
ARGONNE NATIONAL LABORATORY9700 South Cass AvneueArgonne, IL 60439ANL/MCS-TM-239Users Manual for Opt-MS:Local Methods for Simplicial Mesh Smoothing and UntanglingbyLori FreitagMathematics and Computer Science DivisionTechnical Memorandum No. 239April 1999
This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the O�ce ofAdvanced Scienti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Introduction 22 Mesh Improvment Methods 32.1 Laplacian and \Smart" Laplacian Smoothing . 32.2 Optimization-based Smoothing . 42.3 The Combined Approaches . 52.4 Typical Results for Mesh Improvement . 62.5 Quality Metrics Provided in Opt-MS . 63 Mesh Untangling 83.1 Formulation and Solution . 83.2 Typical Results for Mesh Untangling . 104 Using the Opt-MS Package 114.1 Smoothing and Untangling Local Submeshes . 114.2 Input to SMsmooth and SMuntangle . 134.2.1 Two-Dimensional Submeshes . 134.2.2 Three-Dimensional Submeshes . 144.3 Measuring Mesh Quality . 154.4 Gathering and Reporting Opt-MS Statistics . 164.5 Pro�ling Opt-MS . 175 Compiling and Linking Opt-MS 185.1 Opt-MS Directory Structure . 185.2 Con�guring . 185.2.1 Con�gure Options . 195.2.2 Example Con�gure Usage . 205.2.3 Reasons for Con�gure to Fail . 205.3 Compiling Opt-MS . 205.4 Linking Opt-MS . 215.5 Running the Opt-MS Examples . 216 Getting Help 23Acknowledgments 23A Opt-MS API Appendix 24References 42
iii

Users Manual for Opt-MS:Local Methods for Simplicial Mesh Smoothing and UntanglingbyLori FreitagAbstractCreating meshes containing good-quality elements is a challenging, yet critical, problem facingcomputational scientists today. Several researchers have shown that the size of the mesh, the shape of theelements within that mesh, and their relationship to the physical application of interest can profoundlya�ect the e�ciency and accuracy of many numerical approximation techniques. If the application containsanisotropic physics, the mesh can be improved by considering both local characteristics of the approximateapplication solution and the geometry of the computational domain. If the application is isotropic,regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved apriori by considering geometric criteria only.The Opt-MS package provides several local node point smoothing techniques that improve elementsin the mesh by adjusting grid point location using geometric criteria. The package is easy to use; onlythree subroutine calls are required for the user to begin using the software. The package is also
exible;the user may change the technique, function, or dimension of the problem at any time during the meshsmoothing process. Opt-MS is designed to interface with C and C++ codes, and examples for both two-and three-dimensional meshes are provided.

1

1 IntroductionAutomatic mesh generation tools are often used to decompose complex geometries into a union of simplegeometric shapes, including triangles and quadrilaterals in two dimensions and tetrahedron and hexahedronin three dimensions. Unfortunately, meshes generated in this way can contain poorly shaped or distortedelements that result in numerical di�culties during the solution process [11]. If the application containsanisotropic physics, the mesh can be improved by considering both local characteristics of the approximateapplication solution and the geometry of the computational domain. If the application is isotropic, regularlyshaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori byconsidering geometric criteria only. Several techniques have been developed to perform this improvement,including local reconnection techniques such as edge or face swapping [6], [15], [17], node point smoothing[2], [4], [20], and combinations of the two.The Opt-MS software package provides several local smoothing techniques that adjust the position of onevertex at a time to obtain improvement in a neighborhood around that vertex. In particular, the Opt-MSroutines work on a local submesh consisting of a free vertex, v, its incident elements, ti, and adjacent vertices,vi, as shown in Figure 1. Mesh smoothing algorithms can be heuristic or formulated as a rigorous optimizationproblem, but the goal of all algorithms is to move the free vertex to a new position that improves the qualityof the local submesh by some measure. For example, if the minimum angle in the mesh provides a measureof quality, then the local submesh on the right has higher quality than the submesh on the left because theminimum angle is closer to 60o than to 20o. Local methods achieve this improvement by adjusting only theposition of the free vertex, v, in each local submesh; adjacent vertex locations remain unchanged. Somenumber of sweeps over the adjustable vertices are performed to achieve overall improvement in the mesh.The local techniques included in the Opt-MS package are Laplacian smoothing [8, 19], an optimization-basedapproach formulated and implemented at Argonne National Laboratory, and various combinations of thetwo. More detailed information regarding the smoothing approaches, quality metrics, and typical results areprovided in Section 2.
v3

v1

v4

t1

t3

t0 t4

t2

t4t0

t3
t2

v3

v1

v4

v
v

t1

v0

v2 v2

v0Figure 1: A local submesh consisting of a free vertex, v, to be moved and its incident elements, t0 : : : t4. The�gure on the right shows the same local submesh after node point smoothing.In addition to mesh smoothing, the Opt-MS package includes a technique for untangling simplicial mesheswith valid connectivity, but invalid or inverted elements (those with negative area). An invalid local submeshis shown in Figure 2. The submesh on the left consists of a free vertex, v and its seven adjacent verticesand triangles, all of which are valid because v lies inside the feasible region (shaded gray). The submesh onthe right consists of the same adjacent vertices, but the free vertex lies outside the feasible region, causingtriangles t1 and t2 to have negative area. The untangling method provided in Opt-MS is formulated asa linear programming problem on local submeshes. As with local smoothing techniques, some number ofsweeps through the local submeshes are performed until the mesh is untangled or a maximum number ofiterations has been exceeded. A brief description of the formulation, solution technique, and typical resultsare given in Section 3.The Opt-MS library has been designed to improve both two- and three-dimensional simplicial meshesthrough a small number of API routines. The primary functionality of the Opt-MS package and examplesof its use, including the required user input, skeleton example codes, and typical output are described inSection 4. The con�guration and compilation of the library is described in detail in Section 5. The API2

t1

t5
t2

t3
t4

t6

t7

v

t7

t6

t5
t3

t2

t1

t4

vFigure 2: The submesh on the left is valid; the free vertex v lies within the feasible region which is shadedgray. The submesh on the right is invalid; the free vertex v lies outside the feasible region causing trianglest1 and t2 to have negative area.routines and their input options are given in the Appendix.2 Mesh Improvment MethodsLocal mesh smoothing techniques are formulated in terms of the grid point to be adjusted, the free vertex,v, and that grid point's adjacent vertices, V = adj(v) = fvi 3 an edge exists between v and vig. Thelocation of the free vertex is changed according to some rule or heuristic procedure based on informationavailable at the adjacent grid points. Suppose x is the position of the free vertex; then the general form ofa local smoothing algorithm is given byxnew = Smooth(x; V; jV j; conn(V)); (1)where xnew is the proposed new position of v, jV j is the number of adjacent vertices, and conn(V) is theadjacent vertex connectivity information. Ideally, the new location of the free vertex will improve the meshaccording to some measure of mesh quality such as dihedral angle or element aspect ratio. Let the values ofmesh quality a�ected by a change in x be f (x) = fi(x), i = 1; : : : ; n. For example, if we use dihedral angleas a quality measure in a three-dimensional mesh, each tetrahedron would have six function values, one foreach edge of the tetrahedron. Thus, the total number of function values a�ected by a change in x would bethe number of tetrahedra containing the vertex v multiplied by six. Let the minimum value of the functionsevaluated at x be called the active value, and the set of functions that obtain that value, the active set, bedenoted by A(x).The action of the function Smooth is determined by the particular algorithm chosen. In this section theseven algorithms provided in Opt-MS are described.2.1 Laplacian and \Smart" Laplacian SmoothingFor Laplacian smoothing, the action of the smoothing operator given in Equation (1) is to move the freevertex to the geometric center of the adjacent grid points. In this version of Laplacian smoothing, no e�ortis made to ensure that mesh quality is improved, and because the algorithm is heuristic, poor quality or eveninvalid elements can result from the use of this technique. See the two leftmost submeshs of Figure 5 for anexample for which Laplacian smoothing fails. However, the technique is computationally inexpensive, easyto implement, and therefore commonly used.A simple variant of Laplacian smoothing, which we call \smart" Laplacian smoothing, relocates the freevertex to the geometric center of the adjacent grid points only if the quality of the local mesh is improvedaccording to some mesh quality measure. In this case, the smoothing operator given in Equation (1) has thefollowing action:Compute f (x0) and A(x0)Compute x̂ =Pi2V xi=jV jCompute f (x̂) and A(x̂) 3

If A(x̂) > A(x0) set xnew = x̂where xi is the position of the ith adjacent vertex. Computing x̂ is inexpensive, and the total time requiredby this method is dominated by the two function evaluations, f (x0) and f (x̂).2.2 Optimization-based SmoothingThe optimization approach used in Opt-MS �nds the position x� that maximizes the composite function�(x) = min1�i�n fi(x): (2)As a particular example, if each fi were a triangle angle, then the optimization algorithm would seek tomaximize the minimum angle in the local submesh. We illustrate the character of this function by showing aone-dimensional slice through a typical function � in Figure 3. Note that each fi(x) is a smooth, continuouslydi�erentiable function and that multiple function values can obtain the minimumvalue. Hence, the compositefunction �(x) has discontinuous partial derivatives where the active set A changes.
1

