
Chapter 2Parallel ComputerAr
hite
turesWilliam Gropp, Ri
k Stevens, and Charlie Catlett (IanFoster, editor)Target Length: 20 to 30 pagesParallel 
omputers provide great amounts of 
omputing power, but they doso at the 
ost of in
reased diÆ
ulty in programming and using them. Certainly,a unipro
essor that was fast enough would be simpler to use. To explain whyparallel 
omputers are inevitable and to identify the 
hallenges fa
ing developersof parallel algorithms, programming models, and systems, in this 
hapter wedes
ribe brie
y (but in more detail than in Chapter 2) the ar
hite
ture of bothunipro
essor and parallel 
omputers. We will see that while 
omputing power
an be in
reased by adding pro
essing units, memory laten
y (the irredu
ibletime to a

ess data) is the sour
e of many 
hallenges in both unipro
essor andparallel pro
essor design.Parallel ar
hite
tures and programming models are not independent. Whilemost ar
hite
tures 
an support all programming models, they may not be ableto do so eÆ
iently. An important part of any parallel ar
hite
ture is any fea-ture that simpli�es the pro
ess of building, testing, and tuning an appli
ation.Some parallel ar
hite
tures put a great deal of e�ort into supporting a parallelprogramming model; others provide little or no extra support. All ar
hite
turesrepresent a 
ompromise between 
ost, 
omplexity, timeliness, and performan
e.This 
hapter is organized as follows. In Se
tion 2.1 we brie
y des
ribe theimportant features of single pro
essor (or unipro
essor) ar
hite
ture. From thisba
kground, the basi
s of parallel ar
hite
ture are presented in Se
tion 2.2; inparti
ular, we des
ribe the opportunities for performan
e improvement throughparallelism at ea
h level in a parallel 
omputer, with referen
es to ma
hinesof ea
h type. Se
tion 2.3 reviews 
urrent parallel systems. In Se
tion 2.4,1



2 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESwe examine potential future parallel 
omputer ar
hite
tures. We 
on
lude the
hapter with a brief summary of the key issues motivating the development ofparallel algorithms and programming models.2.1 Unipro
essor Ar
hite
tureIn this se
tion we brie
y des
ribe the major 
omponents of a 
onventional,single-pro
essor 
omputer, emphasizing the design tradeo�s fa
ed by the hard-ware ar
hite
t. This des
ription lays the groundwork for a dis
ussion of parallelar
hite
tures, sin
e parallelism is entirely a response to the diÆ
ulty of provid-ing ever greater performan
e (or reliability) in a system that inherently performsonly one task at a time. Those interested in a more detailed dis
ussion of theseissues should 
onsult [8℄.The major 
omponents of a 
omputer are the 
entral pro
essing unit thatexe
utes programs, the memory system that stores exe
uting programs and thedata that the programs are operating on, and input/output systems that allowthe 
omputer to 
ommuni
ate with the outside world (e.g., through keyboards,networks, and displays) and with permanent storage devi
es su
h as disks. Thedesign of a 
omputer re
e
ts the available te
hnology; 
onstraints su
h as power
onsumption, physi
al size, 
ost, and maintainability; the imagination of thear
hite
t; and the software (programs) that will run on the 
omputer (in
luding
ompatibility issues). All of these have 
hanged tremendously over the past �ftyyears.Perhaps the best known 
hange is 
aptured by Moore's law [18℄, whi
h saysthat mi
ropro
essor CPU performan
e doubles roughly every eighteen months.This is equivalent to a thousandfold in
rease in performan
e over �fteen years.Moore's law has been remarkably a

urate over the past thirty-six years (seeFigure 2.1), even though it represents an observation about the rate of engi-neering progress and is not a law of nature (su
h as the speed of light). In fa
t,it is interesting to look at the 
lo
k speed of the fastest ma
hines in additionto (and 
ompared with) that of mi
ropro
essors. In 1981, the Cray 1 was oneof the fastest 
omputers, with a 12.5 ns 
lo
k. In 2001, mi
ropro
essors with0.8 ns 
lo
ks are be
oming available. This is a fa
tor of 16 in twenty years, orequivalently a doubling every �ve years.Remarkable advan
es have o

urred in other areas of 
omputer te
hnologyas well. The 
ost per byte of storage, both in 
omputer memory and in diskstorage, has fallen along a similar exponential 
urve, as has the physi
al sizeper byte of storage (in fa
t, the 
ost and size are 
losely related). Dramati
advan
ements in algorithms have redu
ed the amount of work needed to solvemany 
lasses of important problem; for example, the work needed to solve nsimultaneous linear equations has fallen, in many 
ases, from n3 to n. For 1million equations, this is an improvement of 12 orders of magnitude!Unfortunately, these 
hanges have not been uniform. For example, whilethe density of storage (memory and disk) and the bandwidths have in
reaseddramati
ally, the time to a

ess storage (laten
y) has not kept up. As a result,over the years, the balan
e in performan
e between the di�erent parts of a
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Figure 2.1: Improvement in CPU performan
e measured by 
lo
k rate
omputer has 
hanged. In the 
ase of storage, in
reases in 
lo
k rates relativeto storage laten
y have translated Moore's law into a des
ription of in
ation interms of the relative 
ost of memory a

ess from the point of view of potentiallywasted CPU 
y
les. This has for
ed 
omputer ar
hite
tures to evolve over theyears, for example moving to deeper and more 
omplex memory hierar
hies.2.1.1 The CPUThe CPU is the heart of the 
omputer; it is responsible for all 
al
ulations andfor 
ontrolling or supervising the other parts of the 
omputer. A typi
al CPU
ontains the following (see Figure 2.2):Arithmeti
 Logi
 Unit (ALU): Performs 
omputations su
h as addition and
omparison.Floating Point Unit (FPU): Performs operations on 
oating-point numbers.Load/Store Unit: Performs loads and stores for data.Registers: Fast memory lo
ations that 
an be used to store intermediate results.These are often subdivided into 
oating-point registers (FPR) and generalpurpose registers (GPR).Program Counter (PC): Contains the address of the instru
tion that is exe-
uting.Memory Interfa
e: Provides a

ess to the memory system. In addition, theCPU 
hip often 
ontains the fastest part of the memory hierar
hy (thetop level 
a
he); this part is des
ribed in Se
tion 2.1.2.
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Figure 2.2: Generi
 CPU diagram. This example has a separate L1 
a
he fordata and for program instru
tions and a uni�ed (both data and instru
tions)L2 
a
he. Not all data paths are shown.Other 
omponents of a CPU are needed for a 
omplete system, but the oneslisted are most important for our purpose.The CPU operates in steps 
ontrolled by a 
lo
k: in ea
h step, or 
lo
k 
y
le,the CPU performs an operation.1 The speed of the CPU 
lo
k has in
reaseddramati
ally; desktop 
omputers now 
ome with 
lo
ks that run at over 1 GHz(109 Hz).One of the �rst de
isions that a 
omputer ar
hite
t must make is whatbasi
 operations 
an be performed by the CPU. There are two major 
amps:the 
omplex instru
tion set 
omputer (CISC) and the redu
ed instru
tion set
omputer (RISC). A RISC CPU 
an do just as mu
h as a CISC CPU; however,it may require more instru
tions to perform the same operation. The tradeo� isthat a RISC CPU, be
ause the instru
tions are fewer and simpler, may be ableto exe
ute ea
h instru
tion faster (i.e., the CPU 
an have a higher 
lo
k speed),1Note that we did not say an instru
tion or a statement. As we will see, modern CPUsmay perform both less than an instru
tion and more than one instru
tion in a 
lo
k 
y
le.



