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Abstract—Distributed object-based storage models are an
increasingly popular alternative to traditional block-based or
file-based storage abstractions in large-scale storage systems.
Object-based storage models store and access data in discrete,
byte-addressable containers to simplify data management and
cleanly decouple storage systems from underlying hardware
resources. Although many large-scale storage systems share
common goals of performance, scalability, and fault tolerance,
their underlying object storage models are typically tailored to
specific use cases and semantics, making it difficult to reuse them
in other environments and leading to unnecessary fragmentation
of datacenter storage facilities. In this paper, we investigate a
number of popular data models used in cloud storage, big data,
and high-performance computing (HPC) storage and describe
the unique features that distinguish them. We then describe
three representative use cases-a POSIX file system name space,
a column-oriented key/value database, and an HPC application
checkpoint-and investigate the storage functionality they require.
We also describe our proposed data model and show how our
approach provides a unified solution for the previously described
use cases.

I. INTRODUCTION

Storage technology has improved rapidly, particularly in
terms of storage density; but storage throughput has not kept
pace with advances in computational performance. This trend
has led to increased demand for large-scale storage systems
that aggregate and coordinate many storage devices, in turn
driving the need for better abstractions to manage those storage
devices. Object-based storage [1], [2] has emerged as a strong
competitor for the block-based model, quickly becoming a
popular underlying model for referencing and accessing data
distributed over large numbers of storage devices in these
systems. An object is an ordered logical collection of bytes
with a numerical identifier. Objects consist of data, attributes
describing the object, such as QoS attribute, and device-
managed metadata, such as security information [1], [3].
Objects have variable sizes and can be used to store any kind
of data. The object storage model abstracts away a variety of
resource-specific management tasks, such as block allocation,
space management, and various forms of atomicity. However,
it still allows considerable flexibility for a variety of higher-
level data models to be built atop it. Although object models
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Fig. 1: Example deployment scenario in which big data, cloud
storage, and HPC data models share the same storage pool via
a unified object storage abstraction.

were originally envisioned as a device-level interface [2],
today’s large-scale storage systems more commonly repurpose
the object model as a software interface atop a variety of
storage substrates [4], [5], [6], [7].

Although several object-based storage models have been
implemented and used as the basis for the popular storage
and file systems [8], [9], [7], [3], existing object-based storage
models are typically tailored to a particular use case or data
model, making them difficult to reuse in other contexts. This
situation also makes it difficult to share a common storage
pool for different big data, cloud storage, or HPC storage tasks,
increasing management overhead and adding complexity to the
task of storage provisioning for facilities with diverse storage
needs. Ideally each data model would coexist using a shared
object storage foundation as shown in Figure 1.

To address this problem, we first identify some of the most
popular large-scale data models in use today. The following list
divides them into four categories with representative examples:

• Parallel file systems: Lustre [10], GPFS [11],
Panasas [3], PVFS [12], Ceph [8]

• Cloud object storage: Amazon S3 [13], Swift [14],
Rados Gateway [6], [15]978-1-4799-0898-1/13/$31.00 c©2013 IEEE



• MapReduce: Google File System (GFS) [16], Hadoop
HDFS [17]

• Key/value stores: Dynamo [18], Redis [19], Hyper-
dex [20], Cassandra [21], HBase [22], BigQuery [23]

Note that these data models aren’t necessarily mutually
exclusive. For example, several parallel file systems have been
extended to support MapReduce workloads. We will refer to
these classifications in the remainder of the paper for clarity,
however, in order to simplify the discussion of use cases and
requirements that are shared across groups of storage systems.

