
Argonne National Laboratory9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-248
The Kestrel Interface to the NEOS Server1byElizabeth D. Dolan2 and Todd S. Munson3Mathematics and Computer Science DivisionTechnical Memorandum No. 248June 20011This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Advanced Scienti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,and by the National Science Foundation (Challenges in Computational Science)Grant CDA-9726385 and (InformationTechnology Research) Grant CCR-0082807.2Electrical and Computer Engineering Department, Northwestern University, and Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, IL 60439; e-mail dolan@mcs.anl.gov3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail:tmunson@mcs.anl.gov



Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by theUnited States Government and operated by The University of Chicago under the provisions of acontract with the Department of Energy. DISCLAIMERThis report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neither the United States Government nor any agency thereof, nor The Universityof Chicago, nor any of their employees or o�cers, makes any warranty, express or implied, orassumes any legal liability or responsibility for the accuracy, completeness, or usefulness of anyinformation, apparatus, product, or process disclosed, or represents that its use would not infringeprivately owned rights. Reference herein to any speci�c commercial product, process, or serviceby trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply itsendorsement, recommendation, or favoring by the United States Government or any agency thereof.The views and opinions of document authors expressed herein do not necessarily state or re
ectthose of the United States Government or any agency thereof, Argonne National Laboratory, or TheUniversity of Chicago.

ii



ContentsAbstract 11 Introduction 12 AMPL Interface 23 GAMS Interface 54 Technical Details 75 Conclusion 8Acknowledgments 9References 9

iii



The Kestrel Interface to the NEOS ServerbyElizabeth D. Dolan and Todd S. MunsonAbstractThe NEOS Server provides access to optimization solvers through the Internet with a suiteof interfaces. In particular, the Kestrel interface enables the remote solution of optimizationproblems within the AMPL and GAMS modeling languages. Problem generation, including therun-time detection of syntax errors, occurs on the local machine using any available modelinglanguage facilities. Solution takes place on a remote machine, with the result returned in thenative modeling language format for further processing. No signi�cant di�erences exist betweenlocal and remote solutions. A byproduct of the Kestrel interface is the ability to solve in parallelmultiple problems generated by a modeling language.1 IntroductionThe NEOS Server [2, 3] is a convenient gateway to optimization software and services on the Internet.Interested parties can evaluate many di�erent packages for solving their particular optimizationproblems without installing the software on their local machine. Instead, the user communicates aproblem to the NEOS Server through e-mail, the Web, or a socket-based graphical user interface.When using these interfaces, the local machine is responsible for submitting a representation of theproblem, for example, source code or a model written in modeling language syntax, to the NEOSServer and waiting for the result. Problem validation and solution happen on remote resources.An alternative for individuals with local access to the AMPL [5] or GAMS [1] modeling languagesis to use the Kestrel interface to the NEOS Server. In this case, a problem is generated using anyof the available modeling language facilities on the local machine, and the NEOS Server is usedonly for remote solution. Because the problem is generated on the local machine, users can accessthe �le-system and other utilities when specifying their model; and all syntax errors are detectedwhen the internal model representation is generated by AMPL or GAMS. Furthermore, the resultsreturned through the NEOS Server are available in the native modeling language format for furtherprocessing.No signi�cant di�erences exist between local and remote solutions when using the Kestrel inter-face. Whenever a solve command is initiated in either AMPL or GAMS, the modeling softwaregenerates an internal representation of the current problem and calls a corresponding local solver.When using the Kestrel interface, the local solver executed is a Kestrel client, which contacts theNEOS Server, submits the generated model representation within tags understood by NEOS, andwaits for the results. When the Kestrel client exits, the results are read by the modeling languageas if the solve were performed locally. A byproduct of the Kestrel interface is the ability to easilysolve multiple models in parallel [4]. 1



