameters in the optimization problem are the (m+ k)nh parameters vij and wijin the representation of u. Data for this problem, with k = 4, appears in Table 9.1. Thisproblem is easy to solve for small Reynolds numbers but becomes increasingly di�cult tosolve as R increases. 21



PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. For R = 10, weused the solution of the boundary value problem (9.1) for R = 0, as the starting point forall solvers. For larger values of the Reynolds number we used continuation. Results aresummarized in Tables 9.2 and 9.3. We used the default options for the solvers, except forsetting iteration and variable limits high enough for the problem size. Solutions for severalR with nh = 200 are shown in Figure 9.1.Table 9.2: Performance of AMPL solversnh = 40 nh = 100Solver R = 10 R = 102 R = 103 R = 104 R = 10 R = 102 R = 103 R = 104LANCELOT No No No No No No No Noiterations 10000 10000 10000 10000 10000 10000 10000 10000kc(x)kMINOS 0.8 s 0.2 s 0.2 s 0.3 s 3.7 s 0.6 s 0.6 s 0.6 siterations 178 5 5 6 442 5 5 6kc(x)k 5.4E-13 4.5E-13 2.9E-11 1.2E-08 2.4E-13 9.1E-13 2.9E-11 1.2E-09SNOPT 1.7 s 58 s 2.7 s No 8.4 s 42 s No Noiterations 358 1582 457 failure 846 1418 failure failurekc(x)k 2.7E-09 9.1E-13 2.2E-11 5.3E+05 2.7E-09 1.1E-12 1.9E+04 2.0E+05LOQO 1.0s No No No 5.4s No No Noiterations 28 10000 10000 10000 32 10000 10000 10000duality gap 2.0E-08 1.66E-08Table 9.3: Performance of AMPL solversnh = 200 nh = 400Solver R = 10 R = 102 R = 103 R = 104 R = 10 R = 102 R = 103 R = 104LANCELOT No No No No No No No Noiterations 10000 10000 10000 10000 10000 10000 10000 10000kc(x)kMINOS 14 s 1.2 s 1.2 s 1.4 s 46 s 2.6 s 3.0 s 7.0 siterations 884 5 5 6 1560 5 5 109kc(x)k 1.8E-13 9.1E-13 2.2E-11 4.7E-10 3.8E-07 2.5E-08 2.5E-09 1.1E-08SNOPT 31 s 67 s No No 115 s No No Noiterations 1675 2226 failure failure 3112 failure failure failurekc(x)k 2.7E-09 5.0E-07 1.8E+04 2.0E+05 3.8E-07 9.2E+02 9.9E+03 1.0E+05LOQO 25s No No No 50s No No Noiterations 44 10000 10000 10000 34 10000 10000 10000duality gap 7.0E-09 2.5E-08LANCELOT was not able to solve even a simple version of the problem, advancing veryslowly toward the solution (as judged from the value of the merit function) and running overthe iteration limit. MINOS was very successful on this problem, obtaining solutions for allvalues of R and nh tried, and outperforming SNOPT by at least a factor of 2 in all cases.We also note that MINOS was able to �nd a solution from the standard initial point for22



