
Chapter 2Parallel ComputerArhiteturesWilliam Gropp, Rik Stevens, and Charlie Catlett (IanFoster, editor)Target Length: 20 to 30 pagesParallel omputers provide great amounts of omputing power, but they doso at the ost of inreased diÆulty in programming and using them. Certainly,a uniproessor that was fast enough would be simpler to use. To explain whyparallel omputers are inevitable and to identify the hallenges faing developersof parallel algorithms, programming models, and systems, in this hapter wedesribe briey (but in more detail than in Chapter 2) the arhiteture of bothuniproessor and parallel omputers. We will see that while omputing poweran be inreased by adding proessing units, memory lateny (the irreduibletime to aess data) is the soure of many hallenges in both uniproessor andparallel proessor design.Parallel arhitetures and programming models are not independent. Whilemost arhitetures an support all programming models, they may not be ableto do so eÆiently. An important part of any parallel arhiteture is any fea-ture that simpli�es the proess of building, testing, and tuning an appliation.Some parallel arhitetures put a great deal of e�ort into supporting a parallelprogramming model; others provide little or no extra support. All arhiteturesrepresent a ompromise between ost, omplexity, timeliness, and performane.This hapter is organized as follows. In Setion 2.1 we briey desribe theimportant features of single proessor (or uniproessor) arhiteture. From thisbakground, the basis of parallel arhiteture are presented in Setion 2.2; inpartiular, we desribe the opportunities for performane improvement throughparallelism at eah level in a parallel omputer, with referenes to mahinesof eah type. Setion 2.3 reviews urrent parallel systems. In Setion 2.4,1



2 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESwe examine potential future parallel omputer arhitetures. We onlude thehapter with a brief summary of the key issues motivating the development ofparallel algorithms and programming models.2.1 Uniproessor ArhitetureIn this setion we briey desribe the major omponents of a onventional,single-proessor omputer, emphasizing the design tradeo�s faed by the hard-ware arhitet. This desription lays the groundwork for a disussion of parallelarhitetures, sine parallelism is entirely a response to the diÆulty of provid-ing ever greater performane (or reliability) in a system that inherently performsonly one task at a time. Those interested in a more detailed disussion of theseissues should onsult [8℄.The major omponents of a omputer are the entral proessing unit thatexeutes programs, the memory system that stores exeuting programs and thedata that the programs are operating on, and input/output systems that allowthe omputer to ommuniate with the outside world (e.g., through keyboards,networks, and displays) and with permanent storage devies suh as disks. Thedesign of a omputer reets the available tehnology; onstraints suh as poweronsumption, physial size, ost, and maintainability; the imagination of thearhitet; and the software (programs) that will run on the omputer (inludingompatibility issues). All of these have hanged tremendously over the past �ftyyears.Perhaps the best known hange is aptured by Moore's law [18℄, whih saysthat miroproessor CPU performane doubles roughly every eighteen months.This is equivalent to a thousandfold inrease in performane over �fteen years.Moore's law has been remarkably aurate over the past thirty-six years (seeFigure 2.1), even though it represents an observation about the rate of engi-neering progress and is not a law of nature (suh as the speed of light). In fat,it is interesting to look at the lok speed of the fastest mahines in additionto (and ompared with) that of miroproessors. In 1981, the Cray 1 was oneof the fastest omputers, with a 12.5 ns lok. In 2001, miroproessors with0.8 ns loks are beoming available. This is a fator of 16 in twenty years, orequivalently a doubling every �ve years.Remarkable advanes have ourred in other areas of omputer tehnologyas well. The ost per byte of storage, both in omputer memory and in diskstorage, has fallen along a similar exponential urve, as has the physial sizeper byte of storage (in fat, the ost and size are losely related). Dramatiadvanements in algorithms have redued the amount of work needed to solvemany lasses of important problem; for example, the work needed to solve nsimultaneous linear equations has fallen, in many ases, from n3 to n. For 1million equations, this is an improvement of 12 orders of magnitude!Unfortunately, these hanges have not been uniform. For example, whilethe density of storage (memory and disk) and the bandwidths have inreaseddramatially, the time to aess storage (lateny) has not kept up. As a result,over the years, the balane in performane between the di�erent parts of a
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Figure 2.1: Improvement in CPU performane measured by lok rateomputer has hanged. In the ase of storage, inreases in lok rates relativeto storage lateny have translated Moore's law into a desription of ination interms of the relative ost of memory aess from the point of view of potentiallywasted CPU yles. This has fored omputer arhitetures to evolve over theyears, for example moving to deeper and more omplex memory hierarhies.2.1.1 The CPUThe CPU is the heart of the omputer; it is responsible for all alulations andfor ontrolling or supervising the other parts of the omputer. A typial CPUontains the following (see Figure 2.2):Arithmeti Logi Unit (ALU): Performs omputations suh as addition andomparison.Floating Point Unit (FPU): Performs operations on oating-point numbers.Load/Store Unit: Performs loads and stores for data.Registers: Fast memory loations that an be used to store intermediate results.These are often subdivided into oating-point registers (FPR) and generalpurpose registers (GPR).Program Counter (PC): Contains the address of the instrution that is exe-uting.Memory Interfae: Provides aess to the memory system. In addition, theCPU hip often ontains the fastest part of the memory hierarhy (thetop level ahe); this part is desribed in Setion 2.1.2.
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Figure 2.2: Generi CPU diagram. This example has a separate L1 ahe fordata and for program instrutions and a uni�ed (both data and instrutions)L2 ahe. Not all data paths are shown.Other omponents of a CPU are needed for a omplete system, but the oneslisted are most important for our purpose.The CPU operates in steps ontrolled by a lok: in eah step, or lok yle,the CPU performs an operation.1 The speed of the CPU lok has inreaseddramatially; desktop omputers now ome with loks that run at over 1 GHz(109 Hz).One of the �rst deisions that a omputer arhitet must make is whatbasi operations an be performed by the CPU. There are two major amps:the omplex instrution set omputer (CISC) and the redued instrution setomputer (RISC). A RISC CPU an do just as muh as a CISC CPU; however,it may require more instrutions to perform the same operation. The tradeo� isthat a RISC CPU, beause the instrutions are fewer and simpler, may be ableto exeute eah instrution faster (i.e., the CPU an have a higher lok speed),1Note that we did not say an instrution or a statement. As we will see, modern CPUsmay perform both less than an instrution and more than one instrution in a lok yle.