2

3

4

x

h
5

f

f

f

f

fFigure 3: A one-dimensional slice through the nonsmooth function �(x). We solve this nonsmooth optimization problem using an analogue of the steepest descent method forsmooth functions. The search direction, s, at each step is the steepest descent direction from all possibleconvex linear combinations of the gradients in A(x). This is computed by solving the quadratic programmingproblem min �gT �g where �g =Xi2A�igi(x)subject to Xi2A�i = 1; �i � 0for the �i. The line search subproblem along s is solved by predicting the points at which the active set A willchange. These points are found by computing the intersection of the projection of a current active functionin the search direction with the linear approximations of each fi(x) given by the �rst-order Taylor seriesapproximation. The distance to the nearest intersection point from the current location gives the initial steplength, �. The initial step is accepted if the actual improvement achieved by moving v exceeds 90 percent ofthe estimated improvement or if the subsequent step results in a smaller function improvement. Otherwise� is halved recursively until a step is accepted or � falls below some minimum step length tolerance.In general, the optimization process is terminated if one of the following conditions apply: (1) the step sizefalls below the minimum step length with no improvement obtained; (2) the maximum number of iterationsis exceeded; (3) the achieved improvement of any given step is less than some user-de�ned tolerance; or (4)the Kuhn-Tucker conditions of nonlinear programming are satis�ed indicating that we have found a localmaximum x� [5]. The action of the smoothing operator for optimization-based smoothing is given in Figure4. Amenta et al. [1] have shown that this technique is equivalent to generalized linear programmingtechniques by and thus the convex level set criterion can be used to determine whether there is a unique4

iter = 0Compute f (x0) and A(x0)While ((xiter 6= x�) and (� > MIN STEP)and (iter < MAX ITER) and(jA(xiter)�A(xiter�1)j > MIN IMP))Compute the gradients giterCompute search direction siterCompute �While (STEP NOT ACCEPTED)and (� > MIN STEP)Compute xiter+1 = xiter + �siterCompute f (xiter+1) and A(xiter+1)Test for step acceptance� = �=2Endwhileiter = iter + 1Endwhile Figure 4: The optimization-based smoothing algorithmsolution, x�. Amenta et al. [1] described the level sets for several mesh quality criteria and found that manyof them meet the convexity requirement for unique solutions in the feasible region. We note that similarlocal optimization-based smoothing methods have been proposed for a variety of optimization proceduresand mesh quality measures, (see, e.g. Bank and Smith [3], Shephard and Georges [22], Staten et al. [21],and Knupp [18].To illustrate a case for which optimization-based smoothing succeeds where Laplacian smoothing fails,we consider the initial local submesh drawn in the leftmost �gure of Figure 5. In each submesh, the positionof the free vertex is denoted with a black circle. The center submesh the shows the results of Laplaciansmoothing; the free vertex position has moved outside the feasible region and elements t2 and t3 havebecome inverted. In the rightmost �gure we show the results of optimization-based smoothing. The localsubmesh has signi�cantly improved quality, and all of the elements remain valid.
t0

t1

t2
t3

t1
t0

t3
t2t2

t3

t0 t1

t2Figure 5: A local submesh for which optimization-based smoothing succeeds where Laplacian smoothing fails.The original local submesh is shown in the leftmost �gure. The center �gure shows the results of Laplaciansmoothing, which is a tangled mesh. In the rightmost �gure we show the results of optimization-basedsmoothing.2.3 The Combined ApproachesA number of approaches that combine Laplacian and optimization-based smoothing can be used to improvethe mesh as e�ectively as optimization-based smoothing at a fraction of the cost. In this section, we describefour such approaches available in the Opt-MS package.5

Combined Approach 1 (C1) In this technique, the active value of the initial mesh is compared with auser-de�ned threshold value. If the threshold value is exceeded, the smart variant of Laplacian smoothing isused; otherwise, optimization-based smoothing is performed.Combined Approach 2 (C2) In this technique, smart Laplacian smoothing is used as the �rst step forevery grid point. The active value in the local mesh after this step is compared with a user-de�ned thresholdvalue. If the active value exceeds the threshold value, the algorithm terminates; otherwise, optimization-based smoothing is performed.Combined Approach 3 (C3) In this technique, the active value of the initial mesh is compared witha user-de�ned threshold value. If the threshold value is exceeded, no smoothing is performed; otherwise,Laplacian smoothing is used. If the active value still does not exceed the threshold value following Laplaciansmoothing, the optimization-based smoother is used.Combined Approach 4 (C4) or Floating Threshold (F) This technique is similar to the secondcombined approach except that we use a
oating threshold rather than a �xed one. After each smoothingpass, the threshold value for the next pass is set equal to the global minimum active value in the mesh plus aconstant. Experiments showed that a constant of �ve degrees works well in practice for both two and threedimensions.2.4 Typical Results for Mesh ImprovementTypical results comparing the e�ectiveness and computational cost of the various smoothers for two- andthree-dimensional application meshes are given in Freitag et al. [13], Freitag and Ollivier-Gooch [10], andFreitag [9]. In all cases, the mesh quality function used to determine the active value is the minimum sineof the angles in the incident elements. E�ectiveness of the smoothing technique is measured by examiningthe global minimum and maximum angles/dihedral angles in two/three dimensions. Computational cost ismeasured by the average time required to smooth each vertex in the mesh. In each case studied in [9] theoptimization-based method yielded a greater increase in the minimum angle than the Laplacian smootherdid. The corresponding increase in computational cost is approximately a factor of four in two dimensionsand a factor of ten in three dimensions. For all but one case, the combined approaches were able to obtainthe same minimum angle as optimization-based smoothing used alone at a fraction of the cost.In two dimensions, the cost of the combined approaches in decreasing order was C1, C2, C4, and C3,which corresponds to a decreasing number of function evaluations. In fact, the third combined approachoften required less time than the Laplacian smoother because so few grid points required smoothing. Inthree dimensions, the ordering for cost e�ectiveness of the methods is mixed, but the C4 approach alwaysobtains a good mesh at a low computational cost. The cost of the third approach can be further reduced byevaluating only grid points that were repositioned or are adjacent to grid points that were repositioned inthe previous smoothing pass.In addition, the C1, C2, and C4 approaches created more equilateral elements than optimization-basedsmoothing in both two and three dimensions. Thus, these techniques tend to generate higher-quality meshesthan either Laplacian or optimization-based smoothing used alone and their use is recommended; particularlyC2 and C4. In contrast, the C3 approach had a relatively poor angle distribution because only a small numberof the grid points were relocated. Its use is recommended only for the cases in which the time to smooth themesh must be small and the user is interested only in eliminating extremely distorted elements rather thanan overall improvement to the mesh.2.5 Quality Metrics Provided in Opt-MSThe Opt-MS package includes a number of geometry-based quality metrics for two- and three-dimensionalmeshes. Many of these measures are angle based, but new metrics can be added upon request.1 In addition,1Currently supported metrics are targeted at improving meshes for isotropic problems. Anisotropic smoothing typicallyrequires application solution information in addition to geometric information and is therefore problem dependent. The6

future releases of Opt-MS will allow the users to input their own quality metric function and gradient routinesfor optimization-based smoothing.Table 1 contains a list of currently supported metrics thatmeasure triangle quality. The Opt-MS referencevariable, the number of function evaluations per triangle, n, and the formula used to compute the functionvalue are also given. In the formulas given, �i is an angle of the triangle, At is the area, Jt is the Jacobian(two times the area), Je is the Jacobian of an equilateral triangle de�ned by the edge opposite the free vertex,and Li is the length of the edge opposite �i.Table 1: Two-Dimensional Quality MetricsQuality Metric Opt-MS Variable n fiMaximize the minimum angle MAX MIN ANGLE 3 �iMinimize the maximum angle MIN MAX ANGLE 3 ��iMaximize the minimum cosine MAX MIN COSINE 3 cos(�i)Minimize the maximum cosine MIN MAX COSINE 3 �cos(�i)Maximize the minimum sine MAX MIN SINE 3 sin(�i)Minimize the maximumdeviation from equilateral MIN MAX JACOBIAN DIFF 1 � (Jt�Je)2JeMaximize the minimum scaled Jacobian MAX MIN SCALED JACOBIAN 3 JtLjLkMaximize the minimum ratio oftriangle area to edge length MAX MIN AREA LENGTH RATIO 1 12Atp3(L1+L2+L3)Default (max min sine) FUNCTION DEFAULT 2D 3 sin(�i)Table 2 contains a list of the currently supported metrics that measure tetrahedron quality. The Opt-MSinput variable, the number of function evaluations per tetrahedron, n, and the formula used to compute thefunction value are also given. In the formulas given in Table 2, �i is a dihedral angle of the tetrahedron, Vtis the volume of the tetrahedron, Jt is the Jacobian (six times the volume), and Li is the length of the edgeopposite �i. Table 2: Three-Dimensional Quality MetricsQuality Metric Opt-MS Variable n fiMaximize the minimum dihedral angle MAX MIN DIHEDRAL 6 �iMinimize the maximum dihedral angle MIN MAX DIHEDRAL 6 ��iMaximize the minimum cosine of dihedral angle MAX MIN COSINE DIHEDRAL 6 cos(�i)Minimize the maximum cosine of dihedral angle MIN MAX COSINE DIHEDRAL 6 �cos(�i)Maximize the minimum sine of dihedral angle MAX MIN SINE DIHEDRAL 6 sin(�i)Default (max minimum sine of dihedral angle) FUNCTION DEFAULT 3D 6 sin(�i)Two pairs of these measures give nearly identical results, though not necessarily identical convergencebehavior: maxmin angle � minmax cosineminmax angle � maxmin cosine:In addition, test cases showed that metrics that seek only to remove large angles from the mesh do not succeedin eliminating small angles; however the criteria that eliminate small angles also succeed in eliminating largeangles [10]. Maximizing the minimum sine of the (dihedral) angles successfully eliminates poor angles atboth extremes because it is small near the angles of 0o and 180o. This is the default metric in both two andthree dimensions.interfaces necessary to support this functionality will be included in future releases of the Opt-MS software.7

3 Mesh UntanglingThe mesh untangling method provided in Opt-MS is a local technique formulated in the same manner asthe smoothing techniques. That is, given a free vertex, v, and its adjacent vertices V = adj(v), the newposition of the free vertex, xnew, is given by the general operationxnew = Untangle(x, V , jV j, conn(V)).Ideally, xnew will either untangle the local submesh, or improve the local submesh in such a way that it can beuntangled in a succeeding sweep through the mesh. The action of the operator Untangle can take a varietyof forms ranging from heuristic procedures similar to Laplacian smoothing to optimization techniques suchas those described earlier. In this section, we describe a formulation based on linear programming techniquesthat is guaranteed to converge for each local submesh problem.2
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Minimum Angle

