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Objective

Define the minimal software infrastructure
needed to enable development of
numerical application codes using a
variety of software components that are
not necessarily available as source code.



Requirements

l Application code and components could be
a combination of C, C++, Fortran, Java.

l Application codes could be written in a
variety of styles (e.g., object-oriented,
procedural)



Decisions

l Peer-to-peer relationship among components

l Objects encapsulate all data and functions
l no free-standing functions or data

l Objects may, internally, use any consistent
mechanism to handle parallel
communication

l MPI is available as part of the software
infrastructure

l Threads may be available



Microkernel Strategy
l Define universal object memory layout

l Define basic kernel objects (always
available)

l Object loader

l Error handler

l Profiler

l Memory allocator



Universal Object Memory Layout

l Representation in memory of object methods

l C/Fortran represented as group of structures

l C++ represented as abstract base classes

l Two issues
l Common methods to support

l Details of memory layout, i.e., structure of classes



Common Methods to Support

l Get MPI Communicator from object

l View - visualize, serialize etc

l Reference - increase reference count

l Destroy

l Compose - attach another object (interface) by name

l Query - get attached object (interface) by name

l Compose function - attach method to object

l Query function - get a method from object

l Query languge - get representation of object (interface) in
a different programming language



Details of Memory Layout: C

All objects are pointers to

struct _CCA {
   int               cookie;
   CCA_Ops *bops;
   void           *ops;
}



Details of Memory Layout: C
typedef struct {
   int   (*getcomm)(CCA,MPI_Comm*),
          (*view)(CCA,CCAViewer),
          (*reference)(CCA), (*destroy)(CCA);
          (*compose)(CCA,char *,CCA),
          (*query)(CCA,char *,CCA *),
          (*composefunction)(CCA,char *,char *,void *),
          (*queryfunction)(CCA,char *,void **),
          (*composelanguage)(CCA,CCALanguage,void *),
          (*querylanguage)(CCA,CCALanguage,void **);
} CCA_Ops;



Details of Memory Layout: C

void *ops is a pointer to the function table for
that specific type of object, for example, for
vectors:

typedef struct {
   int   (*dot)(CCAVector,CCAVector,double *),
          (*axpy)(double, CCAVector,CCAVector),
          (*norm)(CCAVector,double *),
         ….
}



Details of Memory Layout: C

void *ops is a pointer to the function table for that
specific type of object, for example, for vectors:

typedef struct {
   int   (*dot)(CCAVector,CCAVector,double *),
          (*axpy)(double, CCAVector,CCAVector),
          (*norm)(CCAVector,double *),
         ….
}



Sample Use of Query
Function Interface

int KSPGMRESSetRestart(KSP ksp,int max_k )
{
  int ierr, (*f)(KSP,int);

QueryFunction(ksp, "KSPGMRESSetRestart_C",&f);
  if (f) {
    (*f)(ksp,max_k);
  }
  return 0;
}



Sample Use of Query
Language Interface

CCA_Cvector     cvec;              /* C interface to object */
CCA_CPPvector *cppvec;        /* C++ interface to object */

double                  cnorm,cppnorm;

VecNorm(cvec,&cnorm);

QueryLanguage(cvec,CPP,&cppvec);
cppvec->norm(&cppnorm);

/* The two norms should be the same */



Details of Memory Layout: C++
Class CCA {
  public:
  int cookie;
  virtual int getcomm(MPI_Comm *)                                  = 0;
  virtual int view(class CCAViewer *)                                = 0;
  virtual int reference()                                                         = 0;
  virtual int compose(char *,class CCA *)                           = 0;
  virtual int query(char *,class CCA **)                              = 0;
  virtual int composefunction(char *,char *,void *)             = 0;
  virtual int queryfunction(char *,void **)                           = 0;
  virtual int querylanguage(char *,CCALanguage,void **) = 0;
}



Microkernel Strategy

l Define universal object memory layout

l Define basic kernel objects



Basic Kernel Objects

l No time for details here; they’ll be
presented elsewhere …

l Some issues to ponder ...
l Are error handler object, profiler object, malloc object

etc. really needed?  Could these instead be treated as
basic, “built-in”, “framework” services?

l Though we cannot fully justify the existence of such
objects yet, we think that once we have them, we won’t
know how we lived without them.



Conclusions

l Objects are pointers to “standardized”
function tables

l Basic system requires a minimal number of
fundamental objects to be “available”

l Micro-kernel could be, in theory, a few
hundreds lines of code