all values of R in the range from 0 to 105. SNOPT solved the problem for R = 10; 102; 103when nh = 40, but performance degraded with increasing nh; and for nh = 400, SNOPTcould not �nd a solution even for R = 102. LOQO was able to solve the problem for R = 10for all values of nh tried, but failed to converge for larger values of R in all cases, with dualobjective slowly increasing to a large positive number.We also used SNOPT with an F77 implementation of this problem. In this set ofexperiments we used the solution of (9.1) for R = 0 as the starting point for R = 10; 102and used the solution of the problem for R = 102 as the starting point for higher Reynoldsnumbers. The results are summarized in Table 9.4.Table 9.4: Performance of SNOPT with F77 codenh = 50 nh = 100 nh = 200 nh = 400R = 10 2.6 s 9.6 s 44 s 196 sR = 102 21 s 35 s 237 s 864 sR = 103 1311 s Not solved 2077 s 4304 sR = 104 Not solved 3863 s 16907 s 35927 sThe results in Table 9.4 are not comparable with those in Tables 9.2{9.3 because weused di�erent starting points, but we noted improved global convergence. The di�erencein behavior may be partially explained by the fact that we did not separate linear andnonlinear constraints in the F77 implementation.
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10 Non-inertial Robot Arm (Vanderbei [13])Minimize the time taken for a robot arm to move from one point to another while satisfyingboundary conditions, path constraints, and physical laws.FormulationThe arm is a rigid bar of length L that protrudes a distance � from the origin to the grippingend and sticks out a distance L� � in the opposite direction. If the pivot point of the armis the origin of a spherical coordinate system, then the problem can be phrased in terms of�(t) � length of arm from pivot�(t) � angle in horizontal plane�(t) � angle in vertical planeu�(t); u�(t); u�(t) � controls in basis directionstf � �nal time:Bounds on the variables are 0 � tf0 � �(t) � L�� � �(t) � �0 � �(t) � ���u� � u�(t) � �u���u� � u�(t) � �u���u� � u�(t) � �u�; (10.1)where �u�, �u� , and �u� are the most extreme controls allowed. The controls u are applied inthe coordinate directions, and therefore they enter the system as the constraintsL�� = u�; I� �� = u� ; I� �� = u�; (10.2)where I is the moment of inertia, de�ned byI� = ((L� �)3 + �3)3 sin(�)2; I� = ((L� �)3 + �3)3 :The boundary conditions are�(0) = 4:5; �(tf) = 4:5; �(0) = 0; �(tf ) = 2�3 ; �(0) = �4 ; �(tf ) = �4_�(0) = _�(0) = _�(0) = _�(tf ) = _�(tf ) = _�(tf) = 0:This model ignores the fact that the spherical coordinate reference frame is a non-inertialframe and should have terms for coriolis and centrifugal forces.24



Implementation IIn the �rst implementation, the controls u are eliminated by substitution. Therefore, theequality constraints in (10.2) become the inequalities��u� � L�� � �u���u� � I� �� � �u���u� � I� �� � �u�:Discretization of the problem involved using a uniform time step and introducing newvariables representing the �rst and second derivatives of the state variables. New constraintswere introduced requiring that the new variables satisfy �rst-order di�erence approximationsto the derivatives. The number of grid points at which the state variables are evaluated isN . The velocities, accelerations, and moments are evaluated at slightly fewer grid points.The variables in the optimization problem are�(1 : N); _�(1 : N � 1); ��(1 : N � 2); �(1 : N); _�(1 : N � 1); ��(1 : N � 2);�(1 : N); _�(1 : N � 1); ��(1 : N � 2); I�(1 : N � 2); I�(1 : N � 2); tf :In this problem, �u� = �u� = �u� = 1, and L = 5. Problem data appears in Table 10.1.Table 10.1: Non-inertial robot arm problem data (Implementation I)Variables 11N � 12Constraints 10N � 5Bounds 4N � 2Linear equality constraints 12Linear inequality constraints 0Nonlinear equality constraints 8N � 13Nonlinear inequality constraints 2N � 4Nonzeros in r2f(x) 0Nonzeros in c0(x) 29N � 36PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. All of the solverswere given the same initial values as suggested by Vanderbei [13]. The initial values forthe state variables are straight lines for the �rst half of the interval and parabolas for thesecond half. Di�erence approximations were given as guesses for the derivative variables.The initial values for the moments of inertia were based upon di�erence approximations tothe second derivatives, while the initial value for the �nal time was tf = 1000=N .Table 10.2 shows the computational results for various values of N . MINOS is unableto solve this problem for N = 50; 100. However, aside from these two instances, the rest ofthe solvers seem to converge to the correct solution for all N .25



