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INTRODUCTION 
 
Automatic differentiation is an established technique 

for computing local sensitivities of complex simulations 
[1].  Modern automatic differentiation tools typically 
produce code that meets or exceeds the performance of 
hand-coded derivative computations.  Automatic 
differentiation has been used extensively in the 
geosciences and aeronautical engineering, but it also has 
the potential to be a useful tool for nuclear reactor design 
and evaluation. 

 
AUTOMATIC DIFFERENTIATION 
 

Automatic differentiation (AD) is a family of 
techniques for computing the derivatives of a function 
defined by a computer program. The basis for AD is the 
assumption that the computation of a vector function y = 
f: Rn  Rm is accomplished by a sequence of p elemental 
operations vi = Fi (…, vj ,…), i = 1,…,p as found in a 
computer program implementing an evaluation procedure 
for f. Each of the Fi  is differentiable at least in open 
subdomains.  The derivatives of these elemental 
operations are combined according to the chain rule of 
differential calculus.   

The associativity of the chain rule leads to the two 
major modes of computing derivatives with AD. The 
forward mode multiplies derivatives starting with the 
independent variables and proceeding toward the 
dependent variables. The reverse mode multiplies 
derivatives starting with the dependent variables and 
proceeding toward the independent variables. 

In abstract terms, the number of operations (temporal 
complexity) required for computing the Jacobian of  
f: Rn  Rm in the forward mode is O(n) while the 
computation with reverse mode is O(m).  Thus, the 
forward mode is appropriate for functions with small 
numbers of independent variables (or, via a simple 
transformation, Jacobian-vector products), while the 
reverse mode is appropriate for functions with small 
numbers of dependent variables (or, via a simple 
transformation, transposed-Jacobian-vector products).  In 
practice, the adjoint mode must recompute intermediate 
quantities to avoid excessive memory requirements.  
Maintaining a proper balance between storage and 
recomputation requires sophisticated tools and users. 
 

 

TOOLS 
 
Many automatic differentiation tools are available 

today [2].  Established tools such as ADIFOR (for Fortran 
77) and ADOL-C (for C/C++) are robust and reliable.  
Newer tools such as OpenAD/F, Tapenade, and TAF (for 
Fortran 90) and ADIC and TAC++ (for C/C++) offer 
additional functionality and support for parallelism [3,4] 
and often incorporate sophisticated compiler analysis 
[5,6] to reduce the cost of sensitivity and adjoint 
computation.  Tools such as ADiMat and MAD support 
differentiation of simulation prototypes implemented in 
Matlab.  Our group is actively developing ADIC and 
OpenAD/F and is investigating ways to make these tools 
more suitable for use in reactor design simulation. 
 
TECHNIQUES 
 

The forward mode is well suited for computing the 
derivative of a large number of observations with respect 
to a small number of design or physical parameters, with 
time and memory costs proportional to the number of 
parameters.  It can also be adapted to the computation of 
sparse Jacobians.  The forward mode is ill suited for 
computing sensitivities with respect to a large number of 
parameters.  In contrast, the reverse mode is well suited to 
computing the derivative of a single or small number of 
cost or quality metrics with respect to a large number of 
design parameters or other unknowns, with time 
requirements proportional to the number of metrics.  The 
memory requirements for the reverse mode may be a 
logarithmic factor larger than those for the original 
simulation.  A combination of forward and reverse modes 
can be used to compute low rank Jacobians.   

Unfortunately, neither mode is well suited for 
computing the Jacobians of large numbers of observations 
with respect to a large numbers of parameters.  This is 
precisely the situation that may arise in nuclear reactor 
simulations, where one frequently wishes to compute the 
derivatives of thousands or millions of state variables with 
respect to millions of cross sections and other parameters.  
This situation mandates the use of something other than 
pure forward or reverse mode computations.  We are 
therefore developing techniques to break a simulation into 
components whose Jacobians are effectively sparse or low 
rank, then assemble the full Jacobian from these 
component Jacobians.  We conjecture that such problem 
decomposition can best be accomplished through a 



combination of compiler analysis and user insight. 
Effectively sparse or low-rank Jacobians can then be 
approximated through the use of carefully chosen 
Jacobian-vector products. 
 
EXAMPLE 

 
For example, consider the case of a function f = 

F(G(H1(x),H2(x))), 
 
F: Rm → Rn 
G: Rm+1 → Rm 
H1: Rn → Rm 
H2: Rm → R 

 
implemented as  

 
call sub_H1(x,y1) 
call sub_H2(x,y2) 
call sub_G(y1,y2,z) 
call sub_F(z,f) 

 
where the Jacobian of H1 is sparse, the Jacobian of G is 
low rank, and the Jacobian of F is effectively sparse, with 
most elements below some threshold ε.  The sparsity 
pattern of dy1/dx can be determined by compiler analysis 
or inexpensive runtime analyses.  We believe that these 
techniques can be adapted to the effectively sparse case, 
but otherwise expert knowledge can be employed.  The 
reverse mode can efficiently compute the gradient of H2, 
dy2/dx.  The Jacobians of H1 and F can be computed by 
using coloring or partial coloring, respectively [7].  The 
Jacobian of G can be approximated by using low-rank 
updates (Broyden, TR1 [8]) or by adapting the efficient 
subspace method [9] to forward or reverse mode 
sensitivity computations.  Once the individual Jacobians 
have been computed, the chain rule can be used to 
compute the total Jacobian, df/fx. 
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