
AESOP: Expressing Concurrency in

High-Performance System Software

Dries Kimpe, Philip Carns, Kevin Harms, Justin M. Wozniak, Samuel Lang, Robert Ross

Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439

{dkimpe,carns,harms,wozniak,lang,rross}@mcs.anl.gov

Abstract—High-performance computing (HPC) and dis-
tributed systems rely on a diverse collection of system soft-
ware to provide application services, including file systems,
schedulers, and web services. Such system software services
must manage highly concurrent requests, interact with a wide
range of resources, and scale well in order to be successful.
Unfortunately, no single programming model for distributed
system software currently offers optimal performance and
productivity for all these tasks. While numerous libraries, lan-
guages, and language extensions have been developed in recent
years to simplify parallel computation, they do not address the
challenges of distributed system software in which concurrency
control involves a variety of hardware and network devices, not
just computational resources.

In this work we present AESOP, a new programming
language and programming model designed to implement
distributed system software with high development productivity
and run-time efficiency. AESOP is a superset of the C language
that describes blocks of code to be executed concurrently
without dictating whether that concurrency will be provided
by a threading, event, or other model. This decoupling enables
system software to adjust to different architectures, device
APIs, and workloads without any change to the core algorithm
implementation. AESOP also provides additional language con-
structs to simplify common system software development tasks.

We evaluate AESOP by implementing a basic file server and
comparing its performance, memory efficiency, and developer
productivity with several thread-based and event-based imple-
mentations. AESOP is shown to provide competitive perfor-
mance to traditional distributed system software development
models while at the same time reducing code complexity and
enhancing developer productivity.

I. INTRODUCTION

High-performance computing and distributed systems rely

on a diverse collection of system software to provide shared

services for applications. Examples include file storage,

scheduling, security, checkpointing, web services, mem-

bership management, and fault detection. Today’s systems

demand that these services scale to hundreds of thousands

of concurrent clients, with millions of clients expected in

the near future. Developing system software for this envi-

ronment is a complex task because of a number of competing

software engineering requirements:

• Scalable orchestration of concurrent client and device

activity

• Maintainable code for complex distributed algorithms

• Portability and performance across diverse architectures

Further complicating matters is the fact that system soft-

ware services not only must interact with multiple hardware

devices concurrently but must do so using a wide assortment

of interfaces and progress models. Popular network trans-

ports, disks, and local databases may present a simple set

of blocking functions, fully asynchronous callbacks, or any

one of a number of API models in between. In some cases,

the most efficient API is platform specific. This diversity

makes it difficult to build algorithms that are portable and yet

capable of leveraging each component in an optimal manner.

The two most common models for managing asyn-

chronous activity in system software are multithreading and

event-driven architectures. Examples of both can be found

in various large-scale production services. The Apache web

server advocates a multithreaded mode of operation for high-

performance deployments [1]. In contrast, the memcached

object caching service uses an event-driven model with

threads used to drive concurrent event loops [2].

The multithreading model is widely used and well under-

stood in the development community. It produces a natural

control flow in algorithm implementations because each

thread executes sequentially and issues simple blocking

device operations. Thread scheduling and stack management

are handled by the operating system. Building a multi-

threaded service raises a number of challenges, however.

The first is determining how to provision thread resources.

Threads can be assigned per client, per request, or per

underlying device operation; they may be created on de-

mand or allocated from an existing pool. Each technique or

combination of techniques presents tradeoffs in scalability,

performance, and readability. Yet it is difficult to transition

between techniques during the development process. The

second challenge is the disconnect between the number of

threads needed to express logical concurrency and the num-

ber of threads needed to make optimal use of local resources.

For example, the optimal number of concurrent operations

for a storage device will be distinct from the optimal number

of threads per processor core. This disconnect can cause

a seemingly simple thread model to evolve into a more

complex framework when taking local resource-scheduling



constraints into account.

Event-driven models can be used to address some of the

common challenges in thread efficiency. Such models strive

to unify the management of asynchronous activities, so that

the completion of any storage or network event triggers

execution of the next servicing step through a centralized

event handler. This architecture provides greater control

over asynchronous activity and avoids the use of operating

system threads to express logical concurrency. Any number

of client requests can be tracked and serviced without

explicitly allocating a thread to each request. This model

has drawbacks as well, however. Event-driven architectures

break the logical control flow of software algorithms into

disjoint segments at each point where the algorithm interacts

with an asynchronous device or operating system service.

In effect, it turns the single linear control flow for an

algorithm into a state machine. Because these states are

invoked from a centralized event handler, their interfaces

must be consistent and generalized, making it difficult to

verify design constraints. State transfer across event handlers

has to be managed manually by the programmer, a process

often referred to as stack ripping [3]. Pure event-driven

models also do not directly address the requirement of

multicore architectures or high-performance peripherals that

require multiple threads to maximize throughput. Event-

driven servers therefore tend to evolve during the develop-

ment process to take on characteristics of both event-driven

and multithreaded services in order to compensate for these

issues.