2.1. UNIPROCESSOR ARCHITECTURE 5allowing it to 
omplete the operation more qui
kly.The spe
i�
 set of instru
tions that a CPU 
an perform is 
alled the in-stru
tion set. The design of that instru
tion set relative to the CPU representsthe instru
tion set ar
hite
ture (ISA). The instru
tions are usually produ
ed by
ompilers from programs written in higher-level languages su
h as Fortran orC. The su

ess of the personal 
omputer has made the Intel x86 ISA the most
ommon ISA, but many others exist, parti
ularly for enterprise and te
hni
al
omputing. We note that while the ISA may be dire
tly exe
uted by the CPU,another possibility is to design the CPU to 
onvert ea
h instru
tion into a se-quen
e of one or more \mi
ro" instru
tions. This allows a 
omputer ar
hite
tto take advantage of simple operations to raise the \
ore" speed of a CPU, evenfor an ISA with 
omplex instru
tions (i.e., a CISC ar
hite
ture). Thus, eventhough a CPU may have a 
lo
k speed of over 1 GHz, it may need multiple 
lo
k
y
les to exe
ute a single instru
tion in the ISA. Hen
e, simple 
lo
k speed 
om-parisons between di�erent ar
hite
tures are de
eptive. Even though one CPUmay have a higher 
lo
k speed than another, it may also require more 
lo
k
y
les than the \slower" CPU in order to exe
ute a single instru
tion.Programs exe
uted by the CPU are stored in memory. The program 
ounterspe
i�es the address in memory of the exe
uting instru
tion. This instru
tion isfet
hed from memory and de
oded in the CPU. As ea
h instru
tion is exe
uted,the PC 
hanges to the address of the next instru
tion. Control 
ow in a program(e.g., if, while, or fun
tion all) is implemented by setting the PC to a newaddress.One important part of the ISA 
on
erns how memory is a

essed. Whenmemory speeds were relatively fast 
ompared with CPU speeds (parti
ularlyfor 
omplex operations su
h as 
oating-point division), the ISA might in
ludeinstru
tions that read several items from memory, performed the operation,and stored the result into memory. These were 
alled memory-to-memory op-erations. However, as CPU speeds in
reased dramati
ally relative to memorya

ess speeds, ISAs 
hanged to emphasize a \load-store" ar
hite
ture. In thisapproa
h, all operations are performed by using data in spe
ial, very fast lo
a-tions 
alled registers that are part of the CPU. Before a value from memory 
anbe used, it must �rst be loaded into a register, using an address that has been
omputed and pla
ed into another register. Operations take operands fromregisters and put the result ba
k into a register; these are sometimes 
alledregister-to-register operations. A separate store operation puts a value ba
kinto the memory (generally indire
tly by way of a 
a
he hierar
hy analogous tothe register s
heme just des
ribed). Load and store operations are often handledby a load/store fun
tional unit, mu
h as 
oating-point arithmeti
 is handled bya 
oating-point unit (FPU).Over the years, CPUs have provided spe
ial features to support various pro-gramming models. For example, CISC-style ISAs often in
lude string sear
hinstru
tions and even polynomial evaluation. Some 
urrent ISAs support in-stru
tions that make it easy to a

ess 
onse
utive elements in memory by up-dating the register holding the load address; this 
orresponds 
losely to thea=*x++; statement in the C programming language and to typi
al Fortran 
od-
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Figure 2.3: Example of a 
oating-point pipeline. The separate stages in thepipeline are shown in (a). In (b), four pairs of numbers are added in 7 
lo
k 
y-
les. Note that after a 3-
y
le delay, one result is returned every 
y
le. Withoutpipelining, 16 
lo
k 
y
les would be required to add four pairs of numbers.ing pra
ti
e for loops.One sour
e of 
omplexity in a CPU is the di�eren
e in the 
omplexity ofthe instru
tions. Some instru
tions, su
h as bitwise logi
al or, are easy toimplement in hardware. Others, su
h as 
oating-point division, are extremely
ompli
ated. Memory referen
es provide a di�erent kind of 
omplexity; as wewill see, the CPU often 
annot predi
t when a memory referen
e will 
omplete.Many di�erent approa
hes have been taken to address these issues. For example,in the 
ase of 
oating-point operations, pipelining has been used. Like the RISCapproa
h, pipelining breaks a 
omplex operation into separate parts. Unlike theRISC approa
h, however, ea
h stage in the pipeline 
an be exe
uted at the sametime by the CPU, but on di�erent data. In other words, on
e a 
oating-pointoperation has been started in a 
lo
k 
y
le, even though that operation hasnot 
ompleted, a new 
oating-point operation 
an be started in the next 
lo
k
y
le. It is not unusual for operations to take two to twenty 
y
les to 
omplete.Figure 2.3 illustrates a pipeline for 
oating-point addition. Pipelines have beengetting deeper (i.e., have more stages) as 
lo
k speeds in
rease. Note also thatthis hardware approa
h is very similar to the use of pipelining in algorithmsdes
ribed in Se
tion 2.3.2.From this dis
ussion, we 
an already see some of the barriers to a
hievinghigher performan
e. A 
lo
k rate of 1 GHz 
orresponds to a period of only 1ns. In 1 ns, light travels only about 1 foot in a va
uum, and less in an ele
tri
al
ir
uit. Even in the best 
ase, a single pro
essor running at 10 GHz (three moredoublings in CPU performan
e or, if Moore's law 
ontinues to hold, appearing



2.1. UNIPROCESSOR ARCHITECTURE 7in less than �ve years) and its memory 
ould be only about one in
h a
ross(any larger and a signal 
ould not 
ross the 
hip during a single 
lo
k 
y
le); atthat size, heat dissipation be
omes a major problem (in fa
t, heat dissipation isalready a problem for many CPUs). Approa
hes su
h as pipelining (already akind of parallelism) require that enough operations and operands be available tokeep the pipeline full. Other approa
hes begin to introdu
e a very �ne s
ale ofparallelism, for example by providing multiple fun
tional units su
h as multiple
oating-point adders and multipliers. In su
h 
ases, however, the program mustbe rewritten (and/or 
ompiled) to make use of the additional resour
es. (Theseenhan
ements are dis
ussed in Se
tion 2.2.3.)On
e on-
hip 
lo
k laten
y is addressed, the designer must fa
e an even more
hallenging problem: laten
y to storage, beginning with memory.2.1.2 MemoryWhile a 
omputer is running, a
tive data and programs are stored in memory.Memory systems are quite 
omplex, introdu
ing a number of design issues.Among these are the following:Memory size. Users never have enough 
omputer memory, so the 
on
ept ofvirtual memory was introdu
ed to fool programs into thinking that theyhave large amounts of memory just for their own use.Memory laten
y and hierar
hy. The time to a

ess memory has not kept pa
ewith CPU 
lo
k speeds. Levels or hierar
hies of memory try to a
hieve a
ompromise between performan
e and 
ost.Memory bandwidth. The rate at whi
h memory 
an be transferred to and fromthe CPU (or other devi
es, su
h as disks) also has not kept up with CPUspeeds.Memory prote
tion. Many ar
hite
tures in
lude hardware support for memoryprote
tion, aimed primarily at preventing appli
ation software from mod-ifying (intentionally or inadvertently) either system memory or memoryin use by other programs.Of these, memory laten
y is the most diÆ
ult problem. Memory size, inmany ways, is simply a matter of money. Bandwidth 
an be in
reased byin
reasing the number of paths to memory (another use of parallelism) andusing te
hniques su
h as interleaving (analogous to striping). Laten
ies arerelated to physi
al 
onstraints are harder to redu
e. Further, high laten
iesredu
e the e�e
tive bandwidth of a given load or store. To see this, 
onsider amemory inter
onne
t that transfers blo
ks of 32 bytes with a bandwidth of 1GB/s. In other words, the time to transfer 32 bytes is 32 ns. If the laten
y ofthe memory system is also 32 ns (an optimisti
 �gure), the total time to transferthe data is 64 ns, redu
ing the e�e
tive bandwidth from 1 GB/s to 500 MB/s.The most 
ommon approa
h to improving bandwidth in the presen
e of highlaten
y is to in
rease the amount of data moved ea
h time, thus amortizing the



8 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESlaten
y over more data. However, this helps only when all of the data moved isneeded by the running program.An exe
uting program, or pro
ess, involves an address spa
e and (one ormore) program 
ounters. Operating systems manage the time-sharing of a CPUto allow many pro
esses to appear to be running at the same time (we will seethat for parallel 
omputers, the pro
esses may in fa
t be running simultane-ously). The operating system, working with the memory system hardware,provides ea
h pro
ess with the appearan
e of a private address spa
e. Most sys-tems further allow the private memory spa
e to appear larger than the availableamount of physi
al memory. This is 
alled a virtual address spa
e. Of 
ourse,the a
tual physi
al memory hardware de�nes an address spa
e, or physi
al ad-dress spa
e. Any memory referen
e made by a pro
ess, for example, with aload or store instru
tion, must �rst be translated from the virtual address (theaddress known to the pro
ess) to the physi
al address. This step is performedby the translation lookaside bu�er (TLB), whi
h is part of the memory systemhardware. In most systems, the TLB 
an map only a subset of the virtual ad-dresses (it is a kind of address 
a
he); if a virtual address 
an't be handled bythe TLB, the operating system is asked to help out; in su
h a 
ase, the 
ostof a

essing memory greatly in
reases. For this reason, some high-performan
esystems have 
hosen not to provide virtual addressing.De
reasing memory laten
y is a diÆ
ult problem. Semi
ondu
tor memory
omes in two main types: stati
 random a

ess memory (SRAM), in whi
h ea
hbit of memory is stored in a lat
h made up of transisitors, and dynami
 randoma

