
Cobalt Manual
Narayan Desai

Rick Bradshaw

Cobalt Manual
Narayan Desai
Rick Bradshaw

Published April 2006
Copyright © 2005-2006 Argonne National Laboratory

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as pub-
lished by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU General Public License for more details.

Table of Contents
1. Installation ..1

Prerequisites ..1
Software Installation ..1
Configuring the Cobalt Component Infrastructure ..1
Cobalt Component Startup ..2
Basic Component Testing ...3

2. Component Operations ...4
Job Execution ...4
Job Log Trace ..5
Data Persistence ..5

3. Component Specific Notes ..6
bgsched ...6

Potential Problems ..6
4. Troubleshooting ..7

iv

Chapter 1. Installation
This section describes how to install Cobalt. Once these steps are completed, Cobalt will be
completely functional on the system.

Prerequisites
Three prerequisites are required for Cobalt. Each of these, their functions and a download loc-
ation are described below.

Python Cobalt is written in python. It requires version 2.3 or greater.

DB2-python This is a library for connecting to DB2 databases from python. This is only re-
quired for Cobalt on BG/L systems. It is available at
ftp://ftp.mcs.anl.gov/pub/cobalt.

PyOpenSSL PyOpenSSL provides python bindings for OpenSSL. It is required in order to
support HTTPS on the server side. It is only needed on hosts where compon-
ents execute.

Software Installation
Install python, db2-python, and pyopenssl on the server side. On SLES9, this can be accom-
plished by running:

rpm -ihv \
ftp://ftp.mcs.anl.gov/pub/cobalt/rpms/sles9-ppc64/PyOpenSSL-0.6-1.ppc64.rpm
rpm -ihv \
ftp://ftp.mcs.anl.gov/pub/cobalt/rpms/sles9-ppc64/cobalt-0.95-1.ppc64.rpm

On both the client and server sides:

rpm -ihv \
ftp://ftp.mcs.anl.gov/pub/cobalt/rpms/sles9-ppc64/cobalt-clients-0.95-1.ppc64.rpm

Configuring the Cobalt Component Infrastruc-
ture

Cobalt uses https for data security between components and their clients. Each machine
where components run must have their own ssl key. This can be generated by running:

openssl req -x509 -nodes -days 1000 -newkey rsa:1024 \
-out /etc/cobalt.key -keyout /etc/cobalt.kek

1

Components can be located using static records in /etc/cobalt.conf, or by using a dy-
namic service location service. The service location component (slp.py) is bootstrapped simil-
arly to dns; if a direct reference to a component isn't included in /etc/cobalt.conf, then it
is looked up in the component listed as "service-location".

Copy the sample cobalt.conf file into place, and change the hostname in the service location
component line to the one where cobalt components will run. Choose a secret password, and
place this in the password field of the communication section. Once all of this is done, the co-
balt component infrastructure is completely configured.

Cobalt Component Startup
Cobalt includes four components for resource management. Each of these components
provides a specific type of functionality.

Process Manager The process manager starts, manages, signals, and cleans
up parallel processes. On BG/L, its functionality is imple-
mented using the builtin process management system im-
plemented by IBM. The program is /usr/sbin/bgpm.py.
Bgpm requires several configuration parameters to be set in
/etc/cobalt.conf. These parameters control environ-
ment setup for jobs executed. Incorrect parameters can
cause process execution to fail on nodes. This process is
started by the cobalt init.d script.

Configuration file options are documented in the bgpm(8)
man page.

On clusters, the process manager uses MPD to start pro-
cesses. The component is called /usr/sbin/mpdpm.py
and is started by the sss-pm init script. Mpdpm doesn't cur-
rently take any configuration file parameters.

On Blue Gene/L, the mpirun command must work for users
on the host running bgpm.py. This is usually the service
node. In most cases, rsh/ssh must be reconfigured to allow
users to ssh from the service node to the service node.
(This allows the mpirun frontend to properly contact the
mpirun backend)

Service Location Protocol,
Queue Manager

The service location component tracks the locations of act-
ive systems in the component. It uses a heartbeat mechan-
ism to detect component failure or exit. It can be queried
with the slpstat command.
The queue manager handles all aspects of action aggrega-
tion related to jobs. For example, it uses the process man-
ager interfaces to run user jobs, as well as prologue and
epilogue scripts. It also handles job stdio handling on sys-
tems without a global shared filesystem.