Table 10.2: Performance of AMPL solvers (Implementation I)Solver N = 10 N = 50 N = 100 N = 500LANCELOT Yes Yes Yes Yestf 10.31945331 9.331494417 9.234452773 9.159271883iters j sec 104 j 3.35 138 j 70.01 173 j 250.62 343 j 276.39MINOS Yes infeasible Yes Yestf 10.3194546 - 9.234453135 9.159271891iters j sec 450 j 0.98 4848 j 23.37 851 j 12.98 3101 j 313.17SNOPT Yes Yes Yes Yestf 10.3194546 9.331495269 9.234453135 9.159271887iters j sec 967 j 3.20 4006 j 31.87 7313 j 128.28 46943 j 112.36LOQO Yes Yes Yes Yestf 10.31945462 9.331495269 9.234453135 9.159271891iters j sec 24 j 0.23 35 j 4.33 58 j 32.55 359 j 775.743Implementation IIIn the second implementation the moments (I�; I�) were eliminated by substitution. Dis-cretization of the problem involved using a uniform time step for the integration of (10.2)over N grid points. The variables in the optimization problem are�(1 : N); _�(1 : N); �(1 : N); _�(1 : N); �(1 : N); _�(1 : N);u�(1 : N); u�(1 : N); u�(1 : N); tfIn this problem �u� = �u� = �u� = 1 and L = 5. Data for this problem is shown in Table 10.3.Table 10.3: Non-inertial robot arm problem data (Implementation II)Variables 9N + 1Constraints 6(N � 1) + 12Bounds 7N + 1Linear equality constraints 12Linear inequality constraints 0Nonlinear equality constraints 6(N � 1)Nonlinear inequality constraints 0Nonzeros in r2f(x) 0Nonzeros in c0(x) 36(N � 1) + 12PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. In addition, a Cversion was also implemented for SNOPT, with the derivatives generated by ADIC, thusallowing a comparison between the AMPL version and the ADIC augmented C version.All solvers were given the same initial values. Where possible, straight lines between theboundary conditions or (in the absence of boundary conditions) zeros were given as initial26



Table 10.4: Performance of AMPL solvers (Implementation II)Solver N = 10 N = 50 N = 100 N = 500LANCELOT no feasible solution no feasible solution iteration limit no feasible solutiontf 0 0 0 0iters j s 3 j 0.08 44 j 15.71 1000 j 139.56 -MINOS Yes Yes Yes Yestf 9.27862977 9.145749287 9.141994656 9.141334372iters j s 87 j 0.21 390 j 3.48 473 j 11.24 1634 j 305.20SNOPT Yes Yes infeasible infeasibletf 9.27862977 9.145749287 - -iters j s 875 j 2.30 11500 j 64.13 2177 j 10.64 14081 j 315.56LOQO infeasible iteration limit iteration limit iteration limittf - - - -iters j s 463 j 13.72 1000 j 154.15 1000 j 193.72 -values. The exceptions are for tf , which was set to 1000, and for �, which was initializedto a parabola passing through (0; 0), (0:5; 1), (1; 0). If � is not initialized in this manner,SNOPT considers the problem infeasible.Table 10.4 shows the computational results for various values of N . We note thatwhile the alternative implementation is faster, fewer of the solvers converge to the correctsolution. For this implementation, however, solvers that did �nd the correct solution did soin considerably less time than required with the �rst implementation.Table 10.5: Performance of SNOPT with C implementationSolver N = 10 N = 50 N = 100 N = 500SNOPT infeasible problem Yes Yes Yestf - 9.1457563370858 9.1420016949989 9.1409521227122iters 120 1937 4981 15713constraint (s) 0.03 0.98 1.99 8.33objective (s) 0.00 0.07 0.13 0.07solve (s) 0.05 6.72 21.44 1835.08Figures 10.1 and 10.2 show the optimal path of the robot arm for N = 100, calculatedusing MINOS. Figure 10.3 shows each of the variables individually. Note that the controlsare calculated from the other known variables. The paths reported by the solvers are allidentical (assuming they reported �nding an optimal point); thus only one graph is shown.Figures generated from the output from the C version are not shown because they areidentical to the alternative AMPL/MINOS version.27
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Figure 10.1: Non-inertial robot arm optimal path (side view)
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Figure 10.2: Non-inertial robot arm optimal path (top view)
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11 Linear Tangent Steering (Betts, Eldersveld, and Hu�man [4])Minimize the time taken for a point mass, acted upon by a thrust of constant magnitude,to satisfy boundary conditions, path constraints, and the di�erential equations governingmotion to pass from one point to another.FormulationThe behavior of a point mass acted upon by a force of magnitude a can be modeled usingthe system of second-order di�erential equations,�y1 = a cos(u)�y2 = a sin(u); (11.1)where y1(t) � �rst position coordinatey2(t) � second position coordinateu(t) � control angletf � �nal timeand a is the constant magnitude of thrust. In this case, a = 100. Bounds on the variablesare tf � 0; ��2 � u(t) � �2 :The constraints are (11.1). The boundary conditions, as given in [4], arey1(0) = y2(0) = _y1(0) = _y2(0) = 0; y2(tf ) = 5; _y1(tf ) = 45; _y2(tf ) = 0:System (11.1) can be expressed as the system of four �rst-order di�erential equations,_y1 = y3_y2 = y4_y3 = a cos(u)_y4 = a sin(u); (11.2)where y3 and y4 are the velocity coordinates of the point mass.Discretization involved using a uniform time step and the trapezoidal rule for the in-tegration of the system over N grid points. By treating the �nal time tf as the objectivefunction to be minimized, and the trapezoidal discretization and bounds on u as constraints,we can formulate the problem as an optimization problem with variablesy1(1 : N); y2(1 : N); y3(1 : N); y4(1 : N); u(1 : N); tf :Data for this problem is shown in Table 11.1.29