2.1. UNIPROCESSOR ARCHITECTURE 5allowing it to omplete the operation more quikly.The spei� set of instrutions that a CPU an perform is alled the in-strution set. The design of that instrution set relative to the CPU representsthe instrution set arhiteture (ISA). The instrutions are usually produed byompilers from programs written in higher-level languages suh as Fortran orC. The suess of the personal omputer has made the Intel x86 ISA the mostommon ISA, but many others exist, partiularly for enterprise and tehnialomputing. We note that while the ISA may be diretly exeuted by the CPU,another possibility is to design the CPU to onvert eah instrution into a se-quene of one or more \miro" instrutions. This allows a omputer arhitetto take advantage of simple operations to raise the \ore" speed of a CPU, evenfor an ISA with omplex instrutions (i.e., a CISC arhiteture). Thus, eventhough a CPU may have a lok speed of over 1 GHz, it may need multiple lokyles to exeute a single instrution in the ISA. Hene, simple lok speed om-parisons between di�erent arhitetures are deeptive. Even though one CPUmay have a higher lok speed than another, it may also require more lokyles than the \slower" CPU in order to exeute a single instrution.Programs exeuted by the CPU are stored in memory. The program ounterspei�es the address in memory of the exeuting instrution. This instrution isfethed from memory and deoded in the CPU. As eah instrution is exeuted,the PC hanges to the address of the next instrution. Control ow in a program(e.g., if, while, or funtion all) is implemented by setting the PC to a newaddress.One important part of the ISA onerns how memory is aessed. Whenmemory speeds were relatively fast ompared with CPU speeds (partiularlyfor omplex operations suh as oating-point division), the ISA might inludeinstrutions that read several items from memory, performed the operation,and stored the result into memory. These were alled memory-to-memory op-erations. However, as CPU speeds inreased dramatially relative to memoryaess speeds, ISAs hanged to emphasize a \load-store" arhiteture. In thisapproah, all operations are performed by using data in speial, very fast loa-tions alled registers that are part of the CPU. Before a value from memory anbe used, it must �rst be loaded into a register, using an address that has beenomputed and plaed into another register. Operations take operands fromregisters and put the result bak into a register; these are sometimes alledregister-to-register operations. A separate store operation puts a value bakinto the memory (generally indiretly by way of a ahe hierarhy analogous tothe register sheme just desribed). Load and store operations are often handledby a load/store funtional unit, muh as oating-point arithmeti is handled bya oating-point unit (FPU).Over the years, CPUs have provided speial features to support various pro-gramming models. For example, CISC-style ISAs often inlude string searhinstrutions and even polynomial evaluation. Some urrent ISAs support in-strutions that make it easy to aess onseutive elements in memory by up-dating the register holding the load address; this orresponds losely to thea=*x++; statement in the C programming language and to typial Fortran od-
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Figure 2.3: Example of a oating-point pipeline. The separate stages in thepipeline are shown in (a). In (b), four pairs of numbers are added in 7 lok y-les. Note that after a 3-yle delay, one result is returned every yle. Withoutpipelining, 16 lok yles would be required to add four pairs of numbers.ing pratie for loops.One soure of omplexity in a CPU is the di�erene in the omplexity ofthe instrutions. Some instrutions, suh as bitwise logial or, are easy toimplement in hardware. Others, suh as oating-point division, are extremelyompliated. Memory referenes provide a di�erent kind of omplexity; as wewill see, the CPU often annot predit when a memory referene will omplete.Many di�erent approahes have been taken to address these issues. For example,in the ase of oating-point operations, pipelining has been used. Like the RISCapproah, pipelining breaks a omplex operation into separate parts. Unlike theRISC approah, however, eah stage in the pipeline an be exeuted at the sametime by the CPU, but on di�erent data. In other words, one a oating-pointoperation has been started in a lok yle, even though that operation hasnot ompleted, a new oating-point operation an be started in the next lokyle. It is not unusual for operations to take two to twenty yles to omplete.Figure 2.3 illustrates a pipeline for oating-point addition. Pipelines have beengetting deeper (i.e., have more stages) as lok speeds inrease. Note also thatthis hardware approah is very similar to the use of pipelining in algorithmsdesribed in Setion 2.3.2.From this disussion, we an already see some of the barriers to ahievinghigher performane. A lok rate of 1 GHz orresponds to a period of only 1ns. In 1 ns, light travels only about 1 foot in a vauum, and less in an eletrialiruit. Even in the best ase, a single proessor running at 10 GHz (three moredoublings in CPU performane or, if Moore's law ontinues to hold, appearing



2.1. UNIPROCESSOR ARCHITECTURE 7in less than �ve years) and its memory ould be only about one inh aross(any larger and a signal ould not ross the hip during a single lok yle); atthat size, heat dissipation beomes a major problem (in fat, heat dissipation isalready a problem for many CPUs). Approahes suh as pipelining (already akind of parallelism) require that enough operations and operands be available tokeep the pipeline full. Other approahes begin to introdue a very �ne sale ofparallelism, for example by providing multiple funtional units suh as multipleoating-point adders and multipliers. In suh ases, however, the program mustbe rewritten (and/or ompiled) to make use of the additional resoures. (Theseenhanements are disussed in Setion 2.2.3.)One on-hip lok lateny is addressed, the designer must fae an even morehallenging problem: lateny to storage, beginning with memory.2.1.2 MemoryWhile a omputer is running, ative data and programs are stored in memory.Memory systems are quite omplex, introduing a number of design issues.Among these are the following:Memory size. Users never have enough omputer memory, so the onept ofvirtual memory was introdued to fool programs into thinking that theyhave large amounts of memory just for their own use.Memory lateny and hierarhy. The time to aess memory has not kept paewith CPU lok speeds. Levels or hierarhies of memory try to ahieve aompromise between performane and ost.Memory bandwidth. The rate at whih memory an be transferred to and fromthe CPU (or other devies, suh as disks) also has not kept up with CPUspeeds.Memory protetion. Many arhitetures inlude hardware support for memoryprotetion, aimed primarily at preventing appliation software from mod-ifying (intentionally or inadvertently) either system memory or memoryin use by other programs.Of these, memory lateny is the most diÆult problem. Memory size, inmany ways, is simply a matter of money. Bandwidth an be inreased byinreasing the number of paths to memory (another use of parallelism) andusing tehniques suh as interleaving (analogous to striping). Latenies arerelated to physial onstraints are harder to redue. Further, high lateniesredue the e�etive bandwidth of a given load or store. To see this, onsider amemory interonnet that transfers bloks of 32 bytes with a bandwidth of 1GB/s. In other words, the time to transfer 32 bytes is 32 ns. If the lateny ofthe memory system is also 32 ns (an optimisti �gure), the total time to transferthe data is 64 ns, reduing the e�etive bandwidth from 1 GB/s to 500 MB/s.The most ommon approah to improving bandwidth in the presene of highlateny is to inrease the amount of data moved eah time, thus amortizing the