In general, no clear-cut metric can be used to identify

the best concurrent programming model for a given system

software project, yet this decision affects every aspect of

the design, from algorithm implementation to device man-

agement. To help address this problem, we propose a new

programming language and programming model, AESOP,

that targets the software engineering challenges associated

with developing distributed system software. Its goal is to

improve programmer productivity by presenting a conve-

nient model for developing distributed system software. The

model isolates the developer from how concurrency is man-

aged, but maintains execution efficiency through its ability

to map AESOP code to the concurrency model preferred by

the system or device.

AESOP is a superset of the C language. It describes

blocks of code that can be executed asynchronously or

concurrently, without dictating whether those blocks must

be implemented with threads, and without dictating the

asynchronous progress model to be used by any underlying

devices. Because the core algorithm description is decou-

pled from these architecture-specific details, the run-time

system can be tuned to match different system architectures,

different device APIs, and different workloads without any

change to the core system software algorithms. Unlike event-

driven architectures, AESOP preserves readable control flow

�������

������	
�����
	�

�������

��������
��
���
��


���

��������
�����
	�

	����

���	��
	�����	�

��	

���	���	��

���	�

���������

��	

���	���	��


���

������	
��
���
��

��	����
��
�����

�����
��
�����

��	���
�
��
�����

��
�
��
�����

�������	��
�����	
���	�
�����	���

�������	��
�����	
���	�
�����	���

�������	��
�����	
���	�
�����	���

���

Figure 1: Concurrency in file system server.

regardless of how many steps or concurrent devices are

utilized in a given algorithm. AESOP also offers functionality

that is not available in a traditional multithreaded or event-

driven framework – for example the ability to cleanly cancel

outstanding operations.

The contributions of this paper can be summarized as

follows:

• Description of a new programming model and lan-

guage, AESOP, for use in the development of distributed

system software

• Definition of new language constructs to help manage

highly concurrent execution

• Case study comparing AESOP to five popular multi-

threaded and event-driven architectures, using a simple

distributed service as an example

• Quantitative analysis of the code complexity of the

architectures used in the case study

The remainder of this paper is organized as follows.

Sections II and III describe the challenges of distributed

system software development and related work in addressing

those challenges. Sections IV and V present the AESOP

programming model and our implementation. Section VI

describes a simple distributed service and uses it as a case

study to compare AESOP with other models in terms of per-

formance, memory efficiency, and productivity. Section VII

summarizes our findings and proposes avenues of future

work.

II. CONTEXT

Large-scale distributed and parallel systems rely on dis-

tributed system software to provide scalable access to persis-

tent services. For example, a parallel file system aggregates

distributed storage resources provided by multiple servers

into a unified name space. Each individual service program

expects many concurrent accesses from multiple clients, and,

in turn, launches multiple overlapping operations such as

network transmissions or disk drive operations.



A. Motivation: Concurrency in File System Services

Consider the file server depicted in Figure 1. An operation

starts when the client issues a request to the server, triggering

the top receive. The server then simultaneously issues four

concurrent operations: a send to a peer server to forward

data to a replica, a receive to accept the response from the

replica server, a timer call to ensure the request completes

within a reasonable time, and a sequence of data and

metadata operations to perform the local write operation. If

all operations complete before the timer expires, the timer

is cancelled, and the result is posted to the client. However,

if the timeout is reached before the other tasks complete, all

unfinished operations are cancelled and an error is returned

to the client.

This example illustrates that concurrency arises not only

from simultaneous client access but also from the steps re-

quired to service each request. Ideally, programming models

should help manage this concurrency, enhancing developer

productivity. Note that this is a simplified example. A

production-quality file system server additionally requires

pipelining, failure handling, and retry functionality, all of

which further complicate its implementation.

B. Device Interfaces

A programming model designed to ease managing asyn-

chronous device operations must take into account the broad

array of relevant underlying devices and their interface

models. For a device exporting a blocking interface, function

calls do not return until the request described by the call

is completed. Concurrency is typically achieved by calling

multiple functions simultaneously from multiple threads.

However, for scheduling and efficiency reasons (described

in Section I), high-performance storage and networking

APIs typically provide nonblocking interfaces to achieve I/O

concurrency.

Nonblocking interfaces follow an event-driven model,

where a request for an I/O operation is made to the device

through a function call, which returns without waiting for

completion (the function does not block). The program

receives completion of the I/O operation (the event) through

other notification paths, such as through a polling function

or asynchronous function callbacks. Nonblocking interfaces

achieve concurrency by enabling the posting of multiple I/O

operations without waiting for their completion.

Network sockets offer multiple potential asynchronous

APIs that follow the select/poll paradigm or an operating

system specific variant. InfiniBand offers a post/poll in-

terface to send/receive queues through the libibverbs

API [4]. Myrinet provides a rich API through the MX in-

terface [5] that offers asynchronous send/receive operations

with test, probe, and callback registration. The IBM Deep

Computing Messaging Framework (DCMF) [6] primarily of-

fers nonblocking calls for send/receive and one-sided put/get

communication. MPI-2 [7] offers nonblocking messaging

calls for point-to-point communication.

Disk operations also have a range of nonblocking access

methods. POSIX AIO [8] offers multiple models for con-

trolling asynchronous I/O, including the ability to supply a

signal or callback function for completion notification.

Databases are commonly used for file system metadata,

where efficiency is critical. Berkeley DB [9] does not

provide a nonblocking API, but wrapper libraries have

been used to achieve this. Postgres offers an asynchronous

interface [10] in its C API.

