Chapter 2

Parallel Computer
Architectures

William Gropp, Rick Stevens, and Charlie Catlett (lan
Foster, editor)

Target Length: 20 to 30 pages

Parallel computers provide great amounts of computing power, but they do
so at the cost of increased difficulty in programming and using them. Certainly,
a uniprocessor that was fast enough would be simpler to use. To explain why
parallel computers are inevitable and to identify the challenges facing developers
of parallel algorithms, programming models, and systems, in this chapter we
describe briefly (but in more detail than in Chapter 2) the architecture of both
uniprocessor and parallel computers. We will see that while computing power
can be increased by adding processing units, memory latency (the irreducible
time to access data) is the source of many challenges in both uniprocessor and
parallel processor design.

Parallel architectures and programming models are not independent. While
most architectures can support all programming models, they may not be able
to do so efficiently. An important part of any parallel architecture 1s any fea-
ture that simplifies the process of building, testing, and tuning an application.
Some parallel architectures put a great deal of effort into supporting a parallel
programming model; others provide little or no extra support. All architectures
represent a compromise between cost, complexity, timeliness, and performance.

This chapter is organized as follows. In Section 2.1 we briefly describe the
important features of single processor (or uniprocessor) architecture. From this
background, the basics of parallel architecture are presented in Section 2.2; in
particular, we describe the opportunities for performance improvement through
parallelism at each level in a parallel computer, with references to machines
of each type. Section 2.3 reviews current parallel systems. In Section 2.4,

2 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

we examine potential future parallel computer architectures. We conclude the
chapter with a brief summary of the key issues motivating the development of
parallel algorithms and programming models.

2.1 Uniprocessor Architecture

In this section we briefly describe the major components of a conventional,
single-processor computer, emphasizing the design tradeoffs faced by the hard-
ware architect. This description lays the groundwork for a discussion of parallel
architectures, since parallelism is entirely a response to the difficulty of provid-
ing ever greater performance (or reliability) in a system that inherently performs
only one task at a time. Those interested in a more detailed discussion of these
issues should consult [8].

The major components of a computer are the central processing unit that
executes programs, the memory system that stores executing programs and the
data that the programs are operating on, and input/output systems that allow
the computer to communicate with the outside world (e.g., through keyboards,
networks, and displays) and with permanent storage devices such as disks. The
design of a computer reflects the available technology; constraints such as power
consumption, physical size, cost, and maintainability; the imagination of the
architect; and the software (programs) that will run on the computer (including
compatibility issues). All of these have changed tremendously over the past fifty
years.

Perhaps the best known change is captured by Moore’s law [18], which says
that microprocessor CPU performance doubles roughly every eighteen months.
This is equivalent to a thousandfold increase in performance over fifteen years.
Moore’s law has been remarkably accurate over the past thirty-six years (see
Figure 2.1), even though it represents an observation about the rate of engi-
neering progress and is not a law of nature (such as the speed of light). In fact,
it is interesting to look at the clock speed of the fastest machines in addition
to (and compared with) that of microprocessors. In 1981, the Cray 1 was one
of the fastest computers, with a 12.5 ns clock. In 2001, microprocessors with
0.8 ns clocks are becoming available. This is a factor of 16 in twenty years, or
equivalently a doubling every five years.

Remarkable advances have occurred in other areas of computer technology
as well. The cost per byte of storage, both in computer memory and in disk
storage, has fallen along a similar exponential curve, as has the physical size
per byte of storage (in fact, the cost and size are closely related). Dramatic
advancements in algorithms have reduced the amount of work needed to solve
many classes of important problem; for example, the work needed to solve n
simultancous linear equations has fallen, in many cases, from n® to n. For 1
million equations, this is an improvement of 12 orders of magnitude!

Unfortunately, these changes have not been uniform. For example, while
the density of storage (memory and disk) and the bandwidths have increased
dramatically, the time to access storage (latency) has not kept up. As a result,
over the years, the balance in performance between the different parts of a

2.1. UNIPROCESSOR ARCHITECTURE 3

1000 T T T T

T
Vector +

RISC x
Intel %
*
* X
100 | * E
*
x
*
*
*
+
10 N x * 4
« *
* x * x
+ +
N * g+
* +
x ¥
X%
1rF e E
9%%6
o1 b——
01/75 01/80 01/85 01/90 01/95 01/00 01/05

Figure 2.1: Improvement in CPU performance measured by clock rate

computer has changed. In the case of storage, increases in clock rates relative
to storage latency have translated Moore’s law into a description of inflation in
terms of the relative cost of memory access from the point of view of potentially
wasted CPU cycles. This has forced computer architectures to evolve over the
years, for example moving to deeper and more complex memory hierarchies.

2.1.1 The CPU

The CPU is the heart of the computer; it is responsible for all calculations and
for controlling or supervising the other parts of the computer. A typical CPU
contains the following (see Figure 2.2):

Arithmetic Logic Unit (ALU): Performs computations such as addition and
comparison.

Floating Point Unit (FPU): Performs operations on floating-point numbers.
Load/Store Unit: Performs loads and stores for data.

Registers: Fast memory locations that can be used to store intermediate results.
These are often subdivided into floating-point registers (FPR) and general
purpose registers (GPR).

Program Counter (PC): Contains the address of the instruction that is exe-
cuting.

Memory Interface: Provides access to the memory system. In addition, the
CPU chip often contains the fastest part of the memory hierarchy (the
top level cache); this part is described in Section 2.1.2.

4 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

Data j Funct-lonal * Program and
Units
‘ Control

FPR —v :
> = - Control
[r— | -
[r— 1
[r— —

GPR
[r— 1
[r— —
[— —
- i
[— —
—— 1 .
- H Comparison

Result PC
N
W -
Branch

LoadiStore 7. I | Inst Decode

;

L1 Data Cache . L1 Instruction Cache 1=
K ‘ ‘ K
L2 Cache TLB

¢

Memory System

Figure 2.2: Generic CPU diagram. This example has a separate L1 cache for
data and for program instructions and a unified (both data and instructions)
L2 cache. Not all data paths are shown.

Other components of a CPU are needed for a complete system, but the ones
listed are most important for our purpose.

The CPU operates in steps controlled by a clock: in each step, or clock cycle,
the CPU performs an operation.! The speed of the CPU clock has increased
dramatically; desktop computers now come with clocks that run at over 1 GHz
(10° Hz).

One of the first decisions that a computer architect must make is what
basic operations can be performed by the CPU. There are two major camps:
the complex instruction set computer (CISC) and the reduced instruction set
computer (RISC). A RISC CPU can do just as much as a CISC CPU; however,
it may require more instructions to perform the same operation. The tradeoff 1s
that a RISC CPU, because the instructions are fewer and simpler, may be able
to execute each instruction faster (i.e., the CPU can have a higher clock speed),

I'Note that we did not say an instruction or a statement. As we will see, modern CPUs
may perform both less than an instruction and more than one instruction in a clock cycle.

2.1. UNIPROCESSOR ARCHITECTURE 5

allowing it to complete the operation more quickly.

The specific set of instructions that a CPU can perform 1s called the in-
struction set. The design of that instruction set relative to the CPU represents
the instruction set architecture (ISA). The instructions are usually produced by
compilers from programs written in higher-level languages such as Fortran or
C. The success of the personal computer has made the Intel x86 ISA the most
common ISA, but many others exist, particularly for enterprise and technical
computing. We note that while the ISA may be directly executed by the CPU,
another possibility is to design the CPU to convert each instruction into a se-
quence of one or more “micro” instructions. This allows a computer architect
to take advantage of simple operations to raise the “core” speed of a CPU, even
for an ISA with complex instructions (i.e., a CISC architecture). Thus, even
though a CPU may have a clock speed of over 1 GHz, it may need multiple clock
cycles to execute a single instruction in the ISA. Hence, simple clock speed com-
parisons between different architectures are deceptive. Even though one CPU
may have a higher clock speed than another, it may also require more clock
cycles than the “slower” CPU in order to execute a single instruction.