8 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESlateny over more data. However, this helps only when all of the data moved isneeded by the running program.An exeuting program, or proess, involves an address spae and (one ormore) program ounters. Operating systems manage the time-sharing of a CPUto allow many proesses to appear to be running at the same time (we will seethat for parallel omputers, the proesses may in fat be running simultane-ously). The operating system, working with the memory system hardware,provides eah proess with the appearane of a private address spae. Most sys-tems further allow the private memory spae to appear larger than the availableamount of physial memory. This is alled a virtual address spae. Of ourse,the atual physial memory hardware de�nes an address spae, or physial ad-dress spae. Any memory referene made by a proess, for example, with aload or store instrution, must �rst be translated from the virtual address (theaddress known to the proess) to the physial address. This step is performedby the translation lookaside bu�er (TLB), whih is part of the memory systemhardware. In most systems, the TLB an map only a subset of the virtual ad-dresses (it is a kind of address ahe); if a virtual address an't be handled bythe TLB, the operating system is asked to help out; in suh a ase, the ostof aessing memory greatly inreases. For this reason, some high-performanesystems have hosen not to provide virtual addressing.Dereasing memory lateny is a diÆult problem. Semiondutor memoryomes in two main types: stati random aess memory (SRAM), in whih eahbit of memory is stored in a lath made up of transisitors, and dynami randomaess memory (DRAM), in whih eah bit of memory is stored as a harge ona apaitor. SRAM is faster than DRAM but is muh less dense (has fewer bitsper hip) and requires muh greater power (resulting in heat). The di�ereneis so great that virtually all omputers use DRAM for the majority of theirmemory. However, as Figure 2.4 shows, the performane of DRAM memory hasnot followed the Moore's law urve that CPU lok speeds hav. Instead, thedensity and prie-performane of DRAMs have risen exponentially. The saleof this problem an be seen by omparing the speeds of DRAMs and CPUs.For example, a 1 GHz CPU will exeute 60 instrutions before a typial (60 ns)DRAM an return a single byte. Hene, in a program that issues a load for adata item that must ome from DRAM, at least 60 yles will pass before thedata will be available. In pratie, the delay an be longer beause there is moreinvolved in providing the data item than just aessing the DRAM.To work around this performane gap, omputer arhitets have introdueda hierarhy of smaller but faster memories. These are alled ahe memoriesbeause they work by ahing opies of data from the DRAM memory in fasterSRAM memory, loser to the CPU. Beause SRAM memory is more expensiveand less dense (takes up more die spae) and onsumes muh more power (pro-dues more heat to dissipate) than does DRAM memory, ahe memory sizesare small relative to main memory. In fat, there is usually a hierarhy of ahememory, starting from level 1 (L1) whih is the smallest (and fastest) and isin some arhitetures on-hip with the CPU. Many systems have two or threelevels of ahe. A typial size is 16 KB to 128 KB for L1 ahe memory to as
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01/80 01/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98 01/00Figure 2.4: DRAM lateny versus time. Note that, unlike the CPU times inFigure 2.1, the time axis is linear, and the improvement in performane is littlemore than a fator of two in ten years.muh as 4 MB to 8 MB for L2 or L3 ahe memory. DRAM memory sizes, onthe other hand, are 256 MB to 4 GB|a fator of about a thousand larger.Memory hierarhy brings up another problem. Beause the ahe memoryis so muh smaller than the main memory, it often isn't possible for all of thememory used by a proess to reside in the L1 or even L2 ahe memory. Thus,as a proess runs, the memory system hardware must deide whih memoryloations to opy into ahe. If the ahe is full and a new memory loationis needed, some other item must be removed from the ahe and written bakto the main memory. The rate at whih this happens is alled the ahe missrate, and one of the primary goals of a memory system arhitet is to make themiss rate as small as possible. Of ourse, the rate depends on the behavior ofthe program, and this in turn depends on the algorithms used by the program.Many di�erent strategies are used to try to ahieve low miss rates in a ahewhile keeping the ahe fast and relatively inexpensive. To redue the miss rate,programs exploit temporal loality : reusing the same data within a short span oftime, that is, reusing the data before it is removed from the ahe to make roomfor some other data. This proess, in turn, requires the algorithm developer andprogrammer to pay lose attention to how data is used in a program.



10 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESAs just one example, onsider the hoie of the ahe line size. Data betweenahe and main memory usually is transferred in groups of 64, 128, or 256 bytes.This group is alled a ahe line. Moving a ahe line at one time allows themain memory to provide relatively eÆient bursts of data (it will be at least60 ns before we an get the �rst byte; subsequent onseutive bytes an bedelivered without muh delay). Thus, programs that aess \nearby" memoryafter the �rst aess will �nd that the data they need is already in ahe. Forthese programs, a larger line size will improve performane. However, programsthat aess memory in a less strutured way may �nd that they spend most oftheir time reading data into ahe that is never used. For these programs, alarge line size redues performane ompared with a system that uses a shorterahe line.Many other issues also remain, with similarly diÆult tradeo�s, suh as asso-iativity (how main memory addresses are mapped into the ahe), replaementpoliy (what data is ejeted to make room for new data), and ahe size. Ex-ploiting the fat that memory is loaded in larger units than the natural salarobjets (suh as integers, haraters, or oating-point numbers) is alled exploit-ing spatial loality. Spatial loality also requires temporal loality.The e�etive use of ahe memory is so important for high-performane ap-pliations that algorithms have been developed tailored to the requirements ofthese memory hierarhies. On the other hand, the most widely used program-ming models ignore ahe memory requirements. Hene, problems remain withthe pratial programming of these systems for high performane. We will alsosee in Setion 2.2.1 that the use of opies of data in a ahe auses problems forparallel systems.2.1.3 I/O and NetworkingDisussions of omputers often slight the issues of I/O and networking. I/O,partiularly to the disks that store �les and swap spae for supporting virtualmemory, has followed a path similar to that of main memory. That is, densitiesand sizes have inreased enormously (twenty-�ve years ago, a 40 MB disk waslarge and expensize; today, a 40 GB disk is a ommodity onsumer item), butlatenies have remained relatively unhanged. Beause disks are eletromehan-ial devies, latenies are in the range of milliseonds or a million times greaterthan CPU speeds. To address this issue, some of the same tehniques usedfor memory have been adopted, partiularly the use of ahes (typially usingDRAM memory) to improve performane.Networking has hanged less. Although Ethernet was introdued twenty-one years ago, only relatively modest improvements in performane were seenfor many years, and most of the improvement has been in redued monetaryost. Fortunately, in the past few years, this situation has started to hange.In partiular, 100 Mb Ethernet has nearly displaed the original 10 Mb Eth-ernet, and several Gigabit networking tehnologies are gaining ground, as areindustry e�orts, suh as In�niband [12℄ to aelerate the rate of improvementin network bandwidth. Optial tehnologies have been in use for some time but



2.2. PARALLEL ARCHITECTURES 11are now poised to signi�antly inrease the available bandwidths. Networks,are, however, fundamentally onstrained by the speed of light. Latenies annever be less than 3 ns per meter. Another onstraint is the way in whihthe network is used by the software. The approahes that are urrently usedby most software involve the operating system (OS) in most networking opera-tions, inluding most data transfers between the main memory and the network.Involving the OS signi�antly impats performane; in many ases, data mustbe moved several times. Reent developments in networking [29, 30℄ have em-phasized transfers that are exeuted without the involvement of the operatingsystem, variously alled \user-mode," \OS bypass," or \sheduled transfer."These ombine hardware support with a programming model that allows highernetwork performane.2.1.4 SummaryThe design of a single-proessor omputer is a onstant struggle against om-peting onstraints. How should resoures be alloated? Is it better to usetransistors on a CPU hip to provide a larger fast L1 ahe, or should theybe used to improve the performane of some of the oating-point instrutions?Should transistors be used to add more funtional units? Should there be moreregisters, even if the ISA then has to hange? Should the L1 ahe be madelarger at the expense of the L2 ahe? Should the memory system be optimizedfor appliations that make regular or irregular memory aesses? There areno easy answers here. The omplexity has in fat led to inreasingly omplexCPU designs that use tens of millions of transistors and that are enormouslyostly to design and manufature. Partiularly diÆult is the mismath in per-formane between memory and CPU. This mismath also auses problems forprogrammers; see, for example, [13℄ for a disussion of what should be a simpleoperation (bit reversal) but whose performane varies widely as a result of theuse of ahes and TLBs. These diÆulties have enouraged omputer arhitetsto onsider a wide variety of alternative approahes for improving omputersystem performane. Parallelism is one of the most powerful and most widelyused.2.2 Parallel ArhiteturesThis setion presents an overview of parallel arhitetures, onsidered as re-sponses to limitations and problems in uniproessor arhitetures and to teh-nology opportunities. We start by onsidering parallelism in the memory sys-tems, sine the hoies here have the most e�et on programming models andalgorithms. Parallelism in the CPU is disussed next; after inreases in lokrates, this is a soure of muh of the improvement in sustained performanein miroproessors. For a muh more detailed disussion of parallel omputerarhitetures, see [2℄.
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Figure 2.5: Shemati parallel omputer organization. A typial shared-memorysystem is shown in (a) where the interonnet may be either a simple bus or asophistiated swith. A distributed memory system is shown in (b); this may beeither a distributed shared-memory system or a simpler shared-nothing systemdepending on the apabilities of the network interfae (NIC).2.2.1 Memory ParallelismOne of the easiest ways to improve performane of a omputer system is sim-ply to repliate entire omputers and add a way for the separate omputers toommuniate data. This approah is shown shematially in Figure 2.5. Thisprovides an easy way to inrease memory bandwidth and aggregate proessingpower without hanging the CPU, allowing parallel omputers to take advan-tage of the huge investment in ommodity miroproessor CPUs. The ost is ininreased omplexity of the software and in the impat that this has on the per-formane of appliations. The major hoie here is between distributed memoryand shared memory.Distributed MemoryThe simplest approah from the hardware perspetive is the distributed mem-ory, or shared nothing, model. The approah here is to use separate omputersonneted by a network. The typial programming model onsists of separateproesses on eah omputer ommuniating by sending messages (message pass-ing), usually by alling library routines. This is the most lassi form of parallelomputing, dating bak to when the omputers were people with alulatorsand the messages were written on slips of paper [22℄. The modern distributed-memory parallel omputer started with the work of Seitz [23℄.