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Scaled Jacobian

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Minimum RMS

Figure 6: Level sets for the minimum angle, minimum sine of an angle, and minimum root mean squarequality metrics. Each of these metrics is convex in the feasible region de�ned by the interior convex hull ofthe local submesh, but is nonconvex outside the feasible region.3.1 Formulation and SolutionTo guarantee convergence on the local submesh, the function level sets must be convex regardless of theposition of the free vertex [1]. Level sets for several of the mesh quality metrics discussed in Section 2 areshown in Figure 6. These metrics are clearly nonconvex if the free vertex lies outside of the feasible region,and convergence cannot be guaranteed for these measures when the mesh is invalid. In fact, preliminarytests using these metrics for mesh untangling often failed to converge.One function that has convex level sets regardless of the position of the free vertex is minimum elementarea (volume in 3D) in a local submesh f(x) = min1�i�n Ai(x);where n is the number of simplices in the local submesh, Ai is the area (volume) of simplex ti, and x is theposition of the free vertex. In two dimensions, if triangle ti is de�ned by the free vertex position, x, andthe positions of two other vertices, xi and xj , then Ai can be expressed as a function of the Jacobian of theelement [18] Ai = det(xi � x; xj � x) = axix+ ayiy + ci;where axi = yi � yj ; ayi = xj � xi; ci = xiyj � xjyi:Similarly in three dimensions, if tetrahedron ti is de�ned by the free vertex position, x and the positions ofthree other vertices, xi, xj , and xk, then Ai is given byAi = det(xi � x; xj � x; xk � x) = axix+ ayiy + aziz + ci;2The global convergence properties of the local untangling method are not yet well understood, although the method workswell in both two and three dimensions. 8

where axi = �det24 1 1 1yi yj ykzi zj zk 35 ayi = �det24 xi xj xk1 1 1zi zj zk 35 azi = �det24 xi xj xkyi yj yk1 1 1 35ci = det24 xi xj xkyi yj ykzi zj zk 35The associated optimization problem for mesh untangling is thenmax min1�i�n Ai(x): (3)An example of the level sets typical of this function are shown in Figure 7 for three di�erent local submeshes,including one that has �xed edges that are tangled. We note that this function is not suitable for optimization-based mesh improvement because a small, but perfectly shaped element is likely to be distorted in an e�ortto maximize its area.
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Minimum Area

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Minimum Area

−1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

Minimum Area

Figure 7: Level sets for the minimum element area function for three local submeshes, including one thathas �xed edges that are tangledWe showed that the level sets are convex in both two and three dimensions in [12]. In two dimensions,the level sets are given by f(x) = min1�i�n Ai(x) = min1�i�n 12bih?i(x) = C; (4)where C is a constant, bi is the length of the �xed edge of the triangle i, and h?i is the perpendicular distancefrom x to the line de�ned by the �xed edge of triangle i. Note that there are no restrictions on C; it can begreater than, equal to, or less than zero. Equation 4 shows that all points on a line parallel to the �xed edgeof the triangle create triangles of equal area. Thus, for a local submesh, the level sets are the intersection ofthe half planes de�ned by the lines an equal distance and parallel to the �xed edge of each triangle. Thesehalf planes are convex regions; the intersection of convex regions is convex, and therefore the level sets areconvex. An analogous argument can be made for three-dimensional local submeshes.In both 2D and 3D, Ai is a linear function of the free vertex position, x. Thus Equation 3 is a linearprogramming problem that is formulated as follows. Let d be the spatial dimension of the problem and n bethe number of incident elements. De�ne the (d+1)�n matrixA to be the matrix whose ith column containsthe entries axi, ayi, 1 for d = 2, and axi, ayi, azi, 1 for d = 3 and � to be the (d+ 1)-vector containing thespatial coordinates of the free vertex in the �rst d components and the current minimum area (volume) inthe last component. Then, by de�nition of A and �,AT� = c� s;where c is the n-vector containing the values of ci de�ned above, and s is an n-vector of slack variables,where the ith component, si, gives the di�erence between the area (volume) of simplex ti and the current9

minimum area (volume). Thus, the dual of the linear programming problem ismax bT�subject to AT� + s = c; s � 0;where b is a (d+ 1)-vector whose �rst d components are zero and whose last component is one, so that bT�gives the current minimum simplex area (volume).The primal of the linear program is thenmin cTy (5)subject to Ay = b; y > 0 (6)where y is the primal solution vector.The linear programming problem de�ned by equations (5) and (6) can be solved using the simplex method[14]. The phase one solution can also be formulated as a linear programming problem; the details of theformulation and solution can be found in [12]. The linear program has been solved when si � 0; i = 1 : : :nand the complementarity condition yT s = 0 has been satis�ed.3.2 Typical Results for Mesh UntanglingWe illustrated the fact that local submeshes exist for which Laplacian smoothing will fail in Figure 5. InFigure 8, we show the same local submesh but with the initial position of the free vertex outside the feasibleregion. The second submesh is the result of Laplacian smoothing, which is also a tangled submesh. In thelast �gure, the result of using the optimization-based approach to mesh untangling is shown. In this casethe free vertex is moved to a location that results in a positive area for all incident elements.
−0.25 0.15
−1

0.225
Initial Mesh

x

y

−0.25 0.15
−1

0.225
Laplacian Smoothing

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.25 0.15
−1

0.225
Untangled Mesh

x

yFigure 8: A local submesh that shows that Laplacian smoothing can sometimes fail. A tangled, localsubmesh is shown in the leftmost �gure. The center �gure shows the results of Laplacian smoothing, whichis also a tangled local submesh. In the right �gure, we show the results of mesh untangling using the linearprogramming approach.To show typical results for the mesh untangling problem, we start with a two-dimensional Delaunay meshcreated using the Triangle package [23]. This mesh is perturbed in a random fashion so that a user-de�nedpercentage of the nodes are moved a user-de�ned distance. The leftmost mesh in Figure 9 shows the case inwhich 10 percent of the elements of mesh are perturbed a distance equal to the average element edge length,h. The perturbed mesh is untangled by using the linear programming approach. The untangling processstops when all of the elements are valid or a maximum number of sweeps have been performed (in this casetwenty). The untangling proceedure results in meshes of extremely poor quality; minimum angles of 10�5degrees are typical. Therefore we follow mesh untangling with three passes of optimization-based smoothingusing the second combined approach described in Section 2 and the quality metric \maximize the minimumsine". In Figure 9, the central mesh shows the results of mesh untangling, and the rightmost �gure showsthe same mesh after three passes of smoothing.To examine the e�ectiveness of mesh untangling as the number and severity of the tangled elementsincrease, we created two series of meshes. In the �rst series the magnitude of the perturbation is �xed to bethe average element edge length, h, and additional nodes are perturbed in each successive mesh in the series.In the second series of meshes, the number of nodes that are perturbed is held �xed, but the magnitude ofthe perturbation is increased in each successive mesh. The results showed that the amount a grid point is10

Figure 9: Typical results for mesh untangling using the linear programming approach. The mesh on the leftis the original, tangled mesh; the mesh in the middle is the same mesh after untangling, and the mesh onthe right is the same mesh after mesh smoothing.perturbed signi�cantly increases the number of untangling passes required and decreases the e�ectiveness ofthree passes of mesh smoothing. In contrast, the number of invalid elements did not signi�cantly e�ect thenumber sweeps required to untangle the mesh. The cost of mesh untangling per grid point is three timessmaller than the cost of mesh smoothing using the C2 approach.4 Using the Opt-MS PackageIn this section, we describe the use of Opt-MS package to improve an application mesh. In particular, wediscuss minimal amount of code needed to smooth an application mesh, give a detailed example of the userinput required for each local submesh, describe the usage of the mesh quality assessment routines, and showtypical output from the Opt-MS statistics and pro�ling options. The details of the API function calls andtheir input options can be found in the appendix; the details of the algorithms can be found in Sections2 and 3. The software is written in C, and the routines have been tested with C and C++ applications.Fortran bindings will be provided in a future release.4.1 Smoothing and Untangling Local SubmeshesThe primary functionality of the Opt-MS package is the smoothing and untangling of local simplicialsubmeshes (triangles in 2D, tetrahedra in 3D). This functionality can be accessed by using three Opt-MSlibrary functions:� SMinitSmoothing to create and initialize the Opt-MS data structures. This routine must be calledonce before any other Opt-MS calls are made. Input to this routine allows the user to specify optionsfor the quality metric, the optimization technique, and threshold value for the combined approaches.This routine returns a void * data structure that must be passed to most other Opt-MS functions.� SMsmooth or SMuntangle to adjust the position of a free vertex. These routines require several inputarguments from the user, which are described in detail in Section 4.2. One of these arguments is thespatial location of the free vertex; on output, this argument is overwritten with the new position ofthe free vertex.� SMfinalize to free the data structure created by SMinitSmoothing. This routine should be calledonce when mesh optimization is complete.The skeleton program given below illustrates the basic use of these three calls. The OptMS.h �le must beincluded in the preamble to de�ne the smoothing functions and Opt-MS constants. The SMinitSmoothingfunction is called once before looping through the interior vertices of the mesh and smoothing them. Theoptions available to the user for initializing the smoothing technique, mesh quality metric, problem dimension,etc, are described in detail in the appendix. In this example, a single smoothing pass through the meshvertices is made before the function SMfinalize is called to free the smoothing data structures smooth data.Mesh untangling can be performed by simply replacing the SMsmooth call with a call to SMuntangle, theargument lists are the same. 11

/*------------- Preamble-------------------- */#include "OptMS.h"/*------------- Main Routine---------------- */int main(int argc, char **argv){ int i;int dimension = 2; /* the problem dimension */Mesh_data *mesh; /* the user's mesh data structure */void *smooth_data; /* the smoothing data structure */int num_incident_vtx; /* number of incident vertices */int num_incident_tri; /* number of incident triangles */int free_vtx[2]; /* coordinates of the free vertex */double **vtx_list; /* coordinates of the incident vtx */int **vtx_connectivity; /* connectivity of the incident tri *//*------------- Initialize the user's mesh -----------*/initMesh(&mesh); /* a user written routine *//*----- Initialize the Opt-MS data structures ---- *//* If argc and argv are not available, NULL may be passed in their place */SMinitSmoothing(argc, argv, dimension, OPTMS_COMBINED, MAX_MIN_SINE,OPTMS_DEFAULT, &smooth_data);/*------------ Smooth the mesh------------ */for (i=0;i<mesh->num_nodes;i++) {if (!mesh->vtx[i]->boundary) {/*---This is a user-written subroutine to fill the data structuresnecessary for smoothing a local submesh. These data structuresare described in detail in the next subsection---*/getLocalSubmesh(mesh, mesh->vtx[i], num_incident_vtx, num_incident_tri,free_vtx, vtx_list, vtx_connectivity);/*---------------- Smooth a local submesh--------------------- */SMsmooth(num_incident_vtx,num_incident_tri,free_vtx,vtx_list,vtx_connectivity,smooth_data);}}/*------- Release the Opt-MS data structures------*/SMfinalizeSmoothing(smooth_data);} There are several API functions that allow the user to change the technique (SMsetSmoothTechnique),quality metric (SMsetSmoothFunction), threshold value (SMsetSmoothThreshold), or problem dimension(SMsetProblemDimension) at any time during the mesh optimization process. These are described in moredetail in the appendix. 12

