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Context 

SDAV Goals (from the proposal): 
•  Work directly with science teams to help them 

achieve breakthrough science. 
•  Provide technology in sdm, analysis, vis, that 

are broadly used within the computational 
science community. 
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Context, ctd. 

How achieve goals? (from proposal) 
•  Actively engage science users running on big 

machines 
•  Work closely with science teams to help them 

integrate our technologies into their s/w 
ecosystem 

•  Incorporate ASCR research results into our 
portfolio 

•  Follow best practices in s/w engr, distribution, 
bug tracking, etc. 
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Context, ctd. 

Mid-term review (May 5-6, 2014) 
Focus on: 
•  Meeting milestones? 
•  Awareness: application, architecture, institute? 
•  Science impact? 
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Context, ctd. SDAV Participant Institutions 

James Ahrens/LANL  
E. Wes Bethel/LBNL 
Eric Brugger/LLNL 
Scott Klasky/ORNL 
Ken Moreland/SNL-NM 
Robert Ross/ANL 
 
Alok Choudhary/NWU 
Kwan-Liu Ma/UC Davis 
Manish Parashar/Rutgers 
Valerio Pascucci, Utah 
Nagiza Samatova/NCSU 
Karsten Schwan/Georgia Tech 
Han-Wei Shen/Ohio State 
 
Berk Geveci/Kitware 
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Context, ctd: This Presentation 

For Visualization Area only 
No context, background, etc (happens in earlier 

talks) 
15 minutes + 5 for questions 
Not much technical depth 
Is a draft, your comments welcome/appreciated 
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Visualization Area Focus/Objectives 

Provide production-quality visual data analysis 
and exploration software infrastructure for use 
by DOE science community on DOE SC 
platforms over 5-year horizon. 

•  Architectural challenges: increasing core/proc count, 
shrinking relative I/O capacity. 

Respond to scientific knowledge discovery needs 
from science projects. 
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Visualization Area: Starting point 

Technologies: 
•  Visualization applications: VisIt, ParaView 
•  Library: VTK (the foundation for VisIt, PV) 
•  Other sources: research programs 

•  Data parallel visualization: Dax, EAVL, PISTON 
•  Flow visualization/analysis 
•  Rendering 
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Visualization Area Milestones 

•  VisIt and ParaView: ongoing SWE, deployment, 
support, evolve to new platforms, delivery vehicles 
for new technologies. 

•  VTK-m: our approach for realizing m-core across 
many technologies. 

•  Flow visualization: productize technology for 
enabling knowledge discovery. 

•  Rendering: Ibid. 
•  Ensembles, Uncertainty, Higher-dimensional 

methods: Ibid. 
Also: 
•  Science team interactions/support 
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VisIt and ParaView Milestones 

Visit and ParaView (Kitware, LANL, LBNL, LLNL, ORNL, 
SNL) 
Y1: Enhance Visit and Paraview to leverage multiple 

cores within a single MPI task   
Y2: Integrate VisIt and ParaView with ADIOS  
Y3: Demonstrate and evaluate in situ analysis methods 

with VisIt and ParaView 
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VisIt, ParaView and Multi-core 
Objective: 

•  Want to be able to take advantage of multi-core 
platforms, don’t want to run MPI task-per core. 

Approach: 
•  Focus on key infrastructure in VTK for coarse-grained 

parallelism. 
•  General-purpose threading interface to abstract back-

end threads library (pthreads, TBB, etc.) 
•  Two coordinated teams: VisIt/VTK (LBNL/LLNL/Kitware), 

ParaView/VTK (LANL/SNL/Kitware) 
Accomplishments: 

•  2012: Design/approach for key infrastructure. 
•  (Y1 milestone) Summer, Fall 2013: early releases of 

threaded VTK (2.6), VisIt (6.0) and PV (what version?) 
•  (Y2) VTK 6.1: vtkSMP class, Dax & Piston adapters 
•  (Y3) Summer 2014: VTK 2.8, VisIt 6.1, PV (what 

version?) 
•  Most embarrassingly parallel operators supported 
•  Others, not yet: streamlines, rendering. 
•  Runs faster, uses less memory. 
•  Broad community impact. 