The concepts employed when using the Kestrel client are the same for both the AMPL and GAMSinterfaces, but the mechanics of the implementations di�er because of the nature of the modelinglanguages. Documentation for each interface follows, along with a discussion of the technical details.2 AMPL InterfaceTwo methods exist for using the Kestrel interface in AMPL. The �rst method simply replaces thenormal solver used during a solve command with the Kestrel \solver," which submits the currentproblem to the NEOS Server and retrieves the results. The second method uses separate submitand retrieve facilities, which can be used to submit multiple problems to the NEOS Server beforeretrieving any of the results. In both cases, the user speci�es a remote solver as one of the optionsto the Kestrel client.Users can download the Kestrel client for many di�erent architectures from the NEOS ServerWeb site. To install the executable, users should unzip the archive in a directory within their path,which enables the AMPL interpreter to locate the client during the solve command. Also containedin the archive are three command scripts used for the submission, retrieval, and kill capabilitiesdiscussed in the sequel.Once the software is installed, the Kestrel interface can be used to solve an optimization problemremotely. For example, consider the original code using LOQO [8] to solve an optimization problemon the local machine.ampl: model steel.mod;ampl: data steel.dat;ampl: option solver loqo;ampl: option loqo_options 'outlev=2';ampl: solve;The corresponding code to solve the same problem remotely through the NEOS server follows.ampl: model steel.mod;ampl: data steel.dat;ampl: option solver kestrel;ampl: option kestrel_options 'solver=loqo';ampl: option loqo_options 'outlev=2';ampl: solve;The two di�erences are that the solver is changed to kestrel, which is the client responsible forsubmission and retrieval; and the remove solver to be used is identi�ed with the kestrel options2



solver options, which set the solver to loqo in this instance. Any remote solver options are setwith the appropriate solver options, which in this case would be loqo options.After the problem has been submitted to the NEOS Server by the Kestrel client, information iswritten to the console indicating the job number and password assigned by the NEOS Server for theparticular solve. The output also indicates a Web site that can be used to monitor the progress ofthe solve, for example,Job has been submitted to KestrelKestrel/NEOS Job number : 1234Kestrel/NEOS Job password : abcdCheck the following URL for progress report :http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgiThe use of network communication increases the likelihood that a particular solve will terminateabnormally, for example, if the connection to the network is lost. If this happens, the job numberand password reported can be used to access the job when the system comes back on-line. Forexample, we can communicate the above job and password to the Kestrel client with the job andpassword solver options.ampl: model steel.mod;ampl: data steel.dat;ampl: option solver kestrel;ampl: option kestrel_options 'job=1234 password=abcd';ampl: solve;If the job and password solver options are set, the solve command waits for and reports the resultsof the corresponding NEOS job.The job number and password information also enable a user to submit a job and at some latertime retrieve the results. Currently, the NEOS Server keeps these jobs for three days after theircompletion before removing them from the system. To continue other modeling language processing,the user can interrupt the Kestrel solve manually and retrieve results later by setting the job andpassword options appropriately. A better alternative, however, is to use the commands scripts forseparate submission and retrieval.The submission and retrieval scripts are invoked in AMPL by using the commands facility. Bydefault, AMPL accesses only those scripts that are in the directory in which the AMPL interpreterwas invoked. Therefore, to use the provided commands, the user �rst must copy the scripts to thecurrent working directory. Separate submission is achieved by replacing a solve with the kestrelsuband kestrelret pair of commands: 3



ampl: model steel.mod;ampl: data steel.dat;ampl: option solver kestrel;ampl: option kestrel_options 'solver=loqo';ampl: commands kestrelsub;ampl: commands kestrelret;The kestrelsub command prepares the current problem for submission and sends it to the NEOSServer. The NEOS job number and password are then reported. The kestrelret command retrievesthe results. Any models submitted with kestrelsub should be retrieved with kestrelret.The separate submission and retrieval capability allows a user to perform simple parallel pro-cessing within AMPL. Kestrel submissions and local solves can be performed before retrieving theresults from a kestrelsub command. For simplicity, the retrieves are performed in the order inwhich the jobs were submitted. The form of this approach is as follows:ampl: model steel.mod;ampl: data steel.dat;ampl: option solver kestrel;ampl: option kestrel_options 'solver=loqo';ampl: commands kestrelsub;ampl: let steelscalar := 5.0;ampl: commands kestrelsub;ampl: commands kestrelret;ampl: commands kestrelret;More sophisticated sequences are possible. For example, the user could solve some of the modelslocally or use the problem statement to submit di�erent models.Finally, the user has the ability to kill submitted jobs from within AMPL. When a Kestrel solve ismanually interrupted, the job normally continues running on the remote solution machine assignedby the NEOS Server. These resources can be freed by sending a kill request for the remote job.Depending on the solver and remote system, terminating the job through the NEOS Server may notbe possible, but attempting to do so is simple. The user sets the job number and password in thekestrel options and calls the kestrelkill command as in the following.ampl: option kestrel_options 'job=1234 password=abcd';ampl: commands kestrelkill;Attempts to obtain results from a killed job would likely lead to a solution �le unintelligible toAMPL. 4