TABLE 1: Requirements for popular scalable storage data
models

Shared Requirements Distinguishing Requirements
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Parallel File System 3 3 3 3 3 3 3

Cloud Object Storage 3 3 3 3 3

MapReduce 3 3 3 3 3

Key/Value Store 3 3 3 3 3 3 3 3

Table 1 breaks down the large-scale storage data models
in terms of core requirements. The first four are general
requirements that are shared across all such data models.
Concurrent write access refers to the ability to have multiple
processes write simultaneously to the same file, object, or
database. Synchronization primitives are features such as file
locking [24] or conditional operations [25] that allow multiple
processes to explicitly coordinate concurrent writes. Atomicity
is the ability to modify data such that the write is applied
in its entirety or not at all. The granularity of atomicity can
vary widely across data models. For example, cloud object
storage systems may offer object-granular atomicity, key/value
stores may offer per-key granularity, and file systems may
not offer atomicity at all except in the directory name space.
Locality allows applications to execute on server nodes with
local copies of data relevant to computation. Record-oriented
access is needed for storage systems that refer to units of data
in terms of opaque keys rather than ranges of bytes.

In this paper we propose a new object-based storage API,
known as the Advanced Storage Group (ASG) interface, that
seeks to unify features necessary to support the data models
outlined above without compromising usability or limiting
implementation flexibility. The contributions of this paper are
as follows:

• Identify the requirements that differentiate four key large-
scale data storage models

• Propose a new object storage API that unifies the features
necessary to meet those requirements

• Present a set of case studies that evaluate how the
proposed API would be used as a foundation for a diverse
set of storage constructs

The rest of the paper is organized as follows. Section II
presents example drivers for this work. Section III describes

the proposed ASG API and how it can be used to implement
the use cases given in Section II. Section IV shows how our
approach presents a unified solution for the use cases described
in Section II. Section V reviews related work in object-based
storage systems. Section VI summarizes our findings and
presents potential avenues for future work.

II. MOTIVATION

In this section, we discuss a number of common storage
uses, that serve as one of the drivers for our work.

A. Implementing POSIX Directories
In a POSIX file system, data files are located by looking

them up by name in a directory. POSIX directories have
the following properties. First, creating or removing a file
(or subdirectory) in a directory is an atomic operation, and
duplicate entries are not allowed. If multiple processes try to
create or remove the same entry at the same time, exactly
one of them will succeed. Second, a directory entry has
associated metadata, for example, the last access time or the
size. In addition to create and remove, three other operations
are possible on a directory: opening (lookup) of a name,
updating the metadata associated with a name, and renaming
an entry to a new name. These operations are atomic as well.
As soon as an update completes, all processes in the system
see the updated information; at any time before that, the old
information is preserved. At no point will a lookup return a
blend of old and new metadata. The same is true for rename.
Either the old name will be in the directory, or the new name,
but not both.

Existing object storage models typically do not directly
support directory primitives, nor do they support operations
designed to implement structures and synchronization required
for implementing a POSIX directory. Consequently, most data
models requiring directory like indexes implement this func-
tionality by using additional services (for example, metadata
servers), using the object storage only for the actual file data.

B. Column-Oriented Key/Value Store
A column-oriented database differs from a traditional

database in that records are stored in column order rather than
row order, as shown in Table 2. Data for a database entry is
stored in a column, each row stores the same data field of a
database entry, and shards (horizontal partitions of a database)
represent a collection of rows. This organization improves the
performance of analysis-oriented workloads in which ad hoc
queries are performed over all values in a column. A column-
oriented database will generate large, contiguous disk access
patterns in this case because there is no need to skip over
interleaved column data for each entry. In addition, each row
typically has a large number of columns, and not every row
needs to have the same set of columns. Most column-oriented
databases allow the creation of new columns at any time,
simply by writing to them.

Existing object storage models generally do not support
column-oriented databases; since record functionality is miss-
ing and applications are forced to manage the storage space.



TABLE 2: Example organization of a column-oriented key
value store.

Column 0 Column 1 Column 2 Column 3

Shard 1 Row 0 Alice Bob Brad Charles
Row 1 Smith Springfield

Shard 2 Row 0 111-1111 144-1144 321-4321

...
...

P0 P1 P2 P3

Object
(master)

Object
(replica)

HPC
Application

Fig. 2: Example of an HPC application writing in parallel to
a replicated object.

As an example, in T10 [2], if each attribute represents a cell
of the column-oriented database, grouping certain attributes
to represent the rows and columns of a column-oriented
database is not an easy task, since mapping attributes to rows
and columns and keeping track of mapping information are
challenging.

