MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2006 Lawrence Livermore National Laboratory. Under 00005 the terms of Contract B545069 with the University of Wisconsin -- 00006 Madison, Lawrence Livermore National Laboratory retains certain 00007 rights in this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2006) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 #ifndef MSQ_HEX_LAGRANGE_SHAPE_HPP 00028 #define MSQ_HEX_LAGRANGE_SHAPE_HPP 00029 00030 /** \file HexLagrangeShape.hpp 00031 * \brief Lagrange mapping funtion for a 27-node hex. 00032 * \author Nicholas Voshell 00033 */ 00034 00035 #include "MappingFunction.hpp" 00036 00037 namespace MBMesquite 00038 { 00039 00040 /**\brief Lagrange shape function for 27-node hexahedral elements 00041 * 00042 * This class implements the MappingFunction interface, providing 00043 * a Lagrange shape function for hexahedral elements. 00044 * 00045 * \f$\vec{x}(\xi,\eta) = \sum_{i=0}^{n-1} N_i(r, s, t) \vec{x_i}\f$ 00046 * 00047 * \f$N_a = l^2_b(r) l^2_c(s) l^2_d(t)\f$ 00048 * 00049 * \f$l^2_1(\xi) = (\xi - 1) (2 \xi - 1)\f$ 00050 * 00051 * \f$l^2_2(\xi) = 4 \xi (1 - \xi)\f$ 00052 * 00053 * \f$l^2_3(\xi) = \xi (2 \xi - 1)\f$ 00054 * 00055 * Mesquite / iTAPS / MBCN order 00056 * 00057 * \f$\begin{array}{cccc} 00058 * a & b & c & d \\ \hline 00059 * 0 & 1 & 1 & 1 \\ 00060 * 1 & 3 & 1 & 1 \\ 00061 * 2 & 3 & 3 & 1 \\ 00062 * 3 & 1 & 3 & 1 \\ 00063 * 4 & 1 & 1 & 3 \\ 00064 * 5 & 3 & 1 & 3 \\ 00065 * 6 & 3 & 3 & 3 \\ 00066 * 7 & 1 & 3 & 3 \\ 00067 * 8 & 2 & 1 & 1 \\ 00068 * 9 & 3 & 2 & 1 \\ 00069 * 10 & 2 & 3 & 1 \\ 00070 * 11 & 1 & 2 & 1 \\ 00071 * 12 & 1 & 1 & 2 \\ 00072 * 13 & 3 & 1 & 2 \\ 00073 * 14 & 3 & 3 & 2 \\ 00074 * 15 & 1 & 3 & 2 \\ 00075 * 16 & 2 & 1 & 3 \\ 00076 * 17 & 3 & 2 & 3 \\ 00077 * 18 & 2 & 3 & 3 \\ 00078 * 19 & 1 & 2 & 3 \\ 00079 * 20 & 2 & 1 & 2 \\ 00080 * 21 & 3 & 2 & 2 \\ 00081 * 22 & 2 & 3 & 2 \\ 00082 * 23 & 1 & 2 & 2 \\ 00083 * 24 & 2 & 2 & 1 \\ 00084 * 25 & 2 & 2 & 3 \\ 00085 * 26 & 2 & 2 & 2 \end{array}\f$ 00086 * 00087 * MBCN ORDER 00088 * 00089 * 7 - 18- 6 00090 * / / 00091 * 19 25 17 00092 * / / 00093 * 4 - 16- 6 00094 * 00095 * 15- 22- 14 00096 * / / 00097 * 23 26 21 00098 * / / 00099 * 12- 20- 13 00100 * 00101 * 3 - 10- 2 00102 * / / 00103 * 11 24 9 t s 00104 * / / |/ 00105 * 0 - 8 - 1 +-r 00106 */ 00107 class MESQUITE_EXPORT HexLagrangeShape : public MappingFunction3D 00108 { 00109 public: 00110 virtual EntityTopology element_topology() const; 00111 00112 virtual int num_nodes() const; 00113 00114 virtual void coefficients( Sample location, 00115 NodeSet nodeset, 00116 double* coeff_out, 00117 size_t* indices_out, 00118 size_t& num_coeff_out, 00119 MsqError& err ) const; 00120 00121 virtual void derivatives( Sample location, 00122 NodeSet nodeset, 00123 size_t* vertex_indices_out, 00124 MsqVector< 3 >* d_coeff_d_xi_out, 00125 size_t& num_vtx, 00126 MsqError& err ) const; 00127 00128 virtual void ideal( Sample location, MsqMatrix< 3, 3 >& jacobian_out, MsqError& err ) const; 00129 }; 00130 00131 } // namespace MBMesquite 00132 00133 #endif