4.2 Input to SMsmooth and SMuntangleThe SMsmooth and SMuntangle subroutines require spatial and connectivity information about the localsubmesh, which the user must provide in the following argument list:SMsmooth(int num incident vtx, int num incident tri,double *free vtx, double **incident vtx,int **vtx connectivity, void *smooth data).4.2.1 Two-Dimensional SubmeshesTo illustrate data that �lls the argument list for a two-dimensional local submesh, we consider the submeshshown in Figure 10. In this case, the free vertex, v, is connected to �ve incident vertices, v0; v1; : : : ; v4with spatial positions as shown, and �ve incident triangles, t0; t1; : : : ; t4.
v3=(.3,.9)

v1=(.6,.5)

v2=(-.2,.7)

t4t0

t1
t3

t2

v0=(.1,.1) v4=(.4,.2)

vFigure 10: A typical two-dimensional local submesh in which v is the free vertex, v0; v1; : : : ; v4 are theincident vertices, and t0; t1; : : : ; t4 are the incident triangles.If the current position of v is (.2,.25), then the input arguments to the function SMsmooth or SMuntangleare as follows:� num incident vtx: an integer containing the number of vertices adjacent to the free vertex, in thiscase 5� num incident tri: an integer containing the number of triangles incident to the free vertex, in thiscase 5� free vtx: a pointer to a two-vector of type double containing the x and y coordinates of the freevertex, in this case free vtx[0] = .2 and free vtx[1] = .25.� incident vtx: a pointer to an array of two-vectors of type double containing the spatial positions ofthe incident vertices, in this caseincident vtx[0][0] = .1 incident vtx[0][1] = .1incident vtx[1][0] = .6 incident vtx[1][1] = .5incident vtx[2][0] =-.2 incident vtx[2][1] = .7incident vtx[3][0] = .3 incident vtx[3][1] = .9incident vtx[4][0] = .4 incident vtx[4][1] = .2� vtx connectivity: a pointer to an array of two-vectors of type int containing the connectivity of theincident triangles. The triangles must be right handed with the free vertex ordered �rst. The integervalues correspond to the index location of the incident triangle vertices in the incident vtx arraygiven above. In this case, the connectivity information for elements t0; : : : ; t4 are13

vtx connectivity[0][0] = 3 vtx connectivity[0][1] = 2vtx connectivity[1][0] = 2 vtx connectivity[1][1] = 0vtx connectivity[2][0] = 4 vtx connectivity[2][1] = 1vtx connectivity[3][0] = 0 vtx connectivity[3][1] = 4vtx connectivity[4][0] = 1 vtx connectivity[4][1] = 3� smooth data: a void pointer the data structure created in SMinitSmoothing4.2.2 Three-Dimensional SubmeshesAn example for the input required in three dimensions is given for the partial three-dimensional local submeshshown in Figure 11. Only two of the incident tetrahedron are shown; a full local submesh will typically containmany more incident elements than illustrated here.
v

v1 = (.1,.1,.1) v3 = (.6,.2,.1)

t0

t1

v0 = (.3,-.2,.15)

v2 = (.8,-.1,.4)Figure 11: A partial three-dimensional local submesh in which v is the free vertex, v0; : : : ; v3 are the incidentvertices, and t0 and t1 are two of the incident tetrahedron.If the current position of v is (.35,.25,.6) and the number of incident vertices is n, then the input argumentsto the function SMsmooth or SMuntangle are as follows:� num incident vtx: an integer containing the number of vertices adjacent to the free vertex, in thiscase n� num incident tri: an integer containing the number of triangles incident to the free vertex, in thiscase 2n� 4� free vtx: a pointer to a three-vector of type double containing the x, y, and z coordinates of the freevertex, in this case free vtx[0] = .35, free vtx[1] = .25, and free vtx[2] = .6� incident vtx: a pointer to an array of three-vectors of type double containing the spatial positions ofthe incident vertices. For the four incident vertices illustrated in Figure 11, the entries areincident vtx[0][0] = .3 incident vtx[0][1] = -.2 incident vtx[0][2] = .15incident vtx[1][0] = .1 incident vtx[1][1] = .1 incident vtx[1][2] = .1incident vtx[2][0] = .8 incident vtx[2][1] = -.1 incident vtx[2][2] = .4incident vtx[3][0] = .6 incident vtx[3][1] = .2 incident vtx[3][2] = .1� vtx connectivity: a pointer to an array of three-vectors of type int containing the connectivity ofthe incident tetrahedra. The tetrahedra must be right-handed with the free vertex ordered �rst. Theinteger values correspond to the index location of the incident tetrahedra vertices in the incident vtxarray given above, in this casevtx connectivity[0][0] = 0 vtx connectivity[0][1] = 1 vtx connectivity[0][2] = 3vtx connectivity[1][0] = 3 vtx connectivity[1][1] = 2 vtx connectivity[0][2] = 0� smooth data: a void pointer the data structure created in SMinitSmoothing14

4.3 Measuring Mesh QualityThe user may obtain information regarding mesh quality by looping through the elements of the mesh andaccumulating quality information. This process involves calling three Opt-MS subroutines to initialize thequality table, SMinitQualityTable, accumulate information about the quality of individual elements,SMaccumulateQualityInformation, and then print the accumulated information, SMprintQualityInformation.The input argument to the initialization and print functions is the smoothing data structure created bySMinitSmoothing, and input to the accumulation routine is that same data structure together with thespatial location of the vertices of the element simplex in right-hand order as a double ** array. The verticesarray will be of dimension 3 � 2 for triangles and of dimension 4 � 3 for tetrahedron.Example usage of the quality assessment routines is provided below for a two-dimensional triangular mesh.A three-dimensional example using these routines can be found in the �le OPTMS DIR/examples/3d/Smooth.c.Note that the quality table must be reset before each pass through the mesh or information will continue toaccumulate over multiple passes./* Declaratives */double vertices[3][2];... user code... initialize the mesh... SMinitSmoothing(...).../***//* Assess the quality of the mesh *//***/SMinitQualityTable(smooth_data);for (i=0;i<mesh->num_tri;i++) {for (j=0;j<3;j++) {vertices[j][0] = mesh->vtx[vertex_id]->coord[0];vertices[j][1] = mesh->vtx[vertex_id]->coord[1];}SMaccumulateQualityInformation(smooth_data,vertices);}SMprintQualityInformation(smooth_data);....The call to SMprintQualityInformation will result in a table of mesh quality information printed tostdout as shown below. Quality metrics that are currently accumulated are the minimum, maximum, andaverage values of element angles (dihedral angles in 3D), the deviation of the element from an equilateralelement, the scaled Jacobian, and, the element area. The number of values accumulated for each functionis contained at the end of each row in parentheses. If more than one value is accumulated for each element,the average minimum and maximum values are also reported.Mesh Quality Information for 878 Elements---Quality Metric (Target) Min Value Max Value Avg Value Avg Min Avg Max---Angle (6.00e+01) 2.62e+01 1.28e+02 6.00e+01 4.05e+01 8.57e+01 (2634)Deviation from Equil (0.00e+00) -1.82e+00 -6.24e-06 -1.51e-01 -1.51e-01 -1.51e-01 (878)Scaled Jacobian (8.60e-01) 4.41e-01 1.00e+00 8.01e-01 6.43e-01 9.64e-01 (2634)Triangle Area (0.00e+00) 8.16e-05 7.68e-03 1.14e-03 1.14e-03 1.14e-03 (878)---There are 0 invalid elements in the meshIn addition, the number of invalid elements found in the mesh, those with negative area (or volume), isalso reported. The quality information accumulated about the mesh can be used in conjunction with mesh15

untangling by using the function call SMinvalidMesh, which returns TRUE if invalid elements were foundin the last accumulation of quality information. Hence one could write a loop to untangle a mesh as follows:while (SMinvalidMesh(smooth_data) && (untangle_pass < MAX_PASSES)) {Loop over the nodes, untangling the meshSMinitQualityTableLoop over the elements, evaluating the quality of the meshuntangle_pass++}4.4 Gathering and Reporting Opt-MS StatisticsTo accumulate and print statistics about mesh improvement, the Opt-MS library should be con�gured withthe {enable-stats option. If this option is enabled, statistics are automatically accumulated for each localsubmesh. Minimal impact on performance is seen when this functionality is enabled; there is no degradationof performance if the functionality is not enabled. To access the information that is accumulated, the usermust call two additional Opt-MS subroutines each sweep through the mesh as follows:for (i=0;i<NUM_SMOOTH_PASSES;i++) {SMinitSmoothStats(smooth_data);Loop over the nodes, smoothing the meshSMprintSmoothStats(smooth_data);}The SMinitSmoothStats call reinitializes the statistics data structure so that statistics for each passthrough the mesh can be accumulated individually, and the SMprintSmoothStats call prints the followingtable of information for the accumulated data.**SMOOTHING STATISTICS**The approximate global minimum value 0.006509The total number of nodes smoothed 400The number of calls to Laplacian smoothing 400Invalid Laplacian steps (percent) 94 (23.500000)Non-improvement Laplacian steps (percent) 60 (15.000000)The number of calls to optimization smoothing 389Average number of iterations/optimization call 5.961440The number of cells with no improvement 1The average final active value 0.244698The average improvement (over all cells) 0.140318The termination status:Laplacian smoothing enough (percentage) 11 (2.750000)Equilibrium pt found (percentage) 319 (79.750000)Started at equilibrium (percentage) 0 (0.000000)Zero search direction (percentage) 1 (0.250000)Improvement too small (percentage) 64 (16.000000)Flat no improvement (percentage) 5 (1.250000)Step too small (percentage) 0 (0.000000)Max Iter Exceeded (percentage) 0 (0.000000)**The �rst value is an approximation to the global minimum value in the mesh. Because this value isdetermined by comparing the local minimumvalue with previously completed local submesh minimumvalues,this value is not necessarily the true global minimum value. That is, because mesh elements are included16