C. HPC Application Checkpoint

HPC application workloads are characterized by bursty,
highly concurrent, write-intensive I/O patterns [26]. In par-
ticular, many scientific simulations periodically write check-
point data for application resilience. In these scenarios, all
application processes typically write simultaneously to the
same shared data set, as shown in Figure 2. Although the
application processes are coordinated and do not generally
write to overlapping byte ranges in the file, the access patterns
may be highly interleaved and are not necessarily block
aligned. Optimizations such as two-phase I/O [27] and I/O
forwarding [28] can be used to mitigate the level of concur-
rency observed by the storage system, but data must still be
written by many processes in order to leverage enough I/O
paths to meet bandwidth requirements.

Metadata overhead and high concurrency are the key chal-
langes for this type of concurrent write access pattern. Existing
data models tried N − N and N − 1 checkpointing strate-
gies [29]. N−N checkpointing is the case where each process
writes to a separate checkpoint file, and N − 1 checkpointing
is the case where all the processes write to a shared file.
Both checkpoint patterns pose challenges. N−1 checkpointing
suffers from limited bandwidth, since all processes are trying
to concurrently write to the same file. On the other hand,
N − N checkpointing creates a lot of files, increasing the
metadata overhead.

III. PROPOSED API AND STORAGE MODEL

In this section we describe the ASG storage model, its
fundamental building blocks and basic operations.
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Fig. 3: Architecture of the ASG Storage Model

A. Architecture

The main architecture of the ASG storage model is shown
in Figure 3. The core concepts are described as follows.

• The basic building block of the ASG storage model is a
record. Each record consists of a key, a version number,
data, and length of data. The key, version number, and
length of data are represented with integers, whereas
data is an array of bytes of variable length. Key is the
numerical identifier of a record. Version numbers are used
to order the write operations to a record. The data field
can be empty; a record at its initial condition will have
version number zero and will contain no data. The records
are not explicitly created in the ASG storage model;
they already exist in the system at their initial conditions
before they are manipulated by the ASG storage model
operations.

• A fork is a collection of records forming a distinct names-
pace for the records it contains. Each fork is identified
by an integer. Forks allow related collections of data (for
example, indexes, metadata, or header inforation) to be
stored alongside the primary data stream for an object
with the same security, locality, and atomicity [30].

• An object is a collection of forks. It provides a distinct
namespace for the forks it contains. Each object is
identified by an integer.

• A container is a collection of objects. It provides a dis-
tinct namespace for the objects it contains. Each container
is identified by an integer. Containers partition the storage
system into logical units with different security domains;
as an example each container could contain a distinct file
system.

The record, fork, and object identifiers in the ASG storage
model are not global. For example, two different containers
can have objects with the same identifiers. Similarly, two
different objects or forks can have forks or records with the
same identifiers. There can be a maximum of 264 objects in a
container, 264 forks in an object, and 264 records in a fork in
the ASG storage model, giving many options to translate the
applications described in Section II to the storage model.



B. Operations

In this section we describe the ASG storage model oper-
ations a client can use to interact with the storage system.
All of the ASG storage model operations are atomic; meaning
that they either fully complete or have no effect at all, which
satisfies the atomicity requirement in Table 1.

1) write: The write operation stores data in a sequen-
tial range of records. The input arguments to this function
are location information (container, object, fork, and starting
record identifiers), local buffer that stores the data to be
written, number of records to be modified (range of the write
operation), conditional flag, and user-specified version number.
The conditional flag can be set to one of the following four
values in order to control the semantics of the write operation
with respect to per-record version numbers:

• NONE: Write should succeed without checking any ver-
sion number.

• ALL: Write should succeed only if the user-specified
version number is greater than all the version numbers
in the user-specified range.

• UNTIL: Write should continue until it comes across a
record that has a version number greater than or equal to
the user-specified version number.

• AUTO: In this case, the user-specified version number
can be ignored. The biggest version number existing in
the user-specified range is found and incremented; and the
new data is written with this incremented version number.

The input data of the write operation is divided into the
same number of chunks as the number of records in the user-
specified range. The same length of data is written to each
record in this range.

