
1

SDAV Institute Mid-Term Review
May 5-6, 2014

SCALABLE DATA
MANAGEMENT, ANALYSIS, AND

VISUALIZATION INSTITUTE
Visualization Area

2

Context

SDAV Goals (from the proposal):
•  Work directly with science teams to help them

achieve breakthrough science.
•  Provide technology in sdm, analysis, vis, that

are broadly used within the computational
science community.

3

Context, ctd.

How achieve goals? (from proposal)
•  Actively engage science users running on big

machines
•  Work closely with science teams to help them

integrate our technologies into their s/w
ecosystem

•  Incorporate ASCR research results into our
portfolio

•  Follow best practices in s/w engr, distribution,
bug tracking, etc.

4

Context, ctd.

Mid-term review (May 5-6, 2014)
Focus on:
•  Meeting milestones?
•  Awareness: application, architecture, institute?
•  Science impact?

5

Context, ctd. SDAV Participant Institutions

James Ahrens/LANL
E. Wes Bethel/LBNL
Eric Brugger/LLNL
Scott Klasky/ORNL
Ken Moreland/SNL-NM
Robert Ross/ANL

Alok Choudhary/NWU
Kwan-Liu Ma/UC Davis
Manish Parashar/Rutgers
Valerio Pascucci, Utah
Nagiza Samatova/NCSU
Karsten Schwan/Georgia Tech
Han-Wei Shen/Ohio State

Berk Geveci/Kitware

6

Context, ctd: This Presentation

For Visualization Area only
No context, background, etc (happens in earlier

talks)
15 minutes + 5 for questions
Not much technical depth
Is a draft, your comments welcome/appreciated

7

Visualization Area Focus/Objectives

Provide production-quality visual data analysis
and exploration software infrastructure for use
by DOE science community on DOE SC
platforms over 5-year horizon.

•  Architectural challenges: increasing core/proc count,
shrinking relative I/O capacity.

Respond to scientific knowledge discovery needs
from science projects.

8

Visualization Area: Starting point

Technologies:
•  Visualization applications: VisIt, ParaView
•  Library: VTK (the foundation for VisIt, PV)
•  Other sources: research programs

•  Data parallel visualization: Dax, EAVL, PISTON
•  Flow visualization/analysis
•  Rendering

9

Visualization Area Milestones

•  VisIt and ParaView: ongoing SWE, deployment,
support, evolve to new platforms, delivery vehicles
for new technologies.

•  VTK-m: our approach for realizing m-core across
many technologies.

•  Flow visualization: productize technology for
enabling knowledge discovery.

•  Rendering: Ibid.
•  Ensembles, Uncertainty, Higher-dimensional

methods: Ibid.
Also:
•  Science team interactions/support

10

VisIt and ParaView Milestones

Visit and ParaView (Kitware, LANL, LBNL, LLNL, ORNL,
SNL)
Y1: Enhance Visit and Paraview to leverage multiple

cores within a single MPI task
Y2: Integrate VisIt and ParaView with ADIOS
Y3: Demonstrate and evaluate in situ analysis methods

with VisIt and ParaView

11

VisIt, ParaView and Multi-core
Objective:

•  Want to be able to take advantage of multi-core
platforms, don’t want to run MPI task-per core.

Approach:
•  Focus on key infrastructure in VTK for coarse-grained

parallelism.
•  General-purpose threading interface to abstract back-

end threads library (pthreads, TBB, etc.)
•  Two coordinated teams: VisIt/VTK (LBNL/LLNL/Kitware),

ParaView/VTK (LANL/SNL/Kitware)
Accomplishments:

•  2012: Design/approach for key infrastructure.
•  (Y1 milestone) Summer, Fall 2013: early releases of

threaded VTK (2.6), VisIt (6.0) and PV (what version?)
•  (Y2) VTK 6.1: vtkSMP class, Dax & Piston adapters
•  (Y3) Summer 2014: VTK 2.8, VisIt 6.1, PV (what

version?)
•  Most embarrassingly parallel operators supported
•  Others, not yet: streamlines, rendering.
•  Runs faster, uses less memory.
•  Broad community impact.

Top: 512-block astrophysics
dataset colored by thread ID.

Bottom: serially processed
512-block dataset colored by
data block ID.

12

VisIt, ParaView, and ADIOS Integration

Problems: increasingly intractable to do
full-resolution I/O, science being lost
due to analysis of partial results.

Approach: integration, interoperation of
SDAV technologies for in situ
processing and vis/analysis; work
with code teams to put this
technology into practice.