ess memory (DRAM), in whi
h ea
h bit of memory is stored as a 
harge ona 
apa
itor. SRAM is faster than DRAM but is mu
h less dense (has fewer bitsper 
hip) and requires mu
h greater power (resulting in heat). The di�eren
eis so great that virtually all 
omputers use DRAM for the majority of theirmemory. However, as Figure 2.4 shows, the performan
e of DRAM memory hasnot followed the Moore's law 
urve that CPU 
lo
k speeds hav. Instead, thedensity and pri
e-performan
e of DRAMs have risen exponentially. The s
aleof this problem 
an be seen by 
omparing the speeds of DRAMs and CPUs.For example, a 1 GHz CPU will exe
ute 60 instru
tions before a typi
al (60 ns)DRAM 
an return a single byte. Hen
e, in a program that issues a load for adata item that must 
ome from DRAM, at least 60 
y
les will pass before thedata will be available. In pra
ti
e, the delay 
an be longer be
ause there is moreinvolved in providing the data item than just a

essing the DRAM.To work around this performan
e gap, 
omputer ar
hite
ts have introdu
eda hierar
hy of smaller but faster memories. These are 
alled 
a
he memoriesbe
ause they work by 
a
hing 
opies of data from the DRAM memory in fasterSRAM memory, 
loser to the CPU. Be
ause SRAM memory is more expensiveand less dense (takes up more die spa
e) and 
onsumes mu
h more power (pro-du
es more heat to dissipate) than does DRAM memory, 
a
he memory sizesare small relative to main memory. In fa
t, there is usually a hierar
hy of 
a
hememory, starting from level 1 (L1) whi
h is the smallest (and fastest) and isin some ar
hite
tures on-
hip with the CPU. Many systems have two or threelevels of 
a
he. A typi
al size is 16 KB to 128 KB for L1 
a
he memory to as
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y versus time. Note that, unlike the CPU times inFigure 2.1, the time axis is linear, and the improvement in performan
e is littlemore than a fa
tor of two in ten years.mu
h as 4 MB to 8 MB for L2 or L3 
a
he memory. DRAM memory sizes, onthe other hand, are 256 MB to 4 GB|a fa
tor of about a thousand larger.Memory hierar
hy brings up another problem. Be
ause the 
a
he memoryis so mu
h smaller than the main memory, it often isn't possible for all of thememory used by a pro
ess to reside in the L1 or even L2 
a
he memory. Thus,as a pro
ess runs, the memory system hardware must de
ide whi
h memorylo
ations to 
opy into 
a
he. If the 
a
he is full and a new memory lo
ationis needed, some other item must be removed from the 
a
he and written ba
kto the main memory. The rate at whi
h this happens is 
alled the 
a
he missrate, and one of the primary goals of a memory system ar
hite
t is to make themiss rate as small as possible. Of 
ourse, the rate depends on the behavior ofthe program, and this in turn depends on the algorithms used by the program.Many di�erent strategies are used to try to a
hieve low miss rates in a 
a
hewhile keeping the 
a
he fast and relatively inexpensive. To redu
e the miss rate,programs exploit temporal lo
ality : reusing the same data within a short span oftime, that is, reusing the data before it is removed from the 
a
he to make roomfor some other data. This pro
ess, in turn, requires the algorithm developer andprogrammer to pay 
lose attention to how data is used in a program.



10 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESAs just one example, 
onsider the 
hoi
e of the 
a
he line size. Data between
a
he and main memory usually is transferred in groups of 64, 128, or 256 bytes.This group is 
alled a 
a
he line. Moving a 
a
he line at one time allows themain memory to provide relatively eÆ
ient bursts of data (it will be at least60 ns before we 
an get the �rst byte; subsequent 
onse
utive bytes 
an bedelivered without mu
h delay). Thus, programs that a

ess \nearby" memoryafter the �rst a

ess will �nd that the data they need is already in 
a
he. Forthese programs, a larger line size will improve performan
e. However, programsthat a

ess memory in a less stru
tured way may �nd that they spend most oftheir time reading data into 
a
he that is never used. For these programs, alarge line size redu
es performan
e 
ompared with a system that uses a shorter
a
he line.Many other issues also remain, with similarly diÆ
ult tradeo�s, su
h as asso-
iativity (how main memory addresses are mapped into the 
a
he), repla
ementpoli
y (what data is eje
ted to make room for new data), and 
a
he size. Ex-ploiting the fa
t that memory is loaded in larger units than the natural s
alarobje
ts (su
h as integers, 
hara
ters, or 
oating-point numbers) is 
alled exploit-ing spatial lo
ality. Spatial lo
ality also requires temporal lo
ality.The e�e
tive use of 
a
he memory is so important for high-performan
e ap-pli
ations that algorithms have been developed tailored to the requirements ofthese memory hierar
hies. On the other hand, the most widely used program-ming models ignore 
a
he memory requirements. Hen
e, problems remain withthe pra
ti
al programming of these systems for high performan
e. We will alsosee in Se
tion 2.2.1 that the use of 
opies of data in a 
a
he 
auses problems forparallel systems.2.1.3 I/O and NetworkingDis
ussions of 
omputers often slight the issues of I/O and networking. I/O,parti
ularly to the disks that store �les and swap spa
e for supporting virtualmemory, has followed a path similar to that of main memory. That is, densitiesand sizes have in
reased enormously (twenty-�ve years ago, a 40 MB disk waslarge and expensize; today, a 40 GB disk is a 
ommodity 
onsumer item), butlaten
ies have remained relatively un
hanged. Be
ause disks are ele
trome
han-i
al devi
es, laten
ies are in the range of millise
onds or a million times greaterthan CPU speeds. To address this issue, some of the same te
hniques usedfor memory have been adopted, parti
ularly the use of 
a
hes (typi
ally usingDRAM memory) to improve performan
e.Networking has 
hanged less. Although Ethernet was introdu
ed twenty-one years ago, only relatively modest improvements in performan
e were seenfor many years, and most of the improvement has been in redu
ed monetary
ost. Fortunately, in the past few years, this situation has started to 
hange.In parti
ular, 100 Mb Ethernet has nearly displa
ed the original 10 Mb Eth-ernet, and several Gigabit networking te
hnologies are gaining ground, as areindustry e�orts, su
h as In�niband [12℄ to a

elerate the rate of improvementin network bandwidth. Opti
al te
hnologies have been in use for some time but
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antly in
rease the available bandwidths. Networks,are, however, fundamentally 
onstrained by the speed of light. Laten
ies 
annever be less than 3 ns per meter. Another 
onstraint is the way in whi
hthe network is used by the software. The approa
hes that are 
urrently usedby most software involve the operating system (OS) in most networking opera-tions, in
luding most data transfers between the main memory and the network.Involving the OS signi�
antly impa
ts performan
e; in many 
ases, data mustbe moved several times. Re
ent developments in networking [29, 30℄ have em-phasized transfers that are exe
uted without the involvement of the operatingsystem, variously 
alled \user-mode," \OS bypass," or \s
heduled transfer."These 
ombine hardware support with a programming model that allows highernetwork performan
e.2.1.4 SummaryThe design of a single-pro
essor 
omputer is a 
onstant struggle against 
om-peting 
onstraints. How should resour
es be allo
ated? Is it better to usetransistors on a CPU 
hip to provide a larger fast L1 
a
he, or should theybe used to improve the performan
e of some of the 
oating-point instru
tions?Should transistors be used to add more fun
tional units? Should there be moreregisters, even if the ISA then has to 
hange? Should the L1 
a
he be madelarger at the expense of the L2 
a
he? Should the memory system be optimizedfor appli
ations that make regular or irregular memory a