in more than one local submesh, poor-quality elements may be improved more than once in di�erent localsubmeshes. However, the statistics-gathering routine works only with local submeshes and cannot track thisglobal information. Thus, only the �rst improvement will be recorded and the true minimum value may begreater than the one reported. The routine also prints statistics on the number of nodes for which Laplaciansmoothing was used, and how many of those cases resulted in an invalid step or yielded no improvement tothe mesh and were therefore not accepted. The optimization statistics include the number of nodes smoothedby using optimization-based technique, the average number of optimization iterations needed to adjust eachgrid point, the average active value, and the average improvement in the local submeshes. In addition, thetermination status percentages for the local submeshes are reported.4.5 Pro�ling Opt-MSThe Opt-MS package has been instrumented by using the SUMAA LOG system to monitor the timerequired to complete various major events in the smoothing code.3 The logging library is designed to belightweight and nonintrusive when enabled. When the functionality is not enabled, there is no degradationof performance.This functionality is enabled by con�guring the library with -enable-logging option. The monitored eventsin the smoothing code include the main call to SMsmooth, which gives the total time for smoothing the localsubmesh. That time is further divided into optimization and Laplacian totals and important subcomponenttotals such as function and gradient evaluation and search direction computation. For each event, the numberof calls made is reported, along with the total time, time per call, and percentage of the total time spent ineach event. These calls are nested so that the time spent in children routines are reported as a part of theparent event's time. Sample output from Opt-MS pro�ling is shown below. If the argc and argv variablesfrom the main routine are passed to SMinitSmoothing, the command line option -log file filename canbe used to print logging information to a �le. If this option is not desired, or argc and argv are not available,the user may pass NULL arguments instead of argc and argv.Log Performance Summary (Single Processor) :----------------------------------Total Time (sec): 2.450e-01Total Flops: 0.000e+00MegaFlops: 0.000e+00--No flops accumulated, printing -1 in percent flops columnEvent Summary:--Count: number of times phase was executedTime and Flops/sec:Max - maximum over all the processorsRatio - ratio of max to min over all processorsGlobal: entire computation%T - percent time in this event%F - percent flops in this event--Phase Count Total Time(s) Time/call Flops %Time %Flops--Smooth 1200 2.45e-01 2.04e-04 0.00e+00 100.0 -1.0Init Smooth 1200 5.65e-03 4.71e-06 0.00e+00 2.3 -1.0Initialize 2401 3.50e-02 1.46e-05 0.00e+00 14.3 -1.0Optimize 558 2.01e-01 3.60e-04 0.00e+00 82.0 -1.0Function 4496 4.12e-02 9.16e-06 0.00e+00 16.8 -1.0Gradient 1412 1.23e-01 8.73e-05 0.00e+00 50.3 -1.0Search Dir 1412 6.16e-03 4.36e-06 0.00e+00 2.5 -1.03This system allows the user to monitor both the time and
op counts for user-de�ned events in the code, but in the currentrelease, only the time used is monitored. 17

Edge/Face Srch 90 3.19e-04 3.54e-06 0.00e+00 0.1 -1.0End Smooth 1200 7.49e-04 6.24e-07 0.00e+00 0.3 -1.0Init Stats 3 3.93e-06 1.31e-06 0.00e+00 0.0 -1.0Lap Smooth 1200 1.87e-02 1.56e-05 0.00e+00 7.6 -1.05 Compiling and Linking Opt-MSThe Opt-MS library is distributed with C source code that can be con�gured and built to meet a particularuser's needs. In this section, the directory structure is described as well as the commands and optionsavailable for con�guring and compiling the library. The use of the library is described in detail in Section 4.5.1 Opt-MS Directory StructureIn the documentation that follows, it is assumed that the user has successfully downloaded and extractedthe Opt-MS package from the �le Opt-MS.tar.Z using the commandsuncompress Opt-MS.tar.Z; tar -xvf Opt-MS.tarLet OPTMS DIR be the local directory into which the package was extracted, for example /home/me/Opt-MS.The directory structure of the Opt-MS distribution is as follows:� docs: contains the documentation for the Opt-MS library in both postscript and html format in thesubdirectories tex and www, respectively.� examples: contains the two- and three-dimensional examples in the subdirectories 2d and 3d,respectively. Each subdirectory contains a driver code, Smooth.c, that demonstrates most of thefunctionality currently available in the Opt-MS package. In particular, each driver can initialize anumber of test meshes, assess their quality, untangle meshes with invalid elements, and smooth theresulting valid mesh.� include: contains the include �les for the library, including the �le OptMS.h that must be includedin the preamble of a user's code.� lib: created during the installation process and contains the versions of the library compiled from thisrelease directory. Di�erent versions are created for optimized and debug compile
ags (OPT=O or g)and for each of the architectures, ARCH, for which the library is compiled. Thus the Opt-MS librarywill exist in OPTMS DIR/lib/libOPT/ARCH/libSM.a� src: contains the source code for the Opt-MS library. The smoothing library uses the Lapack linearsolver routine, dgesv, and the necessary Lapack and BLAS routines are distributed with Opt-MS.� src log: contains the source code for the pro�ling code used in the Opt-MS library.� util: contains shell scripts used in the con�guration process5.2 Con�guringThe �rst step in installing the Opt-MS library on your a system is to create the �le Makefile.site by usingcon�gure. This is accomplished from the OPTMS DIR directory by typing./configure [options]This script will locate the C compiler, set various options, and try to locate needed libraries (such asMPI ibf parallel logging is used). 18

5.2.1 Con�gure OptionsThe following con�gure options are available to the user:� {with-arch=ARCH: allows the user to specify the architecture for which the Opt-MS library iscompiled. A utility script will try to guess this variable, but if it is unsuccessful, the con�gure scriptwill halt and ask the user to recon�gure using this option.� {with-cc=CC: allows the user to specify the C compiler used to compile the Opt-MS source. If nocompiler is speci�ed by the user, the con�gure script will attempt to �nd one that works on the givenarchitecture starting with gcc.� {with-f77=f77: allows the user to specify the f77 compiler used to compile the BLAS and Lapackroutines distributed with Opt-MS. If no compiler is speci�ed by the user, the con�gure script willattempt to �nd one that works on the given architecture starting with f77.� {with-fc lib=FC LIB: allows the user to specify the f77 libraries used to link the application codes.This is needed for the Lapack and BLAS routines distributed with Opt-MS.� {with-opt=OPT: allows the user to specify optimization options for the compilers (both C andFortran), in particular 'g' and 'O' for the debugging and optimized versions, respectively. The defaultis O.� {enable-logging: enables the pro�ling functionality that counts the number of times various smooth-ing subroutines are called and accumulates the time used in each one. The pro�ling code is provided inthe directory OPTMS DIR/src log and will be compiled and linked with the examples provided. How-ever, no information is accumulated for the examples unless this option is enabled during the con�gureprocess. More information on this functionality can be found in Section 4.5.� {enable-stats: reports various statistics including the number of vertices smoothed, terminationstatus information, and Laplacian and optimization-based smoothing information. More informationon this functionality can be found in Section 4.4.� {with-debug=f0,1,2,3g: prints various levels of detail to help debug any problems with the smooth-ing code. Four levels of detail can be obtained:{ Level 0 is the default and prints nothing; performance is not degraded.{ Level 1 provides information about routines that user can access through the API and returnsinformation such as the quality metric used for smoothing and the technique chosen.{ Level 2 provides Level 1 information plus basic algorithmic information about smoothing of eachlocal submesh.{ Level 3 debugging provides the maximum amount of information including detailed informationabout data values and the progression of the code. Choosing the latter two options will seriouslydegrade performance.The default is level 0.� {enable-matlab: for two-dimensional submeshes, enabling this option causes the smoothing code towrite Matlab �les that draw the initial local submesh, the search direction and new local submesh eachoptimization iteration, and the �nal local submesh. This will seriously degrade performance becauseof the �le I/O and should be used only with Level 3 debugging on very small problems.� {enable-parallel: enables the parallel option for the logging library, which allows statistics to beaccumulated across the processors of a distributed memory architecture. Note that the smoothing anduntangling operations are still performed locally, but global pro�ling and statistics information can beaccumulated across processors. Enabling this functionality requires the use of the MPI standard forcommunication between processors. 19

� {with-mpidir=MPI DIR: allows the user to specify the location of an installed version of MPI. Thedefault is /usr/local/mpi. This is necessary only if the {enable-parallel feature has been activated.� {with-comm=COMM: allows the user to specify a communication device to be used if the {enable-parallel feature is activated. The default is ch p4, which typically supports a network of workstations.Devices supported on a given architecture are those supported by the local installation of MPI. Thisis necessary only if the {enable-parallel feature has been activated.5.2.2 Example Con�gure UsageThe default options for Opt-MS con�guration are� an optimization level of O� debugging, assertions, statistics, and pro�ling are turned o�Thus typing ./configure will create a make�le that will in turn create an optimized library for which allinformation gathering routines such as statistics and pro�ling are turned o�. If the user wishes to enablethese options, he need only recon�gure the system with the appropriate option selected. For example, tomake the optimized version of the smoothing library for the sun4 architecture with Level 1 debugging state-ments and with statistics and pro�ling enabled, one types:./configure --with-arch=sun4 --enable-stats --enable-logging --with-debug=1Architectures for which Opt-MS has been successfully con�gured and built include� sun4 (SUN OS 4.x)� solaris (SUN OS 5.x)5.2.3 Reasons for Con�gure to Fail� An architecture cannot be identi�ed. Run con�gure with the option {with-arch=ARCH� The Fortran libraries cannot be located. Run con�gure with the option {with-fc lib=FC LIB� The C or Fortran compilers cannot be located. Run con�gure with the options {with-cc=CC or {with-fc=FC, respectively.� The parallel option is enabled and the directory MPI DIR/lib/ARCH/COMM/ does not contain acompiled MPI library. Run con�gure with the options {with-mpidir=MPI DIR {with-arch=ARCH{with-comm=COMM as necessary.5.3 Compiling Opt-MSOnce con�gure has created the �le Makefile.site, the Opt-MS library can be made by typing./makeThis will create a directory LIB DIR = OPTMS DIR/lib/libOPT/ARCH/ where OPT and ARCH are set inthe con�guration process. The logging library libSUMAA log.lite.a, the Opt-MS library libSM.a, and theBLAS library, blas.a, are compiled and placed in LIB DIR. If con�gure is run with the option {enable-parallel, MPI communications are used to compute the logging statistics and pro�ling, and the librarieslibSUMAA log.parallel lite.a and libSM parallel.a are created. The example codes provided with the libraryare also compiled, and several test cases are run. 20