2.2. PARALLEL ARCHITECTURES 13Typial distributed-memory systems inlude the IBM SP and Beowulf lus-ters. The major feature that distinguishes between di�erent distributed-memoryparallel omputers is the network that onnets them. Di�erent interonnetsare desribed in Setion 2.2.2. While the message-passing programming modelhas been suessful, it emphasizes that the parallel omputer is a olletion ofseparate omputers.Shared MemoryA more omplex approah ties the omputers more losely together by plaingall of the memory into a single (physial) address spae and supporting virtualaddress spaes aross all of the memory. That is, data is available to all of theCPUs through the load and store instrutions of the ISA. Beause aess to thememory is through load and store operations rather than the network operationsused in distributed-memory systems, aess to remote memory has lower latenyand higher bandwidth. These advantages ome with a ost, however. Themost serious problem is onsisteny. To understand this problem, onsider thefollowing simple Fortran program:a = a + 1b = 1In a generi ISA, the part that inrements a might be translated to...LOAD R12, %A10 ; Load a into registerADD R12, #1 ; Add one to the value in R12STORE R12, %A10 ; Store the result bak into A...The important point here is that the single program statement a=a+1 turns intothree separate instrutions. Now, reall our disussion of ahe memory. In auniproessor, the �rst time the LOAD operation ours, the value is brought intothe memory ahe. The store operation writes the value from register bak intothe ahe. Now, assume that another CPU, exeuting a program that is usingthe same address spae, exeutes10 if (b .eq. 0) goto 10print *, aWhat value of a does that CPU see? We would like it to see the value of aafter the inrement. But that requires that the value has both been writtenbak to the memory from the ahe of the �rst CPU and read into ahe (evenif the orresponding ahe line had previously been read into memory) on theseond CPU. In other words, we want the program to exeute as if the ahewas not present, that is, as if every load and store operation worked diretly onthe memory. The opies of the memory in the ahe are used only to improveperformane of memory operations but do not hange the behavior of programs



14 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESthat are aessing the same memory loations. Cahe memory systems thataomplish this objetive are alled ahe oherent. Ensuring that a memorysystem is ahe oherent requires additional hardware and adds to the omplex-ity of the system. On the other hand, it simpli�es the job of the programmer,sine the orretness of a program doesn't depend on details of the behavior ofthe ahe. We will see, however, that while ahe oherene is neessary, it is notsuÆient to provide the programmer with a friendly programming environment.The omplexity of providing ahe ohereny has led to di�erent designs.One important lass is alled uniform memory aess (UMA). In this design,eah memory and ahe are onneted to all of the others; eah part observesany memory operation (suh as a load from a memory loation) and ensuresthat ahe oherene is maintained. Beause the time to aess a loation frommemory (not from ahe) is independent of the address (and hene partiularmemory unit), this is alled UMA. Early implementations used a bus, whihis a ommon signaling layer that eah proessor and memory were onnetedto. Beause buses are not salable (all devies on the bus must share a limitedamount of ommuniation), higher-performane UMA systems based on om-pletely onneted networks have been onstruted. Suh networks themselvesare not salable (the number of onnetions for p omponents grows as p2),leading to the other lass of shared memory designs.The nonuniform memory aess (NUMA) approah does not require thatall memory be equally \distant" (in terms of aess time). Instead, the memorymay be onneted by a salable network. Suh systems an be more sensitive tothe details of data layout but an also sale to muh larger numbers of proessors.To emphasize that a NUMA system is ahe oherent, the term CC-NUMA isoften used. The term distributed shared memory (DSM) is also often usedto emphasize the NUMA harateristis of this approah to building shared-memory hardware. The term virtual shared memory, or virtual distributed sharedmemory, is used to desribe a system that provides the programmer with ashared-memory programming model built on top of distributed-memory (notDSM) hardware.Typial UMA systems inlude the Sun E10000 (up to 64 proessors) andSGI Power Challenge (up to 18 proessors). Typial CC-NUMA systems inludethe SGI Origin (typially up to 128 proessors, 1024 in speial on�gurations)and the HP Exemplar V2600 (up to 128 proessors). The SGI Origin uses anapproah alled diretory-based ahe ohereny (diretory ahes, for short)[16℄ to distribute the information needed to maintain ahe ohereny arossthe network that onnets the memory to the CPUs.Memory Consisteny and Programming ModelsHow does the programming model hange when several threads or proessesshare memory? What are the new issues and onerns? Consider a unipro-essor CPU exeuting a single-user program (a single-threaded, single-proessprogram). Programs exeute simply, one statement after the other. Impliitin this is that all statements before the urrent statement have ompleted be-



2.2. PARALLEL ARCHITECTURES 15fore the urrent statement is exeuted. In partiular, all stores to and loadsfrom memory issued by previous statements have ompleted before the urrentstatement begins to exeute. In a multiproessor exeuting a single program onmultiple proessors, the notion of \urrent" statement and \ompleted before"is unlear. Or rather, it an be de�ned to be lear, but only at a high ost inperformane.The fundamental observation is by Lamport [14℄ in an artile titled \Howto Make a Multiproessor Computer that Corretly Exeutes Multiproess Pro-grams". From a programmer's perspetive, a parallel program should exeute asif it were some arbitrary interleaving (but preserving order) of the statements inthe program. This requirement is alled sequential onsisteny. Unfortunately,while this mathes the way most programmers look at their ode, it imposessevere onstraints on the hardware, in large part beause of the high lateny ofmemory aesses relative to the CPU speed.Beause providing sequential onsisteny limits performane, weaker modelshave been proposed. One model proposed in the late 1980s, alled proessor on-sisteny [7℄, mathed many of the then-urrent multiproessor implementationsbut (usually) required some expliit ation by the programmer to ensure orretprogram behavior. Programmers who use the thread programming model withthread loks to synhronize aesses to shared data strutures satisfy this re-quirement beause the implementation of the lok and unlok alls in the threadlibrary ensures that the orret instrutions are issued.Some programmers prefer to avoid the use of loks, however, beause oftheir relatively high overhead and instead use ag variables to ontrol aess toshared data (as we used a as the ag variable in the preeding setion). Weakonsisteny [4℄ is appropriate for suh programs; like proessor onsisteny, theprogrammer is required to take speial steps to ensure orret operation.Even weak onsisteny interferes with some performane optimizations, how-ever. For this reason, release onsisteny [6℄ was introdued. This form ofonsisteny separates synhronization between two proesses or threads into anaquire and a release step.The important point for programmers and algorithm developers is that theprogramming model that is most natural for programmers and that reets theway we read programs is sequential onsisteny, and this model is not imple-mented by parallel omputer hardware. Consequently, the programmer annotrely on programs exeuting as some interleaved ordering of the statements. Thespei� onsisteny model that is implemented by the hardware may requiredi�erent degrees of additional spei�ation by the programmer. Language de-sign for parallel programming may take the onsisteny model into aount,providing ways for the ompiler, not the programmer, to enfore onsisteny.Unfortunately, most languages (inluding C, C++, and Fortran) were designedfor single threads of ontrol and do not provide any mehanism to enfore on-sisteny.Note that if memory lateny was small, providing sequential onsistenywould not greatly impat performane. Weaker forms of onsisteny would notbe needed, and Lamport's title [14℄ would reet real mahines.