Cqm is the cobalt implementation of the queue manager. It
is common to both BG/L and clusters, though it must be
configured slightly differently for each. It uses a number of
parameters in the /etc/cobalt.conf that control the be-
havior of jobs and which external systems are used. The

Installation

2

queue manager currently has support for file staging (for
machines without global shared filesystems), and basic
support for allocation management. This daemon is started
by the cobalt init.d script.

All configuration file options are documented in the cqm(8)
man page.

Scheduler The scheduler controls resource allocation for job execu-
tion. It tells the queue manager when and where to run jobs.
Due to differences in scheduling requirements, Blue Gene/L
systems and clusters require different schedulers.

Bgsched is the scheduler for Blue Gene/L systems. It in-
ternally tracks partition state and performs DB/2 queries to
ensure coherent partition usage in case of problems. Bg-
sched currently only accepts configuration options to control
database connection parameters. These options are docu-
mented in the bgsched(8) man page. It is started by the co-
balt init.d script.

Describe the cluster scheduler here.

Allocation Manager The allocation manager tracks users, their project member-
ships, and time allocations. It is used by the scheduler to
control resource allocation. A common allocation manager
is used on cluster systems and Blue Gene/L systems. It cur-
rently has no configuration file options, and isn't started up
by the cobalt init.d script yet.

Once each of these components is started, an entry will appear in the service location com-
ponent. This can be displayed with another call to /usr/sbin/slpstat.py.

Each component can also be queried with a component specific tool. For example, the queue
manager can be queried with the cqstat command. See the clients directory for other com-
mands that can connect to cobalt clients.

Basic Component Testing
Need to rewrite.

Installation

3

Chapter 2. Component Operations
During normal operations, a variety of messages are produced. This allows for most state to
be tracked through logs. All messages are logged to syslog facility LOG_LOCAL0, so ensure
that these messages are captured.

Job Execution
Job execution is the most common operation in cobalt. It is a procedure that requires several
components to work in concert. All jobs go through the same based steps:

Initial Job Queueing A request is sent to the queue manager describing a new job.
Aspects of this request are checked both on the server side,
and in cqsub, for better user error messages. Whenever a
job is created or changes state, appropriate events are emit-
ted. These events can be seen using the eminfo.py com-
mand. Any client that has subscribed to this sort of event will
receive a copy.

Job Scheduling The scheduler periodically pools the queue manager for new
jobs, and can also receive events as an asynchronous noti-
fication of queue activity. At these times, it connects to the
queue manager and fetches information about current jobs.
This process results in a set of idle partitions and idle jobs. If
both sets are non-empty, then the scheduler attempts to
place idle jobs on idle partitions. This cycle culmunates in the
execution of suitable jobs, if they can be scheduled.

Job Execution Once the queue manager gets a job-run command from the
queue manager, it can start the job on those specified re-
sources. At this point, the job state machine is activated. This
state machine can contain different steps depending on the
underlying architecture and which queue manager features
are enabled. For example, enabling allocation management
functionality causes jobs to run several extra job steps before
completion. These extra steps will not be discussed here; our
main focus is generic job execution.

Process Group Execution The queueing system spawns some number of parallel pro-
cesses for each job. The execution, management, and
cleanup of these processes is handled by the process man-
ager. It, like the queue manager, emits a number of events
as process groups execute.

Process Group Cleanup Parallel process management semantics are not unlike unix
process semantics. Processes can be started, signalled,
killed, and can exit of their own accord. Similar to unix pro-
cesses, process groups must be reaped once they have fin-
ished execution. At reap time, stdio and return codes are
available to the "parent" component.

Job Step Execution As the job executes, some number of process groups will be
executed. These will result in a number of cycles of the previ-
ous two steps. Note that process groups can be serial as

4

well, so steps like job prologue and epilogue are executed in
an identical fashion.

Job Completion Once all steps have completed, the job is finished. Cleanup
consists of logging a usage summary, job deletion from the
queue, and event emission. At this point, the job no longer
exists.

Scheduler Cleanup When the job no longer exists in the queue manager, the
scheduler flags it as exited and frees its execution location. It
then attempts to schedule idle jobs in this location.