Table 11.1: Linear tangent steering problem dataVariables 5N + 1Constraints 4(N � 1) + 7Bounds N + 1Linear equality constraints 7Linear inequality constraints 0Nonlinear equality constraints 4(N � 1)Nonlinear inequality constraints 0Nonzeros in r2f(x) 0Nonzeros in c0(x) 20(N � 1) + 7PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. This problemhas also been coded in C and solved using SNOPT, both with hand-coded gradients andJacobians and with ADIC-generated gradients and Jacobians. Plots of the position, velocity,and control variables are shown in Figure 11.1.All of the solvers were given the same initial values of straight lines between the boundaryconditions, except for the control u and the �rst position coordinate y1. The starting valuefor the control was set to a straight line between �1 and +1, while the �rst positioncoordinate was set to a straight line between 0 and +1. The initial value for the �nal timewas tf = 1.Table 11.2 shows the computational results from AMPL for various values of N . Notethat LOQO and MINOS fail to solve this problem.Table 11.2: Performance of AMPL solversSolver N = 10 N = 50 N = 100 N = 500LANCELOT Yes Yes Yes Yestf 0.5575747859 0.5546725422 0.5545925691 0.5545368572iters j s 166 j 0.90 268 j 26.17 419 j 180.75 786 j 2100.54MINOS Yes infeasible Yes infeasibletf 0.5575751656 - 0.5545958978 -iters j s 120 j 0.15 1311 j 1.81 923 j 7.99 2933 j 42.08SNOPT Yes Yes Yes Yestf 0.5575751655 0.5546728269 0.5545959338 0.554572935iters j s 218 j 0.67 414 j 3.99 708 j 20.96 3755 j 980.40LOQO Yes iteration limit iteration limit -tf 0.5575751656 0.6471450279 0.5950385081 -iters j s 337 j 3.88 10000 j 242.39 10000 j 704.53 -Table 11.3 shows the computational results for the hand-coded and ADIC-augmentedC implementations for various values of N . The ADIC version is considerably slower thanthe hand-coded version, with the constraint/Jacobian function being about 27 times slower.However, in comparison to the AMPL version, the ADIC version is only about 2.75 timesslower for the whole computation. 30