III. RELATED WORK

A number of programming languages and programming

models have been developed to express application-level

concurrency and efficiently leverage multicore architectures.

Examples include OpenMP [11], X10 [12], Unified Par-

allel C [13], Chapel [14], Fortress [15], CUDA [16], and

OpenCL [17]. Such languages allow developers to anno-

tate code blocks that should execute in parallel, including

constructs for synchronization and sharing variables. While

many of these constructs share principles with AESOP, they

were developed with the goal of coordinating computation

on multiple cores at the application level, rather than co-

ordinating asynchronous activity on multiple I/O devices

at the system software level. As a result, these languages

optimize for maximum use of available CPU resources,

whereas AESOP optimizes for maximum use of underlying

devices that may or may not require significant CPU activity.

AESOP in general has the closest similarity to OpenMP but

differs in that AESOP does not create or require the use of

threads. The level of AESOP concurrency is not correlated

with the number of CPU cores available, though AESOP

can utilize multiple cores (if available) to improve latency

and concurrency. The other main differentiation is that

AESOP also offers language support for cleanly cancelling

outstanding concurrent executions paths.

Grand Central Dispatch (GCD) [18] is a popular program-

ming model introduced by Apple Inc. that allows developers

to describe tasks to be executed concurrently. GCD manages

an implicit thread pool to schedule and execute the tasks.

If the tasks are CPU bound, then GCD may match the

number of threads to the number of CPU cores. If the tasks

block on device activity, then it may instantiate a larger

number of threads. The primary advantages of GCD are that

it simplifies multithreaded programming and automatically

adjusts concurrency according to the workload and the

system architecture. Unlike AESOP, however, GCD always

uses threads to achieve concurrency and provides no general

framework for integration with device APIs that provide

more scalable asynchronous interfaces. Moreover, GCD does

not support cancellation of tasks.

In addition to programming models and languages, several

support libraries have been developed to aid in portably



managing a large number of asynchronous events. Examples

include libevent [19] and libev [20]. Such libraries provide a

unified API for managing multiple kinds of events, particu-

larly on sockets or file descriptors. While such libraries solve

an important technical problem related to service efficiency,

they do not address the programmability aspect of event-

driven concurrent programming. The developer is left the

task of fitting their algorithm logic to the event-driven model.

The AESOP language described in this work builds on

lessons learned from the event-driven state machine model

used in the PVFS file system [21]. In PVFS state machines

(SMs), every client and server operation is expressed as a

state machine using a language that is based on C with

extensions to describe service states and the transitions that

link them. A state is simply a C function. Each state function

can optionally end by submitting an asynchronous network,

disk, or timer operation through an API that provides unified

notification of completion events for each device. When

one of these operations completes, a state machine engine

maps the operation back to the appropriate state machine

and executes the next state function, depending on the out-

come of the asynchronous operation. Multiple state machine

instances can be active simultaneously, allowing PVFS to

track the state of an arbitrary number of concurrent requests

and make progress on them without the overhead of explicit

threading.

The PVFS state machine model is essentially a formal

framework for event-driven programming. This approach has

proved successful in achieving high performance in large-

scale production HPC environments [22], but it shares many

of the same developer productivity challenges found in other

event-driven models; it disrupts control flow, requires pro-

grammers to perform stack ripping, and utilizes only a single

compute core to execute event handlers. Moreover, PVFS

SM code does not resemble traditional C code, making

it difficult to reason about many development challenges.

These drawbacks introduce a learning curve for researchers

and an additional maintenance workload for maintainers. In

this work, we seek to learn from the lessons of PVFS SM

approach and present a programming model that provides

at least as much functionality but also allows file system

developers to write algorithms using a more traditional code

organization.

IV. PROGRAMMING MODEL

This section describes the AESOP progamming language

and its associated program model.

A. Parallel Branches

Concurrency is expressed in AESOP through the use of

parallel branches, or pbranches. A parallel branch groups

a list of statements and supports branch-scoped variables,

much like a regular function. Within a pbranch, statements

are executed sequentially, as in a normal C program. When

multiple pbranches are active, however, the AESOP language

enforces sequential execution only within the scope of a

single pbranch. Statements from other pbranches might

interleave execution or might execute concurrently (using

a thread for example).

AESOP can synchronize pbranches by using the pwait

construct. A pwait is similar to the barrier implicit in

many OpenMP directives (such as parallel for), in that no

statements following the pwait will execute unless all the

pbranches it encloses have completed. AESOP also supports

lonely pbranches, that is, pbranches created outside a pwait.

A lonely pbranch resembles a POSIX detached thread in that

lonely pbranches cannot be synchronized with other user

code.

By default, variables in AESOP are shared between

pbranches. This configuration is similar to OpenMP, where

variables are shared between multiple threads unless indi-

cated otherwise. Marking a variable as pprivate gives

each pbranch a private shadow copy, initialized by using

the shared instance when the branch is created. Variables

declared within a pbranch are, adhering to the C scoping

rules, necessarily private.

