
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

Cobalt: An Open Source Platform
for HPC System Software
Research

Edinburgh BG/L System Software
Workshop

Narayan Desai
Mathematics and Computer Science Division

Argonne National Laboratory
October 6, 2005

2

Cobalt Research Project

 Goal: Investigate advanced systems management for complex ultra-scale
architectures

 Strategy:
– Build an Open Source platform of parallel tools and components that

enable rapid experimentation and exploration of advanced features
 Architecture

– Components based on the SciDAC Scalable System Software project
• A collection of interacting components
• A communication and event system
• Well-defined interfaces between components

– Portable
• BG/L systems
• Linux and MacOSX Clusters

– Initial focus on reconfigurable user environments

3

Motivation

 Needed to support both computational and computer science users
 System software developers have different needs from computational

scientists
– System hangs are common, even desired
– A large variety of configurations are required, sometimes

simultaneously
– The “application” can span all software on a node

 System failures are more common during system software research and
development
– System software must deal gracefully with faults

 Most resource managers not suitable for system software research
environments

4

Resource, Job, and Queue Management

 Classic packages: OpenPBS, PBS Pro, Maui, LSF, LoadLeveller
 Shortcomings:

- Difficult (or impossible) to modify large monolithic systems
- Interfaces between components poorly documented

 Cobalt: smaller and simpler is better
– Cobalt guts admittedly feature-poor

• “RISC approach to resource and job management”
• ~4K lines of component code (mostly Python)
• ~1K lines of BG/L specific code

– However, its agility makes it the perfect research platform
• Rapid reconfiguration of components permits exploration of many

interlinked system management issues
• Porting and adapting code to new platforms and system models is

relatively easy
• Small codebase size makes the system easy to modify, when needed

– If you don't like a particular component implementation, write another one

5

Cobalt Architecture on Blue Gene

Scheduler

Queue Manager

Allocation Manager

Process Manager

mpirun

Bridge API

DB2

MMCS

CIODB

I/O Node
Kernel and Ramdisk

PVFS2 CIOD

CNKCNKCNKCNK

IBM

Cobalt

ZeptoOS

6

Cobalt on BlueGene/L

 Dynamic Kernel Selection
Combined with ZeptoOS, jobs
can use different I/O node
kernels and tuning parameters
This extremely important user-
level feature is ONLY available
via Cobalt

%man cqsub
cqsub - submit jobs to the queue

manager for execution

cqsub [-d] [-q queue] [-p project]
[-t time] [-n number of nodes] [-m
mode] [-c process count]
<executable> <options>

[…]
-k kernel profile
Run the job with the specified kernel

profile.

 Provides unique flexibility to explore new territory
 Testing and benchmarking of experimental kernels

 Application-dependent kernel tuning
 Required for system software research

Small partition support
Cobalt’s component-based design allowed rapid support for 32-
node partitions
Absolutely critical for application porting workshops
The most requested Cobalt feature for BG/L!

7

Submitting Jobs: cqsub

• 32 nodes

• 30 minutes

• virtual node mode

• 64 processes

• default queue

Other Options

• Output Prefix: -O <output path prefix>

• Kernel Profile: -k <profile>

• Environent Variables: -e “var1=val2:var2=val2”

• Working Directory: -C <path>

$ cqsub -n 32 -t 30 cpi
2702

$ cqsub -n 32 -c 64 -m vn -t 30 -q default cpi
2703

8

cqstat -f
JobID User WallTime Nodes State Location Mode Procs Queue StartTime
==
16674 cpsosa 03:40:00 1024 queued N/A co 1024 default N/A
16743 runesha 02:00:00 1024 queued N/A co 1024 default N/A
16941 linsay 24:00:00 128 running R000_J102-128 vn 256 default 10/03/05 11:59:05
16982 fischer 24:00:00 512 running ANL_R001 vn 1024 default 10/04/05 03:40:24