Programs executed by the CPU are stored in memory. The program counter
specifies the address in memory of the executing instruction. This instruction is
fetched from memory and decoded in the CPU. As each instruction is executed,
the PC changes to the address of the next instruction. Control flow in a program
(e.g., if, while, or function all) is implemented by setting the PC to a new
address.

One important part of the ISA concerns how memory is accessed. When
memory speeds were relatively fast compared with CPU speeds (particularly
for complex operations such as floating-point division), the ISA might include
instructions that read several items from memory, performed the operation,
and stored the result into memory. These were called memory-to-memory op-
erations. However, as CPU speeds increased dramatically relative to memory
access speeds, ISAs changed to emphasize a “load-store” architecture. In this
approach, all operations are performed by using data in special, very fast loca-
tions called registers that are part of the CPU. Before a value from memory can
be used, it must first be loaded into a register, using an address that has been
computed and placed into another register. Operations take operands from
registers and put the result back into a register; these are sometimes called
register-to-register operations. A separate store operation puts a value back
into the memory (generally indirectly by way of a cache hierarchy analogous to
the register scheme just described). Load and store operations are often handled
by a load/store functional unit, much as floating-point arithmetic is handled by
a floating-point unit (FPU).

Over the years, CPUs have provided special features to support various pro-
gramming models. For example, CISC-style ISAs often include string search
instructions and even polynomial evaluation. Some current ISAs support in-
structions that make i1t easy to access consecutive elements in memory by up-
dating the register holding the load address; this corresponds closely to the
a=#x++; statement in the C programming language and to typical Fortran cod-

6 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

(@) Align ™ Add™ Normalize™ Round

Al1+B1

Time

Al+B1

| |
‘ A3+B3 \ A2+B2
| |

‘ Ad+B4

|
|
A3+B3 \ A2+B2
|
‘ Ad+BA4

|
|

A3+B3 \ A2+B2
|

' A4+B4

Figure 2.3: Example of a floating-point pipeline. The separate stages in the
pipeline are shown in (a). In (b), four pairs of numbers are added in 7 clock cy-
cles. Note that after a 3-cycle delay, one result is returned every cycle. Without
pipelining, 16 clock cycles would be required to add four pairs of numbers.

ing practice for loops.

One source of complexity in a CPU is the difference in the complexity of
the instructions. Some instructions, such as bitwise logical or, are easy to
implement in hardware. Others, such as floating-point division, are extremely
complicated. Memory references provide a different kind of complexity; as we
will see, the CPU often cannot predict when a memory reference will complete.
Many different approaches have been taken to address these issues. For example,
in the case of floating-point operations, pipelining has been used. Like the RISC
approach, pipelining breaks a complex operation into separate parts. Unlike the
RISC approach, however, each stage in the pipeline can be executed at the same
time by the CPU, but on different data. In other words, once a floating-point
operation has been started in a clock cycle, even though that operation has
not completed, a new floating-point operation can be started in the next clock
cycle. It is not unusual for operations to take two to twenty cycles to complete.
Figure 2.3 illustrates a pipeline for floating-point addition. Pipelines have been
getting deeper (i.e., have more stages) as clock speeds increase. Note also that
this hardware approach is very similar to the use of pipelining in algorithms
described in Section 2.3.2.

From this discussion, we can already see some of the barriers to achieving
higher performance. A clock rate of 1 GHz corresponds to a period of only 1
ns. In 1 ns, light travels only about 1 foot in a vacuum, and less in an electrical
circuit. Even in the best case, a single processor running at 10 GHz (three more
doublings in CPU performance or, if Moore’s law continues to hold, appearing

2.1. UNIPROCESSOR ARCHITECTURE 7

in less than five years) and its memory could be only about one inch across
(any larger and a signal could not cross the chip during a single clock cycle); at
that size, heat dissipation becomes a major problem (in fact, heat dissipation is
already a problem for many CPUs). Approaches such as pipelining (already a
kind of parallelism) require that enough operations and operands be available to
keep the pipeline full. Other approaches begin to introduce a very fine scale of
parallelism, for example by providing multiple functional units such as multiple
floating-point adders and multipliers. In such cases, however, the program must
be rewritten (and/or compiled) to make use of the additional resources. (These
enhancements are discussed in Section 2.2.3.)

Once on-chip clock latency is addressed, the designer must face an even more
challenging problem: latency to storage, beginning with memory.

2.1.2 Memory

While a computer is running, active data and programs are stored in memory.
Memory systems are quite complex, introducing a number of design issues.
Among these are the following:

Memory size. Users never have enough computer memory, so the concept of
virtual memory was introduced to fool programs into thinking that they
have large amounts of memory just for their own use.

Memory latency and hierarchy. The time to access memory has not kept pace
with CPU clock speeds. Levels or hierarchies of memory try to achieve a
compromise between performance and cost.

Memory bandwidth. The rate at which memory can be transferred to and from
the CPU (or other devices, such as disks) also has not kept up with CPU
speeds.

Memory protection. Many architectures include hardware support for memory
protection, aimed primarily at preventing application software from mod-
ifying (intentionally or inadvertently) either system memory or memory
in use by other programs.

Of these, memory latency 1s the most difficult problem. Memory size, in
many ways, 18 simply a matter of money. Bandwidth can be increased by
increasing the number of paths to memory (another use of parallelism) and
using techniques such as interleaving (analogous to striping). Latencies are
related to physical constraints are harder to reduce. Further, high latencies
reduce the effective bandwidth of a given load or store. To see this, consider a
memory interconnect that transfers blocks of 32 bytes with a bandwidth of 1
GB/s. In other words, the time to transfer 32 bytes is 32 ns. If the latency of
the memory system is also 32 ns (an optimistic figure), the total time to transfer
the data is 64 ns, reducing the effective bandwidth from 1 GB/s to 500 MB/s.
The most common approach to improving bandwidth in the presence of high
latency is to increase the amount of data moved each time, thus amortizing the

8 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

latency over more data. However, this helps only when all of the data moved 1s
needed by the running program.

An executing program, or process, involves an address space and (one or
more) program counters. Operating systems manage the time-sharing of a CPU
to allow many processes to appear to be running at the same time (we will see
that for parallel computers, the processes may in fact be running simultane-
ously). The operating system, working with the memory system hardware,
provides each process with the appearance of a private address space. Most sys-
tems further allow the private memory space to appear larger than the available
amount of physical memory. This is called a virtual address space. Of course,
the actual physical memory hardware defines an address space, or physical ad-
dress space. Any memory reference made by a process, for example, with a
load or store instruction, must first be translated from the virtual address (the
address known to the process) to the physical address. This step is performed
by the translation lookaside buffer (TLB), which is part of the memory system
hardware. In most systems, the TLB can map only a subset of the virtual ad-
dresses (it is a kind of address cache); if a virtual address can’t be handled by
the TLB, the operating system is asked to help out; in such a case, the cost
of accessing memory greatly increases. For this reason, some high-performance
systems have chosen not to provide virtual addressing.

Decreasing memory latency is a difficult problem. Semiconductor memory
comes in two main types: static random access memory (SRAM), in which each
bit of memory is stored in a latch made up of transisitors, and dynamic random
access memory (DRAM), in which each bit of memory is stored as a charge on
a capacitor. SRAM is faster than DRAM but is much less dense (has fewer bits
per chip) and requires much greater power (resulting in heat). The difference
i1s so great that virtually all computers use DRAM for the majority of their
memory. However, as Figure 2.4 shows, the performance of DRAM memory has
not followed the Moore’s law curve that CPU clock speeds hav. Instead, the
density and price-performance of DRAMs have risen exponentially. The scale
of this problem can be seen by comparing the speeds of DRAMs and CPUs.
For example, a 1 GHz CPU will execute 60 instructions before a typical (60 ns)
DRAM can return a single byte. Hence, in a program that issues a load for a
data item that must come from DRAM, at least 60 cycles will pass before the
data will be available. In practice, the delay can be longer because there is more
involved in providing the data item than just accessing the DRAM.