A pbranch can request the termination (or cancellation)

of all other pbranches within the same pwait by calling

the aesop_cancel_branches function. This function

returns as soon as the other pbranches have been marked

for cancellation; it is asynchronous in that it does not wait

for the other pbranches to exit. If a pbranch is in a function

call when the cancellation signal arrives, that function will

be notified of the cancellation, enabling the function to take

whatever steps are necessary to cancel the operation and

return a suitable return code. Further function calls within

the cancelled pbranch will detect the cancellation state upon

entering the function and react accordingly. By design, it is

not possible for a pbranch to clear its cancellation flag.

AESOP’s cancellation model differs from others in that the

language itself takes care of cleanly cancelling pending op-

erations, transparently emitting the needed code to do so. For

example, if a device exposes an asynchronous API, AESOP

will automatically call the corresponding cancel function

when a pbranch waiting for the completion of an operation

is cancelled. More details about AESOP’s cancellation model

are presented in Section V. Many other libraries aimed

at concurrent or asynchronous execution do not support

cancellation or offer only limited support. In Grand Central

Dispatch, once a code block is dispatched to a queue, it

can no longer be removed or cancelled. Likewise, OpenMP

does not support cancelling helper threads in parallel for

and other concurrency constructs. In both cases, the recom-

mended practice is for the programmer to repeatedly check

a cancellation flag. This becomes especially cumbersome

if other functions are called from within the concurrent

code, since now those functions must have access to the

cancellation variable as well.



While the POSIX thread API supports a number of

different cancellation modes, using them in production soft-

ware is not trivial. In the asynchronous cancellation

mode, depending on the system, thread execution might be

halted at any point, making it hard for the programmer

to properly track cleanup state. In the default deferred

mode, cancellation is ignored by all but a small list

of special functions (termed cancellation points).

Many common C functions, such as fread, may or may

not, depending on the system, support cancellation. Most

do not. Thus, a portable program cannot call any of these

functions if timely cancellation is required.

B. aesop Functions

AESOP extends the C programming language with a new

function type: aesop functions. The aesop qualifier is

part of the type. A pointer to a regular C function is not

compatible with a function pointer to an aesop function

with the same function arguments. aesop functions differ

from regular C functions in that only aesop functions can

contain pbranches. In addition, aesop functions support

cancellation.

Functions can be brought into the AESOP model by

adding the aesop qualifier to the function declaration.

However, aesop functions can be called only by other

aesop functions. Thence, the starting function of an AESOP

program must be an aesop function. AESOP libraries form

an exception to this rule. To simplify calling AESOP libraries

from C and other languages, one can generate C function

stubs for an aesop function. These stubs provide either

synchronous or asynchronous bindings to AESOP libraries.

An active aesop function in a pbranch receiving a

cancellation request will be notified of the cancellation. The

effect of this notification and the way the function reacts to

this request depend on the implementation of that particular

function. Likewise, any subsequent aesop call initiated in

that pbranch will learn of the active cancellation request.

While this is not enforced by the language, a proper aesop

function should return as soon as possible when a branch is

in a cancelled state.

The intention is that functions that are not completely

CPU-bound (i.e., cannot efficiently fully consume a thread)

are to be aesop functions. AESOP detects when a aesop

function can no longer make progress (for example, because

the function is waiting on an external event or device). When

this happens, execution will continue in another branch.

Because of the pbranch construct, the AESOP language

does not describe or require a thread concept in order to

expose concurrency. In fact, instead of promising explicit

concurrent execution for pbranches, the language guarantees

that, when one or more pbranches within the program are

ready to execute, at least one of them will make progress. For

example, in a pwait containing two branches, if one branch

should stall on a aesop function (for example waiting for

 aesop void doReplicaWrite (...) {

 pwait {

 pbranch { concurrent_step_1 (); }

 pbranch { concurrent_step_2 (); }

 pbranch { concurrent_step_3 (); }

 }

 }

 aesop void replicaWrite (...) {

 pwait {

 pbranch {

 aesop_timer (TIMEOUT);

 ae_cancel_branches ();

 }

 pbranch {

 doReplicateWrite (...);

 ae_cancel_branches ();

 }

 }

 }

 aesop void write (...) {

 pwait {

 pprivate int i;

 for (i=0; i<REPLICAS; ++i)

 pbranch {

 replicaWrite (i, ...);

 }

 }

 }

Listing 1: Aesop code example.

I/O), execution will proceed in the second pbranch provided

that pbranch is ready.

In effect, the AESOP programming model provides for

multiplexing multiple pbranches onto a single thread or core,

similar to application-implemented user space threading with

voluntary yielding. This does not preclude true multithread-

ing; AESOP is fully thread-safe and multiple OS threads can

execute within a single AESOP program or the AESOP run-

time library. In that case, if more than one pbranch becomes

ready for execution, multiple threads will be used to execute

those branches concurrently.

C. Example Aesop Code

Listing 1 shows a common AESOP code pattern. Network

servers, having a finite set of resources, must protect against

unbounded resource consumption by misbehaving or failing

peers. Typically, an upper limit is placed on the time

resources are dedicated to a request, cancelling the request

when the allocated time is exceeded.