16 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESOther ApproahesTwo other approahes to parallelism in memory are important. In both of these,the CPU is ustomized to work with the memory system. In single instrution,multiple data (SIMD) parallelism, simpli�ed CPUs are onneted to memory.Unlike the previous ases, in the SIMD approah, eah CPU exeutes the sameinstrution in eah lok yle. Suh systems are well suited for the data-parallelprogramming model, where data is divided up among memory systems and thesame operation is performed on eah data element. For example, the Fortranodedo i=1, 10000a(i) = a(i) + alpha * b(i)enddoan be onverted into a small number of instrutions, with eah CPU takinga part of the arrays a and b. While these systems have fallen out of favoras general-purpose omputers, they are still important in �elds suh as signalproessing. The most famous general-purpose SIMD system was the ConnetionMahine (CM-1 and CM-2) [9℄.The other major approah is vetor omputing. This is often not onsideredparallelism beause the CPU has little expliit parallelism, but parallelism isused in the memory system. In vetor omputing, operations are performed onvetors, typially groups of 64 oating-point numbers. A single instrution in avetor omputer may ause 64 results to be omputed (often with a pipelinedoating-point unit), using vetors stored in vetor registers. Data transfers frommemory to vetor registers make use of multiple memory banks; the parallelismin the memory supports very high bandwidths between the CPU and the mem-ory. Vetor omputers often have memory bandwidths that are an order ofmagnitude or more greater than nonvetor omputers. We will ome bak tovetor omputing in Setion 2.2.3 after disussing parallelism in the CPU.The most important vetor mahine was the Cray 1; most urrent vetormahines are in fat ombinations of multiple vetor CPUs with shared mem-ory. These systems are often alled parallel vetor proessors (PVPs). Systemsof this type inlude the NEC SX-5 and the Cray T90. These systems maynot fully support ahe ohereny, trading some software omplexity for fasterperformane in their memory systems.Parallel Random Aess MemoryA great deal of theoretial work on the omplexity of parallel omputation hasused the parallel random aess memory model (PRAM). This is a theoretialmodel of a shared-memory omputer; di�erent varieties of PRAM vary in thedetails of how memory aesses to the same address are handled. In order tomake the theoretial model tratable, memory aess times are usually onsid-ered onstant independent of the CPU performing the (nononiting) aess; inpartiular, there are no ahes and no fators of one hundred or more di�erenein aess times for di�erent memory loations. While this model is valuable in



2.2. PARALLEL ARCHITECTURES 17understanding the limits of parallel algorithms, the PRAM model represents anabstration that annot be eÆiently implemented in pratie.Limits to Memory System PerformaneOne interesting limit to memory system performane omes from applying Lit-tle's law to memory requests. Little's law is a result from queuing theory;applied to memory requests, it says that if the memory lateny that needs tobe hidden is L and the rate of requests is r, then the number of simultaneouslyative requests needed is rL. If this is ast in terms of lok yles, if the mem-ory lateny is 100 yles and a memory request is issued every yle, then 100requests must be ative at the same time. The onsequenes are numerous:1. The bandwidth of the memory system must support more requests (thenumber uses the same formula but uses the lateny of the interonnet,whih may still be around 10 yles).2. There must be enough independent work. Some algorithms, partiularlythose that use reurrene relations, do not have muh independent work.This situation plaes a burden on the algorithm developer and the pro-grammer.3. The ompiler must onvert the program into enough independent requests,and there must be enough resoures (suh as registers) to hold results asthey arrive (load) or until they depart (store).Many urrent miroproessors allow a small number of outstanding memoryoperations; only the Cray MTA (disussed below) satis�es the requirements ofLittle's law for main-memory aesses.2.2.2 InteronnetsIn the preeding setion, we desribed the interation of memories and CPUs.In this setion we say a little more about the interonnetion networks that areused to onnet omponents in a omputer (parallel or otherwise).Many types of networks have been used in the past thirty years for on-struting parallel systems, ranging from relatively simple buses, to 2D and 3Dmeshes, to omplex hyperube network topologies [15℄. Eah type of networkan be desribed by its topology, its means of dealing with ongestion (e.g.,bloking or nonbloking), its approah to message routing, and its bandwidthharateristis.For a long time, understanding details of the topology was important forprogrammers and algorithm developers seeking to ahieve high performane.This situation is reeted both in the literature and in parallel programmingmodels (e.g., the topology routines in MPI). Reently, networks have improvedto the point that for many users, network topology is no longer a major fa-tor in performane. However, some of this apparent \atness" (uniformity) inthe topology omes from greatly inreased bandwidth within the network. As



18 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESnetwork endpoints beome faster, network topology may again beome an im-portant onsideration in algorithms and programming models. Congestion inthe network an still be a problem if the network performane doesn't salewith the number of proessing nodes. The term bisetion bandwidth desribesthe bandwidth of the network aross any ut that divides the network into twoparts.Note that there is no best approah. Simple mesh networks, suh as thoseused in the Intel TFLOPS (ASCI Red) system, provide e�etive salabilityfor many appliations through low lateny and high bandwidth, even though amesh network does not have salable performane in the sense that the bisetionbandwidth of a mesh does not grow proportionally with the number of nodes.It is salable in terms of the hardware required: there is a onstant ost pernode for eah node added.When interonnets are viewed as networks between omputers, the perfor-mane goals have been quite modest. Fast networks of this type typially havelatenies of ten miroseonds or more (inluding essential software overheads)and bandwidths on the order of 100 MB/s. Interonnets used to implementshared memory, on the other hand, are designed to operate at memory systemspeeds and with no extra software overhead. Latenies for these systems aremeasured in nanoseonds and bandwidths of one to ten gigabytes per seondare beoming ommon.Early shared-memory systems used a bus to onnet memory and proessors.A bus provides a single, shared onnetion that all devies use and is relativelyinexpensive to build. The major drawbak is that if k devies are using the busat the same time, under the best of onditions, eah gets 1=k of the availableperformane (e.g., bandwidth). Contention between devies on the bus anlower the available bandwidth onsiderably.To address this problem, some shared-memory systems have hosen to usenetworks that onnet eah proessor with eah memory system. For smallnumbers of proessors and memories, a diret onnetion between eah proessorand memory is possible (requiring p2 onnetions for p devies); this is alled afull rossbar. For larger numbers of proessors, a less omplete network may beused.An interesting development is the onvergene of the tehnology used fornetworking and for shared memory. The salable oherent interonnet (SCI)[11℄ was an early attempt to provide a memory-oriented view of interonnetsand has been used to build CC-NUMA systems from Convex and HP. Build-ing on work both in researh and in industry, the VIA [29℄ and In�niband[12℄ industry-standard interonnets allow data to be moved diretly from oneproessor's memory to another along an established iruit. These provide aommuniation model that is muh loser to that used in memory interon-nets, and should o�er muh lower latenies and higher bandwidths than older,message-oriented interonnets.Systems without hardware ahe ohereny often provide a way to indiatethat all opies of data in a ahe should be disarded; this is alled ahe inval-idation. Sometimes this is a separate instrution; sometimes it is a side e�et of