esses? There areno easy answers here. The 
omplexity has in fa
t led to in
reasingly 
omplexCPU designs that use tens of millions of transistors and that are enormously
ostly to design and manufa
ture. Parti
ularly diÆ
ult is the mismat
h in per-forman
e between memory and CPU. This mismat
h also 
auses problems forprogrammers; see, for example, [13℄ for a dis
ussion of what should be a simpleoperation (bit reversal) but whose performan
e varies widely as a result of theuse of 
a
hes and TLBs. These diÆ
ulties have en
ouraged 
omputer ar
hite
tsto 
onsider a wide variety of alternative approa
hes for improving 
omputersystem performan
e. Parallelism is one of the most powerful and most widelyused.2.2 Parallel Ar
hite
turesThis se
tion presents an overview of parallel ar
hite
tures, 
onsidered as re-sponses to limitations and problems in unipro
essor ar
hite
tures and to te
h-nology opportunities. We start by 
onsidering parallelism in the memory sys-tems, sin
e the 
hoi
es here have the most e�e
t on programming models andalgorithms. Parallelism in the CPU is dis
ussed next; after in
reases in 
lo
krates, this is a sour
e of mu
h of the improvement in sustained performan
ein mi
ropro
essors. For a mu
h more detailed dis
ussion of parallel 
omputerar
hite
tures, see [2℄.
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Figure 2.5: S
hemati
 parallel 
omputer organization. A typi
al shared-memorysystem is shown in (a) where the inter
onne
t may be either a simple bus or asophisti
ated swit
h. A distributed memory system is shown in (b); this may beeither a distributed shared-memory system or a simpler shared-nothing systemdepending on the 
apabilities of the network interfa
e (NIC).2.2.1 Memory ParallelismOne of the easiest ways to improve performan
e of a 
omputer system is sim-ply to repli
ate entire 
omputers and add a way for the separate 
omputers to
ommuni
ate data. This approa
h is shown s
hemati
ally in Figure 2.5. Thisprovides an easy way to in
rease memory bandwidth and aggregate pro
essingpower without 
hanging the CPU, allowing parallel 
omputers to take advan-tage of the huge investment in 
ommodity mi
ropro
essor CPUs. The 
ost is inin
reased 
omplexity of the software and in the impa
t that this has on the per-forman
e of appli
ations. The major 
hoi
e here is between distributed memoryand shared memory.Distributed MemoryThe simplest approa
h from the hardware perspe
tive is the distributed mem-ory, or shared nothing, model. The approa
h here is to use separate 
omputers
onne
ted by a network. The typi
al programming model 
onsists of separatepro
esses on ea
h 
omputer 
ommuni
ating by sending messages (message pass-ing), usually by 
alling library routines. This is the most 
lassi
 form of parallel
omputing, dating ba
k to when the 
omputers were people with 
al
ulatorsand the messages were written on slips of paper [22℄. The modern distributed-memory parallel 
omputer started with the work of Seitz [23℄.
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al distributed-memory systems in
lude the IBM SP and Beowulf 
lus-ters. The major feature that distinguishes between di�erent distributed-memoryparallel 
omputers is the network that 
onne
ts them. Di�erent inter
onne
tsare des
ribed in Se
tion 2.2.2. While the message-passing programming modelhas been su

essful, it emphasizes that the parallel 
omputer is a 
olle
tion ofseparate 
omputers.Shared MemoryA more 
omplex approa
h ties the 
omputers more 
losely together by pla
ingall of the memory into a single (physi
al) address spa
e and supporting virtualaddress spa
es a
ross all of the memory. That is, data is available to all of theCPUs through the load and store instru
tions of the ISA. Be
ause a

ess to thememory is through load and store operations rather than the network operationsused in distributed-memory systems, a

ess to remote memory has lower laten
yand higher bandwidth. These advantages 
ome with a 
ost, however. Themost serious problem is 
onsisten
y. To understand this problem, 
onsider thefollowing simple Fortran program:a = a + 1b = 1In a generi
 ISA, the part that in
rements a might be translated to...LOAD R12, %A10 ; Load a into registerADD R12, #1 ; Add one to the value in R12STORE R12, %A10 ; Store the result ba
k into A...The important point here is that the single program statement a=a+1 turns intothree separate instru
tions. Now, re
all our dis
ussion of 
a
he memory. In aunipro
essor, the �rst time the LOAD operation o

urs, the value is brought intothe memory 
a
he. The store operation writes the value from register ba
k intothe 
a
he. Now, assume that another CPU, exe
uting a program that is usingthe same address spa
e, exe
utes10 if (b .eq. 0) goto 10print *, aWhat value of a does that CPU see? We would like it to see the value of aafter the in
rement. But that requires that the value has both been writtenba
k to the memory from the 
a
he of the �rst CPU and read into 
a
he (evenif the 
orresponding 
a
he line had previously been read into memory) on these
ond CPU. In other words, we want the program to exe
ute as if the 
a
hewas not present, that is, as if every load and store operation worked dire
tly onthe memory. The 
opies of the memory in the 
a
he are used only to improveperforman
e of memory operations but do not 
hange the behavior of programs
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essing the same memory lo
ations. Ca
he memory systems thata

omplish this obje
tive are 
alled 
a
he 
oherent. Ensuring that a memorysystem is 
a
he 
oherent requires additional hardware and adds to the 
omplex-ity of the system. On the other hand, it simpli�es the job of the programmer,sin
e the 
orre
tness of a program doesn't depend on details of the behavior ofthe 
a
he. We will see, however, that while 
a
he 
oheren
e is ne
essary, it is notsuÆ
ient to provide the programmer with a friendly programming environment.The 
omplexity of providing 
a
he 
oheren
y has led to di�erent designs.One important 
lass is 
alled uniform memory a

ess (UMA). In this design,ea
h memory and 
a
he are 
onne
ted to all of the others; ea
h part observesany memory operation (su
h as a load from a memory lo
ation) and ensuresthat 
a
he 
oheren
e is maintained. Be
ause the time to a

ess a lo
ation frommemory (not from 
a
he) is independent of the address (and hen
e parti
ularmemory unit), this is 
alled UMA. Early implementations used a bus, whi
his a 
ommon signaling layer that ea
h pro
essor and memory were 
onne
tedto. Be
ause buses are not s
alable (all devi
es on the bus must share a limitedamount of 
ommuni
ation), higher-performan
e UMA systems based on 
om-pletely 
onne
ted networks have been 
onstru
ted. Su
h networks themselvesare not s
alable (the number of 
onne
tions for p 
omponents grows as p2),leading to the other 
lass of shared memory designs.The nonuniform memory a

ess (NUMA) approa
h does not require thatall memory be equally \distant" (in terms of a

ess time). Instead, the memorymay be 
onne
ted by a s
alable network. Su
h systems 
an be more sensitive tothe details of data layout but 
an also s
ale to mu
h larger numbers of pro
essors.To emphasize that a NUMA system is 
a
he 
oherent, the term CC-NUMA isoften used. The term distributed shared memory (DSM) is also often usedto emphasize the NUMA 
hara
teristi
s of this approa
h to building shared-memory hardware. The term virtual shared memory, or virtual distributed sharedmemory, is used to des
ribe a system that provides the programmer with ashared-memory programming model built on top of distributed-memory (notDSM) hardware.Typi
al UMA systems in
lude the Sun E10000 (up to 64 pro
essors) andSGI Power Challenge (up to 18 pro
essors). Typi
al CC-NUMA systems in
ludethe SGI Origin (typi
ally up to 128 pro
essors, 1024 in spe
ial 
on�gurations)and the HP Exemplar V2600 (up to 128 pro
essors). The SGI Origin uses anapproa
h 
alled dire
tory-based 
a
he 
oheren
y (dire
tory 
a
hes, for short)[16℄ to distribute the information needed to maintain 
a
he 
oheren
y a
rossthe network that 
onne
ts the memory to the CPUs.Memory Consisten
y and Programming ModelsHow does the programming model 
hange when several threads or pro
essesshare memory? What are the new issues and 
on
erns? Consider a unipro-
essor CPU exe
uting a single-user program (a single-threaded, single-pro
essprogram). Programs exe
ute simply, one statement after the other. Impli
itin this is that all statements before the 
urrent statement have 
ompleted be-
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urrent statement is exe
uted. In parti
ular, all stores to and loadsfrom memory issued by previous statements have 
ompleted before the 
urrentstatement begins to exe
ute. In a multipro
essor exe
uting a single program onmultiple pro
essors, the notion of \
urrent" statement and \
ompleted before"is un
lear. Or rather, it 
an be de�ned to be 
lear, but only at a high 
ost inperforman
e.The fundamental observation is by Lamport [14℄ in an arti
le titled \Howto Make a Multipro
essor Computer that Corre
tly Exe
utes Multipro
ess Pro-grams". From a programmer's perspe
tive, a parallel program should exe
ute asif it were some arbitrary interleaving (but preserving order) of the statements inthe program. This requirement is 
alled sequential 
onsisten
y. Unfortunately,while this mat
hes the way most programmers look at their 
ode, it imposessevere 
onstraints on the hardware, in large part be
ause of the high laten
y ofmemory a

esses relative to the CPU speed.Be
ause providing sequential 
onsisten
y limits performan
e, weaker modelshave been proposed. One model proposed in the late 1980s, 
alled pro
essor 
on-sisten
y [7℄, mat
hed many of the then-
urrent multipro
essor implementationsbut (usually) required some expli
it a
tion by the programmer to ensure 
orre
tprogram behavior. Programmers who use the thread programming model withthread lo
ks to syn
hronize a