Make�le Options� To remake the library without remaking and running the example codes, type ./make install whichremoves the current libraries from LIB DIR, and recompiles the logging, BLAS, and Opt-MS sourcecode.� To remake the Opt-MS library withough remaking the logging or BLAS libraries, type ./make opt ms.� To make and run the examples without remaking the libraries, type./make examples; ./make runexamples5.4 Linking Opt-MSTo compile an application that uses the Opt-MS software, the user will need to add -IOPTMS DIR/includeand -IOPTMS DIR/log src/include to the compile line and Opt-MS (and logging) libraries in the link line.These paths are de�ned in the Makefile.site �le, which can be included in the application make�le, butthe user should be cautious about overwriting Make�le variables.As an example, a typical application make�le would contain the following lines to link the Opt-MS libraryinto the application code.TARGET = application_executableOPTMS_DIR = /home/me/Opt-MSOPTMS_INCLUDE = -I$(OPTMS_DIR)/include -I$(OPTMS_DIR)/log_src/includeCFLAGS = $(OPT) $(OPTMS_INCLUDE)OPTMS_LIB = -L$(OPTMS_DIR)/lib/libO/$(ARCH) -lSM -lSUMAAlog.lite \$(OPTMS_DIR)/lib/libO/$(ARCH)/blas.aAPP_LIB = $(OPTMS_LIB) $(FORTRAN_LIB) -lmEXAMPLESC = application_code.cOBJSC = application_code.o$(TARGET): $(OBJSC) $(OPTMS_LIB)$(CLINKER) $(CFLAGS) -o $(TARGET) $(OBJSC) $(APP_LIB).c.o: $(CC) $(OPT) -c $(CFLAGS) $*.cOther application Make�le examples can be found in the directories OPTMS DIR/examples/2d andOPTMS DIR/examples/3d.5.5 Running the Opt-MS ExamplesA number of examples that demonstrate the features of Opt-MS are included in the directoryOPTMS DIR/examples/f2d,3dg. The main driver code in each of these directories is Smooth.c, which readsin meshes from di�erent sources, assesses their quality, and untangles and smoothes each one.The executables in each directory can be made from the top level directory OPTMS DIR by typing ./makeexamples, or individually by typing ./make from the appropriate subdirectory. Once the executables aremade, several default test problems can be run by typing ./make runexamples.21

In addition to the default test problems, the example codes are designed to allow the user easilyto experiment with varying numbers of smoothing passes, di�erent Opt-MS quality metrics, smoothingtechniques, and threshold values. These quantities can all be changed by using command line optionswithout recompiling the executable. The options that are available to the user are� -P <number of passes>: sets the number of sweeps through the mesh� -M <mesh type>: a single character that sets the input mesh type. For the examples provided, in2D use `T' for Triangle, 'C' for CUBIT, and in 3D use 'C' for CUBIT, 'Q' for QMG, and 'G' forGEOMPACK.� -i <filename>: a character string (no longer than 128 characters) that gives the �le name for theinput mesh. Note that Triangle meshes are contained in two �les, meshname.ele and meshname.node,and the other �le types are contained in a single �le, meshname.mesh. The input option -i only requiresmeshname; the appropriate su�xes are automatically appended.� -T <technique>: a single character that sets the smoothing technique; use 'S' for regular Laplaciansmoothing, 'L' for smart Laplacian smoothing, 'O' (capital letter o) for optimization only, 'C' forthe default combined approach (approach 2), '1', '2', or '3' for the �rst three combined approachesdescribed in Section 2, and 'F' for the
oating threshold combined approach.� -F <quality metric id>: an integer that sets the quality metric used. Each quality metric has beenassigned a unique integer that is de�ned in the �le OPTMS DIR/include/SMuserDefs.h and describedin the appendix under the subroutine pages for SMinitSmoothing and SMsetSmoothFunction.� -A <threshold>: a double value that sets the threshold value for the combined approaches. Inputthis value in degrees for the quality metrics that are de�ned by element angles (such as maximize theminimum sine); for all others, input the desired threshold as it will be used in the code.For example, to smooth the mesh contained in the �les Triangle/rand400.fnode,eleg using �ve passes ofoptimization-based smoothing and the \maximize the minimum sine" quality metric on a solaris machine,the user would typesmooth mesh2d.solaris -M T -i Triangle/rand400 -T O -F 4 -P 5The output generated by the example code includes the mesh quality information printed to stdout foreach pass of untangling and smoothing, and also any statistics and pro�ling information that the user hasenabled. In addition, a �le called meshname.qual is generated that summarizes mesh quality information asmeasured by angle (dihedral angle in 3D) for each smoothing pass. Information included in this �le is theminimum angle in the mesh, the maximum angle in the mesh, the average of the element minimum angles,and the angle distribution decomposed into six degree bins. Finally, in two-dimensions the smoothed meshis printed to Triangle format (regardless of the input format) and can be viewed using the Triangle tool,showme. This tool can be downloaded from the URL http://www.cs.cmu.edu/~quake/triangle.html.Speci�c 2D and 3D example meshes included with the Opt-MS package are� 2d/Triangle: contains two meshes, cyl200 and rand400, generated by the Triangle package [23]� 2d/CUBIT: contains the rand3200 mesh generated by the CUBIT package from Sandia NationalLaboratories [7]� 2d/Tangled: contains derivatives of the meshes in the subdirectories Triangle and CUBIT that wererandomly perturbed so that some percentage of the elements are invalid. There are three meshes here,cyl200.t, rand400.t, and cubit. These meshes are used to test the 2D untangling functionality ofthe Opt-MS package.� 3d/CUBIT: contains the tetrahedral mesh brick generated by the CUBIT package,� 3d/GEOMPACK: contains two of the example meshes released with GEOMPACK, teapot and uobj[16] 22

� 3d/QMG: contains two of the example meshes released with QMG from Cornell, tube and poly2 [24]� 3d/Tangled: contains tangled meshes derived from the CUBIT brickmesh and the QMG tube mesh6 Getting HelpIf users encounter any problems with con�guring, compiling, linking, or using the Opt-MS software package,they should contactLori FreitagMCS 221/C223Argonne National LaboratoryArgonne, IL 60439Phone: 630-252-7246Fax: 630-252-5986email: freitag@mcs.anl.govIf the failure occurs in the con�guration process, send a brief summary of the problem and the con�g.log �le.If the failure occurs with use of the library, send the local submesh that failed.Questions and comments can also be sent to the address above, as well as suggestions for xadditional func-tionality.AcknowledgmentsThe submitted manuscript has been created by the University of Chicago as Operator of Argonne NationalLaboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. TheU.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocableworldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, andperform publicly and display publicly, by or on behalf of the Government.The author would like to thank the many contributions to both the theory behind the optimization-based mesh smoothing and untangling approaches, and the useability of the Opt-MS software. In particular,I thank Paul Plassmann of Pennsylvania State University, Mark Jones of Virginia Tech, Carl Ollivier-Goochof the University of British Columbia, and Patrick Knupp of Sandia National Laboratory for their manyhelpful suggestions and insights.
23

A Opt-MS API AppendixSMaccumulateQualityInformation SMaccumulateQualityInformationSMaccumulateQualityInformation| This function computes the quality information for aright-handed triangle or tetrahedra.Synopsisvoid SMaccumulateQualityInformation(void *ext_smooth_data, double **vtx)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.vtx a matrix containing the coordinates of the nodes of the triangle or tetrahedra. Ofdimension 3 x 2 for triangles, and 4 x 3 for tetrahedra.NotesIn 2D the min, max, and average values of the triangle angles, deviation from an equilateral triangle, thescaled jacobians, and the triangle area are computed.In 3D, the min, max, and average values of the tetrahedral dihedral angles, scaled Jacobians, the ratio ofsum of the squares of the length of the edges raised to the 3/2 power to the volume, and the tetrahdralvolume are computed.See AlsoSMinitSmoothing(), SMinitQualityTable(), SMprintQualityInformation()LocationSMuserFunc.c
24

SM�nalizeSmoothing SM�nalizeSmoothingSM�nalizeSmoothing| This routine frees all the memory allocated in SMinitSmoothing including thedata structure smooth_data. This routine should be called when mesh optimization is complete.Synopsisvoid SMfinalizeSmoothing(void *ext_smooth_data)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.See AlsoSMinitSmoothing()LocationSMfree.c

25

SMinitGlobalMinValue SMinitGlobalMinValueSMinitGlobalMinValue| This routine initializes the global minimum value of the quality metric to avery large value. This is used in the
oating threshold technique in which the minimum value of the qualitymetric is tracked for the next iteration.Synopsisvoid SMinitGlobalMinValue(void *ext_smooth_data)Input Parametersmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing which must be called prior to callingthis routine. SMinitSmoothingStats must also have been called prior to callingthis routine.See AlsoSMinitSmoothing(), SMsetSmoothThreshold()LocationSMuserFunc.c

26

SMinitQualityTable SMinitQualityTableSMinitQualityTable| This function allows the user to take advantage of the quality metricsimplemented in the OptMS code to analyze the quality of their mesh.Synopsisvoid SMinitQualityTable(void *ext_smooth_data)Input Parametersmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior to callingthis routine. This routine should be called before each global pass of measuringquality or information from the previous pass will continue to be accumulated.NoteIn 2D the min, max, and average values of the triangle angles, deviation from an equilateral triangle, thescaled jacobians, and the triangle area are printed.In 3D, the min, max, and average values of the tetrahedral dihedral angles, scaled Jacobians, the ratio ofsum of the squares of the length of the edges raised to the 3/2 power to the volume, and the tetrahdralvolume are printed.If any triangle areas or tetrahedral volumes are negative, the mesh is considered to be invalid, andSMuntangle should be called to try to create a valid mesh.See AlsoSMinitSmoothing(), SMuntangle(), SMaccumulateQualityInformation(),SMprintQualityInformation()LocationSMuserFunc.c
27