To work around this performance gap, computer architects have introduced
a hierarchy of smaller but faster memories. These are called cache memories
because they work by caching copies of data from the DRAM memory in faster
SRAM memory, closer to the CPU. Because SRAM memory is more expensive
and less dense (takes up more die space) and consumes much more power (pro-
duces more heat to dissipate) than does DRAM memory, cache memory sizes
are small relative to main memory. In fact, there is usually a hierarchy of cache
memory, starting from level 1 (L1) which is the smallest (and fastest) and is
in some architectures on-chip with the CPU. Many systems have two or three
levels of cache. A typical size 13 16 KB to 128 KB for L1 cache memory to as

2.1. UNIPROCESSOR ARCHITECTURE 9

160

140

120

100

80

60

40

20 E

0
01/80 01/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98 01/00

Figure 2.4: DRAM latency versus time. Note that, unlike the CPU times in
Figure 2.1, the time axis is linear, and the improvement in performance is little
more than a factor of two in ten years.

much as 4 MB to 8 MB for L2 or L3 cache memory. DRAM memory sizes, on
the other hand, are 256 MB to 4 GB—a factor of about a thousand larger.

Memory hierarchy brings up another problem. Because the cache memory
1s so much smaller than the main memory, it often isn’t possible for all of the
memory used by a process to reside in the L1 or even L2 cache memory. Thus,
as a process runs, the memory system hardware must decide which memory
locations to copy into cache. If the cache is full and a new memory location
1s needed, some other item must be removed from the cache and written back
to the main memory. The rate at which this happens is called the cache miss
rate, and one of the primary goals of a memory system architect is to make the
miss rate as small as possible. Of course, the rate depends on the behavior of
the program, and this in turn depends on the algorithms used by the program.
Many different strategies are used to try to achieve low miss rates in a cache
while keeping the cache fast and relatively inexpensive. To reduce the miss rate,
programs exploit temporal locality: reusing the same data within a short span of
time, that is, reusing the data before it is removed from the cache to make room
for some other data. This process, in turn, requires the algorithm developer and
programmer to pay close attention to how data is used in a program.

10 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

As just one example, consider the choice of the cache line size. Data between
cache and main memory usually 1s transferred in groups of 64, 128, or 256 bytes.
This group is called a cache line. Moving a cache line at one time allows the
main memory to provide relatively efficient bursts of data (it will be at least
60 ns before we can get the first byte; subsequent consecutive bytes can be
delivered without much delay). Thus, programs that access “nearby” memory
after the first access will find that the data they need is already in cache. For
these programs, a larger line size will improve performance. However, programs
that access memory in a less structured way may find that they spend most of
their time reading data into cache that is never used. For these programs, a
large line size reduces performance compared with a system that uses a shorter
cache line.

Many other issues also remain, with similarly difficult tradeoffs, such as asso-
ciativity (how main memory addresses are mapped into the cache), replacement
policy (what data is ejected to make room for new data), and cache size. Ex-
ploiting the fact that memory is loaded in larger units than the natural scalar
objects (such as integers, characters, or floating-point numbers) is called exploit-
wng spatial locality. Spatial locality also requires temporal locality.

The effective use of cache memory is so important for high-performance ap-
plications that algorithms have been developed tailored to the requirements of
these memory hierarchies. On the other hand, the most widely used program-
ming models ignore cache memory requirements. Hence, problems remain with
the practical programming of these systems for high performance. We will also
see in Section 2.2.1 that the use of copies of data in a cache causes problems for
parallel systems.

2.1.3 1/0 and Networking

Discussions of computers often slight the issues of I/O and networking. 1/0,
particularly to the disks that store files and swap space for supporting virtual
memory, has followed a path similar to that of main memory. That is, densities
and sizes have increased enormously (twenty-five years ago, a 40 MB disk was
large and expensize; today, a 40 GB disk is a commodity consumer item), but
latencies have remained relatively unchanged. Because disks are electromechan-
ical devices, latencies are in the range of milliseconds or a million times greater
than CPU speeds. To address this issue, some of the same techniques used
for memory have been adopted, particularly the use of caches (typically using
DRAM memory) to improve performance.

Networking has changed less. Although Ethernet was introduced twenty-
one years ago, only relatively modest improvements in performance were seen
for many years, and most of the improvement has been in reduced monetary
cost. Fortunately, in the past few years, this situation has started to change.
In particular, 100 Mb Ethernet has nearly displaced the original 10 Mb Eth-
ernet, and several Gigabit networking technologies are gaining ground, as are
industry efforts, such as Infiniband [12] to accelerate the rate of improvement
in network bandwidth. Optical technologies have been in use for some time but

2.2. PARALLEL ARCHITECTURES 11

are now poised to significantly increase the available bandwidths. Networks,
are, however, fundamentally constrained by the speed of light. Latencies can
never be less than 3 ns per meter. Another constraint is the way in which
the network is used by the software. The approaches that are currently used
by most software involve the operating system (OS) in most networking opera-
tions, including most data transfers between the main memory and the network.
Involving the OS significantly impacts performance; in many cases, data must
be moved several times. Recent developments in networking [29,30] have em-
phasized transfers that are executed without the involvement of the operating
system, variously called “user-mode,” “OS bypass,” or “scheduled transfer.”
These combine hardware support with a programming model that allows higher
network performance.

2.1.4 Summary

The design of a single-processor computer is a constant struggle against com-
peting constraints. How should resources be allocated? Is it better to use
transistors on a CPU chip to provide a larger fast L1 cache, or should they
be used to improve the performance of some of the floating-point instructions?
Should transistors be used to add more functional units? Should there be more
registers, even if the ISA then has to change? Should the L1 cache be made
larger at the expense of the L2 cache? Should the memory system be optimized
for applications that make regular or irregular memory accesses? There are
no easy answers here. The complexity has in fact led to increasingly complex
CPU designs that use tens of millions of transistors and that are enormously
costly to design and manufacture. Particularly difficult is the mismatch in per-
formance between memory and CPU. This mismatch also causes problems for
programmers; see, for example, [13] for a discussion of what should be a simple
operation (bit reversal) but whose performance varies widely as a result of the
use of caches and TLBs. These difficulties have encouraged computer architects
to consider a wide variety of alternative approaches for improving computer
system performance. Parallelism is one of the most powerful and most widely
used.

2.2 Parallel Architectures

This section presents an overview of parallel architectures, considered as re-
sponses to limitations and problems in uniprocessor architectures and to tech-
nology opportunities. We start by considering parallelism in the memory sys-
tems, since the choices here have the most effect on programming models and
algorithms. Parallelism in the CPU is discussed next; after increases in clock
rates, this is a source of much of the improvement in sustained performance
in microprocessors. For a much more detailed discussion of parallel computer
architectures, see [2].

12 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

€) Memory | | Memory | | Memory | | Memory

| |

’ Interconnect (Bus)

CPU CPU CPU

CPU CPU CPU CPU
(b) 0 0 0 0
Mem | £ Mem | Z Mem | £ Mem | £
O‘
2 Stage a
Interconnect ‘
O

Figure 2.5: Schematic parallel computer organization. A typical shared-memory
system is shown in (a) where the interconnect may be either a simple bus or a
sophisticated switch. A distributed memory system is shown in (b); this may be
either a distributed shared-memory system or a simpler shared-nothing system
depending on the capabilities of the network interface (NIC).