Results:
•  VisIt, PV ADIOS loaders.
•  Code team interactions and

deployment: SPECFM3D (comp.
seismology, INCITE); XGC (fusion,
SciDAC), others.

13

VisIt, ParaView and In Situ

Objective: provide in situ production quality vis, analysis
capabilities to computational science community.

Approach: focus on app-facing infrastructure from VisIt,
ParaView, help science teams make use of this
infrastructure.

Accomplishments:
•  Release of ParaView/Catalyst library: open source library

for coupling codes to VTK-, PV-based vis/analysis.
•  VisIt Libsim engineering to optimize memory footprint, etc.
•  Custom PV+PISTON adaptor to support interactions

between science teams and in situ tools.
•  Worked with multiple applications/teams: VPIC (plasma

physics), HACC (astro), Warp3D (accelerator), H3D
(plasma physics), POP (climate)

14

VTK-m Milestones

VTK-m framework (ANL, Kitware, LANL, LBNL, LLNL,
ORNL, SNL)
Y1: Enhancements to existing multi/many-core

technologies in anticipation of in situ analysis use
cases with LCF codes

Y2: Deployment and evaluation of existing technologies
in prototype form.

Y3: Initial implementation of VTK m with an integration
of existing packages

15

VTK-m Framework

Objective: a single, community-based effort for achieving multi-/
many-core vis/analysis (VTK-m), both in situ and post hoc.

Benefit to scientists: These frameworks will make it easier for
domain scientists’ simulation codes to take advantage of the
parallelism available on a wide range of current and next-
generation hardware architectures, especially with regards
to visualization and analysis tasks

Approach: build on strengths of existing research, and deep
body of experience; apply each where it makes sense; draw
best of each into a single VTK-m “product.”

Projects
DAX, Sandia National Laboratory
DIY, Argonne National Laboratory
EAVL, Oak Ridge National Laboratory
PISTON, Los Alamos National Laboratory

16

PISTON

VTK-m Constituent Technologies

VTK-M

EAVL
DAX

VTK is (was) a serial, single-threaded
class library (data structures and
algorithms) used as the basis for
important applications (VisIt, PV)

EAVL emphasizes the development of a
new data model,

Dax emphasizes the development of a
new execution model,

DIY provides a lightweight toolkit of
commonly-used DM parallel
functionality,

PISTON emphasizes portability and
parallel algorithm development.

17

Enhancements for LCF Codes

PISTON
•  Integrate with VTK, PV for use within Catalyst pipelines
•  PISTON/PV plug-in for moving data between PV &

GPU
•  Prototype use of vis/analysis operators from LCF codes

(HACC, VPIC)
DAX
•  Interface improvements: easier to code, and integrate

with other s/w.
•  Optimize geometry creation methods
•  Accessible from VTK/PV pipelines

18

Enhancements for LCF codes, ctd.

EAVL
•  Added support for zero-copy access
•  Release engineering: eliminate 3rd party library

dependencies, reduce binary size, speed compilation
•  Optimizations: large mesh handling, better multi-core

performance, more topology operations
•  Prototype implementation with multiple codes: LULESH, two

fusion codes (Xolotl, PSI; XGC, ESPI).
DIY
•  Optimizations: load balancing, work-stealing, multiple

domain decompositions.
•  Prototype implementation with internal and external projects:

flow analysis (OSUFlow), Voronoi tesselation (with HACC),
topology.

19

VTK-m Architecture

Recent work:
•  Design, code scaffolding, prelim key data parallel

algorithms.
•  vtkSMP class: early support for coarse- and fine-

grained parallelism (VTK v6.1).

Research Execution Data Parallel Algorithms Arrays

Develop

Use

Worklets

DataModel

Filters

Tesla x86_64 Phi

20

Flow Analysis

Problems: science needs the means to understand
complex phenomena in flow fields; parallelizing flow
analysis codes is difficult.
Approach: study methods for scaling, optimizing flow
analysis/vis codes on multiple architectures; deliver
new capabilities in production s/w to science
community.
Results:

•  Optimization of particle advection infrastructure (VisIt)
•  Productization of parallel flow visualization code for use

in VTK/PV (OSUflow)
•  Flow visualization on GPUs

21

Rendering

Advanced Volume Rendering in VisIt
Improvements in GLSL-based rendering infrastructure
incorporated into VisIt source tree for production
release.

22

Advanced Volume Rendering in
VisIt

SCIRun:

VisIt
(before)

VisIt
(after)

23

Ensembles

Ensemble-vis: port to VisIt, PV
(Wes 4/25/2014: probably not going to include this

slide in the deck.)