Job Log Trace
The following is a set of example logs pertaining to a single job.

Jun 29 20:27:14 sn1 BGSched: Found new job 4719
Jun 29 20:27:14 sn1 BGSched: Scheduling job 4719 on partition R000_J108-32
Jun 29 20:27:14 sn1 cqm: Running job 4719 on R000_J108-32
Jun 29 20:27:14 sn1 cqm: running step SetBGKernel for job 4719
Jun 29 20:27:14 sn1 cqm: running step RunBGUserJob for job 4719
Jun 29 20:27:14 sn1 bgpm: ProcessGroup 84 Started on partition R000_J108-32. pid: 29368
Jun 29 20:27:16 sn1 bgpm: Running /bgl/BlueLight/ppcfloor/bglsys/bin/mpirun mpirun
-np 32 -partition R000_J108-32 -mode co
-cwd /bgl/home1/adiga/alumina/surface/slab_30/1x1/300K/zerok
-exe /home/adiga/alumina/surface/slab_30/1x1/300K/zerok/DLPOLY.X

Jun 29 21:05:28 sn1 bgpm: ProcessGroup 84 Finshed. pid 29368
Jun 29 21:05:28 sn1 cqm: user completed for job 4719
Jun 29 21:05:28 sn1 cqm: running step FinishUserPgrp for job 4719
Jun 29 21:05:29 sn1 bgpm: Got wait-process-group from 10.0.0.1
Jun 29 21:05:29 sn1 cqm: running step Finish for job 4719
Jun 29 21:05:29 sn1 cqm: Job 4719/adiga on 32 nodes done. queue:9.18s user:2294.08s
Jun 29 21:05:35 sn1 BGSched: Job 4719 gone from qm
Jun 29 21:05:35 sn1 BGSched: Freeing partition R000_J108-32
Jun 29 21:28:37 sn1 BGSched: Found new job 4720

In the event that this job ran out of time or was cqdelled, additional log messages would ap-
pear to that effect.

Data Persistence
Each of these components must store persistent data, for obvious reasons. Each of the com-
ponents present in cobalt store data using a common mechanism. These functions are imple-
mented in common code. Each component has some data that needs to be persistent. Period-
ically, each component marshalls this data down to a text stream (using Python's cPickle mod-
ule), and saves this data in a file in the directory /var/spool/sss. The filenames in this dir-
ectory correspond to the component implementation name. This is the name that appears in
syslog log messages (ie cqm, bgpm, BGSched).

This data can be manipulated from a python interpreter using the cddbg.py. This should not
be attempted unless you really know what you are doing.

Component Operations

5

Chapter 3. Component Specific Notes
This chapter describes component specific issues.

bgsched
bgsched keeps an internal representation of the partitions it has to schedule. These partitions
can be queried with the partadm.py command. These partitions must be manually defined.
By default, no partitions are definied. Partition definitions contain information including partition
name, size, dependencies (contained partitions), and a list of valid queues. Other information
is also tracked about partitions. An overall state is maintained (idle or busy). Note that partition
dependencies cannot contain nonexistant partitions; that is, if a partition is deleted, it must be
removed from any dependency lists it is in.

The standard operations of bgsched are fairly simple. The scheduler queries the queue man-
ager, compares the list of jobs it received with the list of jobs that it already knew about, and
appropriately deals with any discrepancies. When partitions are free and idle jobs are in the
queue, it attempts to schedule. When jobs disappear, the partition previously occupied by the
job is freed.

Potential Problems
Several sorts of problems can occur to cause problems with the scheduler. Some of its data is
maintained in other components or in the DB2 database for BG/L. Failures in this other soft-
ware can render the scheduler unable to function properly. In case of either failure, odds are
good that scheduling will be the least of your worries. There are error messages bgsched will
report upon connection failures.

6

Chapter 4. Troubleshooting

7

	Cobalt Manual
	Table of Contents
	Chapter 1. Installation
	Prerequisites
	Software Installation
	Configuring the Cobalt Component Infrastructure
	Cobalt Component Startup
	Basic Component Testing

	Chapter 2. Component Operations
	Job Execution
	Job Log Trace
	Data Persistence

	Chapter 3. Component Specific Notes
	bgsched
	Potential Problems

	Chapter 4. Troubleshooting

