
An Overview of Automatic Differentiation Tools and Techniques for Nuclear Reactor Applications

Mihai Anitescu, Paul Hovland, Giuseppe Palmiotti, and Won Sik Yang

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439; {anitescu,Hovland}@mcs.anl.gov,
{GPalmiotti,wyang}@anl.gov

INTRODUCTION

Automatic differentiation is an established technique

for computing local sensitivities of complex simulations
[1]. Modern automatic differentiation tools typically
produce code that meets or exceeds the performance of
hand-coded derivative computations. Automatic
differentiation has been used extensively in the
geosciences and aeronautical engineering, but it also has
the potential to be a useful tool for nuclear reactor design
and evaluation.

AUTOMATIC DIFFERENTIATION

Automatic differentiation (AD) is a family of
techniques for computing the derivatives of a function
defined by a computer program. The basis for AD is the
assumption that the computation of a vector function y =
f: Rn Rm is accomplished by a sequence of p elemental
operations vi = Fi (…, vj ,…), i = 1,…,p as found in a
computer program implementing an evaluation procedure
for f. Each of the Fi is differentiable at least in open
subdomains. The derivatives of these elemental
operations are combined according to the chain rule of
differential calculus.

The associativity of the chain rule leads to the two
major modes of computing derivatives with AD. The
forward mode multiplies derivatives starting with the
independent variables and proceeding toward the
dependent variables. The reverse mode multiplies
derivatives starting with the dependent variables and
proceeding toward the independent variables.

In abstract terms, the number of operations (temporal
complexity) required for computing the Jacobian of
f: Rn Rm in the forward mode is O(n) while the
computation with reverse mode is O(m). Thus, the
forward mode is appropriate for functions with small
numbers of independent variables (or, via a simple
transformation, Jacobian-vector products), while the
reverse mode is appropriate for functions with small
numbers of dependent variables (or, via a simple
transformation, transposed-Jacobian-vector products). In
practice, the adjoint mode must recompute intermediate
quantities to avoid excessive memory requirements.
Maintaining a proper balance between storage and
recomputation requires sophisticated tools and users.

TOOLS

Many automatic differentiation tools are available

today [2]. Established tools such as ADIFOR (for Fortran
77) and ADOL-C (for C/C++) are robust and reliable.
Newer tools such as OpenAD/F, Tapenade, and TAF (for
Fortran 90) and ADIC and TAC++ (for C/C++) offer
additional functionality and support for parallelism [3,4]
and often incorporate sophisticated compiler analysis
[5,6] to reduce the cost of sensitivity and adjoint
computation. Tools such as ADiMat and MAD support
differentiation of simulation prototypes implemented in
Matlab. Our group is actively developing ADIC and
OpenAD/F and is investigating ways to make these tools
more suitable for use in reactor design simulation.

TECHNIQUES

The forward mode is well suited for computing the
derivative of a large number of observations with respect
to a small number of design or physical parameters, with
time and memory costs proportional to the number of
parameters. It can also be adapted to the computation of
sparse Jacobians. The forward mode is ill suited for
computing sensitivities with respect to a large number of
parameters. In contrast, the reverse mode is well suited to
computing the derivative of a single or small number of
cost or quality metrics with respect to a large number of
design parameters or other unknowns, with time
requirements proportional to the number of metrics. The
memory requirements for the reverse mode may be a
logarithmic factor larger than those for the original
simulation. A combination of forward and reverse modes
can be used to compute low rank Jacobians.

Unfortunately, neither mode is well suited for
computing the Jacobians of large numbers of observations
with respect to a large numbers of parameters. This is
precisely the situation that may arise in nuclear reactor
simulations, where one frequently wishes to compute the
derivatives of thousands or millions of state variables with
respect to millions of cross sections and other parameters.
This situation mandates the use of something other than
pure forward or reverse mode computations. We are
therefore developing techniques to break a simulation into
components whose Jacobians are effectively sparse or low
rank, then assemble the full Jacobian from these
component Jacobians. We conjecture that such problem
decomposition can best be accomplished through a

combination of compiler analysis and user insight.
Effectively sparse or low-rank Jacobians can then be
approximated through the use of carefully chosen
Jacobian-vector products.

EXAMPLE

For example, consider the case of a function f =

F(G(H1(x),H2(x))),

F: Rm → Rn
G: Rm+1 → Rm
H1: Rn → Rm
H2: Rm → R

implemented as

call sub_H1(x,y1)
call sub_H2(x,y2)
call sub_G(y1,y2,z)
call sub_F(z,f)

where the Jacobian of H1 is sparse, the Jacobian of G is
low rank, and the Jacobian of F is effectively sparse, with
most elements below some threshold ε. The sparsity
pattern of dy1/dx can be determined by compiler analysis
or inexpensive runtime analyses. We believe that these
techniques can be adapted to the effectively sparse case,
but otherwise expert knowledge can be employed. The
reverse mode can efficiently compute the gradient of H2,
dy2/dx. The Jacobians of H1 and F can be computed by
using coloring or partial coloring, respectively [7]. The
Jacobian of G can be approximated by using low-rank
updates (Broyden, TR1 [8]) or by adapting the efficient
subspace method [9] to forward or reverse mode
sensitivity computations. Once the individual Jacobians
have been computed, the chain rule can be used to
compute the total Jacobian, df/fx.

ACKNOWLEDGMENT

Work supported by DOE under Contract DE-AC02-
06CH11357.

REFERENCES

1. A. GRIEWANK. Evaluating Derivatives: Principles

and Techniques of Algorithmic Differentiation.
SIAM, Philadelphia, 2000.

2. http://www.autodiff.org/?module=Tools
3. P. D. HOVLAND. “Automatic Differentiation of

Parallel Programs.” Ph.D. thesis, University of
Illinois at Urbana-Champaign, 1997.

4. M. M. STROUT, B. KREASECK, and P. D.
HOVLAND. “Data-Flow Analysis for MPI

Programs,” in Proceedings of the International
Conference on Parallel Processing, August 2006.

5. L. HASCOET, U. NAUMANN, and V. PASCUAL.
Future Generation Computer Systems, 21:8, 1401–
1417 (2005).

6. M. M. STROUT, J. MELLOR-CRUMMEY, and P.
D. HOVLAND. “Representation-Independent
Program Analysis,” in Proceedings of the Sixth
ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering,
September 5–6, 2005.

7. A. H. GEBREMEDHIN, F. MANNE, and A.
POTHEN. SIAM Review, 48:4, 629– 705 (2005).

8. A. GRIEWANK and A. WALTHER. Optimization
Methods and Software, 17:5, 869– 889 (2002).

9. H. S. ABDEL-KHALIK, P. J. TURINSKY. Nuclear
Technology, 151:1, 9– 21 (2005).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or
on behalf of the Government.