Table 11.3: Performance of SNOPT with C implementationSolver N = 10 N = 50 N = 100 N = 500SNOPT (hand) Yes Yes Yes Yestf 0.5575751655263 0.55467279242138 0.55459588591195 0.55457186867iters 189 448 847 6157constraint (s) 0.05 0.15 0.53 2.33objective (s) 0.01 0.01 0.03 0.13solve (s) 0.38 2.86 23.53 721.33SNOPT (ADIC) Yes Yes Yes Yestf 0.55757516552631 0.55467279242138 0.55459588591195 0.55457186867323iter 189 448 847 6157constraint(s) 1.00 3.51 20.96 237.75objective (s) 0.01 0.02 0.05 0.14solve (s) 1.21 7.24 51.10 940.12
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12 Goddard Rocket (Betts, Eldersveld, and Hu�man [4])Maximize the �nal velocity of a vertically launched rocket, using the thrust as a controland subject to boundary conditions, path constraints, and physical laws. The rocket is asingle-stage vehicle with a �nite amount of propellant. Solving this problem should describean optimal program for the thrust, so as to maximize the �nal velocity.FormulationThe equations of motion for a point mass acted upon by a thrust force of magnitude T are_h = v; _v = T �D(h; v)m � g; _m = �Tc ; (12.1)where h(t) � altitudev(t) � vertical velocitym(t) � rocket massT (t) � thrust magnitudetf � �nal time.The function D and the various parameters in (12.1) areD(h; v) = D0v2�e� hhr � ; D0 = 0:711TMc2 ;TM = 2m0g; m0 = 3; g = 32:174; hr = 23800; c2 = 3:264ghr;where g is gravity, TM is the maximum thrust possible with the rocket engine, and m0 isthe initial mass of the rocket. The bounds on the state variables arem(t) � 1; tf � 0; 0 � T (t) � TM :The constraints are (12.1), and the boundary conditions, as given in [4], areh(0) = 0; v(0) = 0; m(0) = 3; m(tf ) = 1:Discretization of the problem involved using a uniform time step and the trapezoidal rulefor the integration of the system over N points. The variables of the optimization problemare h(1 : N); v(1 : N); m(1 : N); T (1 : N); tf :Data for this problem is shown in Table 12.1.PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. All solvers weregiven the same initial values of straight lines between the boundary conditions for the massm. The initial values for the altitude and the velocity were straight lines between 0 and32



Table 12.1: Goddard rocket problem dataVariables 4N + 1Constraints 3(N � 1) + 4Bounds 2N + 1Linear equality constraints 4Linear inequality constraints 0Nonlinear equality constraints 3(N � 1)Nonlinear inequality constraints 0Nonzeros in r2f(x) 0Nonzeros in c0(x) 19(N � 1) + 41000 and between 0 and 100; respectively. The initial value for the thrust T was a constantthrust of TM=2.Table 12.2 shows the computational results for various values of N . We note thatMINOS seems to be the only solver that can solve this problem. Figure 12.1 has plots ofthe solutions for altitude, velocity, mass, and thrust versus time, as solved by MINOS atN = 100. Table 12.2: Performance of AMPL solversSolver N = 10 N = 50 N = 100 N = 500LANCELOT too many iterations too many iterations too many iterations -vf 1503.645929 -0.0004547359203 -40.99063733 -iters j sec 1000 j 11.08 1000 j 26.12 1000 j 320.13 -MINOS Yes Yes Yes Yesvf 1062.028455 1060.357748 1060.313388 1009.468519iters j sec 95 j 0.12 737 j 2.97 2518 j 18.42 2758 j 73.44SNOPT too many iterations too many iterations too many iterations -vf 22453.37014 7357.058908 1244.953645 -iters j sec 9103 j 10.29 136066 j 444.06 166001 j 1263.53 -LOQO infeasible iteration limit iteration limit -vf - 609.1607518 -162702.75 -iters j sec 1036 j 17.15 5000 j 147.5 5000 j 517.52 -Table 12.3 shows the computational results for SNOPT solving the Goddard problemfor each of the usual N . In this case, comparing the results with the AMPL version is notuseful because the AMPL version uses an older version of SNOPT that was unable to solvethis problem.
33