When the write operation is completed successfully, it
returns the size of the written data and the newly assigned
version number.

2) read: The read operation retrieves data from a sequential
range of records. The input arguments to the read operation
are location information (container, object, fork, and starting
record identifiers), local buffer to store the read data, number
of records to be read, conditional flag, and user-specified
version number. The range in the read operation is identical to
the range defined in the write operation. The conditional flag
of the read operation can be set to one of the following three
values:

• NONE: Read should succeed without checking any ver-
sion number or conditional flags.

• ALL: Read should succeed only if the user-specified
version number is greater than all the version numbers
existing in the user-specified range.

• UNTIL: Read should continue until it comes across a
record that has a version number greater than or equal
to the user-specified version number.

When the read operation is completed successfully, it returns
the number of the records read in addition to the version
number of these records.

3) reset: The reset operation returns an entity (container,
object, fork, or record) back to its initial condition. In an
entity at its original condition, all the records will have version
number zero and will contain no data. The reset operation
can work on any entity of the ASG storage model. The reset
operation takes in the identifier information of the entity to be
reset as an input argument, and it also supports conditional
execution based on the existing version number and given
conditional flag. The conditional flags that can be used with
the reset operation are the same as the conditional flags used
in the read operation. When the reset operation is completed
successfully, it returns the number of entities reset.

4) probe: The probe operation can be used to iteratively
enumerate containers within a storage system, objects within a
container, forks within an object, or records within a fork. The
probe operation can work on any entity of the ASG storage
model. The probe operation takes in the identifier information
of the entity (container, object, or fork) to be probed as an
input argument, entity id to start with, local buffer to store the
retrieved information, and maximum number of entities for
which the information will be retrieved. The probe operation
returns various information about an ASG entity, such as the
range of existing records in that entity, their version numbers,
and sizes.

C. Relation to data model requirements

In this section, we show how the features provided by the
ASG storage model make it possible to meet the requirements
of the common data models listed in Table 1. We note that
none of these features are new; the ASG storage model just
presents a reusable unified API bringing these features together
while minimizing complexity. The features provided by the
ASG storage model and how they meet the requirements of
common data models can be summarized as follows:

• Unified byte stream and key/value storage: The
ASG storage model supports both byte-stream [3] and
key/value-based storage [18]. Each byte is stored as a
one-byte record. With the numerical identifiers and record
contents, each record can be also used as a key/value
store. As a result, the ASG storage model supports both
file-based and key/value-based access models and also
enables record-oriented access for both of these models.

• Eliminating object attributes: Object-based storage mod-
els, such as T10 [2], use attributes to describe the objects;
meaning that object attributes are used to store metadata.
In the ASG storage model, we still have metadata describ-
ing the records; however, we do not store the metadata
in separate attributes as is normally done in object-based
storage models. Metadata can be stored in dedicated
forks, giving the opportunity to store data and metadata
together, to treat metadata in the same way as data, and
to have simple metadata management by alleviating the
need for a separate metadata API. Simplified metadata
management reduces the metadata overhead and improves
scalability.



• Record versioning: Versioning in the ASG storage model
enables sorting writes to a record as shown in previous
studies [31], [32]. As the version number changes with
each write operation, highly concurrent write opera-
tions will be consistent, and the performance of the
system will increase.

• Conditional operations: The conditional read and write
operation flags provide synchronization primitives and
atomicity in a data model, as has been shown in a
few storage models [25], [33], [18], [19], [20]. Using
the conditional flags with the ASG storage model op-
erations, multiple processes can coordinate concurrent
writes without using any explicit locking method. Using
conditional flags also ensures that each ASG operation
either fully completes or has no effect, making sure the
system does not end up in an inconsistent state and that
fault tolerance is achieved.

• Independently addressable records: ASG is a record-
oriented storage model similar to some other data mod-
els [34], [35]. Each entity in the ASG storage model
has a numerical identifier; when ASG primitives access a
record, they explicitly use the identifiers of the enclosing
container, object, and fork along with the identifier of that
record. As a result, each record in ASG has a distinct
location and is independently accessable. Records are
the smallest units of storage an operation can access in
the ASG storage model. Having access to independently
addressable records also makes it possible to support
concurrent read and write access on them.