esses to shared data stru
tures satisfy this re-quirement be
ause the implementation of the lo
k and unlo
k 
alls in the threadlibrary ensures that the 
orre
t instru
tions are issued.Some programmers prefer to avoid the use of lo
ks, however, be
ause oftheir relatively high overhead and instead use 
ag variables to 
ontrol a

ess toshared data (as we used a as the 
ag variable in the pre
eding se
tion). Weak
onsisten
y [4℄ is appropriate for su
h programs; like pro
essor 
onsisten
y, theprogrammer is required to take spe
ial steps to ensure 
orre
t operation.Even weak 
onsisten
y interferes with some performan
e optimizations, how-ever. For this reason, release 
onsisten
y [6℄ was introdu
ed. This form of
onsisten
y separates syn
hronization between two pro
esses or threads into ana
quire and a release step.The important point for programmers and algorithm developers is that theprogramming model that is most natural for programmers and that re
e
ts theway we read programs is sequential 
onsisten
y, and this model is not imple-mented by parallel 
omputer hardware. Consequently, the programmer 
annotrely on programs exe
uting as some interleaved ordering of the statements. Thespe
i�
 
onsisten
y model that is implemented by the hardware may requiredi�erent degrees of additional spe
i�
ation by the programmer. Language de-sign for parallel programming may take the 
onsisten
y model into a

ount,providing ways for the 
ompiler, not the programmer, to enfor
e 
onsisten
y.Unfortunately, most languages (in
luding C, C++, and Fortran) were designedfor single threads of 
ontrol and do not provide any me
hanism to enfor
e 
on-sisten
y.Note that if memory laten
y was small, providing sequential 
onsisten
ywould not greatly impa
t performan
e. Weaker forms of 
onsisten
y would notbe needed, and Lamport's title [14℄ would re
e
t real ma
hines.
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hesTwo other approa
hes to parallelism in memory are important. In both of these,the CPU is 
ustomized to work with the memory system. In single instru
tion,multiple data (SIMD) parallelism, simpli�ed CPUs are 
onne
ted to memory.Unlike the previous 
ases, in the SIMD approa
h, ea
h CPU exe
utes the sameinstru
tion in ea
h 
lo
k 
y
le. Su
h systems are well suited for the data-parallelprogramming model, where data is divided up among memory systems and thesame operation is performed on ea
h data element. For example, the Fortran
odedo i=1, 10000a(i) = a(i) + alpha * b(i)enddo
an be 
onverted into a small number of instru
tions, with ea
h CPU takinga part of the arrays a and b. While these systems have fallen out of favoras general-purpose 
omputers, they are still important in �elds su
h as signalpro
essing. The most famous general-purpose SIMD system was the Conne
tionMa
hine (CM-1 and CM-2) [9℄.The other major approa
h is ve
tor 
omputing. This is often not 
onsideredparallelism be
ause the CPU has little expli
it parallelism, but parallelism isused in the memory system. In ve
tor 
omputing, operations are performed onve
tors, typi
ally groups of 64 
oating-point numbers. A single instru
tion in ave
tor 
omputer may 
ause 64 results to be 
omputed (often with a pipelined
oating-point unit), using ve
tors stored in ve
tor registers. Data transfers frommemory to ve
tor registers make use of multiple memory banks; the parallelismin the memory supports very high bandwidths between the CPU and the mem-ory. Ve
tor 
omputers often have memory bandwidths that are an order ofmagnitude or more greater than nonve
tor 
omputers. We will 
ome ba
k tove
tor 
omputing in Se
tion 2.2.3 after dis
ussing parallelism in the CPU.The most important ve
tor ma
hine was the Cray 1; most 
urrent ve
torma
hines are in fa
t 
ombinations of multiple ve
tor CPUs with shared mem-ory. These systems are often 
alled parallel ve
tor pro
essors (PVPs). Systemsof this type in
lude the NEC SX-5 and the Cray T90. These systems maynot fully support 
a
he 
oheren
y, trading some software 
omplexity for fasterperforman
e in their memory systems.Parallel Random A

ess MemoryA great deal of theoreti
al work on the 
omplexity of parallel 
omputation hasused the parallel random a

ess memory model (PRAM). This is a theoreti
almodel of a shared-memory 
omputer; di�erent varieties of PRAM vary in thedetails of how memory a

esses to the same address are handled. In order tomake the theoreti
al model tra
table, memory a

ess times are usually 
onsid-ered 
onstant independent of the CPU performing the (non
on
i
ting) a

ess; inparti
ular, there are no 
a
hes and no fa
tors of one hundred or more di�eren
ein a

ess times for di�erent memory lo
ations. While this model is valuable in
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tion that 
annot be eÆ
iently implemented in pra
ti
e.Limits to Memory System Performan
eOne interesting limit to memory system performan
e 
omes from applying Lit-tle's law to memory requests. Little's law is a result from queuing theory;applied to memory requests, it says that if the memory laten
y that needs tobe hidden is L and the rate of requests is r, then the number of simultaneouslya
tive requests needed is rL. If this is 
ast in terms of 
lo
k 
y
les, if the mem-ory laten
y is 100 
y
les and a memory request is issued every 
y
le, then 100requests must be a
tive at the same time. The 
onsequen
es are numerous:1. The bandwidth of the memory system must support more requests (thenumber uses the same formula but uses the laten
y of the inter
onne
t,whi
h may still be around 10 
y
les).2. There must be enough independent work. Some algorithms, parti
ularlythose that use re
urren
e relations, do not have mu
h independent work.This situation pla
es a burden on the algorithm developer and the pro-grammer.3. The 
ompiler must 
onvert the program into enough independent requests,and there must be enough resour
es (su
h as registers) to hold results asthey arrive (load) or until they depart (store).Many 
urrent mi
ropro
essors allow a small number of outstanding memoryoperations; only the Cray MTA (dis
ussed below) satis�es the requirements ofLittle's law for main-memory a