In the code example, write concurrently forwards the

write operation to REPLICAS replicas. This is implemented

using a for loop containing a pbranch. Since the pbranch

statement does not wait for the completion of the branch, the

next iteration of the for loop can start before the previous

one completed. In replicateWrite, a common pattern

for easily handling time-outs can be seen. Two pbranches

are created, one to execute the work and the other to bound

the maximum time the other branch is allowed to execute.

When one of the branches completes, as a last task it

cancels the other branch. Thus, if doReplicateWrite

(line 15) completes first, the operation completed within

the allocated time frame, and the timer (line 4) will be

cancelled. However, if line 15 takes longer than TIMEOUT



Figure 2: Model of Aesop usage.

to complete, the timer (line 11) will complete first, causing

the ongoing doReplicaWrite operation to be cancelled.

The ae_cancel_branches call internally synchronizes,

preventing both branches from cancelling each other. Note

how replicaWrite, in a straightforward and reusable

manner, adds a time-out to the existing doReplicaWrite

call.

The short code fragment from Listing 1 implements the

pattern shown in Figure 1, in which a number of concurrent

write operations are started; each consists of three tasks

that can be executed concurrently, with each write operation

protected by a timeout.

V. IMPLEMENTATION

We implemented the AESOP language using a source-

to-source translator. It processes AESOP code and rewrites

AESOP-specific functionality using standard C constructs,

emitting fully compliant C code. AESOP code can there-

fore be deployed on any system that provides a suit-

able C compiler. Since AESOP implements an extension

to the C language, all valid C programs are also valid

AESOP programs, and all C features can be used within an

AESOP program. Currently, the translator needs to rewrite

only aesop functions; all other code is passed through

unmodified. Figure 2 shows how an aesop function,

service_function, is translated by the current ver-

sion of the AESOP translator. As a first step, all aesop

function calls within the function body are located. Based

on the location of the aesop calls, the function is split

into a set of code blocks (states), where each code block

contains only nonblocking (traditional C) function calls.

The calls themselves are rewritten in an asynchronous

form. For example, network_operation becomes

post_network_operation. This post function be-

comes the last statement of the preceding code block, where

the first statement following the network_operation

call becomes the first statement of the next block. As part of

the translated post_network_operation call, AESOP

injects a callback argument that indicates where execution

should continue once the operation completes. As soon

as the operation is posted, service_function returns,

unwinding the stack. Depending on the state and structure

of the program, the stack might unwind all the way back to

the starting point of an AESOP program. When this situation

happens, AESOP will try to make progress on any pending

operation, until one or more operations complete. Once an

operation completes, AESOP invokes its callback function to

resume execution of the next code block.

As an optimization, AESOP recognizes when an operation

completes before the post function returns. When this hap-

pens, no stack unwinding occurs, and execution immediately

continues with the next state in the function.

Because variables local to the function scope are stored

on the stack and are destroyed when returning from the

function, AESOP, as part of the rewriting process, moves

all function scope variables (and function arguments) into

a context structure on the heap, transparently rewriting

variable references to account for this change. A pointer

to this context is passed to the callback when the execution

of the function resumes.

AESOP keeps track of pending operations within a given

context. When a request is made to cancel concurrent

branches, AESOP will call the correct cancellation function

for each pending operation in the current context. To do

so, AESOP needs to know, for each aesop call, how to

cancel the operation. For functions translated by AESOP

(those marked by aesop), AESOP internally provides the

cancel methods.

However, for operations managed by an existing, external

library (for example, AIO), this information needs to be

provided to AESOP. This is done by creating a resource.

Resources are typically used to provide an AESOP binding

on top of an existing C library. A resource exports an AESOP

API consisting of regular and aesop functions. It internally

registers a set of hooks that can be called by AESOP to

make progress, test, or cancel a aesop function exported

by the resource API. Progress can be made by providing a

polling function, which will be called by AESOP when no

other work is available. However, AESOP does not enforce

a progress model on the resource. Some resources do not

define a polling function, typically because the resource or

the underlying C library can make progress independently.

VI. EVALUATION

To evaluate AESOP, we implemented a simple TCP net-

work server using traditional techniques and libraries and

compared the resulting implementations with an AESOP

implementation of the server. We evaluated each server

implementation using three criteria: run-time efficiency,

memory efficiency, and programmer productivity.



Each of the servers implements the same request protocol

and recognizes four request types: write, read, write-null,

and read-null. In the write case, the server receives a request

containing the file name, access size, and a data payload. It

creates the specified file, writes the data (using O_DIRECT),

and responds to the client. The read case is similar to the

write case, except that data is read from the specified file

and sent to the client. Write-null and read-null are variants

of write and read that perform no file access. The write-null

payload is simply discarded by the server, while the read-

null payload transmitted to the client consists of uninitialized

memory.

Each server uses the same fundamental coding style to the

degree possible. One server is implemented in the AESOP

language, while all other servers are implemented in C. The

pthread library was used where thread support was needed;

the libev [20] library was used where event handling was

needed. A short summary of each server implementation

follows.

AESOP: The AESOP server is implemented by using

the AESOP programming language. A lonely pbranch is

used to service each client. All operations for a client

are handled within a single pbranch. The socket and file

operations are performed with aesop functions provided by

the AESOP standard library. On this system, the underlying

socket resource uses nonblocking sockets in an event driven

model, with up to 12 threads driving the event loops. The

file resource uses synchronous I/O calls and a thread pool

with 4 threads.