 

Top: 512-block astrophysics 
dataset colored by thread ID. 
 
Bottom: serially processed 
512-block dataset colored by 
data block ID. 
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VisIt, ParaView, and ADIOS Integration 

Problems: increasingly intractable to do 
full-resolution I/O, science being lost 
due to analysis of partial results. 

Approach: integration, interoperation of 
SDAV technologies for in situ 
processing and vis/analysis; work 
with code teams to put this 
technology into practice. 

Results: 
•  VisIt, PV ADIOS loaders. 
•  Code team interactions and 

deployment: SPECFM3D (comp. 
seismology, INCITE); XGC (fusion, 
SciDAC), others. 
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VisIt, ParaView and In Situ 

Objective: provide in situ production quality vis, analysis 
capabilities to computational science community. 

Approach: focus on app-facing infrastructure from VisIt, 
ParaView, help science teams make use of this 
infrastructure. 

Accomplishments: 
•  Release of ParaView/Catalyst library: open source library 

for coupling codes to VTK-, PV-based vis/analysis. 
•  VisIt Libsim engineering to optimize memory footprint, etc. 
•  Custom PV+PISTON adaptor to support interactions 

between science teams and in situ tools.  
•  Worked with multiple applications/teams: VPIC (plasma 

physics), HACC (astro), Warp3D (accelerator), H3D 
(plasma physics), POP (climate) 
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VTK-m Milestones 

VTK-m framework (ANL, Kitware, LANL, LBNL, LLNL, 
ORNL, SNL) 
Y1: Enhancements to existing multi/many-core 

technologies in anticipation of in situ analysis use 
cases with LCF codes 

Y2: Deployment and evaluation of existing technologies 
in prototype form. 

Y3: Initial implementation of VTK m with an integration 
of existing packages 
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VTK-m Framework 

Objective: a single, community-based effort for achieving multi-/
many-core vis/analysis (VTK-m), both in situ and post hoc. 

Benefit to scientists: These frameworks will make it easier for 
domain scientists’ simulation codes to take advantage of the 
parallelism available on a wide range of current and next-
generation hardware architectures, especially with regards 
to visualization and analysis tasks  

Approach: build on strengths of existing research, and deep 
body of experience; apply each where it makes sense; draw 
best of each into a single VTK-m “product.” 

Projects 
DAX, Sandia National Laboratory 
DIY, Argonne National Laboratory 
EAVL, Oak Ridge National Laboratory 
PISTON, Los Alamos National Laboratory 
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PISTON 

VTK-m Constituent Technologies 

VTK-M 

EAVL 
DAX 

VTK is (was) a serial, single-threaded 
class library (data structures and 
algorithms) used as the basis for 
important applications (VisIt, PV) 

EAVL emphasizes the development of a 
new data model,  

Dax emphasizes the development of a 
new execution model,  

DIY provides a lightweight toolkit of 
commonly-used DM parallel 
functionality, 

PISTON emphasizes portability and 
parallel algorithm development. 
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Enhancements for LCF Codes  

PISTON 
•  Integrate with VTK, PV for use within Catalyst pipelines 
•  PISTON/PV plug-in for moving data between PV & 

GPU 
•  Prototype use of vis/analysis operators from LCF codes 

(HACC, VPIC) 
DAX 
•  Interface improvements: easier to code, and integrate 

with other s/w. 
•  Optimize geometry creation methods 
•  Accessible from VTK/PV pipelines 
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Enhancements for LCF codes, ctd. 