esses.2.2.2 Inter
onne
tsIn the pre
eding se
tion, we des
ribed the intera
tion of memories and CPUs.In this se
tion we say a little more about the inter
onne
tion networks that areused to 
onne
t 
omponents in a 
omputer (parallel or otherwise).Many types of networks have been used in the past thirty years for 
on-stru
ting parallel systems, ranging from relatively simple buses, to 2D and 3Dmeshes, to 
omplex hyper
ube network topologies [15℄. Ea
h type of network
an be des
ribed by its topology, its means of dealing with 
ongestion (e.g.,blo
king or nonblo
king), its approa
h to message routing, and its bandwidth
hara
teristi
s.For a long time, understanding details of the topology was important forprogrammers and algorithm developers seeking to a
hieve high performan
e.This situation is re
e
ted both in the literature and in parallel programmingmodels (e.g., the topology routines in MPI). Re
ently, networks have improvedto the point that for many users, network topology is no longer a major fa
-tor in performan
e. However, some of this apparent \
atness" (uniformity) inthe topology 
omes from greatly in
reased bandwidth within the network. As
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ome faster, network topology may again be
ome an im-portant 
onsideration in algorithms and programming models. Congestion inthe network 
an still be a problem if the network performan
e doesn't s
alewith the number of pro
essing nodes. The term bise
tion bandwidth des
ribesthe bandwidth of the network a
ross any 
ut that divides the network into twoparts.Note that there is no best approa
h. Simple mesh networks, su
h as thoseused in the Intel TFLOPS (ASCI Red) system, provide e�e
tive s
alabilityfor many appli
ations through low laten
y and high bandwidth, even though amesh network does not have s
alable performan
e in the sense that the bise
tionbandwidth of a mesh does not grow proportionally with the number of nodes.It is s
alable in terms of the hardware required: there is a 
onstant 
ost pernode for ea
h node added.When inter
onne
ts are viewed as networks between 
omputers, the perfor-man
e goals have been quite modest. Fast networks of this type typi
ally havelaten
ies of ten mi
rose
onds or more (in
luding essential software overheads)and bandwidths on the order of 100 MB/s. Inter
onne
ts used to implementshared memory, on the other hand, are designed to operate at memory systemspeeds and with no extra software overhead. Laten
ies for these systems aremeasured in nanose
onds and bandwidths of one to ten gigabytes per se
ondare be
oming 
ommon.Early shared-memory systems used a bus to 
onne
t memory and pro
essors.A bus provides a single, shared 
onne
tion that all devi
es use and is relativelyinexpensive to build. The major drawba
k is that if k devi
es are using the busat the same time, under the best of 
onditions, ea
h gets 1=k of the availableperforman
e (e.g., bandwidth). Contention between devi
es on the bus 
anlower the available bandwidth 
onsiderably.To address this problem, some shared-memory systems have 
hosen to usenetworks that 
onne
t ea
h pro
essor with ea
h memory system. For smallnumbers of pro
essors and memories, a dire
t 
onne
tion between ea
h pro
essorand memory is possible (requiring p2 
onne
tions for p devi
es); this is 
alled afull 
rossbar. For larger numbers of pro
essors, a less 
omplete network may beused.An interesting development is the 
onvergen
e of the te
hnology used fornetworking and for shared memory. The s
alable 
oherent inter
onne
t (SCI)[11℄ was an early attempt to provide a memory-oriented view of inter
onne
tsand has been used to build CC-NUMA systems from Convex and HP. Build-ing on work both in resear
h and in industry, the VIA [29℄ and In�niband[12℄ industry-standard inter
onne
ts allow data to be moved dire
tly from onepro
essor's memory to another along an established 
ir
uit. These provide a
ommuni
ation model that is mu
h 
loser to that used in memory inter
on-ne
ts, and should o�er mu
h lower laten
ies and higher bandwidths than older,message-oriented inter
onne
ts.Systems without hardware 
a
he 
oheren
y often provide a way to indi
atethat all 
opies of data in a 
a
he should be dis
arded; this is 
alled 
a
he inval-idation. Sometimes this is a separate instru
tion; sometimes it is a side e�e
t of
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hronization instru
tion su
h as test-and-set (e.g., Cray SV-1). Software
an use this strategy to ensure that programs operate 
orre
tly. The 
ost is thatall 
opies of data in the 
a
he are dis
arded; hen
e, subsequent operations thatreferen
e memory lo
ations stall while the 
a
he is re�lled. To avoid this situa-tion, some systems allow individual 
a
he lines to be invalidated rather than theentire 
a
he. However, su
h an approa
h requires great 
are by the software,sin
e the failure to invalidate a line 
ontaining data that has been updated byanother pro
essor 
an lead to in
orre
t and nondeterministi
 behavior by theprogram.For an engaging dis
ussion of the 
hallenges of implementing and program-ming shared-memory systems, see [21℄.2.2.3 CPU ParallelismParallelism at the level of the CPU is more diÆ
ult to implement than simplerepli
ation of CPUs and memory, even when the memory presents a single sharedaddress spa
e. However, modest parallelism in the CPU provides the easiestroute to improved performan
e for the majority of appli
ations be
ause littleneeds to be done by the programmer to exploit this kind of parallelism.Supers
alar Pro
essingLook at Figure 2.2 again, and 
onsider the following program fragment:real a, b, 
integer i, j, k...a = b * 
i = j + kThe values a, b, 
, i, j, and k are already in register. These two statements usedi�erent fun
tional units (FPU and ALU, respe
tively) and di�erent register sets(FPR and GPR). A supers
alar pro
essor 
an exe
ute both of these statements(ea
h requiring a single register-to-register instru
tion) in the same 
lo
k 
y
le(more pre
isely, su
h a pro
essor will \begin exe
ution" of the two statements,sin
e both may be pipelined). The term supers
alar 
omes from the fa
t thatmore than one operation 
an be performed in a single 
lo
k 
y
le and thatperforman
e is a
hieved on nonve
tor 
ode. A supers
alar pro
essor allows asmu
h parallelism as there are fun
tional units. Be
ause separate instru
tionsare exe
uted in parallel, this is also 
alled instru
tion-level parallelism (ILP).For ILP to be e�e
tive, it must be easy for the hardware to �nd instru
tions thatdo not depend on ea
h other and that use di�erent fun
tional units. Considerthe following example. If the CPU exe
utes instru
tions in the order that theyappear, then the 
ode sequen
e on the left will take three 
y
les and the one onthe right only two 
y
les.a = b * 
 a = b * 
d = e * f i = j + k



20 CHAPTER 2. PARALLEL COMPUTER ARCHITECTURESi = j + k d = e * fl = m + n l = m + nSome CPUs will attempt to reorder instru
tions in the CPU's hardware, ana
tion that is most bene�
ial to lega
y appli
ations that 
annot be re
ompiled.It is often better, however, if the 
ompiler s
hedules the instru
tions for e�e
tiveuse of ILP; for example, a good 
ode-s
heduling 
ompiler would transform the
ode on the left to the 
ode on the right (but breaking sequential 
onsisten
y!).One major drawba
k of ILP, then, is that the hardware must redis
overwhat a s
heduling 
ompiler already knows about the instru
tions that 
an beexe
uted in the same 
lo
k 
y
le.Expli
itly Parallel Instru
tionsAnother approa
h is for the instru
tion set to en
ode the use of ea
h part ofthe CPU. That is, ea
h instru
tion 
ontains expli
it subinstru
tions for ea
h ofthe di�erent fun
tional units in the CPU. Sin
e ea
h instru
tion must expli
itlyspe
ify more details about what happens in ea
h 
lo
k 
y
le, instru
tions resultthat are longer than in other ISAs. In fa
t, they are usually referred to asvery long instru
tion word (VLIW) ISAs. VLIW systems usually rely on the
ompiler to s
hedule ea
h fun
tional unit. One of the earliest 
ommer
ial VLIWma
hines was the Multi
ow Tra
e. The Intel IA64 ISA is a des
endent of thisapproa
h; the term EPIC (expli
itly parallel instru
tion 
omputing) is used forthe Intel variety. EPIC does relax some of the restri
tions of VLIW but stillrelies on the 
ompiler to express most of the parallelism.SIMD and Ve
torsOne approa
h to parallelism is to apply the same operation to several di�erentdata values, using multiple fun
tional units. For example, a single instru
tionmight 
ause four values to be added to four others, using four separate adders.We have seen this SIMD style of parallelism before, when applied to separatememory units. The SIMD approa
h is used in some 
urrent pro
essors for spe
ialoperations. For example, the Pentium III in
ludes a small set of SIMD-styleinstru
tions for single-pre
ision 
oating-point and related data move operations.These are designed for use in graphi
s transformations that involve matrix-ve
tor multipli
ation by 4� 4 matri
es.Ve
tor 
omputers use similar te
hniques in the CPU to a
hieve greater per-forman
e. A ve
tor 
omputer 
an apply the same operation to a 
olle
tion ofdata 
alled a ve
tor; this is usually either su

essive words in memory or wordsseparated by a 
onstant o�set or stride. Early systems su
h as the CDC Star100 and Cyber 205 were ve
tor memory-to-memory ar
hite
tures where ve
tors
ould be nearly any length. Sin
e the Cray 1, most ve
tor 
omputers have usedve
tor registers, typi
ally limiting ve
tors to 64 elements. The big advantageof ve
tor 
omputing 
omes from the regular memory a

ess that a ve
tor rep-resents. Through the use of pipelining and other te
hniques su
h as 
haining,a ve
tor 
omputer 
an 
ompletely hide the memory laten
y by overlapping thea

ess to the next ve
tor with operations on a 
urrent ve
tor.
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tor 
omputing is related to VLIW or expli
itly parallel 
omputing in thesense that ea
h instru
tion 
an spe
ify a large amount of work and that advan
ed
ompilers are needed to take advantage of the hardware. Ve
tors are less 
exiblethan the VLIW or EPIC approa
h but, be
ause of the greater regularity, 
ansustain higher performan
e on appli
ations that 
an be expressed in terms ofve
tors.MultithreadingParallelism in the CPU involves exe
uting multiple sets of instru
tions. Any oneof these sets, along with the related virtual address spa
e and any state, is 
alleda thread. Threads are most familiar as a software model (see Chapter 10), butthey are also a hardware model. In the usual hardware model, a thread has noexpli
it dependen
ies with instru
tions in any other thread, although there maybe impli
it dependen
ies through operations on the same memory address. The
riti
al issues are (1) How many threads issue operations in ea
h 
lo
k 
y
le?and (2) How many 
lo
k 
y
les does it take to swit
h between di�erent threads?Simultaneous multithreading (SMT) [27℄ allows many threads to issue in-stru
tions in ea
h 
lo
k 
y
le. For example, if there are four threads and fourfun
tional units, then as long as ea
h fun
tional unit is needed by some threadin ea
h 
lo
k 
y
le, all fun
tional units 
an be kept busy every 
y
le, providingmaximumuse of the CPU hardware. The 
ompiler or programmer must dividethe program into separately exe
uting threads. The SMT approa
h is startingto show up in CPU designs in
luding versions of the Compaq Alpha and IBMPower pro
essors.Fine-grained multithreading uses a single thread at a time but allows theCPU to 
hange threads in a single 
lo
k 
y
le. Thus, a thread that must waitfor a slow operation (anything from a 
oating point addition to a load frommain memory) 
an be \set aside," allowing other threads to run. Sin
e a loadfrom main memory may take 100 
y
les or more, the bene�t of this approa
h forhiding memory laten
y is apparent. The drawba
k when used to hide memorylaten
y 
an be seen by applying Little's law. Large numbers of threads must beprovided for this approa
h to su