2.2.1 Memory Parallelism

One of the easiest ways to improve performance of a computer system is sim-
ply to replicate entire computers and add a way for the separate computers to
communicate data. This approach is shown schematically in Figure 2.5. This
provides an easy way to increase memory bandwidth and aggregate processing
power without changing the CPU, allowing parallel computers to take advan-
tage of the huge investment in commodity microprocessor CPUs. The cost is in
increased complexity of the software and in the impact that this has on the per-
formance of applications. The major choice here is between distributed memory
and shared memory.

Distributed Memory

The simplest approach from the hardware perspective is the distributed mem-
ory, or shared nothing, model. The approach here is to use separate computers
connected by a network. The typical programming model consists of separate
processes on each computer communicating by sending messages (message pass-
ing), usually by calling library routines. This is the most classic form of parallel
computing, dating back to when the computers were people with calculators
and the messages were written on slips of paper [22]. The modern distributed-
memory parallel computer started with the work of Seitz [23].

2.2. PARALLEL ARCHITECTURES 13

Typical distributed-memory systems include the IBM SP and Beowulf clus-
ters. The major feature that distinguishes between different distributed-memory
parallel computers is the network that connects them. Different interconnects
are described in Section 2.2.2. While the message-passing programming model
has been successful, 1t emphasizes that the parallel computer i1s a collection of
separate computers.

Shared Memory

A more complex approach ties the computers more closely together by placing
all of the memory into a single (physical) address space and supporting virtual
address spaces across all of the memory. That is, data is available to all of the
CPUs through the load and store instructions of the ISA. Because access to the
memory is through load and store operations rather than the network operations
used 1n distributed-memory systems, access to remote memory has lower latency
and higher bandwidth. These advantages come with a cost, however. The
most serious problem is consistency. To understand this problem, consider the
following simple Fortran program:

a+ 1
1

a
b

In a generic ISA| the part that increments a might be translated to

LOAD R12, %A10 ; Load a into register
ADD R12, #1 ; Add one to the value in R12
STORE R12, %A10 ; Store the result back into A

The important point here is that the single program statement a=a+1 turns into
three separate instructions. Now, recall our discussion of cache memory. In a
uniprocessor, the first time the LOAD operation occurs, the value is brought into
the memory cache. The store operation writes the value from register back into
the cache. Now, assume that another CPU, executing a program that is using
the same address space, executes

10 if (b .eq. 0) goto 10
print *, a

What value of a does that CPU see? We would like it to see the value of a
after the increment. But that requires that the value has both been written
back to the memory from the cache of the first CPU and read into cache (even
if the corresponding cache line had previously been read into memory) on the
second CPU. In other words, we want the program to execute as if the cache
was not present, that 1s, as if every load and store operation worked directly on
the memory. The copies of the memory in the cache are used only to improve
performance of memory operations but do not change the behavior of programs

14 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

that are accessing the same memory locations. Cache memory systems that
accomplish this objective are called cache coherent. Ensuring that a memory
system is cache coherent requires additional hardware and adds to the complex-
ity of the system. On the other hand, it simplifies the job of the programmer,
since the correctness of a program doesn’t depend on details of the behavior of
the cache. We will see, however, that while cache coherence is necessary, it is not
sufficient to provide the programmer with a friendly programming environment.

The complexity of providing cache coherency has led to different designs.
One important class is called uniform memory access (UMA). In this design,
each memory and cache are connected to all of the others; each part observes
any memory operation (such as a load from a memory location) and ensures
that cache coherence is maintained. Because the time to access a location from
memory (not from cache) is independent of the address (and hence particular
memory unit), this is called UMA. Early implementations used a bus, which
is a common signaling layer that each processor and memory were connected
to. Because buses are not scalable (all devices on the bus must share a limited
amount of communication), higher-performance UMA systems based on com-
pletely connected networks have been constructed. Such networks themselves
are not scalable (the number of connections for p components grows as p?),
leading to the other class of shared memory designs.

The nonuniform memory access (NUMA) approach does not require that
all memory be equally “distant” (in terms of access time). Instead, the memory
may be connected by a scalable network. Such systems can be more sensitive to
the details of data layout but can also scale to much larger numbers of processors.
To emphasize that a NUMA system is cache coherent, the term CC-NUMA is
often used. The term distributed shared memory (DSM) is also often used
to emphasize the NUMA characteristics of this approach to building shared-
memory hardware. The term virtual shared memory, or virtual distributed shared
memory, 1s used to describe a system that provides the programmer with a
shared-memory programming model built on top of distributed-memory (not
DSM) hardware.

Typical UMA systems include the Sun E10000 (up to 64 processors) and
SGI Power Challenge (up to 18 processors). Typical CC-NUMA systems include
the SGI Origin (typically up to 128 processors, 1024 in special configurations)
and the HP Exemplar V2600 (up to 128 processors). The SGI Origin uses an
approach called directory-based cache coherency (directory caches, for short)
[16] to distribute the information needed to maintain cache coherency across
the network that connects the memory to the CPUs.

Memory Consistency and Programming Models

How does the programming model change when several threads or processes
share memory? What are the new issues and concerns? Consider a unipro-
cessor CPU executing a single-user program (a single-threaded, single-process
program). Programs execute simply, one statement after the other. Implicit
in this is that all statements before the current statement have completed be-

2.2. PARALLEL ARCHITECTURES 15

fore the current statement is executed. In particular, all stores to and loads
from memory issued by previous statements have completed before the current
statement begins to execute. In a multiprocessor executing a single program on
multiple processors, the notion of “current” statement and “completed before”
is unclear. Or rather, it can be defined to be clear, but only at a high cost in
performance.

The fundamental observation is by Lamport [14] in an article titled “How
to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro-
grams”. From a programmer’s perspective, a parallel program should execute as
if it were some arbitrary interleaving (but preserving order) of the statements in
the program. This requirement is called sequential consistency. Unfortunately,
while this matches the way most programmers look at their code,; it imposes
severe constraints on the hardware, in large part because of the high latency of
memory accesses relative to the CPU speed.

Because providing sequential consistency limits performance, weaker models
have been proposed. One model proposed in the late 1980s, called processor con-
sistency [7], matched many of the then-current multiprocessor implementations
but (usually) required some explicit action by the programmer to ensure correct
program behavior. Programmers who use the thread programming model with
thread locks to synchronize accesses to shared data structures satisfy this re-
quirement because the implementation of the lock and unlock calls in the thread
library ensures that the correct instructions are issued.

Some programmers prefer to avoid the use of locks, however, because of
their relatively high overhead and instead use flag variables to control access to
shared data (as we used a as the flag variable in the preceding section). Weak
consistency [4] is appropriate for such programs; like processor consistency, the
programmer 1s required to take special steps to ensure correct operation.

Even weak consistency interferes with some performance optimizations, how-
ever. For this reason, release consistency [6] was introduced. This form of
consistency separates synchronization between two processes or threads into an
acquire and a release step.

The important point for programmers and algorithm developers is that the
programming model that is most natural for programmers and that reflects the
way we read programs is sequential consistency, and this model is not imple-
mented by parallel computer hardware. Consequently, the programmer cannot
rely on programs executing as some interleaved ordering of the statements. The
specific consistency model that is implemented by the hardware may require
different degrees of additional specification by the programmer. Language de-
sign for parallel programming may take the consistency model into account,
providing ways for the compiler, not the programmer, to enforce consistency.
Unfortunately, most languages (including C, C++, and Fortran) were designed
for single threads of control and do not provide any mechanism to enforce con-
sistency.

Note that if memory latency was small, providing sequential consistency
would not greatly impact performance. Weaker forms of consistency would not
be needed, and Lamport’s title [14] would reflect real machines.