24

Application Projects Sampler

PISTON+HACC Halo Finder
(still deciding on which, if any, others to show at

the review)

25

New Data-parallel Algorithms Accelerate Cosmology Data Analysis on GPUs

Impact Objectives Milestone
!  Implement application-specific visualization and/or analysis operators

needed for in-situ use by LCF science codes
!  Use PISTON to take advantage of multi-core and many-core

technologies
Target Application
!  The Hardware/Hybrid Accelerated Cosmology Code (HACC)

simulates the distribution of dark matter in the universe over time
!  An important and time-consuming analysis function within this code

is finding halos (high density regions) and the centers of those halos

VTK-m framework
!  The PISTON component of VTK-m develops data-parallel algorithms

that are portable across many-core architectures for use by LCF codes
!  PISTON consists of a library of visualization and analysis algorithms

implemented using Thrust, and our extensions to Thrust
Halo and Center Finders
!  Data-parallel algorithms for halo and center finding implemented using

VTK-m (PISTON) allow the code to take advantage of parallelism on
accelerators such as GPUs

!  Can be used for post-processing or in-situ, with in-situ integration directly
into HACC or via the CosmoTools library

Performance Improvements
!  On Moonlight with 10243 particles on 128 nodes with 16 processes per node,

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding
!  On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on

GPUs was 11x faster for halo + most bound particle center finding
!  Portability of PISTON allowed us to also run our algorithms on an Intel Xeon Phi
!  Implemented grid-based most bound particle center finder using a Poisson solver

that performs fewer total computations than standard O(n2) algorithm

Science Impact
!  These performance improvements allowed halo analysis to be performed on a very

large 81923 particle data set across 16,384 nodes on Titan for which analysis
using the existing CPU algorithms was not feasible

Publications
!  Submitted to SC14: “Utilizing Many-Core Accelerators for Halo and Center

Finding within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin
Heitmann, Salman Habib, and James Ahrens

Accomplishments

Visual comparison of halos computed by the original HACC
algorithms (left) and the PISTON algorithms (right). The

results are equivalent, but are computed much more quickly
on the GPU using PISTON.

LA-UR-14-22054

26

Visualization Area Software

Table showing releases/dates/capabilities of VisIt,
PV, Catalyst, VTK (from DeMarle’s DOECGF
slides, if I ever get them ")

27

The End

28

Enhancements to existing multi/many-core
technologies in anticipation of in situ analysis
use cases with LCF codes – VTK-m
Framework

29

Unstructured, and AMR Volume Rendering

Geodesic grid
from GCRM

Rayleigh-Taylor
turbulence modeling

30

Dax: A Toolkit for Analysis and Visualization at Extreme Scale
D

ax Fram
ew

ork

W
orklet

W
orklet

W
orklet

Scheduler

Communicative
Operations

•  “Worklets” ease design in serial, scheduled in parallel
•  Basic visualization design objects (think VTK for many-

core)
•  Communicative operations provide neighborhood-wide

operations without exposing read/write hazards

The primitives necessary to design finely-threaded algorithms

Contour with subsequent
vertex welding,
coarsening, subdivision,
and curvature estimation

http://daxtoolkit.org

Streamlines (preliminary work)

 Extracted cells
 of large gradient

and compacted
points

31

DIY (Do-It-Yourself): Overview

31 DIY usage and library organization

Features
-Parallel I/O to/from storage
-Domain decomposition
-Network communication
-Written in C++
-C bindings, can be called from

Fortran, C, C++
-Autoconf build system
-Lightweight: libdiy.a 800KB
-Maintainable: ~15K lines of
code

Main Ideas and Objectives
-Large-scale parallel analysis (visual
and numerical) on HPC machines
-For scientists, visualization
researchers, tool builders
-In situ, coprocessing,
postprocessing
-Data-parallel problem
decomposition
-MPI + threads hybrid parallelism
-Scalable data movement algorithms
-Runs on Unix-like platforms, from
laptop to supercomputer (including
all IBM and Cray HPC leadership
machines)

Benefits
-Researchers can focus on

their own work, not on
parallel infrastructure

-Analysis applications can be
custom
-Reuse core components
and algorithms for
performance and productivity

32

EAVL: Extreme-scale Analysis and Visualization
Library

Targets approaching hardware/software ecosystem:
Update traditional data model to handle modern

simulation codes and a wider range of data.
Investigate how an updated data and execution model

can achieve the necessary computational, I/O, and
memory efficiency.