• Fork structure: Forks can be used to store metadata,
as discussed previously. In addition, they can be used
to group records that store related data together [36],
[30]. This approach improves performance by simplify-
ing data management and enables collecting provenance
from related records in an efficient way to support fault
tolerance.

• Server location: The ASG storage model exposes loca-
tion information of its entities to higher-level applications.
Applications either can take control of the server location
of ASG entities by using this information, or they can
let the storage system to handle localization and choose
ASG entities randomly without worrying about server
locations. When the applications decide which ASG
entities to use, they can move computation closer to
storage.

IV. EXAMPLE USE CASES

In this section we show how ASG storage model can be
used as a foundation for three example use cases.

A. Implementing POSIX Directories

In our first use case, we show how the ASG storage model
features can be used to implement POSIX directory operations.
Entries in a directory can be represented with the ASG records
as shown in Figure 4. In order to map a directory entry to an
ASG record, the name of the directory entry can be hashed

lengthversionkey contentsASG record

Directory
entry

Hash

inodefile name data

Fig. 4: Mapping directory entries to ASG entities.

into a record key. The name, inode information, and data of the
directory entry can be stored together in the ASG record. Since
each ASG record is independently addressable, the uniqueness
requirement of each entry in a directory can be satisfied.
Indeed, one can implement POSIX directory operations using
the ASG storage model. We note that other namespace and
directory implementations also can be supported by using the
ASG storage model, even though we show a POSIX directory
implementation in this section.

In order to create a new file (or subdirectory) in a directory,
an underlying ASG write operation is called with conditional
flags. Similarly, in order to remove a file (or subdirectory)
from a directory, underlying ASG read and reset operations
are called with conditional flags. The ASG read operation
returns the version number of the ASG record representing a
directory entry. Checking the version number returned by the
ASG read operation, ASG write does not create a directory
entry if it already has been created (nonzero version number),
and ASG reset does not remove a directory entry if it has not
been created yet (zero version number). As a result, the ASG
storage model ensures the atomicity of the POSIX create and
remove operations, and it prevents duplicate directory entries.
If multiple processes try to create or remove a directory entry
at the same time, only one of them succeeds.

Other POSIX directory operations, such as updating the
metadata of a directory entry and renaming an entry, can be
also supported by using the ASG storage model. In order
to update the metadata of a directory entry or rename a
directory entry, ASG read and write operations are called with
conditional flags. Again, the ASG read operation returns the
version number of the ASG record representing a directory
entry. The ASG write does not update the metadata of a
directory entry if it has not been created yet (zero version
number). While renaming a directory entry, ASG write creates
the new directory entry with no conditional flags, meaning that
it overwrites the new entry if it already exists; and ASG reset
removes the old entry as soon as the new entry is successfully
created. As a result, the ASG storage model ensures the
atomicity of the POSIX update and rename operations. All
processes in the system see the updated metadata information
as soon as update is done, and they see the old metadata
information at any time before update completes. No process
sees old and new metadata at the same time. For the rename
operation, either the old or the new directory entry exists, not
both.



In order to lookup a directory entry or to stat a directory,
ASG read and probe operations are called. Similar to the
previous POSIX operation implementations, the ASG read
operation returns the version number of the ASG record
representing a directory entry. This version number is not
important for the lookup operation, which returns any data
available in the entry at time it was called. For the stat
operation, however, ASG probe keeps track of this version
number; hence, if the directory is modified while the stat
operation is not done yet, ASG probe identifies modified
entries and returns updated information about them as a result
of the stat operation. Using conditional operations, the ASG
storage model ensures the atomicity of the lookup and stat
operations by returning updated information with them; at
no point is old and new information for an entry returned
together.

B. Column-Oriented Key/Value Store

Table 3 shows an example of how a column-oriented
key/value database might be expressed using ASG primitives.
Rows are represented as ASG records, columns are represented
as ASG forks, and shards are represented as ASG objects. ASG
records are variable-sized, and any value in the database can
be referenced by a unique {object ID, fork ID, record ID}
triple. Since ASG write operation can take zero-length data as
input, rows can have empty columns in the database.