Job Status: cqstat

9

Killing Jobs: cqdel

cqsub -n 32 -c 1 -t 10 -k ZeptoOS-1.1 ./test
14
Cqstat
JobID User WallTime Nodes State Location
===
14 beckman 00:10:00 32 running UE_R001_32B

cqdel 14
 Deleted Jobs
JobID User
================
14 beckman

Combined with ZeptoOS, jobs can use different
I/O node kernels and tuning parameters

10

Partition Status: partlist

$ partlist
<Partition admin="online" name="R000_J102-32" queue="short" state="idle" />
<Partition admin="online" name="ANL_R001" queue="default" state="busy" />
<Partition admin="online" name="R000_J102-64" queue="short" state="idle" />
<Partition admin="online" name="R000_J106-64" queue="short" state="idle" />
<Partition admin="online" name="R000_J111-64" queue="short" state="idle" />
<Partition admin="online" name="R000_J115-64" queue="default" state="idle" />
<Partition admin="online" name="R000_J203-64" queue="default" state="idle" />
<Partition admin="online" name="R000_J207-64" queue="default" state="idle" />
<Partition admin="online" name="R000_J210-64" queue="default" state="idle" />
<Partition admin="online" name="R000_J214-64" queue="default" state="idle" />
<Partition admin="online" name="R000_J102-128" queue="default" state="busy" />
<Partition admin="online" name="R000_J111-128" queue="default" state="idle" />
<Partition admin="online" name="R000_J203-128" queue="default" state="idle" />
<Partition admin="online" name="R000_J210-128" queue="default" state="idle" />
<Partition admin="online" name="R000_J104-32" queue="short" state="idle" />
<Partition admin="online" name="R000_J106-32" queue="admin" state="idle" />

11

Scheduling

 Partitions are defined for scheduling purposes
– Includes size, queue, etc

 One partition definition per location for user jobs
– Partitions can overlap, but dependencies need to be definied

 The scheduler can effectively pack jobs onto the machine
 Greedy backfill is implemented
 Reservations
 Per-Queue policies

– default (fifo + backfill)
– short queue (< 30 minute jobs)
– easy to implement more

12

Dynamic Kernel Selection

 User-setup kernel profiles
– includes CNK, ION kernel, ION ramdisk, and loader

 Each partition configured with a partition specific boot location
 User jobs include a kernel profile

– with a default profile of “default”
 The partition specific boot location is a symlink
 Cobalt modifies this link during each job, once execution location has been

established
 The partition boots the specified kernel upon job startup

13

Active Development Areas

 Support for user specified ZeptoOS kernel and ramdisk options
 Direct process manager interface via the Bridge APIs (replacement for

mpirun interactions)
 Python bindings for the Bridge APIs

– Will allow easy implementation of BG/L specific management and
status scripts

 Scheduler improvements
– Multi-rack allocation policies
– More efficient backfill
– Investigate rule-based scheduling policies

 Explore coordination of ZeptoOS node startup and shutdown features
– Better user interface for system software development
– Perhaps remove the partition reboot requirement

 Improved installation process

14

Cobalt Code Status

 In production at Argonne since 08/2003
– on BG/L since 02/2005

 In production at NCAR since 05/2005
 Available at EPCC since Tuesday (10/2005)
 Under evaluation at several other sites
 Development process is open

– Suggestions and patches are both welcome
– NCAR has helped with both code and documentation improvements

 Available from http://www.mcs.anl.gov/cobalt

15

Cobalt Results

 Small codebase allows easy modifications
– Usability improvements
– New features (~3 minutes is the current record)
– Site-specific customizations
– Porting to new systems is quite easy

 Providing a uniform interface for clusters and BG/L systems
 Properly arbitrating between system software developers and

computational science users
– Allows on-the-fly system configuration changes
– Ensures that computational jobs get non-development versions of

system software
– Able to protect each user group from the other and its software

requirements
 Theraputic effect on sysadmin blood pressure

– System software small enough to be readily understood and modified

16

The End

 Questions?

http://www.mcs.anl.gov/cobalt