Explore methods for visualization algorithm developers
to achieve these efficiency gains and better support
exascale architectures.

http://ft.ornl.gov/eavl

!" # $
%

!

"

!

"

!

!

! " !
"#
$%

&"

#"!'"(%#)("

33

PISTON: A Portable Cross-Platform Framework for
Data-Parallel Visualization Operators

#  Goal: Portability and performance for visualization and analysis operators on current and
next-generation parallel architectures
#  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.)
#  Requires architecture-specific optimizations for only for the small set of primitives
#  PISTON is built on top of NVIDIA’s Thrust library
#  We have run visualization algorithms on GPUs and on multi-core CPUs using the exact same
operator code by compiling to CUDA and to OpenMP backends
#  PISTON has been integrated with VTK and included as a plug-in with ParaView
#  Our in-situ adapter for VPIC (Vector Particle in Cell), an LCF kinetic plasma simulation code,
makes use of PISTON via the ParaView Co-Processing Library (Catalyst)

Isosurface of ocean
temperature data set on a

curvilinear grid

Contour produced
using PISTON in-situ

with VPIC

Isosurface generated
using ParaView PISTON

plug-in

34

UCD Milestones
- vector field analysis and
visualization
- scalable flow visualization
methods

Ellipsoid

Fusion

Thermal
Hydraulics

!"#$%&#'(
)((*"+#&%,&(-&#.&/&0(1"23%"/(*"4(
)((56'6$(7'&#'(

!"#"//&/(8$#&"9(87#:",&'(

;&'7/$'(
)((!"#"//&/(8$#&"9(87#:",&(</=3#6$>9(?&@&/3A9&%$(
)((B%$&=#"23%(+6$>(56'B$(

C7$7#&(
)((?&@&/3A9&%$(3:(%&+(6%$&=#"/(,7#@&(9&$>3D'(
:3#(A"#"//&/(E3+(@6'7"/6F"23%(

35

!""#$%&'()*+,""(-.*/*!%%0#0-&.(-*
1(20#$)3*

•  4&-'%#0*4&.5*!)C$7*
•  809*:0.5(27*;(-*<)2$)3, .-&%=$)3, and &)>$)3*"&-'%#07*

&%%0#0-&.02*?6*the plasma wave generated by a laser
pulse@*•  1&G$('$&A'H(<AA/0($>&(:&"$7#&(

D&$&,23%($3(A&#:3#9("%"/0'6'(
3:(/"#=&(,3//&,23%'(3:(
'697/"23%'($3(&%"4/&(&I,6&%$(
,39A"#"2@&("%"/0'6'("%D(
A"#"9&$&#('$7D6&'(

•  8$".&>3/D&#'H(JKLK;K(L&DD&'(
M*-1*NJ39!<88O(

•  ;&,&%$(!74/6,"23%'H(
PQR(S/6@&#(;T4&/U(J"9%U(LK(;K(L&DD&'U(V6%(J>&%U(W'$&//&(J3#96&#)V6,>&/U("%D(WK(X&'(-&$>&/U(YZ7�)
D#6@&%(<%"/0'6'(3:(!/"'9")4"'&D(!"#2,&/(<,,&/&#"23%(?"$"UY(!3'$&#(<4'$#",$'(3:(BWWW(56'X&&.([\Q[U(
8&"]/&U(X<U(S,$(Q^)Q_U([\Q[(M!3'$&#OK(*-1*)`_\aWK(
P[R(S/6@&#(;T4&/U(J"9%U(LK(;K(L&DD&'U(V6%(J>&%U(W'$&//&(J3#96&#)V6,>&/U("%D(WK(X&'(-&$>&/U(
YC&"$7#&)4"'&D(<%"/0'6'(3:(!/"'9")4"'&D(!"#2,/&(<,,&/&#"23%(?"$"YU(BWWW(b5JL(M6%(#&@6&+O(

36

VPIC In Situ + PISTON

ParaView-Catalyst Enabling high temporal
Resolution Visualization/Analysis
“Hard Coded” operators

Surface line integral convolution, contour, slice
PISTON Contour Operator

J3%$37#'(9"D&(7'6%=(!B8bS1(6%)'6$7((

[?('/6,&'(A#3D7,&D(6%)'6$7(
+6$>(5!BJ(

J3%$37#'(A#3D7,&D(7'6%=(!"#"56&+(
6%(A3'$)A#3,&''6%=(

[?('/6D&'(A#3D7,&D(7'6%=(!"#"56&+(
6%(A3'$)A#3,&''6%=(

87#:",&(/6%&(6%$&=#"/(,3%@3/723%(