eed in 
ompletely hiding the laten
y of main(rather than 
a
he) memory. The Cray MTA is the only 
ommer
ial ar
hite
tureto o�er enough threads for this purpose.All of these te
hniques 
an be 
ombined. For example, �ne-grained multi-threading 
an be 
ombined with supers
aler ILP or expli
it parallelism. SMT
an restri
t groups of threads to parti
ular fun
tional units in order to simplifythe pro
essor design, parti
ular in pro
essors with multiple FPUs and ALUs.2.2.4 I/O and NetworksJust as in the unipro
essor 
ase, I/O and networking have not re
eived the samedegree of attention as have CPU and memory performan
e. Fortunately, thelower performan
e levels of I/O and networking devi
es relative to CPU andmemory allow a simpler and less expensive ar
hite
ture. On the other hand,lower performan
e puts tremendous strain on the ar
hite
t trying to maintain
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e in the system. A 
ommon I/O solution for parallel 
omputers, parti
u-larly 
lusters, is not a parallel �le system but rather a 
onventional �le system,a

essed by multiple pro
essors.Re
all that data 
a
hes are often used to improve the performan
e of I/Osystems in unipro
essors. As we have seen, it is important to maintain 
onsis-ten
y between the di�erent 
a
hes and between 
a
hes and memory if 
orre
tdata is to be provided to programs. Unfortunately, parti
ularly for networked�le systems su
h as NFS, maintaining 
a
he 
onsisten
y seriously degrades per-forman
e. As a result, su
h �le systems allow the system administrator to tradeperforman
e against 
a
he 
oheren
e. For environments where most appli
a-tions are not parallel or do not have multiple pro
esses a

essing the same �leat the same time, 
a
he-
oheren
e is usually sa
ri�
ed in the name of speed.The Redundant arrays of inexpensive disks (RAID) approa
h is an exam-ple of the bene�ts of parallelism in I/O. RAID was �rst proposed in 1988 [19℄with �ve di�erent levels representing di�erent uses of multiple disks to providefault toleran
e (disks, being me
hani
al, fail more often than entirely ele
troni

omponents) while maintaining a balan
e between read rates, write rates, andeÆ
ient use of storage. The RAID approa
h has sin
e been generalized to ad-ditional levels. Both hardware (RAID managed by hardware, presenting theappearan
e of a single but faster and/or more reliable disk) and software (sep-arate disks managed by software) versions exist.Parallel I/O 
an also be a
hieved by using arrays of disks arranged in pat-terns di�erent from those des
ribed by the various RAID levels. Chapter 11des
ribes parallel I/O from the programmer's standpoint. A more detailed dis-
ussion of parallel I/O 
an be found in [17℄.The simplest form of parallelism in networks is the use of multiple paths,ea
h 
arrying part of the traÆ
. Networks within a 
omputer system oftena
hieve parallelism by simply using separate wires for ea
h bit. Less tightly
oupled systems, su
h as Beowulf 
lusters, sometimes use a te
hnique 
alled
hannel bonding, whi
h uses multiple network paths, ea
h 
arrying part of themessage. GridFTP [1℄ is an example of software that exploits the ability of theInternet to route data over separate paths to avoid 
ongestion in the network.A more 
omplex form of parallelism is the use of di�erent ele
tri
al or opti
alfrequen
ies to 
on
urrently pla
e several messages on the same wire or �ber.This approa
h is rarely used within a 
omputer system be
ause of the added
ost and 
omplexity, but it is used extensively in long-distan
e networks. Newte
hniques for opti
al �bers, su
h as dense wavelength division multiplexing(DWDM), will allow a hundred or more signals to share the same opti
al �ber,greatly in
reasing bandwidth.2.2.5 Support for Programming ModelsSpe
ial operations are needed to allow pro
esses and threads that share the sameaddress spa
e to 
oordinate their a
tions. For example, one thread may need tokeep others from reading a lo
ation in memory until it is done modifying thatlo
ation. Su
h prote
tion is often provided by lo
ks: any thread that wants to
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ess the parti
ular data must �rst a
quire the lo
k, releasing the lo
k whenit is done. A lo
k, however, is not easy to implement with just load and storeoperations (though it 
an be done). Instead, many systems provide 
ompoundinstru
tions that 
an be used to implement lo
ks, su
h as test-and-set or fet
h-and-in
rement. RISC systems often provide a \split" 
ompound instru
tionthat 
an be used to build up operations su
h as fet
h-and-in
rement based onstoring a result after reading from the same address only if no other thread orpro
ess has a

essed the same lo
ation sin
e the load.Be
ause rapid syn
hronization is ne
essary to support �ne-grained paral-lelism, some systems (parti
ularly PVPs) use spe
ial registers that all CPUs
an a

ess. Other systems have provided extremely fast barriers: no pro
ess
an leave a barrier until all have entered the barrier. In a system with a fastbarrier, a parallel system 
an be viewed as sequentially 
onsistent where an\operation" is de�ned as the group of instru
tions between two barriers. Thisprovides an e�e
tive programming model for some appli
ations.In distributed-memory ma
hines, pro
esses share no data and typi
ally 
om-muni
ate through messages. In shared-memory ma
hines, pro
esses dire
tly a
-
ess data. There is a middle ground: remote memory a

ess (RMA). This issimilar to the network-
onne
ted distributed-memory system ex
ept that addi-tional hardware provides put and get operations to store to or load frommemoryin another node. The result is still a distributed-memory ma
hine, but one withvery fast data transfers. Examples are the Compaq AlphaServer SC, Cray T3Dand T3E, NEC Cenju 4, and Hita
hi SR8000.2.2.6 SummaryParallelism is a powerful approa
h to improving the performan
e of a 
omputersystem. All systems employ some degree of parallelism, even if it is only paralleldata paths between the memory and the CPU. Parallelism is parti
ularly goodat solving problems related to bandwidth or throughput; it is less e�e
tive atdealing with laten
y or startup 
osts. However, the ability to swit
h betweentasks provides one way to hide laten
y as long as enough independent tasks
an be found. Parallelism does not 
ome free, however. The e�e
ts of mem-ory laten
y are parti
ularly painful, for
ing 
omplex 
onsisten
y models on theprogrammer and diÆ
ult design 
onstraints on the hardware designer.In the 
ontinuing quest for ever greater performan
e, today's parallel 
om-puters often 
ombine many of the approa
hes dis
ussed here. One of the mostpopular is distributed-memory 
lusters of nodes, where ea
h node is a shared-memory pro
essor, typi
ally with 2 to 16 pro
essors, though some 
lusters haveSMP nodes with as many as 128 pro
essors. Another important 
lass of ma-
hines is the parallel ve
tor pro
essors; these use ve
tor-style CPU parallelism
ombined with shared memory.We emphasize that hardware models and software (or programming) modelsare essentially disjoint; shared-memory hardware provides ex
ellent message-passing support, and distributed-memory hardware 
an (at sometimes substan-tial 
ost) support a shared-memory programming model.
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lose this se
tion with a brief mention of taxonomies of parallel 
omput-ers. A taxonomy of parallel 
omputers provides a way to identify the importantfeatures of a system. Flynn [5℄ introdu
ed the best known taxonomy that de-�nes four di�erent types of 
omputer based on whether there are multiple datastreams and/or multiple instru
tion streams. A 
onventional unipro
essor has asingle instru
tion stream and a single data stream and is denoted SISD. Most ofthe parallel 
omputers that we have des
ribed in this se
tion have both multipledata and multiple instru
tion streams (be
ause they have many memories andCPUs); these are 
alled MIMD. The single instru
tion but multiple data par-allel 
omputer, or SIMD, has already been mentioned. The fourth possibilityis the multiple instru
tion, single data, or MISD; this 
ategory is not used. Astandard taxonomy for MIMD ar
hite
tures has not yet emerged, but it is likelyto be based on whether the memory is shared or distributed and, if it is shared,whether it is 
a
he 
oherent and how a

ess time varies. Many of the termsused to des
ribe these alternatives have been dis
ussed above, in
luding UMA,CC-NUMA, and DSM.The term single program, multiple data (SPMD) is inspired by Flynn's tax-onomy. Be
ause the single program has bran
hes and other 
ontrol-
ow 
on-stru
ts, SPMD is a subset of MIMD, not a subset of SIMD programs. Usinga single program, however, does provide an important simpli�
ation, and mostparallel programs in te
hni
al and s
ienti�
 