Table 12.3: Performance of SNOPT with C implementationSolver N = 10 N = 50 N = 100SNOPT Yes Yes Yesvf 1033.2418134500 1032.8962915064 1032.9153331908iters 536 1803 6513constraint (sec) 2.29 15.56 13.13objective (sec) 0.04 0.13 0.10solve (sec) 2.92 18.06 23.51
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13 Hang Glider (Betts, Eldersveld, Hu�man [4])Maximize the �nal horizontal position of a hang glider while satisfying boundary conditions,path constraints, and physical laws. This problem describes the optimal control of a hangglider in the presence of a speci�ed thermal updraft. The objective is to y the glider asfar in the horizontal direction as is possible within a �xed amount of time.FormulationThe planar equations of motion for the hang glider are�x = 1m(�L sin(�)�D cos(�)); �y = 1m(L cos(�)�D sin(�)�W ); (13.1)where W = mg and x(t) � horizontal positiony(t) � altitudevx(t) � horizontal velocityvy(t) � vertical velocitycL(t) � aerodynamic lift coe�cient.The functions �, D, and L depend on x, vx = _x, vy = _y, and the control function cL. Thefunction � is de�ned bysin(�) = Vy(x; vy)vr(x; vx; vy) ; cos(�) = vxvr(x; vx; vy) ; vr(x; vx; vy) = qv2x + Vy(x; vy)2;whereVy(x; vy) = vy � ua(x); ua(x) = uM(1�X(x))e�X(x); X(x) = ( xR � 2:5)2;and constants uM = 2:5 and R = 100. The functions D and L are de�ned byD(x; vx; vy; cL) = 12 �c0 + kc2L� �Svr(x; vx; vy)2; L(x; vx; vy; cL) = 12cL�Svr(x; vx; vy)2;where c0 = 0:034; k = 0:069662; m = 100; S = 14; � = 1:13; g = 9:80665:The only bound is on the control function cL,0 � cL � 1:4:The constraints are the system of di�erential equations (13.1), and the boundary conditions,as given in [6], are x(0) = 0; y(0) = 1000; y(tf ) = 900;vx(0) = vx(tf ) = 13:227567500; vy(0) = vy(tf ) = �1:2876005200:35



Implementation of the problem involved using a uniform time step and trapezoidal rulefor the integration of the system over N grid points. In [4], the �nal time is left as auser-de�ned parameter. In this implementation tf = 100, since this makes a comparisonpossible with the results from [6]. An optimization problem is obtained by using the �nalhorizontal position x(tf ) as the merit function to be maximized, and the discretization of(13.1) as the constraints. This formulation leads to an optimization problem with variablesx(1 : N); y(1 : N); vx(1 : N); vy(1 : N); cL(1 : N):Data for this problem is shown in Table 13.1.Table 13.1: Hang glider problem dataVariables 5NConstraints 4(N � 1) + 7Bounds NLinear equality constraints 7Linear inequality constraints 0Nonlinear equality constraints 4(N � 1)Nonlinear inequality constraints 0Nonzeros in r2f(x) 0Nonzeros in c0(x) 24(N � 1) + 7PerformanceWe provide results with the AMPL formulation on a Sun UltraSPARC2. All solvers weregiven the same initial values. For the horizontal position x, the initial value is a straight linebetween 0 and 100. For (y; vx; vy), the initial values are straight lines between the boundaryconditions. Lastly, for the control cL a constant initial value of 0:7 was given to the solvers.Table 13.2: Performance of AMPL solversSolver N = 10 N = 50 N = 100 N = 500LANCELOT Yes Yes too many iterations -xf 1698.331288 1281.02131 81.86073975 -iters j sec 117 j 1.61 163 j 29.13 1000 j 596.19 -MINOS infeasible infeasible unbounded unboundedxf - - - -iters j sec 3825 j 3.38 1716 j 3.05 2232 j 18.76 3942 j 117.88SNOPT Yes Yes Yes Yesxf 1716.750091 1055.075921 1255.190371 1247.405707iters j sec 229 j 0.49 1872 j 14.96 3622 j 66.74 26651 j 1901.27LOQO iteration limit iteration limit iteration limit -xf 1143.042306 162.5977425 442.7979116 -iters j sec 10000 j 11.34 10000 j 26.42 10000 j 73.16 -Table 13.2 presents computational results for various values of N . SNOPT found asolution that, for the largest N , is identical to the solution described in [6]. LOQO found36