2.2. PARALLEL ARCHITECTURES 19a synhronization instrution suh as test-and-set (e.g., Cray SV-1). Softwarean use this strategy to ensure that programs operate orretly. The ost is thatall opies of data in the ahe are disarded; hene, subsequent operations thatreferene memory loations stall while the ahe is re�lled. To avoid this situa-tion, some systems allow individual ahe lines to be invalidated rather than theentire ahe. However, suh an approah requires great are by the software,sine the failure to invalidate a line ontaining data that has been updated byanother proessor an lead to inorret and nondeterministi behavior by theprogram.For an engaging disussion of the hallenges of implementing and program-ming shared-memory systems, see [21℄.2.2.3 CPU ParallelismParallelism at the level of the CPU is more diÆult to implement than simplerepliation of CPUs and memory, even when the memory presents a single sharedaddress spae. However, modest parallelism in the CPU provides the easiestroute to improved performane for the majority of appliations beause littleneeds to be done by the programmer to exploit this kind of parallelism.Supersalar ProessingLook at Figure 2.2 again, and onsider the following program fragment:real a, b, integer i, j, k...a = b * i = j + kThe values a, b, , i, j, and k are already in register. These two statements usedi�erent funtional units (FPU and ALU, respetively) and di�erent register sets(FPR and GPR). A supersalar proessor an exeute both of these statements(eah requiring a single register-to-register instrution) in the same lok yle(more preisely, suh a proessor will \begin exeution" of the two statements,sine both may be pipelined). The term supersalar omes from the fat thatmore than one operation an be performed in a single lok yle and thatperformane is ahieved on nonvetor ode. A supersalar proessor allows asmuh parallelism as there are funtional units. Beause separate instrutionsare exeuted in parallel, this is also alled instrution-level parallelism (ILP).For ILP to be e�etive, it must be easy for the hardware to �nd instrutions thatdo not depend on eah other and that use di�erent funtional units. Considerthe following example. If the CPU exeutes instrutions in the order that theyappear, then the ode sequene on the left will take three yles and the one onthe right only two yles.a = b *  a = b * d = e * f i = j + k



20 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESi = j + k d = e * fl = m + n l = m + nSome CPUs will attempt to reorder instrutions in the CPU's hardware, anation that is most bene�ial to legay appliations that annot be reompiled.It is often better, however, if the ompiler shedules the instrutions for e�etiveuse of ILP; for example, a good ode-sheduling ompiler would transform theode on the left to the ode on the right (but breaking sequential onsisteny!).One major drawbak of ILP, then, is that the hardware must redisoverwhat a sheduling ompiler already knows about the instrutions that an beexeuted in the same lok yle.Expliitly Parallel InstrutionsAnother approah is for the instrution set to enode the use of eah part ofthe CPU. That is, eah instrution ontains expliit subinstrutions for eah ofthe di�erent funtional units in the CPU. Sine eah instrution must expliitlyspeify more details about what happens in eah lok yle, instrutions resultthat are longer than in other ISAs. In fat, they are usually referred to asvery long instrution word (VLIW) ISAs. VLIW systems usually rely on theompiler to shedule eah funtional unit. One of the earliest ommerial VLIWmahines was the Multiow Trae. The Intel IA64 ISA is a desendent of thisapproah; the term EPIC (expliitly parallel instrution omputing) is used forthe Intel variety. EPIC does relax some of the restritions of VLIW but stillrelies on the ompiler to express most of the parallelism.SIMD and VetorsOne approah to parallelism is to apply the same operation to several di�erentdata values, using multiple funtional units. For example, a single instrutionmight ause four values to be added to four others, using four separate adders.We have seen this SIMD style of parallelism before, when applied to separatememory units. The SIMD approah is used in some urrent proessors for speialoperations. For example, the Pentium III inludes a small set of SIMD-styleinstrutions for single-preision oating-point and related data move operations.These are designed for use in graphis transformations that involve matrix-vetor multipliation by 4� 4 matries.Vetor omputers use similar tehniques in the CPU to ahieve greater per-formane. A vetor omputer an apply the same operation to a olletion ofdata alled a vetor; this is usually either suessive words in memory or wordsseparated by a onstant o�set or stride. Early systems suh as the CDC Star100 and Cyber 205 were vetor memory-to-memory arhitetures where vetorsould be nearly any length. Sine the Cray 1, most vetor omputers have usedvetor registers, typially limiting vetors to 64 elements. The big advantageof vetor omputing omes from the regular memory aess that a vetor rep-resents. Through the use of pipelining and other tehniques suh as haining,a vetor omputer an ompletely hide the memory lateny by overlapping theaess to the next vetor with operations on a urrent vetor.



2.2. PARALLEL ARCHITECTURES 21Vetor omputing is related to VLIW or expliitly parallel omputing in thesense that eah instrution an speify a large amount of work and that advanedompilers are needed to take advantage of the hardware. Vetors are less exiblethan the VLIW or EPIC approah but, beause of the greater regularity, ansustain higher performane on appliations that an be expressed in terms ofvetors.MultithreadingParallelism in the CPU involves exeuting multiple sets of instrutions. Any oneof these sets, along with the related virtual address spae and any state, is alleda thread. Threads are most familiar as a software model (see Chapter 10), butthey are also a hardware model. In the usual hardware model, a thread has noexpliit dependenies with instrutions in any other thread, although there maybe impliit dependenies through operations on the same memory address. Theritial issues are (1) How many threads issue operations in eah lok yle?and (2) How many lok yles does it take to swith between di�erent threads?Simultaneous multithreading (SMT) [27℄ allows many threads to issue in-strutions in eah lok yle. For example, if there are four threads and fourfuntional units, then as long as eah funtional unit is needed by some threadin eah lok yle, all funtional units an be kept busy every yle, providingmaximumuse of the CPU hardware. The ompiler or programmer must dividethe program into separately exeuting threads. The SMT approah is startingto show up in CPU designs inluding versions of the Compaq Alpha and IBMPower proessors.Fine-grained multithreading uses a single thread at a time but allows theCPU to hange threads in a single lok yle. Thus, a thread that must waitfor a slow operation (anything from a oating point addition to a load frommain memory) an be \set aside," allowing other threads to run. Sine a loadfrom main memory may take 100 yles or more, the bene�t of this approah forhiding memory lateny is apparent. The drawbak when used to hide memorylateny an be seen by applying Little's law. Large numbers of threads must beprovided for this approah to sueed in ompletely hiding the lateny of main(rather than ahe) memory. The Cray MTA is the only ommerial arhitetureto o�er enough threads for this purpose.All of these tehniques an be ombined. For example, �ne-grained multi-threading an be ombined with supersaler ILP or expliit parallelism. SMTan restrit groups of threads to partiular funtional units in order to simplifythe proessor design, partiular in proessors with multiple FPUs and ALUs.2.2.4 I/O and NetworksJust as in the uniproessor ase, I/O and networking have not reeived the samedegree of attention as have CPU and memory performane. Fortunately, thelower performane levels of I/O and networking devies relative to CPU andmemory allow a simpler and less expensive arhiteture. On the other hand,lower performane puts tremendous strain on the arhitet trying to maintain