16 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

Other Approaches

Two other approaches to parallelism in memory are important. In both of these,
the CPU is customized to work with the memory system. In single instruction,
multiple data (SIMD) parallelism, simplified CPUs are connected to memory.
Unlike the previous cases, in the SIMD approach, each CPU executes the same
instruction in each clock cycle. Such systems are well suited for the data-parallel
programming model, where data is divided up among memory systems and the
same operation i1s performed on each data element. For example, the Fortran
code

do i=1, 10000
a(i) = a(i) + alpha * b(i)
enddo

can be converted into a small number of instructions, with each CPU taking
a part of the arrays a and b. While these systems have fallen out of favor
as general-purpose computers, they are still important in fields such as signal
processing. The most famous general-purpose SIMD system was the Connection
Machine (CM-1 and CM-2) [9].

The other major approach is vector computing. This i1s often not considered
parallelism because the CPU has little explicit parallelism, but parallelism is
used in the memory system. In vector computing, operations are performed on
vectors, typically groups of 64 floating-point numbers. A single instruction in a
vector computer may cause 64 results to be computed (often with a pipelined
floating-point unit), using vectors stored in vector registers. Data transfers from
memory to vector registers make use of multiple memory banks; the parallelism
in the memory supports very high bandwidths between the CPU and the mem-
ory. Vector computers often have memory bandwidths that are an order of
magnitude or more greater than nonvector computers. We will come back to
vector computing in Section 2.2.3 after discussing parallelism in the CPU.

The most important vector machine was the Cray 1; most current vector
machines are in fact combinations of multiple vector CPUs with shared mem-
ory. These systems are often called parallel vector processors (PVPs). Systems
of this type include the NEC SX-5 and the Cray T90. These systems may
not fully support cache coherency, trading some software complexity for faster
performance in their memory systems.

Parallel Random Access Memory

A great deal of theoretical work on the complexity of parallel computation has
used the parallel random access memory model (PRAM). This is a theoretical
model of a shared-memory computer; different varieties of PRAM vary in the
details of how memory accesses to the same address are handled. In order to
make the theoretical model tractable, memory access times are usually consid-
ered constant independent of the CPU performing the (nonconflicting) access; in
particular, there are no caches and no factors of one hundred or more difference
in access times for different memory locations. While this model is valuable in

2.2. PARALLEL ARCHITECTURES 17

understanding the limits of parallel algorithms, the PRAM model represents an
abstraction that cannot be efficiently implemented in practice.

Limits to Memory System Performance

One interesting limit to memory system performance comes from applying Lit-
tle’s law to memory requests. Little’s law is a result from queuing theory;
applied to memory requests, it says that if the memory latency that needs to
be hidden is I and the rate of requests is r, then the number of simultaneously
active requests needed is rL. If this 1s cast in terms of clock cycles, if the mem-
ory latency is 100 cycles and a memory request is issued every cycle, then 100
requests must be active at the same time. The consequences are numerous:

1. The bandwidth of the memory system must support more requests (the
number uses the same formula but uses the latency of the interconnect,
which may still be around 10 cycles).

2. There must be enough independent work. Some algorithms, particularly
those that use recurrence relations, do not have much independent work.
This situation places a burden on the algorithm developer and the pro-
grammer.

3. The compiler must convert the program into enough independent requests,
and there must be enough resources (such as registers) to hold results as
they arrive (load) or until they depart (store).

Many current microprocessors allow a small number of outstanding memory
operations; only the Cray MTA (discussed below) satisfies the requirements of
Little’s law for main-memory accesses.

2.2.2 Interconnects

In the preceding section, we described the interaction of memories and CPUs.
In this section we say a little more about the interconnection networks that are
used to connect components in a computer (parallel or otherwise).

Many types of networks have been used in the past thirty years for con-
structing parallel systems, ranging from relatively simple buses, to 2D and 3D
meshes, to complex hypercube network topologies [15]. Each type of network
can be described by its topology, its means of dealing with congestion (e.g.,
blocking or nonblocking), its approach to message routing, and its bandwidth
characteristics.

For a long time, understanding details of the topology was important for
programmers and algorithm developers seeking to achieve high performance.
This situation is reflected both in the literature and in parallel programming
models (e.g., the topology routines in MPI). Recently, networks have improved
to the point that for many users, network topology is no longer a major fac-
tor in performance. However, some of this apparent “flatness” (uniformity) in
the topology comes from greatly increased bandwidth within the network. As

18 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

network endpoints become faster, network topology may again become an im-
portant consideration in algorithms and programming models. Congestion in
the network can still be a problem if the network performance doesn’t scale
with the number of processing nodes. The term bisection bandwidth describes
the bandwidth of the network across any cut that divides the network into two
parts.

Note that there is no best approach. Simple mesh networks, such as those
used in the Intel TFLOPS (ASCI Red) system, provide effective scalability
for many applications through low latency and high bandwidth, even though a
mesh network does not have scalable performance in the sense that the bisection
bandwidth of a mesh does not grow proportionally with the number of nodes.
It is scalable in terms of the hardware required: there is a constant cost per
node for each node added.

When interconnects are viewed as networks between computers, the perfor-
mance goals have been quite modest. Fast networks of this type typically have
latencies of ten microseconds or more (including essential software overheads)
and bandwidths on the order of 100 MB/s. Interconnects used to implement
shared memory, on the other hand, are designed to operate at memory system
speeds and with no extra software overhead. Latencies for these systems are
measured in nanoseconds and bandwidths of one to ten gigabytes per second
are becoming common.

Early shared-memory systems used a bus to connect memory and processors.
A bus provides a single, shared connection that all devices use and is relatively
inexpensive to build. The major drawback is that if k& devices are using the bus
at the same time, under the best of conditions, each gets 1/k of the available
performance (e.g., bandwidth). Contention between devices on the bus can
lower the available bandwidth considerably.

To address this problem, some shared-memory systems have chosen to use
networks that connect each processor with each memory system. For small
numbers of processors and memories, a direct connection between each processor
and memory is possible (requiring p? connections for p devices); this is called a
full crossbar. For larger numbers of processors, a less complete network may be
used.

An interesting development is the convergence of the technology used for
networking and for shared memory. The scalable coherent interconnect (SCI)
[11] was an early attempt to provide a memory-oriented view of interconnects
and has been used to build CC-NUMA systems from Convex and HP. Build-
ing on work both in research and in industry, the VIA [29] and Infiniband
[12] industry-standard interconnects allow data to be moved directly from one
processor’s memory to another along an established circuit. These provide a
communication model that is much closer to that used in memory intercon-
nects, and should offer much lower latencies and higher bandwidths than older,
message-oriented interconnects.

Systems without hardware cache coherency often provide a way to indicate
that all copies of data in a cache should be discarded; this is called cache inval-
tdation. Sometimes this is a separate instruction; sometimes it is a side effect of

2.2. PARALLEL ARCHITECTURES 19

a synchronization instruction such as test-and-set (e.g., Cray SV-1). Software
can use this strategy to ensure that programs operate correctly. The cost 1s that
all copies of data in the cache are discarded; hence, subsequent operations that
reference memory locations stall while the cache 1s refilled. To avoid this situa-
tion, some systems allow individual cache lines to be invalidated rather than the
entire cache. However, such an approach requires great care by the software,
since the failure to invalidate a line containing data that has been updated by
another processor can lead to incorrect and nondeterministic behavior by the
program.

For an engaging discussion of the challenges of implementing and program-
ming shared-memory systems, see [21].

2.2.3 CPU Parallelism

Parallelism at the level of the CPU is more difficult to implement than simple
replication of CPUs and memory, even when the memory presents a single shared
address space. However, modest parallelism in the CPU provides the easiest
route to improved performance for the majority of applications because little
needs to be done by the programmer to exploit this kind of parallelism.