SMinitSmoothStats SMinitSmoothStatsSMinitSmoothStats| If statistics gathering has been enabled in the con�gure process, then thisroutine intializes the statistics structure that records the number of cells smoothed, the number ofequilibrium points found, and the reason for algorithm termination.Synopsisvoid SMinitSmoothStats(void *ext_smooth_data)Input Parametersmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.NoteIt is useful to call this routine in conjunction with SMprintSmoothStats during each global pass over themesh so that the incremental improvment can be monitored.See AlsoSMprintSmoothStats()LocationSMuserFunc.c
28

SMinitSmoothing SMinitSmoothingSMinitSmoothing| Initializes the smoothing data structure and sets values for the smoothingtechnique, the mesh quality function, and threshold usage.Synopsisvoid SMinitSmoothing(int argc, char** argv, int dimension,char technique, int FunctionID, double Threshold,void **ext_smooth_data)Input Parametersargc the number of input arguments to the program; used to initialize logging. Thelogging library checkes for the command line argument -log�le �lename to printthe log summary to a �le rather then to stdout. If logging is not desired, or argcand argv are not available, NULL may be passed in for these arguements.argv input arguments to the program; used to initialize loggingdimension an integer indicating the problem dimension, either 2 or 3technique a character argument to set the smoothing technique used to adjust grid pointlocation.Input one of:OPTMS_LAPLACIAN_ONLY (or L)OPTMS_OPTIMIZATION_ONLY (or O)OPTMS_COMBINED (or C)OPTMS_COMBINED1 (or 1)OPTMS_COMBINED2 (or 2)OPTMS_COMBINED3 (or 3)OPTMS_FLOATING_THRESHOLD (or F)OPTMS_STUPID_LAPLACE (or S)OPTMS_TECHNIQUE_DEFAULT (or C)OPTMS_DEFAULT (or -1)Note that either the COMBINED or FLOATING_THRESHOLD techniqueis recommended. The COMBINED approach is the default.FunctionID an integer argument used to set the mesh quality measure to be optimized.In 2D input one ofMAX_MIN_ANGLE (or 1): maximize the minimum angleMIN_MAX_COSINE (or 2): minimize the maximum cosine of the angleMAX_MIN_COSINE (or 3): maximize the minimum cosine of the angleMAX_MIN_SINE (or 4): maximize the minimum sine of the angleMIN_MAX_ANGLE (or 5): minimize the maximum angleMIN_MAX_JACOBIAN_DIFF (or 6): minimize the maximum square of thedifference of the current jacobian and the jacobian of an equilateraltriangle (scaled by the jacobian of an equilateral triangle)MAX_MIN_SCALED_JACOBIAN (or 7): maximize the minimum scaled jacobianfor each of the three vertices of a triangle (J/(L1*L2)) where L1 and L2 arethe lengths of the incident edges. Same as MAX_MIN_SINE in the feasibleregion, but returns negative angles for inverted elements29

MAX_MIN_AREA_LENGTH_RATIO (or 8): Computes the ratio of the the areaof the triangle and the sum of the squares of the length of the edgesMIN_MAX_LENGTH_AREA_RATIO (or 9): Computes the negtive inverse of theMAX_MIN_AREA_LENGTH_RATIOFUNCTION_DEFAULT_2D (which is MAX_MIN_SINE) (or 4)OPTMS_DEFAULT (-1, which will result in a choice of MAX_MIN_SINE)In 3D input one ofMAX_MIN_DIHEDRAL (or 21): maximize the minimum angleMIN_MAX_DIHEDRAL (or 22): minimize the maximum angleMAX_MIN_COSINE_DIHEDRAL (or 23): maximize the minimum cosine of the angleMIN_MAX_COSINE_DIHEDRAL (or 24): minimize the maximum cosine of the angleMAX_SINE_DIHEDRAL (or 25): maximize the minimum sine of the angleFUNCTION_DEFAULT_3D (which is MAX_SINE_DIHEDRAL) (or 25)OPTMS_DEFAULT (-1, which will result in a choice of MAX_SINE_DIHEDRAL)The default in 2D is MAX_MIN_SINE and in 3D is MAX_SINE_DIHEDRAL.Threshold a double argument that sets the degree value of the threshold used in either theCOMBINED technique, which has a �xed value, or theFLOATING_THRESHOLD technique, which allows the threshold to vary. Thedefault values for the quality measures that depend on angle measures are 30 and15 degrees for the COMBINED approach for 2D and 3D, respectively, and 10 and15 degrees for the FLOATING_THRESHOLD approach. For the measures thatdepend on Jacobian ratios the default is .25.Output Parameterssmooth_data a void data structure that contains the context and data structures for smoothingSee AlsoSMsetSmoothTechnique(), SMsetSmoothFunction(), SMsetSmoothThreshold(),SM�nalizeSmoothing()LocationSMuserFunc.c
30

SMinvalidMesh SMinvalidMeshSMinvalidMesh| This function returns a Boolean value after testing to see if the mesh contains anyinvalid elements. The test is based on information contained in the quality table and this information mustbe accumulated before this test can be made. This is useful in determining if the mesh requires untangling.Synopsisint SMinvalidMesh(void *ext_smooth_data)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.Return Valuea Boolean value of 1 if the mesh contains invalid elements or 0 if the mesh contains no invalid elements.See AlsoSMinitSmoothing, SMinitQualityInformation(), SMaccumulateQualityInformtaion,SMuntangle()LocationSMuserFunc.c

31

SMprintQualityInformation SMprintQualityInformationSMprintQualityInformation| This function prints the quality information accumulated since the lastcall to SMinitQualityInformation.Synopsisvoid SMprintQualityInformation(void *ext_smooth_data)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.NotesIn 2D the min, max, and average values of the triangle angles, deviation from an equilateral triangle, thescaled jacobians, and the triangle area are printed.In 3D, the min, max, and average values of the tetrahedral dihedral angles, scaled jacobians, the ratio ofsum of the squares of the length of the edges raised to the 3/2 power to the volume, and the tetrahdralvolume are printed.If any triangle areas or tetrahedral volumes are negative, the mesh is considered to be invalid, andSMuntangle should be called to try to create a valid mesh.See AlsoSMinitSmoothing(), SMinitQualityInformation(), SMaccumulateQualityInformation()LocationSMuserFunc.c
32

SMprintSmoothStats SMprintSmoothStatsSMprintSmoothStats| If statistics gathering has been enabled in the con�gure process, then thisroutine prints the statistics that have been accumulated by the smoothing code since the last call toSMinitSmoothStats.Synopsisvoid SMprintSmoothStats(void *ext_smooth_data)Input Parametersmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing which must be called prior to callingthis routine. SMinitSmoothingStats must also have been called prior to callingthis routine.NoteThe information printed includes- the total number of nodes smoothed,- the number for which Laplacian smoothing was used and the numberof the those that resulted in an invalid mesh and/or no improvement tothe mesh- the number of nodes for which optimization-based smoothing was used(including the average iteration count),- the number of cells with no improvement,- the averate active value and average improvement, and- the termination status for the cells that were smoothed.See AlsoSMinitSmoothing(), SMinitSmoothStats()LocationSMuserFunc.c
33

SMsetMeshValidity SMsetMeshValiditySMsetMeshValidity| This function allows the user to set the mesh validity without using the qualityfunctions provided by the Opt-MS package. This is useful if the user knows the mesh requires untanglingand doesn't want to evaluate the quality of the entire mesh to determine if there are inverted elements.Synopsisvoid SMsetMeshValidity(int mesh_validity, void *ext_smooth_data)Input Parametersmesh_validity a Boolean value of 1 if the mesh is valid and 0 if the mesh contains elements withnegative areasmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.See AlsoSMinitSmoothing, SMinitQualityInformation(), SMaccumulateQualityInformtaion,SMuntangle()LocationSMuserFunc.c

34

SMsetProblemDimension SMsetProblemDimensionSMsetProblemDimension| This function allows the user to set the dimension of the smoothingproblem. Opt-MS currently supports 2D planar smoothing (in the x-y plane) and 3D smoothing. Thisfunction call be called any time after SMinitSmoothing to set or change the dimension of the problem.Synopsisvoid SMsetProblemDimension(void *smooth_data, int dimension)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.dimension an integer argument to set the dimension of the problem, either 2 or 3.See AlsoSMinitSmoothing()LocationSMuserFunc.c

35

SMsetSmoothFunction SMsetSmoothFunctionSMsetSmoothFunction| This function allows the user to change the mesh quality function that isoptimized at any time during the smoothing process.Synopsisvoid SMsetSmoothFunction(void *ext_smooth_data,int FunctionID)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.FunctionID an integer argument used to set the mesh quality measure to be optimized.In 2D input one ofMAX_MIN_ANGLE (or 1): maximize the minimum angleMIN_MAX_COSINE (or 2): minimize the maximum cosine of the angleMAX_MIN_COSINE (or 3): maximize the minimum cosine of the angleMAX_MIN_SINE (or 4): maximize the minimum sine of the angleMIN_MAX_ANGLE (or 5): minimize the maximum angleMIN_MAX_JACOBIAN_DIFF (or 6): minimize the maximum square of thedifference of the current jacobian and the jacobian of an equilateraltriangle (scaled by the jacobian of an equilateral triangle)MAX_MIN_SCALED_JACOBIAN (or 7): maximize the minimum scaled jacobianfor each of the three vertices of a triangle (J/(L1*L2)) where L1 and L2 arethe lengths of the incident edges. Same as MAX_MIN_SINE in the feasibleregion, but returns negative angles for inverted elementsMAX_MIN_AREA_LENGTH_RATIO (or 8): Computes the ratio of the the areaof the triangle and the sum of the squares of the length of the edgesMIN_MAX_LENGTH_AREA_RATIO (or 9): Computes the negtive inverse of theMAX_MIN_AREA_LENGTH_RATIOFUNCTION_DEFAULT_2D (which is MAX_MIN_SINE) (or 4)OPTMS_DEFAULT (-1, which will result in a choice of MAX_MIN_SINE)In 3D input one ofMAX_MIN_DIHEDRAL (or 21): maximize the minimum angleMIN_MAX_DIHEDRAL (or 22): minimize the maximum angleMAX_MIN_COSINE_DIHEDRAL (or 23): maximize the minimum cosine of the angleMIN_MAX_COSINE_DIHEDRAL (or 24): minimize the maximum cosine of the angleMAX_SINE_DIHEDRAL (or 25): maximize the minimum sine of the angleFUNCTION_DEFAULT_3D (which is MAX_SINE_DIHEDRAL) (or 25)OPTMS_DEFAULT (-1, which will result in a choice of MAX_SINE_DIHEDRAL)The default in 2D is MAX_MIN_SINE and in 3D is MAX_SINE_DIHEDRAL.See AlsoSMinitSmoothing() 36