22 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESbalane in the system. A ommon I/O solution for parallel omputers, partiu-larly lusters, is not a parallel �le system but rather a onventional �le system,aessed by multiple proessors.Reall that data ahes are often used to improve the performane of I/Osystems in uniproessors. As we have seen, it is important to maintain onsis-teny between the di�erent ahes and between ahes and memory if orretdata is to be provided to programs. Unfortunately, partiularly for networked�le systems suh as NFS, maintaining ahe onsisteny seriously degrades per-formane. As a result, suh �le systems allow the system administrator to tradeperformane against ahe oherene. For environments where most applia-tions are not parallel or do not have multiple proesses aessing the same �leat the same time, ahe-oherene is usually sari�ed in the name of speed.The Redundant arrays of inexpensive disks (RAID) approah is an exam-ple of the bene�ts of parallelism in I/O. RAID was �rst proposed in 1988 [19℄with �ve di�erent levels representing di�erent uses of multiple disks to providefault tolerane (disks, being mehanial, fail more often than entirely eletroniomponents) while maintaining a balane between read rates, write rates, andeÆient use of storage. The RAID approah has sine been generalized to ad-ditional levels. Both hardware (RAID managed by hardware, presenting theappearane of a single but faster and/or more reliable disk) and software (sep-arate disks managed by software) versions exist.Parallel I/O an also be ahieved by using arrays of disks arranged in pat-terns di�erent from those desribed by the various RAID levels. Chapter 11desribes parallel I/O from the programmer's standpoint. A more detailed dis-ussion of parallel I/O an be found in [17℄.The simplest form of parallelism in networks is the use of multiple paths,eah arrying part of the traÆ. Networks within a omputer system oftenahieve parallelism by simply using separate wires for eah bit. Less tightlyoupled systems, suh as Beowulf lusters, sometimes use a tehnique alledhannel bonding, whih uses multiple network paths, eah arrying part of themessage. GridFTP [1℄ is an example of software that exploits the ability of theInternet to route data over separate paths to avoid ongestion in the network.A more omplex form of parallelism is the use of di�erent eletrial or optialfrequenies to onurrently plae several messages on the same wire or �ber.This approah is rarely used within a omputer system beause of the addedost and omplexity, but it is used extensively in long-distane networks. Newtehniques for optial �bers, suh as dense wavelength division multiplexing(DWDM), will allow a hundred or more signals to share the same optial �ber,greatly inreasing bandwidth.2.2.5 Support for Programming ModelsSpeial operations are needed to allow proesses and threads that share the sameaddress spae to oordinate their ations. For example, one thread may need tokeep others from reading a loation in memory until it is done modifying thatloation. Suh protetion is often provided by loks: any thread that wants to



2.2. PARALLEL ARCHITECTURES 23aess the partiular data must �rst aquire the lok, releasing the lok whenit is done. A lok, however, is not easy to implement with just load and storeoperations (though it an be done). Instead, many systems provide ompoundinstrutions that an be used to implement loks, suh as test-and-set or feth-and-inrement. RISC systems often provide a \split" ompound instrutionthat an be used to build up operations suh as feth-and-inrement based onstoring a result after reading from the same address only if no other thread orproess has aessed the same loation sine the load.Beause rapid synhronization is neessary to support �ne-grained paral-lelism, some systems (partiularly PVPs) use speial registers that all CPUsan aess. Other systems have provided extremely fast barriers: no proessan leave a barrier until all have entered the barrier. In a system with a fastbarrier, a parallel system an be viewed as sequentially onsistent where an\operation" is de�ned as the group of instrutions between two barriers. Thisprovides an e�etive programming model for some appliations.In distributed-memory mahines, proesses share no data and typially om-muniate through messages. In shared-memory mahines, proesses diretly a-ess data. There is a middle ground: remote memory aess (RMA). This issimilar to the network-onneted distributed-memory system exept that addi-tional hardware provides put and get operations to store to or load frommemoryin another node. The result is still a distributed-memory mahine, but one withvery fast data transfers. Examples are the Compaq AlphaServer SC, Cray T3Dand T3E, NEC Cenju 4, and Hitahi SR8000.2.2.6 SummaryParallelism is a powerful approah to improving the performane of a omputersystem. All systems employ some degree of parallelism, even if it is only paralleldata paths between the memory and the CPU. Parallelism is partiularly goodat solving problems related to bandwidth or throughput; it is less e�etive atdealing with lateny or startup osts. However, the ability to swith betweentasks provides one way to hide lateny as long as enough independent tasksan be found. Parallelism does not ome free, however. The e�ets of mem-ory lateny are partiularly painful, foring omplex onsisteny models on theprogrammer and diÆult design onstraints on the hardware designer.In the ontinuing quest for ever greater performane, today's parallel om-puters often ombine many of the approahes disussed here. One of the mostpopular is distributed-memory lusters of nodes, where eah node is a shared-memory proessor, typially with 2 to 16 proessors, though some lusters haveSMP nodes with as many as 128 proessors. Another important lass of ma-hines is the parallel vetor proessors; these use vetor-style CPU parallelismombined with shared memory.We emphasize that hardware models and software (or programming) modelsare essentially disjoint; shared-memory hardware provides exellent message-passing support, and distributed-memory hardware an (at sometimes substan-tial ost) support a shared-memory programming model.



24 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESWe lose this setion with a brief mention of taxonomies of parallel omput-ers. A taxonomy of parallel omputers provides a way to identify the importantfeatures of a system. Flynn [5℄ introdued the best known taxonomy that de-�nes four di�erent types of omputer based on whether there are multiple datastreams and/or multiple instrution streams. A onventional uniproessor has asingle instrution stream and a single data stream and is denoted SISD. Most ofthe parallel omputers that we have desribed in this setion have both multipledata and multiple instrution streams (beause they have many memories andCPUs); these are alled MIMD. The single instrution but multiple data par-allel omputer, or SIMD, has already been mentioned. The fourth possibilityis the multiple instrution, single data, or MISD; this ategory is not used. Astandard taxonomy for MIMD arhitetures has not yet emerged, but it is likelyto be based on whether the memory is shared or distributed and, if it is shared,whether it is ahe oherent and how aess time varies. Many of the termsused to desribe these alternatives have been disussed above, inluding UMA,CC-NUMA, and DSM.The term single program, multiple data (SPMD) is inspired by Flynn's tax-onomy. Beause the single program has branhes and other ontrol-ow on-struts, SPMD is a subset of MIMD, not a subset of SIMD programs. Usinga single program, however, does provide an important simpli�ation, and mostparallel programs in tehnial and sienti� omputing are SPMD.2.3 Today's Parallel SystemsMost systems today are hybrids, ombining di�erent tehnologies to providethe greatest possible omputing power within the limits of ost, omplexity,and usability. Beause most systems are hybrids, there is no unique taxonomy.This setion divides parallel systems in terms of their user ommunities: parallelvetor proessors, shared memory, and distributed memory. See [28℄ for a reviewof urrent superomputers, inluding large-sale parallel systems.This setion overs only those systems typially used for sienti� omput-ing. Parallelism is widely used in ommerial omputing for appliations suhas databases and Web servers. Speial arhitetures and hardware have beendeveloped to support these appliations, inluding speial hardware support forsynhronization and fault tolerane.2.3.1 Parallel Vetor ProessorsParallel vetor proessors represent one of the most powerful lasses of parallelomputer, ombining impressive per proessor performane with parallelism.As late as 1996, the top mahines on the Top 500 list of superomputers wereparallel vetor proessors [26℄, and sine then only massively parallel systemswith thousands of proessors are faster.The fastest of these mahines may not provide full ahe ohereny in hard-ware; instead, they may require some support from the software to maintain aonsistent view of memory. Mahines in this ategory inlude the NEC SX-5and Cray SV1. This is an example of the sort of tradeo� of performane versus