Superscalar Processing

Look at Figure 2.2 again, and consider the following program fragment:

real a, b, ¢
integer i, j, k

a=>b * ¢
i=3j+k

The values a, b, ¢, 1, j, and k are already in register. These two statements use
different functional units (FPU and ALU, respectively) and different register sets
(FPR and GPR). A superscalar processor can execute both of these statements
(each requiring a single register-to-register instruction) in the same clock cycle
(more precisely, such a processor will “begin execution” of the two statements,
since both may be pipelined). The term superscalar comes from the fact that
more than one operation can be performed in a single clock cycle and that
performance is achieved on nonvector code. A superscalar processor allows as
much parallelism as there are functional units. Because separate instructions
are executed in parallel, this is also called instruction-level parallelism (ILP).
For ILP to be effective, it must be easy for the hardware to find instructions that
do not depend on each other and that use different functional units. Consider
the following example. If the CPU executes instructions in the order that they
appear, then the code sequence on the left will take three cycles and the one on
the right only two cycles.

b * ¢
j+k

a=>bx*c a
d =e * £ i

20 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

i=3j+k d=e % f
l=m+n l=m+n

Some CPUs will attempt to reorder instructions in the CPU’s hardware, an
action that 1s most beneficial to legacy applications that cannot be recompiled.
It is often better, however, if the compiler schedules the instructions for effective
use of ILP; for example, a good code-scheduling compiler would transform the
code on the left to the code on the right (but breaking sequential consistency!).

One major drawback of ILP, then, 1s that the hardware must rediscover
what a scheduling compiler already knows about the instructions that can be
executed in the same clock cycle.

Explicitly Parallel Instructions

Another approach is for the instruction set to encode the use of each part of
the CPU. That is, each instruction contains explicit subinstructions for each of
the different functional units in the CPU. Since each instruction must explicitly
specify more details about what happens in each clock cycle, instructions result
that are longer than in other ISAs. In fact, they are usually referred to as
very long instruction word (VLIW) ISAs. VLIW systems usually rely on the
compiler to schedule each functional unit. One of the earliest commercial VLIW
machines was the Multiflow Trace. The Intel TA64 ISA is a descendent of this
approach; the term EPIC (explicitly parallel instruction computing) is used for
the Intel variety. EPIC does relax some of the restrictions of VLIW but still
relies on the compiler to express most of the parallelism.

SIMD and Vectors

One approach to parallelism is to apply the same operation to several different
data values, using multiple functional units. For example, a single instruction
might cause four values to be added to four others, using four separate adders.
We have seen this SIMD style of parallelism before, when applied to separate
memory units. The SIMD approach is used in some current processors for special
operations. For example, the Pentium III includes a small set of SIMD-style
instructions for single-precision floating-point and related data move operations.
These are designed for use in graphics transformations that involve matrix-
vector multiplication by 4 x 4 matrices.

Vector computers use similar techniques in the CPU to achieve greater per-
formance. A vector computer can apply the same operation to a collection of
data called a vector; this is usually either successive words in memory or words
separated by a constant offset or stride. Early systems such as the CDC Star
100 and Cyber 205 were vector memory-to-memory architectures where vectors
could be nearly any length. Since the Cray 1, most vector computers have used
vector registers, typically limiting vectors to 64 elements. The big advantage
of vector computing comes from the regular memory access that a vector rep-
resents. Through the use of pipelining and other techniques such as chaining,
a vector computer can completely hide the memory latency by overlapping the
access to the next vector with operations on a current vector.

2.2. PARALLEL ARCHITECTURES 21

Vector computing is related to VLIW or explicitly parallel computing in the
sense that each instruction can specify a large amount of work and that advanced
compilers are needed to take advantage of the hardware. Vectors are less flexible
than the VLIW or EPIC approach but, because of the greater regularity, can
sustain higher performance on applications that can be expressed in terms of
vectors.

Multithreading

Parallelism in the CPU involves executing multiple sets of instructions. Any one
of these sets, along with the related virtual address space and any state, is called
a thread. Threads are most familiar as a software model (see Chapter 10), but
they are also a hardware model. In the usual hardware model, a thread has no
explicit dependencies with instructions in any other thread, although there may
be implicit dependencies through operations on the same memory address. The
critical issues are (1) How many threads issue operations in each clock cycle?
and (2) How many clock cycles does it take to switch between different threads?

Simultaneous multithreading (SMT) [27] allows many threads to issue in-
structions in each clock cycle. For example, if there are four threads and four
functional units, then as long as each functional unit is needed by some thread
in each clock cycle, all functional units can be kept busy every cycle, providing
maximum use of the CPU hardware. The compiler or programmer must divide
the program into separately executing threads. The SMT approach is starting
to show up in CPU designs including versions of the Compaq Alpha and IBM
Power processors.

Fine-grained multithreading uses a single thread at a time but allows the
CPU to change threads in a single clock cycle. Thus, a thread that must wait
for a slow operation (anything from a floating point addition to a load from
main memory) can be “set aside,” allowing other threads to run. Since a load
from main memory may take 100 cycles or more, the benefit of this approach for
hiding memory latency is apparent. The drawback when used to hide memory
latency can be seen by applying Little’s law. Large numbers of threads must be
provided for this approach to succeed in completely hiding the latency of main
(rather than cache) memory. The Cray MTA is the only commercial architecture
to offer enough threads for this purpose.

All of these techniques can be combined. For example, fine-grained multi-
threading can be combined with superscaler ILP or explicit parallelism. SMT
can restrict groups of threads to particular functional units in order to simplify
the processor design, particular in processors with multiple FPUs and ALUs.

2.2.4 1/0 and Networks

Just as in the uniprocessor case, I/O and networking have not received the same
degree of attention as have CPU and memory performance. Fortunately, the
lower performance levels of /O and networking devices relative to CPU and
memory allow a simpler and less expensive architecture. On the other hand,
lower performance puts tremendous strain on the architect trying to maintain

22 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

balance in the system. A common I/O solution for parallel computers, particu-
larly clusters, 1s not a parallel file system but rather a conventional file system,
accessed by multiple processors.

Recall that data caches are often used to improve the performance of 1/0O
systems in uniprocessors. As we have seen, it 1s important to maintain consis-
tency between the different caches and between caches and memory if correct
data is to be provided to programs. Unfortunately, particularly for networked
file systems such as NFS, maintaining cache consistency seriously degrades per-
formance. As a result, such file systems allow the system administrator to trade
performance against cache coherence. For environments where most applica-
tions are not parallel or do not have multiple processes accessing the same file
at the same time, cache-coherence is usually sacrificed in the name of speed.

The Redundant arrays of inexpensive disks (RAID) approach is an exam-
ple of the benefits of parallelism in 1/O. RAID was first proposed in 1988 [19]
with five different levels representing different uses of multiple disks to provide
fault tolerance (disks, being mechanical, fail more often than entirely electronic
components) while maintaining a balance between read rates, write rates, and
efficient use of storage. The RAID approach has since been generalized to ad-
ditional levels. Both hardware (RAID managed by hardware, presenting the
appearance of a single but faster and/or more reliable disk) and software (sep-
arate disks managed by software) versions exist.

Parallel 1/O can also be achieved by using arrays of disks arranged in pat-
terns different from those described by the various RAID levels. Chapter 11
describes parallel /O from the programmer’s standpoint. A more detailed dis-
cussion of parallel 1/O can be found in [17].

The simplest form of parallelism in networks is the use of multiple paths,
each carrying part of the traffic. Networks within a computer system often
achieve parallelism by simply using separate wires for each bit. Less tightly
coupled systems, such as Beowulf clusters, sometimes use a technique called
channel bonding, which uses multiple network paths, each carrying part of the
message. GridFTP [1] is an example of software that exploits the ability of the
Internet to route data over separate paths to avoid congestion in the network.