Thread-per-client: The thread-per-client server spawns

a dedicated thread for each client connection. All requests

for a given client are handled within the same thread. This

model uses synchronous socket and file I/O functions.

Thread-per-client-nb: The thread-per-client-nb server

is identical to the thread-per-client server except that it

uses asynchronous socket calls in place of synchronous

socket calls. We implemented this version to isolate the

performance impact of asynchronous socket access when all

other factors remain equal.

Thread-per-operation: The thread-per-operation server

uses an event loop to watch all client connections for activity.

When a new request is available, a thread is spawned, and

the request is handled completely from within that thread.

Thread-pool: The thread-pool server is similar to the

thread-per-operation server in that it uses an event loop to

watch client connections for activity. However, instead of

creating a new thread to service each request, the requests

are serviced by a fixed-size thread pool.

Event: The event server uses an event loop not only

to detect active connections but also to service them. Each

request-processing step is executed from an event loop call-

back function. The event server uses asynchronous sockets

and asynchronous file I/O. Note that although this implemen-

tation does not explicitly create or use threads, the operating

system can internally still use multiple threads to drive both

the network and disk.

The servers were all evaluated using the same client test

harness. The client test harness is a C program that uses

TCP sockets to send messages to the server. It uses MPI

to coordinate processes and generate a concurrent workload.

Each client process records the total amount of time taken to

execute its workload, beginning before the initial connection

and ending after receipt of the last acknowledgment. The

time taken by the slowest client is considered to be the

aggregate run time. Each client also tracks the time needed to

service each individual request in order to analyze individual

request latency. The client test harness was configured to

generate requests of size 4 KiB in all cases. Each client

process performed 16 requests in the write and read tests

and 4,096 requests in the write-null and read-null tests.

All experiments were executed on the Fusion cluster in the

Argonne Laboratory Computing Resource Center. Fusion is

an IBM iDataPlex dx360 M2 system with a QDR Infiniband

interconnect featuring 320 compute nodes, consisting of two

Intel Nehalem 2.6 GHz Xeon processors and 36 GB of

RAM. Each compute node also has a single SATA 7200

RPM hard disk for local scratch storage, which was used for

all disk I/O in the experiment. Client/server communication

was done over the IB network using IPoIB. We instantiated

16 clients processes per phyiscal node. The tests were

executed on 65 nodes; one server node and 1-64 client nodes.

A. Run-time Efficiency

Figure 3 shows, for each of the four test types, the

median, minimum, and maximum number of requests com-

pleted per second. Each test type was executed 5 times,

with the number of clients ranging from 16 to 1,024. In

Figure 3a we see that AESOP does not perform as well as

the other servers for a small number of clients (delivering

79 operations per second at the smallest scale, versus 132

ops/s for the thread-per-op server). However, AESOP is the

fastest server at the largest scale (136 ops/s versus 125 ops/s

for the nearest competitors in thread-per-client and thread-

per-client-nb). When reading (Figure 3b), AESOP performs

more favorably at small scale. At the largest scale, AESOP

completes the test with 339 ops/s versus 354 ops/s for the

fastest server (thread-pool), a 4.5% difference. The event

server performs particularly poorly in all cases, ultimately

running the largest-scale test with only 212 ops/s. The small-

scale results for AESOP may indicate that additional tuning

is needed to improve latency for small test runs. The issue

is likely isolated to the write path of the file I/O resource in

the AESOP standard library, as we see asymmetric results in

the read and write tests for AESOP.

AESOP is competitive with the other implementations

except for the thread-per-client server in both the write-

null (Figure 3c) and read-null (Figure 3d) evaluation. One

notable difference in the two implementations, however, is



�������

�������

�������

�������

�������

�������

�������

�������

�������

�� ��� ��� ��� ����

	


�
�

��
	
�
�
�

�
��
�
�
�
	
�
�

(a) Write performance

�������

�������

�������

�������

�������

�������

�������

����	��

�� ��
 ��� ��� ����

�
�


��
��
�
�
�
��


��
�


�
�
�
�

(b) Read performance

�������

�������

�������

�������

�������

�������

�������

�������

�������

�� ��� ��� ��� ����

	


�
�

��
	
�
�
�

�
��
�
�
�
	
�
�


��	

����
��
���������

����
��
������������

����
��
���	

����
��
		�

�����

(c) Write-null performance

�������

�������

�������

�������

�������

�������

�� ��� ��� ��� ����

	


�
�

��
	
�
�
�

�
��
�
�
�
	
�
�


��	

����
��
���������

����
��
������������

����
��
���	

����
��
		�

�����

(d) Read-null performance

Figure 3: Run-time performance for each test case.
(X-axis is the number of client instances, each graph has a distinct Y-axis.)

that the thread-per-client server uses blocking socket opera-

tions, whereas the AESOP socket resource uses nonblocking

operations. Based on this observation, we implemented the

thread-per-client-nb server to isolate the impact of non-

blocking socket operations on performance. The thread-per-

client-nb implementation is identical to the thread-per-client

implementation except that each socket uses nonblocking

operations and polling to transmit and receive data. As seen

in these tests, the use of nonblocking operations slows the

thread-per-client server to the point that it is practically

equivalent to the AESOP server at scale, suggesting that

asynchronous socket operations simply do not perform as

well as synchronous socket operations on this system.