nearly the correct solution for the x and y states, but was wildly o� for the rest of thevariables. MINOS was not able to solve the system for any problem size.Table 13.3: Performance of SNOPT with C implementationSolver N = 10 N = 50 N = 100 N = 500SNOPT Yes Yes Yes Yesxf 1889.2567964520 1285.5323615 1255.2241243 1247.2051276964iters 585 1923 4509 43832constraint (sec) 0.30 0.80 1.69 23.41objective (sec) 0.01 0.02 0.03 0.42solve (sec) 0.91 6.89 29.69 2036.29Table 13.3 shows the computational results generated by the C code, which calls SNOPTfor the various values of N . Note that the C code is faster for N = 10; 50; 100. However,for N = 500 the AMPL version is faster and takes fewer iterations.Figure 13.1 shows plots forN = 500 for each of the variables. These graphs are generatedby the AMPL implementation, using SNOPT, but the C version generated identical graphs.
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14 Implementation of COPS in CWe use the formulation of the general constrained optimization problem de�ned by a meritfunction f : IRn 7! IR and nonlinear constraints c : IRn 7! IRm:min ff(x) : xl � x � xu; cl � c(x) � cug :We specify the problem by the following functions in C:� int name xb (par type par, var type *xl, var type *xu)speci�es the bounds xl and xu,� int name cb (par type par, double *cl, double *cu)speci�es the bounds cl and cu,� int name xs (par type par, var type *x)speci�es the standard starting point,� int name f (par type par, var type *x, obj type obj)speci�es the values f(x) and rf(x),� int name c (par type par, var type *x, con type con)speci�es the values c(x) and c0(x).� int name sp (par type par, int *nnz, int *ipntr, int *indcol)speci�es the sparsity pattern of the sparse Jacobian c0(x)where name is the name of the problem (e.g., polygon, electrns). Here obj type andcon type are objective and constraint types de�ned as follows:typedef struct {double *f; /* pointer to the objective value */double *grad; /* array of the partial derivatives */} obj_type;typedef struct {double *c; /* array of constraints (of length m) */int *nnz; /* Jacobian - pointer to number of nonzeros */int *ipntr; /* Jacobian - row "pointers" (array of length m+1) */int *indcol; /* Jacobian - column indicies (array of length *nnz) */double *jacrow; /* Jacobian - nonzero entries (array of length *nnz) */} con_type;and par type and var type are problem-dependent parameter and variable types, respec-tively. We use the compressed sparse row storage for the Jacobian, but we provide aroutine row2col that changes from compressed sparse row storage to compressed sparsecolumn storage, used by some solvers in Fortran 77.We combined both linear and nonlinear parts of the Jacobian c0(x) in name c.c. How-ever, it is still possible to separate them for such solvers as SNOPT if there are a signi�cantnumber of linear constraints. In this case the user would have to reorder the constraints insome cases. 38



14.1 Largest Small Polygontypedef struct {double r; /* polar radius from a fixed vertex */double theta; /* polar angle from a fixed vertex */} var_type;typedef int par_type; /* number of vertices in a polygon */14.2 Electrons on a Spheretypedef struct {double x; /* x-coordinate of a point charge */double y; /* y-coordinate of a point charge */double z; /* z-coordinate of a point charge */} var_type;typedef int par_type; /* number of point charges */14.3 Saw Path Trackingtypedef double var_type; /* polynomial coefficients */typedef struct{int d; /* maximum degree of the polynomial */int N; /* number of data points */double *x; /* array of x-values of data points */double *y; /* array of y-values of data points */double M; /* initial slope of the polynomial */double R; /* minimum radius of curvature */} par_type;14.4 Hanging Chaintypedef double var_type; /* height of the chain from a fixed horizontal */typedef struct {int nh; /* number of discretization points */double L; /* length of the chain */double a; /* height of the chain on the left side */double b; /* height of the chain on the right side */} par_type; 39