A more complex form of parallelism is the use of different electrical or optical
frequencies to concurrently place several messages on the same wire or fiber.
This approach is rarely used within a computer system because of the added
cost and complexity, but it is used extensively in long-distance networks. New
techniques for optical fibers, such as dense wavelength division multiplexing
(DWDM), will allow a hundred or more signals to share the same optical fiber,
greatly increasing bandwidth.

2.2.5 Support for Programming Models

Special operations are needed to allow processes and threads that share the same
address space to coordinate their actions. For example, one thread may need to
keep others from reading a location in memory until it is done modifying that
location. Such protection is often provided by locks: any thread that wants to

2.2. PARALLEL ARCHITECTURES 23

access the particular data must first acquire the lock, releasing the lock when
it is done. A lock, however, is not easy to implement with just load and store
operations (though it can be done). Instead, many systems provide compound
instructions that can be used to implement locks, such as test-and-set or fetch-
and-increment. RISC systems often provide a “split” compound instruction
that can be used to build up operations such as fetch-and-increment based on
storing a result after reading from the same address only if no other thread or
process has accessed the same location since the load.

Because rapid synchronization is necessary to support fine-grained paral-
lelism, some systems (particularly PVPs) use special registers that all CPUs
can access. Other systems have provided extremely fast barriers: no process
can leave a barrier until all have entered the barrier. In a system with a fast
barrier, a parallel system can be viewed as sequentially consistent where an
“operation” is defined as the group of instructions between two barriers. This
provides an effective programming model for some applications.

In distributed-memory machines, processes share no data and typically com-
municate through messages. In shared-memory machines, processes directly ac-
cess data. There is a middle ground: remote memory access (RMA). This is
similar to the network-connected distributed-memory system except that addi-
tional hardware provides put and get operations to store to or load from memory
in another node. The result is still a distributed-memory machine, but one with
very fast data transfers. Examples are the Compaq AlphaServer SC, Cray T3D
and T3E, NEC Cenju 4, and Hitachi SR8000.

2.2.6 Summary

Parallelism is a powerful approach to improving the performance of a computer
system. All systems employ some degree of parallelism, even if it is only parallel
data paths between the memory and the CPU. Parallelism is particularly good
at solving problems related to bandwidth or throughput; it is less effective at
dealing with latency or startup costs. However, the ability to switch between
tasks provides one way to hide latency as long as enough independent tasks
can be found. Parallelism does not come free, however. The effects of mem-
ory latency are particularly painful, forcing complex consistency models on the
programmer and difficult design constraints on the hardware designer.

In the continuing quest for ever greater performance, today’s parallel com-
puters often combine many of the approaches discussed here. One of the most
popular is distributed-memory clusters of nodes, where each node i1s a shared-
memory processor, typically with 2 to 16 processors, though some clusters have
SMP nodes with as many as 128 processors. Another important class of ma-
chines 1s the parallel vector processors; these use vector-style CPU parallelism
combined with shared memory.

We emphasize that hardware models and software (or programming) models
are essentially disjoint; shared-memory hardware provides excellent message-
passing support, and distributed-memory hardware can (at sometimes substan-
tial cost) support a shared-memory programming model.

24 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

We close this section with a brief mention of taxonomies of parallel comput-
ers. A taxonomy of parallel computers provides a way to identify the important
features of a system. Flynn [5] introduced the best known taxonomy that de-
fines four different types of computer based on whether there are multiple data
streams and/or multiple instruction streams. A conventional uniprocessor has a
single instruction stream and a single data stream and is denoted SISD. Most of
the parallel computers that we have described in this section have both multiple
data and multiple instruction streams (because they have many memories and
CPUs); these are called MIMD. The single instruction but multiple data par-
allel computer, or SIMD, has already been mentioned. The fourth possibility
is the multiple instruction, single data, or MISD; this category is not used. A
standard taxonomy for MIMD architectures has not yet emerged, but it is likely
to be based on whether the memory is shared or distributed and, if it is shared,
whether it is cache coherent and how access time varies. Many of the terms
used to describe these alternatives have been discussed above, including UMA,
CC-NUMA, and DSM.

The term single program, multiple data (SPMD) is inspired by Flynn’s tax-
onomy. Because the single program has branches and other control-flow con-
structs, SPMD 1s a subset of MIMD, not a subset of SIMD programs. Using
a single program, however, does provide an important simplification, and most
parallel programs in technical and scientific computing are SPMD.

2.3 Today’s Parallel Systems

Most systems today are hybrids, combining different technologies to provide
the greatest possible computing power within the limits of cost, complexity,
and usability. Because most systems are hybrids, there is no unique taxonomy.
This section divides parallel systems in terms of their user communities: parallel
vector processors, shared memory, and distributed memory. See [28] for a review
of current supercomputers, including large-scale parallel systems.

This section covers only those systems typically used for scientific comput-
ing. Parallelism is widely used in commercial computing for applications such
as databases and Web servers. Special architectures and hardware have been
developed to support these applications, including special hardware support for
synchronization and fault tolerance.

2.3.1 Parallel Vector Processors

Parallel vector processors represent one of the most powerful classes of parallel
computer, combining impressive per processor performance with parallelism.
As late as 1996, the top machines on the Top 500 list of supercomputers were
parallel vector processors [26], and since then only massively parallel systems
with thousands of processors are faster.

The fastest of these machines may not provide full cache coherency in hard-
ware; instead, they may require some support from the software to maintain a
consistent view of memory. Machines in this category include the NEC SX-5
and Cray SV1. This is an example of the sort of tradeoff of performance versus

2.3. TODAY’S PARALLEL SYSTEMS 25

cost and complexity that continues to face architects of parallel systems.

A distinguishing feature of vector processors and parallel vector processors
is the high memory bandwidth, often 4-16 bytes per floating-point operation.
This is reflected in the high sustained performance achieved on these machines
for many scientific applications.

2.3.2 Shared Memory

Shared-memory systems are becoming common, even for desktop systems. Most
vendors include shared-memory systems among their offerings; including Com-
paq, HP, IBM, SGI, and Sun and many personal computer vendors. Most of
these systems have between 2 and 16 processors, with a few providing up to 128
processors. Both UMA and CC-NUMA designs are common.

In contrast to PVPs, these systems usually have quite modest memory band-
widths. At the low end, in fact, the same aggregate memory bandwidth may
be provided to systems with 1 to 4 or even 16 processors. As a result, some of
these systems are often starved for memory bandwidth. This can be a problem
for applications that do not fit in cache. Applications that are memory access
bound can even slow down as processors are added in such systems. Of course,
not all systems are underpowered, and the memory performance of even the low
end systems has been improving rapidly.

2.3.3 Distributed Memory

Distributed-memory systems are the most common because they are the easiest
to assemble. Systems from Intel, particularly the Paragon and the 512-processor
Delta, were important in demonstrating that applications could make effective
use of large numbers of processors. Perhaps the most successful commercial
distributed-memory system is the IBM SP family. SP systems combine various
versions of the successful RS6000 workstation and server nodes with different
interconnects to provide a wide variety of parallel systems, from 8 processors to
the 8192-processor ASCI White system.

As mentioned above, some distributed-memory systems have been built with
special-purpose hardware that provides remote memory operations such as put
and get. The most successful of these are the Cray T3D and T3E systems.

Many groups have exploited the low cost and relatively high performance of
commodity microprocessors to build clusters of personal computers or worksta-
tions. Early versions of these were built from desktop workstations and were
sometimes referred to as NOWs, for networks of workstations. The continued
improvement in performance of personal computers, combined with the emer-
gence of open source (and free) versions of the Unix operation system, gave rise
to clusters of machines. These systems are now widely know as Beowulfs or
Beowulf clusters, from a project begun by Thomas Sterling and Donald Becker
at NASA [24,25]. They are real parallel machines; as of 2000, two of the top
100 supercomputer systems were built from commodity parts.