Another notable observation in these graphs is that the

AESOP server is competitive at small scale and, in fact, is

the fastest implementation in the 16-client-process read-null

test and nearly the fastest in the 16-client-process write-null

test. These results support the observation that poor AESOP

performance at small scale is likely a tuning flaw in the

AESOP implementation of I/O functionality, rather than a

fundamental programming language problem.

The test client also measures the latency of each individual

request and then computes the minimum and maximum

latency, the first quartile latency, and the third quartile

latency. Figure 4 shows the request latency for 1,024 clients

for the write test. Each box represents the first and third

quartiles, and the whiskers are the minimum and maximum

������

�����

����

����	

����
�	��������



����
�	��������
���


����
�	����	


����
�	���

����


�
��

�
��
�
�
�
�
�


�
�

Figure 4: Write latency (1,024 clients).

values. From the figure, one can see that the AESOP server

implementation exhibits similar latency results when com-

pared to the other implementations. The event server variant

shows significantly higher latency, however. This is likely an

artifact of the Linux asynchronous I/O implementation. As

the latency numbers for the other request types show similar

results, only the write test results are shown.

B. Memory Efficiency

Another aspect of the overall performance is the memory

efficiency of each server implementation. In this section we

compare the memory usage of the AESOP server with that of

the other server implementations. The memory utilization of

each server was captured during the run-time performance



����

�����

������

�������

�� ��� ��� ��� ����

	


	
�
�

��
�
�
�


��
�
�
�

���
���

�
���
���
����
�����
��

���
����
�����
�����
���
����
����
���
�������


 
��

Figure 5: Write memory usage.

experiments. We recorded the VmHWM stat from the server

when the client test was completed. The VmHWM stat is

a Linux-specific metric that represents the peak resident set

size (RSS) of an executable, where RSS corresponds to the

amount of paged-in memory used by the executable.

In Figure 5 we see that the thread-pool server manages

to limit the memory usage even though the client work load

increases. This result can be explained by the design of the

thread-pool; by limiting the number of active threads used

to service client connections, it also limits the number of

concurrent requests. For the other server implementations,

memory usage increases accordingly as the number of

concurrent requests increases. Although the AESOP server

cannot match the thread-pool server in terms of memory

usage, it does compare favorably with the thread-per-client

and thread-per-op servers. Note that the thread-per-client

and thread-per-op models consume virtual memory at a

much larger rate because of the amount of virtual memory

allocated to each thread stack. We chose not to evaluate this

metric, however, because the resident memory seems to be a

more relevant metric in practice. Since the memory usage for

remaining tests (read, read-null, and write-null) was similar,

only the write test results are shown.

C. Productivity

We infer programmer productivity by measuring code

complexity. Table I compares the code complexity of each

server implemenation using McCabe Cyclomatic Complex-

ity (CC) [23], Modified McCabe Cyclomatic Complexity

(mod. CC) using pmccabe v2.6 by Paul Bame, and Source

Lines of Code (SLOC) using sloccount v2.26 by David A.

Wheeler.

Table I: Code complexity analysis

CC mod. CC SLOC

AESOP 16 11 179
thread-per-client 17 12 182
thread-per-client-nb 17 12 184
thread-per-op 22 17 249
thread-pool 32 26 313
event 28 23 341

In order to simplify the comparison, all four servers had

no error handling except for assertions on expected return

codes. The protocol definition as well as helper functions

for sending and receiving were not counted in any of the

implementations, since these were similar in all four.

The AESOP and thread implementation are similar in

terms of complexity, with the slight increase in the thread

model due to function calls needed to create and join threads.

The thread pool and event model implementation are

both much more complex than the thread or AESOP model.

An additional complexity of the event model which is not

captured by these metrics is that control flow is not preserved

across the processing of a given request. For example,

servicing a write operation requires five disconnected event

handlers.

Another productivity aspect that is not well captured by

the complexity metrics is how easily our example server can

be retargeted to a new architecture or system. In our initial

testing, we wanted to tune the AESOP server implementation

to perform well on a few test systems. During this testing

we tried different strategies (event based, threads, and hy-

brid models) for sending and receiving network data and

experimented with multiple threads driving AESOP. These

changes were done within the AESOP run-time library and

never required changing the AESOP server test code. This

type of flexibility allows experimentation to determine the

best tuning strategy for any given system without having to

redesign the core software algorithms.

The example server used for evaluation is simple and

differs from real-world code by the absence of error handling

and time-out handling. As described in Section IV-C, AESOP

provides powerful primitives to simplify these activities. The

same cannot be said of the event or threaded models, since

neither model offers any help in cancelling an outstanding

operation.

VII. CONCLUSIONS

In this work we have introduced a new programming

model and programming language, known as AESOP. AESOP

was designed with the explicit goal of supporting distributed

system software development. Its primary advantage is that

it allows system software developers to express concurrency

without dictating the mechanism used to provide that concur-

rency. It also provides a number of language constructs that

simplify common system software development patterns.