TABLE 3: Example organization of a column-oriented key
value store using the ASG storage model.

Column:fork 0 Column:fork 1 Column:fork 2 Column:fork 3

Shard:object 1 Row:record 0 Alice Bob Brad Charles
Row:record 1 Smith Springfield

Shard:object 2 Row:record 0 111-1111 144-1144 321-4321

Columns map well to forks in this example because the fork
construct allows each column to be addressed independently
while still ensuring that all records within a row are stored
in the same object. An entire row can therefore be accessed
(or added or removed) atomically. The ASG object storage
model does not dictate on-disk layout; but it is expected that
the storage system would organize data on disk such that forks
are contiguous in this case. Shards map naturally to objects
because they partition the data set into discrete chunks that
can be used to parallelize column-oriented queries, if objects
are distributed across different servers.

Forks and variable-sized records provided by the ASG
interface are critical to expressing this use case. Without these
features, a column-oriented key/value storage system would be
forced to maintain an additional mapping index to translate be-
tween row, column nomenclature and offset, and size nomen-
clature. This translation layer not only would add complexity
for the data model implementor, it would also prevent critical
semantic information from being expressed to the storage
system. An ASG-based storage system, for example, may
recognize a linear column-oriented access pattern and adapt
its underlying storage layout accordingly, while a traditional

storage system making the same optimization would have to
do so based on assumptions derived from generic byte range
access patterns. The ASG probe function also leverages the
additional structured data semantic information provided by
fork and record-oriented access to enable efficient enumeration
of both the rows and columns of a table.

C. HPC Application Checkpoint

Implementing HPC checkpointing strategies directly on top
of the ASG storage model is straightforward because of its
structure and explicit location control feature. One can imple-
ment both N −N and N − 1 checkpointing strategies using
the ASG storage model and thus overcome the limitations of
these methods as explained in Section II-C.

In the N − N checkpointing method, each process writes
to a separate checkpoint file. As explained in Section III-C,
the ASG storage model exposes location information of its
entities to higher-level applications. Therefore, any application
trying to implement N − N checkpointing method can take
advantage of this information to pick ASG entities that will
store checkpoint data, in a manner to balance the metadata
load across the system without dealing with any dedicated
location servers. Additionally, as explained in Section III-C,
object attributes are eliminated in the ASG storage model, and
as a result metadata management is simplified. Having simple
metadata management and explicit location control reduces the
metadata overhead in the N −N checkpointing method.

If the N − 1 checkpointing method is implemented, each
process writes to a shared checkpoint file. As explained in
Section III-C, the ASG storage model has record versioning
and conditional operation features. Therefore, processes trying
to write to a checkpoint file concurrently can take advantage
of record versioning and conditional operations to order their
writes to the checkpoint file. This strategy alleviates the need
to set locks on the checkpoint file, since it is possible to update
the file atomically using the ASG storage model operations. As
a result, having record versioning and conditional operations
makes it possible to have highly concurrent writes to the
checkpoint file in the N − 1 checkpointing method.

V. RELATED WORK

Network-Attached Secure Disk (NASD) [37] is the primary
work on object-based storage, and it led to specifications
of standards [2] for object-based storage. NASD introduces
variable-length objects with attributes, rather than fixed-length
traditional blocks, to enable self-management and to obviate
the need to know about the host operating system. Moving data
management to the storage disks increases the networking,
security, and space management capabilities.

Numerous studies in the literature have similar scope to our
work. OSD+ [38], [39] presents a model similar to the one
specified by the OSD standard [2] except for the addition of
dedicated directory objects. The directory objects in OSD+
store file names and attributes and support metadata-related
operations. The Panasas File System [3] is built on object-
based storage devices. The OSD wire protocol of Panasas