26 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

2.4 Future Directions for Parallel Architectures

In some ways, the future of parallel architectures, at least for the next five years,
is clear. Most parallel machines will be hybrids, combining nodes containing a
modest number of commodity CPUs sharing memory in a distributed-memory
system. Many users will have only one shared-memory node; for them, shared-
memory programming models will be adequate. In the longer term, the picture
is much hazier. Many challenges will be difficult to overcome. Principal among
these are memory latency and the limits imposed by the speed of light. Heat
dissipation is also becoming a major problem for commodity CPUs. One major
contributor to the increase in clock speeds for CPUs has been a corresponding
decrease 1n the size of the features on the CPU chip. These feature sizes are
approaching the size of a single atom, beyond which no further decrease is
possible.

While these challenges may seem daunting, they offer an important oppor-
tunity to computer architects and software scientists—an opportunity to take a
step that is more than just evolutionary.

Ezotic Parallel Architectures

As we have discussed above, one of the major problems in designing any
computer is providing a high-bandwidth, low-latency path between the CPU
and memory. Some of this cost comes from the way DRAMs operate: data is
stored in rows; when an item is needed, the entire row is read and the partic-
ular bit is extracted; the other bits in the row are discarded. This simplifies
the construction of the DRAM (separate wires are not needed to get to each
bit), but it throws away significant bandwidth. Observing that DRAM densities
are increasing at a rate even faster than the rate at which commodity software
demands memory, several researchers have explored combining the CPU and
memory on the same chip and using the entire DRAM row rather than a sin-
gle bit at a time. In fact, an early commercial version of this approach, the
Mitsubishi M32000D3 processor, used a conventional, cache-oriented RISC pro-
cessor combined with memory and organized so that a row of the memory was
a cache line, allowing for enormous (for the time) bandwidth in memory-cache
transfers. Several different architectures the exploit processors and memory in
the same chip are currently being explored [3,20], including approaches that
consider vector-like architectures and approaches that place multiple processors
on the same chip. Other architects are looking a parallel systems built from
such chips; the IBM Blue Gene [10] project expects to have a million processor
system (with around 32 processors per node).

Superconducting elements promise clock speeds of 100 GHz or more. Of
course, such advances will only exacerbate the problem of the mismatch between
CPU and memory speeds. Designs for CPUs of this kind often rely on hardware
multithreading techniques to reduce the impact of high memory latencies.

Computing based on biological elements often seeks to make use of paral-
lelism by using molecules as processing elements. Quantum computing, partic-
ularly quantum computing based on exploiting the superposition principle, 1s a
fundamentally different kind of parallelism.

2.5. CONCLUSION 27

2.5 Conclusion

Parallel architecture continues to be an active and exciting area of research.
Most systems now have some parallelism, and the trends point to increasing
amounts of parallelism at all levels, from 2 to 16 processors on the desktop to
tens to hundreds of thousands for the highest-performance systems.

Access to memory continues to be a major issue; hiding memory latency is
one area where parallelism doesn’t provide a (relatively) simple solution. The
architectural solutions to this problem have included deep memory hierarchies
(allowing the use of low-latency memory close to the processor), vector oper-
ations (providing a simple and efficient “prefetch” approach), and fine-grained
multithreading (enabling other work to continue while waiting on memory). In
practice, none of these approaches completely eliminates the problem of memory
latency. The use of low-latency memories, such as caches, suffers when the data
does not fit in the cache. Vector operations require a significant amount of reg-
ularity in the operations that may not fit the best (often adaptive) algorithms,
and multithreading relies on identifying enough independent threads. Because
of this, parallel programming models and algorithms have been developed that
allow the computational scientist to make good use of parallel systems. That is
the subject of the rest of this book.

28

CHAPTER 2. PARALLEL COMPUTER ARCHITECTURES

Bibliography

(1]

[2]

[9]

[10]
[11]

W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, Lee Liming, and Steven
Tuecke. GridFTP: Protocol extensions to FTP for the Grid, March 2001.
http://www-fp.mcs.anl.gov/dsl/Grid FTP-Protocol-RFC-Draft.pdf.

David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan Kaufmann
Publishers, San Francisco, 1999.

Diva (Data IntensiVe Architecture) home page.
http://www.isi.edu/asd/diva/.

Michael Dubois, Christopher Scheurich, and Faye Briggs. Memory access
buffering in multiprocessors. In Proc. 13th Annual International Sympo-
stum on Computer Architecture, Computer Architecture News, pages 434—

442. ACM Press, June 1986.

M. Flynn. Very high speed computing. Proceedings of the IEEE, pages
1901-1909, 1966.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event order-
ing in scalable shared-memory multiprocessors. In Proc. 17th Annual Sym-
posium on Computer Architecture (17th ISCA’90), Computer Architecture
News, pages 15-26, Seattle, June 1990. ACM Press.

J. R. Goodman. Cache consistency and sequential consistency. Techni-
cal Report 61, IEEE Scalable Coherence Interface Working Group, March
1989.

John L. Hennessy and David A. Patterson. Computer Architecture A Quan-
tative Approach. Morgan Kaufman, San Mateo, CA, 1990.

W. Daniel Hillis. The Connection Machine. Series in Artificial Inteligence.
MIT Press, Cambridge, MA, 1985.

Blue Gene. http://www.research.ibm.com/bluegene/.

1596-1992 IFEEE Standard for Scalable Coherent Interface (SCI), 1992.

29

30 BIBLIOGRAPHY

[12] Infiniband trade association. http://www.infinibandta.com.

[13] Alan H. Karp. Bit reversal on uniprocessors. SIAM Review, 38(1):1-26,
March 1996.

[14] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. [EEE Transactions on Computers, C-

28(9):690-691, September 1979.

[15] F. T. Leighton. Introduction to Parallel Architectures: Arrays, Trees, Hy-
percubes. Morgan Kaufmann Publishers, 1992.

[16] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich We-
ber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam.
The Stanford Dash multiprocessor. Computer, 25(3):63-79, March 1992.

[17] John M. May. Parallel I/O for High Performance Computing. Morgan
Kaufmann Publishers, Los Altos, CA, 2000.

[18] Gordon E. Moore. Cramming more components onto integrated circuits.
FElectronics Magazine, 38(8):114-117, April 1965.

[19] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, pages 109-116. ACM Press, June 1988.

[20] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine
Yelick. A case for intelligent RAM. [EFE Micro, 17(2):34-44, March/April
1997.

[21] G. F. Pfister. In Search of Clusters. Prentice—Hall, Inc., 2 edition, 1998.

[22] Louis Frye Richarson. Weather Prediction by Numerical Process. Cam-
bridge University Press, 1922.

[23] C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33,
January 1985.

[24] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake,
and C. V. Packer. BEOWULF : A parallel workstation for scientific com-
putation. In International Conference on Parallel Processing, Vol. 1: Ar-
chitecture, pages 11-14, Boca Raton, FL, August 1995. CRC Press.

[25] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F.
Savarese. How to Build a Beowulf. MIT Press, 1999.

[26] Top 500 supercomputers, November 1996.
http://wuw.topb00.org/lists/1996/11/.

BIBLIOGRAPHY 31

[27] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In Proc. 22nd Annual Interna-
tional Symposiwum on Computer Architecture, pages 392-403. ACM Press,
June 1995.

[28] Aad J. van der Steen and Jack J. Dongarra. Overview of recent supercom-
puters, 2000. http://www.phys.uu.nl/"steen/web00/overview00.html.

[29] VI Architecture. http://www.viarch.org.

[30] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-
Net: A user-level network interface for parallel and distributed computing.

In Proceedings of the 15th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 40-53. ACM Press, December 1995.

32

BIBLIOGRAPHY