Numerous languages and language extensions have been

developed in recent years to simplify parallel computation,

but AESOP is unique in that it addresses the challenges of

distributed system software in which concurrency control

goes beyond computational resources to include a various

hardware and network devices.

Using a simple network server for evaluation, we demon-

strate that AESOP offers competitive, and in some cases

superior, run-time performance to the most common system



software concurrency models in use today. We expect AESOP

to continue to perform well at even larger scales than those

evaluated in this study because it does not rely on mapping

concurrent execution paths to dedicated operating system

threads. When considering programmer productivity, AESOP

performs equally well, mainly because it has been specif-

ically designed to implement highly scalable distributed

services. It reduces code complexity while also offering

advanced primitives such as cancellation of execution paths

that are not available in any other system software develop-

ment environment.

We will continue to evaluate and evolve the AESOP

language as we use it to implement future production HPC

storage services. As part of this work we plan to extend

the language to include additional features. One example,

which exists in prototype form already, is a remote pro-

cedure call framework that uses AESOP to manage con-

current communication, timeout, and retry functionality in

a transparent manner. We also plan to provide enhanced

functionality for debugging AESOP functions. AESOP, and

the code used to evaluate its performance, is available online

at http://trac.mcs.anl.gov/projects/aesop.

ACKNOWLEDGMENTS

This work was supported by the Office of Advanced

Scientific Computing Research, Office of Science, U.S.

Dept. of Energy, under Contract DE-AC02-06CH11357. We

gratefully acknowledge the computing resources provided

on “Fusion,” a 320-node computing cluster operated by the

Laboratory Computing Resource Center at Argonne National

Laboratory.

REFERENCES

[1] “Apache MPM worker documentation.” [On-

line]. Available: http://httpd.apache.org/docs/2.0/mod/

worker.html

[2] “Multithreading support in memcached.” [Online].

Available: http://code.sixapart.com/svn/memcached/

trunk/server/doc/threads.txt

[3] M. Krohn, E. Kohler, and M. Kaashoek, “Events can

make sense,” in Proceedings of the USENIX Annual

Technical Conference, 2007.

[4] R. Ashok, Infiniband Host Channel Adapter Verb Im-

plementer’s Guide, Intel Corporation, March 2003.

[5] Myricom, Inc., “Myrinet Express (MX): A high-

performance, low-level, message-passing interface for

Myrinet,” Version 1.2, 2006.

[6] M. Krishnan, J. Nieplocha, M. Blocksome, and

B. Smith, “Evaluation of remote memory access com-

munication on the IBM Blue Gene/P supercomputer,”

in Workshop on Parallel Processing at ICPP, 2008.

[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:

Portable Parallel Programming with the Message Pass-

ing Interface. MIT Press, Cambridge, MA, 1999.

[8] M. T. Jones, “Boost application performance using

asynchronous I/O,” IBM developerWorks, 2006.

[9] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley DB,”

in Proceedings of USENIX, 1999.

[10] I. Red Hat, Red Hat Database 2.1 Programmer’s

Guide, Red Hat, Inc.

[11] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. Mc-

Donald, and R. Menon, Parallel programming in

OpenMP. San Francisco, CA: Morgan Kaufmann,

2001.

[12] P. Charles et al., “X10: an object-oriented approach

to non-uniform cluster computing,” in Proceedings of

the 20th annual ACM SIGPLAN conference on Object-

Oriented Programming, Systems, Languages, and Ap-

plications, ser. OOPSLA ’05. New York: ACM, 2005,

pp. 519–538.

[13] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks,

and K. Warren, “Introduction to UPC and language

specification,” IDA Center for Computing Sciences,

Tech. Rep. CCS-TR-99-157, 1999.

[14] B. Chamberlain, D. Callahan, and H. Zima, “Parallel

programmability and the Chapel language,” Int. J. High

Perform. Comput. Appl., vol. 21, pp. 291–312, August

2007.

[15] E. Allen et al., “The Fortress language specification,”

Sun Microsystems, Inc., Tech. Rep., 2007.

[Online]. Available: http://research.sun.com/projects/

plrg/Publications/fortress1.0beta.pdf

[16] Nvidia Corporation, “CUDA zone.” [Online]. Avail-

able: http://www.nvidia.com/object/cuda home.html

[17] Khronos OpenCL Working Group, The OpenCL

Specification, version 1.0.29, 2008. [Online]. Available:

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[18] Apple Inc., “Grand central dispatch.” [Online].

Available: http://developer.apple.com/technologies/

mac/snowleopard/gcd.html

[19] N. Mathewson and N. Provos, “libevent - an

event notification library.” [Online]. Available: http:

//monkey.org/∼provos/libevent/

[20] M. Lehmann, “libev.” [Online]. Available: http:

//software.schmorp.de/pkg/libev.html

[21] “The Parallel Virtual File System.” [Online]. Available:

http://www.pvfs.org

[22] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and

W. Allcock, “I/O performance challenges at leadership

scale,” in Proceedings of Supercomputing, November

2009.

[23] T. McCabe, “A complexity measure,” IEEE Transac-

tions on Software Engineering, vol. 2, pp. 308–320,

1976.



The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

(Argonne). Argonne, a U.S. Department of Energy Office

of Science laboratory, is operated under Contract No. DE-

AC02- 06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the

Government.