EAVL 
•  Added support for zero-copy access 
•  Release engineering: eliminate 3rd party library 

dependencies, reduce binary size, speed compilation 
•  Optimizations: large mesh handling, better multi-core 

performance, more topology operations 
•  Prototype implementation with multiple codes: LULESH, two 

fusion codes (Xolotl, PSI; XGC, ESPI). 
DIY 
•  Optimizations: load balancing, work-stealing, multiple 

domain decompositions. 
•  Prototype implementation with internal and external projects:  

flow analysis (OSUFlow), Voronoi tesselation (with HACC), 
topology. 
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VTK-m Architecture 

Recent work: 
•  Design, code scaffolding, prelim key data parallel 

algorithms. 
•  vtkSMP class: early support for coarse- and fine-

grained parallelism (VTK v6.1). 

Research Execution Data Parallel Algorithms Arrays 

Develop 

Use 

Worklets 

 
DataModel 

Filters 

Tesla x86_64 Phi 
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Flow Analysis 

Problems: science needs the means to understand 
complex phenomena in flow fields; parallelizing flow 
analysis codes is difficult. 
Approach: study methods for scaling, optimizing flow 
analysis/vis codes on multiple architectures; deliver 
new capabilities in production s/w to science 
community.  
Results: 

•  Optimization of particle advection infrastructure (VisIt) 
•  Productization of parallel flow visualization code for use 

in VTK/PV (OSUflow) 
•  Flow visualization on GPUs 
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Rendering 

Advanced Volume Rendering in VisIt 
Improvements in GLSL-based rendering infrastructure 
incorporated into VisIt source tree for production 
release. 
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Advanced Volume Rendering in 
VisIt 

SCIRun: 

VisIt  
(before) 

VisIt  
(after) 
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Ensembles 

Ensemble-vis: port to VisIt, PV 
(Wes 4/25/2014: probably not going to include this 

slide in the deck.) 
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Application Projects Sampler 

PISTON+HACC Halo Finder 
(still deciding on which, if any, others to show at 

the review) 
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New Data-parallel Algorithms Accelerate Cosmology Data Analysis on GPUs  

Impact Objectives  Milestone 
!  Implement application-specific visualization and/or analysis operators 

needed for in-situ use by LCF science codes 
!  Use PISTON to take advantage of multi-core and many-core 

technologies 
Target Application 
!  The Hardware/Hybrid Accelerated Cosmology Code (HACC) 

simulates the distribution of dark matter in the universe over time 
!  An important and time-consuming analysis function within this code 

is finding halos (high density regions) and the centers of those halos 

VTK-m framework 
!  The PISTON component of VTK-m develops data-parallel algorithms 

that are portable across many-core architectures for use by LCF codes 
!  PISTON consists of a library of visualization and analysis algorithms 

implemented using Thrust, and our extensions to Thrust 
Halo and Center Finders 
!  Data-parallel algorithms for halo and center finding implemented using 

VTK-m (PISTON) allow the code to take advantage of parallelism on 
accelerators such as GPUs 

!  Can be used for post-processing or in-situ, with in-situ integration directly 
into HACC or via the CosmoTools library 

Performance Improvements 
!  On Moonlight with 10243 particles on 128 nodes with 16 processes per node, 

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding 
!  On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on 

GPUs was 11x faster for halo + most bound particle center finding 
!  Portability of PISTON allowed us to also run our algorithms on an Intel Xeon Phi 
!  Implemented grid-based most bound particle center finder using a Poisson solver 

that performs fewer total computations than standard O(n2) algorithm 

Science Impact 
!  These performance improvements allowed halo analysis to be performed on a very 

large 81923 particle data set across 16,384 nodes on Titan for which analysis 
using the existing CPU algorithms was not feasible 

Publications 
!  Submitted to SC14: “Utilizing Many-Core Accelerators for Halo and Center 

Finding within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin 
Heitmann, Salman Habib, and James Ahrens 

Accomplishments  

Visual comparison of  halos computed by the original HACC 
algorithms (left) and the PISTON algorithms (right).  The 

results are equivalent, but are computed much more quickly 
on the GPU using PISTON.  