LocationSMuserFunc.c

37

SMsetSmoothTechnique SMsetSmoothTechniqueSMsetSmoothTechnique| This function allows the user to change the technique used for meshsmoothing at any time during the mesh improvement process.Synopsisvoid SMsetSmoothTechnique(void *ext_smooth_data, char technique)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.technique a character argument to set the smoothing technique used to adjust grid pointlocation.Input one of:OPTMS_LAPLACIAN (or S)OPTMS_SMART_LAPLACIAN (or L)OPTMS_OPTIMIZATION_ONLY (or O)OPTMS_COMBINED (or C)OPTMS_COMBINED1 (or 1)OPTMS_COMBINED2 (or 2)OPTMS_COMBINED3 (or 3)OPTMS_FLOATING_THRESHOLD (or F)OPTMS_STUPID_LAPLACE (or S)OPTMS_TECHNIQUE_DEFAULT (or C)OPTMS_DEFAULT (or -1)Note that either the COMBINED or FLOATING_THRESHOLD techniqueis recommended. The COMBINED approach is the default.Note that either the COMBINED or FLOATING_THRESHOLD techniqueis recommended. The COMBINED approach is the default.See AlsoSMinitSmoothing()LocationSMuserFunc.c 38

SMsetSmoothThreshold SMsetSmoothThresholdSMsetSmoothThreshold| This function allows the user to change the value of the threshold whenusing the combined or the FLOATING_THRESHOLD techniques at any time in the smoothing process.Synopsisvoid SMsetSmoothThreshold(void *ext_smooth_data, double Threshold)Input Parameterssmooth_data a void data structure that contains the context and data structures for smoothing.This structure is created in SMinitSmoothing, which must be called prior tocalling this routine.Threshold a double argument that sets the degree value of the threshold used in either theCOMBINED technique, which has a �xed value, or theFLOATING_THRESHOLD technique, which allows the threshold to vary. Thedefault values for the quality measures that depend on angles are 15 and 30degrees for the COMBINED approach for 3D and 2D respectively, and 10 and 15degrees for the FLOATING_THRESHOLD approach. For the measures thatdepend on Jacobian ratios the default is .25.See AlsoSMinitSmoothing()LocationSMuserFunc.c
39

SMsmooth SMsmoothSMsmooth| This is the main routine that optimizes a local submesh. Most of the quality functionsavailable require that the local submesh is initially valid. If the user suspects that the mesh containsinvalid elements, a quality assessment should be done, and, if necessary, SMuntangle should be used to tryto rectify the problem.Synopsisint SMsmooth(int num_incident_vtx, int num_tri, double *free_vtx,double **vtx_list, int **vtx_connectivity,void *ext_smooth_data)Input Parametersnum_incident_vtxthe number of incident vertices in the local meshnum_tri the number of incident triangles or tetrahedrafree_vtx the coordinates of the free vertex a vector of length equal to the problemdimension in x, y, z ordervtx_list a matrix of the coordinates of the incident vtx; matrix dimensions arenum_incident_vtx by problem dimensionvtx_connectivity a matrix that gives the connectivity info for the incident vertices. matrixdimensions are num_incident_vtx by the problem dimension. Note: this assumesthat the connectivity given is for a right handed triangle or tetrahedra the freevertex ordered �rstext_smooth_data data structure for mesh smoothing; created in SMinitSmoothing and cast to thelocal data structureOutput Parameterfree_vtx contains the new coordinates of the free vertexNoteThis function can be called only after SMinitSmoothing has been called to create the ext_smooth_datadata structure. Once the mesh has been optimized, SM�nalizeSmoothing should be called to release thememory.See AlsoSMinitSmoothing(), SMsetSmoothTechnique(), SMsetSmoothFunction(),SMsetSmoothThreshold(), SM�nializeSmoothing()LocationSMsmooth.c 40

SMuntangle SMuntangleSMuntangle| This is the main routine that attempts to untangle a local submesh by maximizing theminimum area of a triangle or tetrahedra in a local submesh. The value of the function assumes aright-hand ordering of the vertices. If the user is not sure if the mesh is invalid, a quality assessment shouldbe done to compute the Jacobians of each of the mesh elements. Once this information is accumulated, theroutine SMinvalidMesh returns TRUE (1) if the mesh contains inverted elements.Synopsisint SMuntangle(int num_incident_vtx, int num_tri, double *free_vtx,double **vtx_list, int **vtx_connectivity,void *ext_smooth_data)Input Parametersnum_incident_vtxthe number of incident vertices in the local meshnum_tri the number of incident triangles or tetrahedrafree_vtx the coordinates of the free vertex in a vector of length problem dimensions in x, y,z ordervtx_list a matrix of the coordinates of the incident vtx; matrix dimensions arenum_incident_vtx by problem dimensionvtx_connectivity a matrix that gives the connectivity info for the incident vertices. matrixdimensions are num_incident_vtx by the problem dimension. Note: this assumesthat the connectivity given is for a right handed triangle or tetrahedra with thefree vertex ordered �rstext_smooth_data data structure for mesh smoothing; created in SMinitSmoothing and cast to thelocal data structureOutput Parameterfree_vtx contains the new coordinates of the free vertexNoteThis function can only be called after SMinitSmoothing has been called to create the smooth_data datastructure. Once the mesh has been untangled, SMsmooth should be called to improve the element qualityas it is usually very poor at the conclusion of this step.See AlsoSMinitSmoothing(), SMinitQualityTable, SMinvalidMesh(), SM�nializeSmoothing()LocationSMuntangle.c 41

References[1] N. Amenta, M. Bern, and D. Eppstein. Optimal point placement for mesh smoothing. In 8th ACM-SIAMSymp. on Discrete Algorithms, pages 528{537, 1997.[2] E. Amezua, M. V. Hormaza, A. Hernandez, and M. B. G. Ajuria. A method of the improvement of 3Dsolid �nite-element meshes. Advances in Engineering Software, 22:45{53, 1995.[3] R. E. Bank and R. K. Smith. Mesh smoothing using a posteriori error estimates. SIAM Journal onNumerical Analysis, 34(3):979{997, June 1997.[4] Scott Canann, Michael Stephenson, and Ted Blacker. Optismoothing: An optimization-driven approachto mesh smoothing. Finite Elements in Analysis and Design, 13:185{190, 1993.[5] C. Charalambous and A. Conn. An e�cient method to solve the minimax problem directly. SIAMJournal of Numerical Analysis, 15(1):162{187, 1978.[6] H. Edelsbrunner and N. Shah. Incremental topological
ipping works for regular triangulations. InProceedings of the 8th ACM Symposium on Computational Geometry, pages 43{52, 1992.[7] T. D. Blacker et. al. CUBIT mesh generation environment. Technical Report SAND94-1100, SandiaNational Laboratory, Albuquerque, New Mexico, May 1994.[8] David A. Field. Laplacian smoothing and Delaunay triangulations. Communications and AppliedNumerical Methods, 4:709{712, 1988.[9] Lori Freitag. On combining Laplacian and optimization-based smoothing techniques. In Trends inUnstructured Mesh Generation, volumeAMD-Vol. 220, pages 37{44. ASME Applied Mechanics Division,1997.[10] Lori Freitag and Carl Ollivier-Gooch. Tetrahedral mesh improvement using swapping and smoothing.International Journal of Numerical Methods in Engineering, 40:3979{4002, 1997.[11] Lori Freitag and Carl Ollivier-Gooch. A cost/bene�t analysis of simplicial mesh improvement asmeasured by solution e�ciency. Preprint ANL/MCS-P722-0598, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., 1998. also to appear in International Journal ofComputational Geometry.[12] Lori Freitag and Paul Plassmann. Local optimization-based simplicial mesh untangling and improve-ment. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory.[13] Lori A. Freitag, Mark T. Jones, and Paul E. Plassmann. An e�cient parallel algorithm for meshsmoothing. In Proceedings of the Fourth International Meshing Roundtable, pages 47{58. SandiaNational Laboratories, 1995.[14] P. Gill, W. Murray, and Margaret Wright. Practical Optimization. Academic Press, 1981.[15] Barry Joe. Three-dimensional triangulations from local transformations. SIAM Journal on Scienti�cand Statistical Computing, 10:718{741, 1989.[16] Barry Joe. Geompack - a software package for the generation of meshes using geometric algorithms.Advanced Engineering Software, 56(13):325{331, 1991.[17] Barry Joe. Construction of three-dimensional improved quality triangulations using local transforma-tions. SIAM Journal on Scienti�c Computing, 16:1292{1307, 1995.[18] Patrick Knupp. Achieving �nite element mesh quality via optimization of the Jacobian matrix normand associated quantities, Part 1 - A framework for surface mesh optimization. Technical Report SAND99-0110J, Sandia National Laboratory, 1999. 42

[19] S. H. Lo. A new mesh generation scheme for arbitrary planar domains. International Journal forNumerical Methods in Engineering, 21:1403{1426, 1985.[20] V. N. Parthasarathy and Srinivas Kodiyalam. A constrained optimization approach to �nite elementmesh smoothing. Finite Elements in Analysis and Design, 9:309{320, 1991.[21] Matthew L. Staten Scott A. Canann, Joseph R. Tristano. An approach to combined Laplacian andoptimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In Proceedingsof the 7th International Meshing Roundtable, pages 479{494. Sandia National Laboratory, 1998.[22] Mark Shephard and Marcel Georges. Automatic three-dimensional mesh generation by the �nite octreetechnique. Technical Report SCOREC Report No. 1-1991, Scienti�c Computation Research Center,Rensselaer Polytechnic Institute, 1991.[23] Jonathan Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator. InProceedings of the First Workshop on Applied Computational Geometry, pages 124{133, Philadelphia,Pennsylvania, May 1996. ACM.[24] Steve Vavasis and Scott Mitchell. Quality mesh generation in higher dimensions. Technical ReportANL/MCS-P633-1296, Argonne National Laboratory, 1996.

43