14.5 Optimal Shape Design of a Camtypedef double var_type; /* polar radius of the edge points of the cam */typedef struct{int n; /* number of points in the discretization */double R_min; /* minimal allowed radius */double R_max; /* maximal allowed radius */double R_v ; /* valve parameter */double alpha; /* curvature parameter */double d_theta; /* change in angle = 2*pi/5/(n+1) */} par_type;14.6 Isometrization of Alpha-Pinenetypedef struct {double v; /* parameters determining piecewise polynomial on the */double w[4]; /* interval to the right of the grid point */} grid_type;typedef struct {double theta[5]; /* reaction coefficients */grid_type *u[5]; /* pointers to the piecewise polynomial representation */} var_type; /* of the chemical components quantities components */typedef struct {int nh; /* number of grid points in the uniform partitioning */int nm; /* number of concentration measurements */double t_f; /* final time: diff equations are solved on [0,t_f] */double y_0[5]; /* initial conditions for the differential equations */double *tau; /* array of times of the concentration measurements */double *z[5]; /* arrays of the concentration measurements of the */} par_type; /* five chemical components in the reaction */14.7 Marine Population Dynamicstypedef struct {double v; /* parameters determining piecewise polynomial on the */double w[4]; /* interval to the right of the grid point */} grid_type;typedef struct {double m[MAXNS]; /* mortality coefficients for the stage i */double g[MAXNS-1]; /* growth coefficients from stage i to stage i+1 */grid_type *u[MAXNS]; /* pointers to the piecewise polynomial representation */} var_type; /* of the population stage abundances */40



typedef struct {int nh; /* number of grid points in the uniform partitioning */int ns; /* number of stages in the population */int nm; /* number of population stage abundance measurements */double t_f; /* final time: diff. equations are solved on [0,t_f] */double *tau; /* array of times of the stage abundance measurements */double *z[MAXNS]; /* arrays of the stage abundance measurements */} par_type;14.8 Flow in a Channeltypedef struct {double v[4]; /* parameters determining piecewise polynomial on the */double w[4]; /* interval to the right of the grid point */} var_type;typedef struct {int nh; /* number of grid points in the uniform partitioning */double R; /* Reinolds number */double u_0[2]; /* boundary conditions for the differential equation */double u_1[2]; /* at t=0 and t=1 */} par_type;14.9 Non-inertial Robot Armtypedef struct {double rho; /* length of arm */double the; /* theta angle for arm */double phi; /* phi angle for arm */double rho_dot; /* rho velocity */double the_dot; /* theta velocity */double phi_dot; /* phi velocity */double u_rho; /* control in rho direction */double u_the; /* control in theta direction */double u_phi; /* control in phi direction */} oth_type;typedef struct {oth_type *vars; /* stuct of the variables */double h; /* time step */} var_type;
41



14.10 Linear Tangent Steeringtypedef struct {double y1; /* first position coordinate */double y2; /* second position coordinate */double y3; /* first velocity coordinate */double y4; /* second velocity coordinate */double u; /* control coordinate (radians) */} oth_type;typedef struct {oth_type *vars; /* stuct of the variables */double h; /* time step */} var_type;typedef int par_type; /* number of grid points */14.11 Goddard Rockettypedef struct {double h; /* altitude */double v; /* vertical velocity */double m; /* mass */double T; /* Thrust */} oth_type;typedef struct {oth_type *vars; /* stuct of the variables */double h; /* time step */} var_type;typedef int par_type; /* number of grid points */14.12 Hang Glidertypedef struct {double x; /* first position coordinate */double y; /* second position coordinate */double vx; /* first velocity coordinate */double vy; /* second velocity coordinate */double cL; /* control coordinate (radians) */} oth_type;typedef struct {oth_type *vars; /* stuct of the variables */} var_type;typedef int par_type; /* number of grid points */42
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