3 GAMS InterfaceThe Kestrel interface to the NEOS Server for GAMS is similar to the one written for AMPL. Theinstallation process involves placing the Kestrel archive for a particular architecture into the GAMSsystem directory and using the gamsinst program to unzip and install the Kestrel-related \solvers."After successful installation of the Kestrel package, the kestrel solver can be used to solve aGAMS model remotely. For example, consider the trnsport model from GAMSLIB [1]. It can besolved locally in GAMS through the following statements,model trnsport /all/;solve trnsport using lp minimizing z;which specify the trnsport model and solve it with the default linear programming solver. We canadd an option statement to the code to explicitly specify the solver. For example, if we change thelinear programming solver to MINOS [6], the code becomesmodel trnsport /all/;option lp = minos;solve trnsport using lp minimizing z;To solve the same problem remotely through the NEOS Server, we simply change the linear pro-gramming solver to kestrel.model trnsport /all/;trnsport.optfile = 1;option lp = kestrel;solve trnsport using lp minimizing z;The statement trnsport.optfile = 1 speci�es that an options �le, called kestrel.opt, will beused. The options �le contains the remote solver name as well as any options for the remote solver.In particular, to use MINOS as the remote solver, we would write the following kestrel.opt �le:kestrel_solver minosA subsequent run of the code through the GAMS interpreter results in the trnsport model beingsolved through the NEOS Server with the MINOS solver.As with the AMPL interface, once the job is submitted to the NEOS Server, a job number,password, and Web address are displayed to the screen, which provide information on accessing thejob and viewing the intermediate output, for example,5



Job has been submitted to KestrelKestrel/NEOS Job number : 1234Kestrel/NEOS Job password : abcdCheck the following URL for progress report :http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgiIf the NEOS Server or the network becomes unavailable after the submission, a particular job canbe retrieved by setting both the kestrel job and kestrel password in the options �le.kestrel_solver minoskestrel_job 1234kestrel_password abcdRe-issuing the command gams trnsport with this options �le will retrieve the results for thespeci�ed job number.Separate submission and retrieval can also be issued by using the kestrelsub and kestrelretsolvers, respectively. The GAMS convention is to name the options �le solver.opt, where solveris the name of the solver used. With the submit and retrieve commands, we break with thisconvention and use kestrel.opt for the options �le, instead of the expected kestrelsub.opt andkestrelret.opt. Therefore, to solve the trnsportmodel with the separate submission and retrievalfacilities, we would write the following code:model trnsport /all/;trnsport.optfile = 1;option lp = kestrelsub;solve trnsport using lp minimizing z;option lp = kestrelret;solve trnsport using lp minimizing z;with the kestrel.opt �le containing the relevant kestrel solver option.The submit and retrieve facilities enable simple parallel processing capabilities within GAMS.Any number of submission and solves (including remote solves) can be performed before retrievingany results. For simplicity, we assume a work queue model in which the jobs are retrieved in theorder submitted. Furthermore, the submit and retrieve ignore any job and password information inthe options �le.Finally, GAMS also has a kill facility implemented by using the kestrelkill solver. In order touse this facility, a model must be present so that the solver can be invoked.6