omputing are SPMD.2.3 Today's Parallel SystemsMost systems today are hybrids, 
ombining di�erent te
hnologies to providethe greatest possible 
omputing power within the limits of 
ost, 
omplexity,and usability. Be
ause most systems are hybrids, there is no unique taxonomy.This se
tion divides parallel systems in terms of their user 
ommunities: parallelve
tor pro
essors, shared memory, and distributed memory. See [28℄ for a reviewof 
urrent super
omputers, in
luding large-s
ale parallel systems.This se
tion 
overs only those systems typi
ally used for s
ienti�
 
omput-ing. Parallelism is widely used in 
ommer
ial 
omputing for appli
ations su
has databases and Web servers. Spe
ial ar
hite
tures and hardware have beendeveloped to support these appli
ations, in
luding spe
ial hardware support forsyn
hronization and fault toleran
e.2.3.1 Parallel Ve
tor Pro
essorsParallel ve
tor pro
essors represent one of the most powerful 
lasses of parallel
omputer, 
ombining impressive per pro
essor performan
e with parallelism.As late as 1996, the top ma
hines on the Top 500 list of super
omputers wereparallel ve
tor pro
essors [26℄, and sin
e then only massively parallel systemswith thousands of pro
essors are faster.The fastest of these ma
hines may not provide full 
a
he 
oheren
y in hard-ware; instead, they may require some support from the software to maintain a
onsistent view of memory. Ma
hines in this 
ategory in
lude the NEC SX-5and Cray SV1. This is an example of the sort of tradeo� of performan
e versus
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ost and 
omplexity that 
ontinues to fa
e ar
hite
ts of parallel systems.A distinguishing feature of ve
tor pro
essors and parallel ve
tor pro
essorsis the high memory bandwidth, often 4{16 bytes per 
oating-point operation.This is re
e
ted in the high sustained performan
e a
hieved on these ma
hinesfor many s
ienti�
 appli
ations.2.3.2 Shared MemoryShared-memory systems are be
oming 
ommon, even for desktop systems. Mostvendors in
lude shared-memory systems among their o�erings, in
luding Com-paq, HP, IBM, SGI, and Sun and many personal 
omputer vendors. Most ofthese systems have between 2 and 16 pro
essors, with a few providing up to 128pro
essors. Both UMA and CC-NUMA designs are 
ommon.In 
ontrast to PVPs, these systems usually have quite modest memory band-widths. At the low end, in fa
t, the same aggregate memory bandwidth maybe provided to systems with 1 to 4 or even 16 pro
essors. As a result, some ofthese systems are often starved for memory bandwidth. This 
an be a problemfor appli
ations that do not �t in 
a
he. Appli
ations that are memory a

essbound 
an even slow down as pro
essors are added in su
h systems. Of 
ourse,not all systems are underpowered, and the memory performan
e of even the lowend systems has been improving rapidly.2.3.3 Distributed MemoryDistributed-memory systems are the most 
ommon be
ause they are the easiestto assemble. Systems from Intel, parti
ularly the Paragon and the 512-pro
essorDelta, were important in demonstrating that appli
ations 
ould make e�e
tiveuse of large numbers of pro
essors. Perhaps the most su

essful 
ommer
ialdistributed-memory system is the IBM SP family. SP systems 
ombine variousversions of the su

essful RS6000 workstation and server nodes with di�erentinter
onne
ts to provide a wide variety of parallel systems, from 8 pro
essors tothe 8192-pro
essor ASCI White system.As mentioned above, some distributed-memory systems have been built withspe
ial-purpose hardware that provides remote memory operations su
h as putand get. The most su

essful of these are the Cray T3D and T3E systems.Many groups have exploited the low 
ost and relatively high performan
e of
ommodity mi
ropro
essors to build 
lusters of personal 
omputers or worksta-tions. Early versions of these were built from desktop workstations and weresometimes referred to as NOWs, for networks of workstations. The 
ontinuedimprovement in performan
e of personal 
omputers, 
ombined with the emer-gen
e of open sour
e (and free) versions of the Unix operation system, gave riseto 
lusters of ma
hines. These systems are now widely know as Beowulfs orBeowulf 
lusters, from a proje
t begun by Thomas Sterling and Donald Be
kerat NASA [24,25℄. They are real parallel ma
hines; as of 2000, two of the top100 super
omputer systems were built from 
ommodity parts.
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tions for Parallel Ar
hite
turesIn some ways, the future of parallel ar
hite
tures, at least for the next �ve years,is 
lear. Most parallel ma
hines will be hybrids, 
ombining nodes 
ontaining amodest number of 
ommodity CPUs sharing memory in a distributed-memorysystem. Many users will have only one shared-memory node; for them, shared-memory programming models will be adequate. In the longer term, the pi
tureis mu
h hazier. Many 
hallenges will be diÆ
ult to over
ome. Prin
ipal amongthese are memory laten
y and the limits imposed by the speed of light. Heatdissipation is also be
oming a major problem for 
ommodity CPUs. One major
ontributor to the in
rease in 
lo
k speeds for CPUs has been a 
orrespondingde
rease in the size of the features on the CPU 
hip. These feature sizes areapproa
hing the size of a single atom, beyond whi
h no further de
rease ispossible.While these 
hallenges may seem daunting, they o�er an important oppor-tunity to 
omputer ar
hite
ts and software s
ientists|an opportunity to take astep that is more than just evolutionary.Exoti
 Parallel Ar
hite
turesAs we have dis
ussed above, one of the major problems in designing any
omputer is providing a high-bandwidth, low-laten
y path between the CPUand memory. Some of this 
ost 
omes from the way DRAMs operate: data isstored in rows; when an item is needed, the entire row is read and the parti
-ular bit is extra
ted; the other bits in the row are dis
arded. This simpli�esthe 
onstru
tion of the DRAM (separate wires are not needed to get to ea
hbit), but it throws away signi�
ant bandwidth. Observing that DRAM densitiesare in
reasing at a rate even faster than the rate at whi
h 
ommodity softwaredemands memory, several resear
hers have explored 
ombining the CPU andmemory on the same 
hip and using the entire DRAM row rather than a sin-gle bit at a time. In fa
t, an early 
ommer
ial version of this approa
h, theMitsubishi M32000D3 pro
essor, used a 
onventional, 
a
he-oriented RISC pro-
essor 
ombined with memory and organized so that a row of the memory wasa 
a
he line, allowing for enormous (for the time) bandwidth in memory-
a
hetransfers. Several di�erent ar
hite
tures the exploit pro
essors and memory inthe same 
hip are 
urrently being explored [3, 20℄, in
luding approa
hes that
onsider ve
tor-like ar
hite
tures and approa
hes that pla
e multiple pro
essorson the same 
hip. Other ar
hite
ts are looking a parallel systems built fromsu
h 
hips; the IBM Blue Gene [10℄ proje
t expe
ts to have a million pro
essorsystem (with around 32 pro
essors per node).Super
ondu
ting elements promise 
lo
k speeds of 100 GHz or more. Of
ourse, su
h advan
es will only exa
erbate the problem of the mismat
h betweenCPU and memory speeds. Designs for CPUs of this kind often rely on hardwaremultithreading te
hniques to redu
e the impa
t of high memory laten
ies.Computing based on biologi
al elements often seeks to make use of paral-lelism by using mole
ules as pro
essing elements. Quantum 
omputing, parti
-ularly quantum 
omputing based on exploiting the superposition prin
iple, is afundamentally di�erent kind of parallelism.
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lusionParallel ar
hite
ture 
ontinues to be an a
tive and ex
iting area of resear
h.Most systems now have some parallelism, and the trends point to in
reasingamounts of parallelism at all levels, from 2 to 16 pro
essors on the desktop totens to hundreds of thousands for the highest-performan
e systems.A

ess to memory 
ontinues to be a major issue; hiding memory laten
y isone area where parallelism doesn't provide a (relatively) simple solution. Thear
hite
tural solutions to this problem have in
luded deep memory hierar
hies(allowing the use of low-laten
y memory 
lose to the pro
essor), ve
tor oper-ations (providing a simple and eÆ
ient \prefet
h" approa
h), and �ne-grainedmultithreading (enabling other work to 
ontinue while waiting on memory). Inpra
ti
e, none of these approa
hes 
ompletely eliminates the problem of memorylaten
y. The use of low-laten
y memories, su
h as 
a
hes, su�ers when the datadoes not �t in the 
a
he. Ve
tor operations require a signi�
ant amount of reg-ularity in the operations that may not �t the best (often adaptive) algorithms,and multithreading relies on identifying enough independent threads. Be
auseof this, parallel programming models and algorithms have been developed thatallow the 
omputational s
ientist to make good use of parallel systems. That isthe subje
t of the rest of this book.
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