uses the operations from the OSD standard [2] to enable byte-
oriented access to data, to manipulate attributes and to create
or delete objects. Lustre [7], [40] is a distributed file system
based on object-based storage. The object storage server in
Lustre is responsible for providing access to file data stored
in objects on object storage targets. Ursa Minor [31] is a
parallel file system that supports versioned writes. It keeps
the existing object-storage interface [2] mostly intact except
for introducing slices (i.e. fragments of object data), and
it uses timestamps to distinguish different versions of data.
Datamods [41] is a framework that exploits existing large-
scale storage system services to support complex data models
and interfaces. Datamods avoids duplicating services already
provided in distributed storage systems in middleware and
improves scalability since it is not limited to a single dimen-
sion at the file level. Rados Gateway [6], [15] is an object
storage service forming the foundation of Ceph [8]. It provides
the clients a single logical object store and offloads object
replication, failure detection, and data management tasks to the
underlying object store daemons. The Ohio Supercomputing
Center looked at mapping Parallel Virtual File System [12] on
top of an existing object-based storage emulation [4], [5]. This
mapping moved the functionality of the common components
of a traditional storage system, such as I/O, directory, or
metadata servers, to OSDs and improved the performance of
the overall system thanks to the capabilities of the object-
based storage devices [42], [43], [44]. VSAM [35] supports
both fixed-sized and variable-sized records depending on the
application. Forks in NTFS [36] are similar to records in the
ASG storage model; they are byte streams storing file data and
auxiliary information such as metadata and security settings.
Conditional operations are used in Amazon SimpleDB [33],
Amazon DynamoDB [18], Redis [19], and Hyperdex [20].

A number of studies form the technical basis of our work.
Transactional Object Storage Device (TOSD) [32] shows that
object-based storage is a common component of many parallel
file systems, and it introduces three optimizations to the
object-based storage model in order to serve highly concurrent
workloads better: atomicity, versioning, and commutativity.
Goodell et al. [45] extended the POSIX API by organizing
the storage around data objects in order to map complex data
structures to these data objects and have direct access between
the data objects and applications. Carns et al. [25] investigated
conditional update operations as an alternative to distributed
pessimistic locking operations in object-based storage systems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new object-based storage
model, ASG; introduced its architecture and primitives; and
described a couple of use cases based on this model. As the
use cases clearly show, the ASG storage model is flexible
and can act as a starting point for building complex storage
applications. Features supported by the ASG storage model
make it possible to support requirements of common data
models.
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Metadata Management through OSD+ Devices,” International Journal
of Parallel Programming, pp. 1–26, 10.1007/s10766-012-0207-8.
[Online]. Available: http://dx.doi.org/10.1007/s10766-012-0207-8

[39] ——, “A Metadata Cluster Based on OSD+ Devices,” Computer Archi-
tecture and High Performance Computing, Symposium on, vol. 0, pp.
64–71, 2011.

[40] J. Lombardi and L. Zhen, “DAOS Changes to Lustre.” Presented by
Intel High Performance Data Division, April 2013.

[41] N. Watkins, C. Maltzahn, S. Brandt, and A. Manzanares, “DataMods:
Programmable File System Services,” in Proceedings of 2012 Parallel
Data Storage Workshop (PDSW 2012). IEEE, 2012.

[42] N. Ali, A. Devulapalli, D. Dalessandro, P. Wyckoff, and P. Sadayappan,
“An OSD-based Approach to Managing Directory Operations in
Parallel File Systems,” in IEEE International Conference on Cluster
Computing, September 2008. [Online]. Available: http://www.cse.
ohio-state.edu/∼alin/papers/cluster2008.pdf

[43] ——, “Revisiting the Metadata Architecture of Parallel File Systems,”
in Third Petascale Data Storage Workshop, Supercomputing, November
2008. [Online]. Available: http://www.cse.ohio-state.edu/∼alin/papers/
pdsw2008.pdf

[44] A. Devulapalli, D. Dalessandro, and P. Wyckoff, “Data Structure Consis-
tency Using Atomic Operations in Storage Devices,” IEEE International
Workshop on Storage Network Architecture and Parallel I/Os, vol. 0, pp.
65–73, 2008.

[45] D. Goodell, S. Kim, R. Latham, M. Kandemir, and R. Ross, “An
Evolutionary Path to Object Storage Access,” in Proceedings of 2012
Parallel Data Storage Workshop (PDSW 2012). IEEE, 2012.