model trnsport /all/;trnsport.optfile = 1;option lp = kestrelkill;solve trnsport using lp minimizing z;The kestrel.opt �le in this case should contain the job number and password of the job to kill.Subsequent attempts to obtain the results from a killed job should be avoided if possible becauseresults will likely be mangled.4 Technical DetailsThe Kestrel clients for AMPL and GAMS are written in C++ with all of the communication betweenclient and server performed by using the CORBA speci�cation [7]. This interface to the NEOS Serveris possible because of the behavior of the AMPL and GAMS modeling languages when a \solve"command is encountered. Three steps are taken.1. An internal representation of the current problem is written to disk.2. The desired solver is located and executed with appropriate command line options, and thesolver writes a solution �le.3. Finally, the solution �le produced by the solver executable is read by the interpreter, whichresumes processing.The Kestrel client is a replacement for the local solver that relays the appropriate intermediate �lesto the NEOS Server in NEOS token-delimited submission format and obtains the results, which arethen written to the correct solution �le. When results are requested from the Kestrel client, wesimply wait for the appropriate results to become available and write the solution �le.Special processing of the GAMS control �le, gamscntr.scr, is performed by the Kestrel clientcode. The control �le contains all the information for the problem and is located in the scratchdirectory. This �le is parsed by the Kestrel client to replace the absolute �le paths with relative �lepaths, and all information about the client GAMS installation, including the license information, isremoved before sending the job to the NEOS Server. The NEOS license for GAMS is patched intothe control �le on the server side.The separate submission and retrieval commands maintain a work queue. For both AMPL andGAMS, the work queue is a �le containing a listing of the submitted job numbers, passwords, andremote solver names for jobs that have not been retrieved. The job number, password, and solverinformation is appended to the work queue �le for each kestrelsub, and the �rst entry is removedfrom the work queue during each kestrelret. The kestrelret command removes the work queue�le when it becomes empty. 7



The AMPL interface writes the work queue to a �le created based on the process identi�cationand the TMPDIR variable. For example, if the process identi�cation is \1234" and the TMPDIR is\/tmp/", then the work queue �le will be located in a �le called \/tmp/at1234.jobs". The locationand name of the �le are similar to those used by AMPL for temporary NL and SOL �les. Thislocation can be a�ected by changing the TMPDIR variable. Furthermore, since the submissionand retrieval are performed by using commands, as opposed to a solve, the submission scriptmanually writes the current problem's description to a kestrel.nl �le contained in the currentdirectory, and the retrieve writes the solution to a kestrel.sol �le. Unfortunately, the kestrel.nland kestrel.sol are not removed when the AMPL session ends, and the user should remove themmanually.For completeness the kestrelsub command does the following:option ampl_id (_pid);write bkestrel;shell 'kestrel submit kestrel';where the �rst command saves the process identi�cation into a variable accessible by the kestrelclient, the second manually writes the current model to disk, and the last submits the problem tothe NEOS Server. The kestrelret script is similar:option ampl_id (_pid);shell 'kestrel retrieve kestrel';solution kestrel.sol;where the shell command retrieves the solution �le, and the solution command forces the AMPLinterpreter to read the solution �le. The kestrelkill is implemented with the single command,shell 'kestrel kill kestrel';The GAMS interface writes the work queue to a kestrel.scr �le contained in the scratchdirectory of the current GAMS process. The scratch directory is automatically removed when theGAMS process exits, unless explicitly kept by the user with the gamskeep routine.5 ConclusionThe Kestrel interface augments those interfaces currently available by NEOS and o�ers many ad-vantages. The main advantage is that all models are created on the local machine, enabling users todebug their models locally and use any of the modeling language mechanisms when specifying theirmodel. Another bene�t is that the results are made available within the modeling language, which8



means that the users do not have to parse a results text �le to use the answers generated. Moreover,the interface allows users to implement simple parallel programs.AcknowledgmentsWe thank Bob Fourer for his assistance in testing the code in the early stages of development.References[1] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User's Guide. The Scienti�c Press, SouthSan Francisco, 1988.[2] J. Czyzyk, M. P. Mesnier, and J. J. Mor�e. The NEOS server. IEEE Journal on ComputationalScience and Engineering, 5:68{75, 1998.[3] M. C. Ferris, M. P. Mesnier, and J. Mor�e. NEOS and Condor: Solving nonlinear optimizationproblems over the Internet. ACM Transactions on Mathematical Software, 26:1{18, 2000.[4] M. C. Ferris and T. S. Munson. Modeling languages and Condor: Metacomputing for optimiza-tion. Mathematical Programming, 88:487{506, 2000.[5] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for MathematicalProgramming. Duxbury Press, 1993.[6] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user's guide. Technical Report SOL 83.20,Stanford University, Stanford, California, 1983.[7] J. Siegel. CORBA - Fundamentals and Programming. John Wiley & Sons, New York, 1996.[8] R. J. Vanderbei. LOQO user's manual { Version 3.10. Optimization Methods and Software,12:485{514, 1999.
9