LA-UR-14-22054 
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Visualization Area Software 

Table showing releases/dates/capabilities of VisIt, 
PV, Catalyst, VTK (from DeMarle’s DOECGF 
slides, if I ever get them ") 
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The End 
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Enhancements to existing multi/many-core 
technologies in anticipation of in situ analysis 
use cases with LCF codes – VTK-m 
Framework 
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Unstructured, and AMR Volume Rendering 

Geodesic grid 
from GCRM 

Rayleigh-Taylor 
turbulence modeling 
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Dax: A Toolkit for Analysis and Visualization at Extreme Scale 
D

ax Fram
ew

ork 

W
orklet 

W
orklet 

W
orklet 

Scheduler 

Communicative 
Operations 

•  “Worklets” ease design in serial, scheduled in parallel 
•  Basic visualization design objects (think VTK for many-

core) 
•  Communicative operations provide neighborhood-wide 

operations without exposing read/write hazards 

The primitives necessary to design finely-threaded algorithms 

Contour with subsequent 
vertex welding, 
coarsening, subdivision, 
and curvature estimation 

http://daxtoolkit.org 

Streamlines (preliminary work) 

 Extracted cells 
 of  large gradient 

and compacted 
points 
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DIY (Do-It-Yourself): Overview 

31 DIY usage and library organization 

Features 
-Parallel I/O to/from storage 
-Domain decomposition 
-Network communication 
-Written in C++ 
-C bindings, can be called from 

Fortran, C, C++ 
-Autoconf build system 
-Lightweight: libdiy.a 800KB 
-Maintainable: ~15K lines of 
code 
 
 
 
 

Main Ideas and Objectives  
-Large-scale parallel analysis (visual 
and numerical) on HPC machines 
-For scientists, visualization 
researchers, tool builders 
-In situ, coprocessing, 
postprocessing 
-Data-parallel problem 
decomposition 
-MPI + threads hybrid parallelism 
-Scalable data movement algorithms 
-Runs on Unix-like platforms, from 
laptop to supercomputer (including 
all IBM and Cray HPC leadership 
machines) 

Benefits 
-Researchers can focus on 

their own work, not on 
parallel infrastructure 

-Analysis applications can be 
custom 
-Reuse core components 
and algorithms for 
performance and productivity 
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EAVL: Extreme-scale Analysis and Visualization 
Library 

Targets approaching hardware/software ecosystem: 
Update traditional data model to handle modern 

simulation codes and a wider range of data. 
Investigate how an updated data and execution model 

can achieve the necessary computational, I/O, and 
memory efficiency. 

Explore methods for visualization algorithm developers 
to achieve these efficiency gains and better support 
exascale architectures. 

http://ft.ornl.gov/eavl  
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PISTON: A Portable Cross-Platform Framework for 
Data-Parallel Visualization Operators 

#  Goal: Portability and performance for visualization and analysis operators on current and 
next-generation parallel architectures 
#  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.) 
#  Requires architecture-specific optimizations for only for the small set of primitives 
#  PISTON is built on top of NVIDIA’s Thrust library 
#  We have run visualization algorithms on GPUs and on multi-core CPUs using the exact same 
operator code by compiling to CUDA and to OpenMP backends 
#  PISTON has been integrated with VTK and included as a plug-in with ParaView 
#  Our in-situ adapter for VPIC (Vector Particle in Cell), an LCF kinetic plasma simulation code, 
makes use of PISTON via the ParaView Co-Processing Library (Catalyst) 

Isosurface of  ocean 
temperature data set on a 

curvilinear grid 

Contour produced 
using PISTON in-situ 

with VPIC 
 

Isosurface generated 
using ParaView PISTON 

plug-in 
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UCD Milestones 
-  vector field analysis and 
visualization 
-  scalable flow visualization 
methods 

Ellipsoid 

Fusion 

Thermal  
Hydraulics 
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VPIC In Situ + PISTON 

ParaView-Catalyst Enabling high temporal 
Resolution Visualization/Analysis 
“Hard Coded” operators 

Surface line integral convolution, contour, slice 
PISTON Contour Operator 
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