2.3. TODAY'S PARALLEL SYSTEMS 25ost and omplexity that ontinues to fae arhitets of parallel systems.A distinguishing feature of vetor proessors and parallel vetor proessorsis the high memory bandwidth, often 4{16 bytes per oating-point operation.This is reeted in the high sustained performane ahieved on these mahinesfor many sienti� appliations.2.3.2 Shared MemoryShared-memory systems are beoming ommon, even for desktop systems. Mostvendors inlude shared-memory systems among their o�erings, inluding Com-paq, HP, IBM, SGI, and Sun and many personal omputer vendors. Most ofthese systems have between 2 and 16 proessors, with a few providing up to 128proessors. Both UMA and CC-NUMA designs are ommon.In ontrast to PVPs, these systems usually have quite modest memory band-widths. At the low end, in fat, the same aggregate memory bandwidth maybe provided to systems with 1 to 4 or even 16 proessors. As a result, some ofthese systems are often starved for memory bandwidth. This an be a problemfor appliations that do not �t in ahe. Appliations that are memory aessbound an even slow down as proessors are added in suh systems. Of ourse,not all systems are underpowered, and the memory performane of even the lowend systems has been improving rapidly.2.3.3 Distributed MemoryDistributed-memory systems are the most ommon beause they are the easiestto assemble. Systems from Intel, partiularly the Paragon and the 512-proessorDelta, were important in demonstrating that appliations ould make e�etiveuse of large numbers of proessors. Perhaps the most suessful ommerialdistributed-memory system is the IBM SP family. SP systems ombine variousversions of the suessful RS6000 workstation and server nodes with di�erentinteronnets to provide a wide variety of parallel systems, from 8 proessors tothe 8192-proessor ASCI White system.As mentioned above, some distributed-memory systems have been built withspeial-purpose hardware that provides remote memory operations suh as putand get. The most suessful of these are the Cray T3D and T3E systems.Many groups have exploited the low ost and relatively high performane ofommodity miroproessors to build lusters of personal omputers or worksta-tions. Early versions of these were built from desktop workstations and weresometimes referred to as NOWs, for networks of workstations. The ontinuedimprovement in performane of personal omputers, ombined with the emer-gene of open soure (and free) versions of the Unix operation system, gave riseto lusters of mahines. These systems are now widely know as Beowulfs orBeowulf lusters, from a projet begun by Thomas Sterling and Donald Bekerat NASA [24,25℄. They are real parallel mahines; as of 2000, two of the top100 superomputer systems were built from ommodity parts.



26 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES2.4 Future Diretions for Parallel ArhiteturesIn some ways, the future of parallel arhitetures, at least for the next �ve years,is lear. Most parallel mahines will be hybrids, ombining nodes ontaining amodest number of ommodity CPUs sharing memory in a distributed-memorysystem. Many users will have only one shared-memory node; for them, shared-memory programming models will be adequate. In the longer term, the pitureis muh hazier. Many hallenges will be diÆult to overome. Prinipal amongthese are memory lateny and the limits imposed by the speed of light. Heatdissipation is also beoming a major problem for ommodity CPUs. One majorontributor to the inrease in lok speeds for CPUs has been a orrespondingderease in the size of the features on the CPU hip. These feature sizes areapproahing the size of a single atom, beyond whih no further derease ispossible.While these hallenges may seem daunting, they o�er an important oppor-tunity to omputer arhitets and software sientists|an opportunity to take astep that is more than just evolutionary.Exoti Parallel ArhiteturesAs we have disussed above, one of the major problems in designing anyomputer is providing a high-bandwidth, low-lateny path between the CPUand memory. Some of this ost omes from the way DRAMs operate: data isstored in rows; when an item is needed, the entire row is read and the parti-ular bit is extrated; the other bits in the row are disarded. This simpli�esthe onstrution of the DRAM (separate wires are not needed to get to eahbit), but it throws away signi�ant bandwidth. Observing that DRAM densitiesare inreasing at a rate even faster than the rate at whih ommodity softwaredemands memory, several researhers have explored ombining the CPU andmemory on the same hip and using the entire DRAM row rather than a sin-gle bit at a time. In fat, an early ommerial version of this approah, theMitsubishi M32000D3 proessor, used a onventional, ahe-oriented RISC pro-essor ombined with memory and organized so that a row of the memory wasa ahe line, allowing for enormous (for the time) bandwidth in memory-ahetransfers. Several di�erent arhitetures the exploit proessors and memory inthe same hip are urrently being explored [3, 20℄, inluding approahes thatonsider vetor-like arhitetures and approahes that plae multiple proessorson the same hip. Other arhitets are looking a parallel systems built fromsuh hips; the IBM Blue Gene [10℄ projet expets to have a million proessorsystem (with around 32 proessors per node).Superonduting elements promise lok speeds of 100 GHz or more. Ofourse, suh advanes will only exaerbate the problem of the mismath betweenCPU and memory speeds. Designs for CPUs of this kind often rely on hardwaremultithreading tehniques to redue the impat of high memory latenies.Computing based on biologial elements often seeks to make use of paral-lelism by using moleules as proessing elements. Quantum omputing, parti-ularly quantum omputing based on exploiting the superposition priniple, is afundamentally di�erent kind of parallelism.



2.5. CONCLUSION 272.5 ConlusionParallel arhiteture ontinues to be an ative and exiting area of researh.Most systems now have some parallelism, and the trends point to inreasingamounts of parallelism at all levels, from 2 to 16 proessors on the desktop totens to hundreds of thousands for the highest-performane systems.Aess to memory ontinues to be a major issue; hiding memory lateny isone area where parallelism doesn't provide a (relatively) simple solution. Thearhitetural solutions to this problem have inluded deep memory hierarhies(allowing the use of low-lateny memory lose to the proessor), vetor oper-ations (providing a simple and eÆient \prefeth" approah), and �ne-grainedmultithreading (enabling other work to ontinue while waiting on memory). Inpratie, none of these approahes ompletely eliminates the problem of memorylateny. The use of low-lateny memories, suh as ahes, su�ers when the datadoes not �t in the ahe. Vetor operations require a signi�ant amount of reg-ularity in the operations that may not �t the best (often adaptive) algorithms,and multithreading relies on identifying enough independent threads. Beauseof this, parallel programming models and algorithms have been developed thatallow the omputational sientist to make good use of parallel systems. That isthe subjet of the rest of this book.
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