MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2006 Lawrence Livermore National Laboratory. Under 00005 the terms of Contract B545069 with the University of Wisconsin -- 00006 Madison, Lawrence Livermore National Laboratory retains certain 00007 rights in this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2006) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 #ifndef MSQ_LINEAR_HEXAHEDRON_HPP 00028 #define MSQ_LINEAR_HEXAHEDRON_HPP 00029 00030 #include "Mesquite.hpp" 00031 #include "MappingFunction.hpp" 00032 00033 namespace MBMesquite 00034 { 00035 00036 /**\brief Linear mapping function for a hexahedral element 00037 * 00038 * This class implements the MappingFunction interface, providing 00039 * a Linear shape function for hexahedral elements. 00040 * 00041 * \f$\vec{x}(\xi,\eta,\zeta) = \sum_{i=0}^{7} N_i(\xi,\eta,\zeta) \vec{x_i}\f$ 00042 * 00043 * \f$N_0(\xi,\eta,\zeta) = (1-\xi)(1-\eta)(1-\zeta)\f$ 00044 * 00045 * \f$N_1(\xi,\eta,\zeta) = \xi (1-\eta)(1-\zeta)\f$ 00046 * 00047 * \f$N_2(\xi,\eta,\zeta) = \xi \eta (1-\zeta)\f$ 00048 * 00049 * \f$N_3(\xi,\eta,\zeta) = (1-\xi) \eta (1-\zeta)\f$ 00050 * 00051 * \f$N_4(\xi,\eta,\zeta) = (1-\xi)(1-\eta) \zeta \f$ 00052 * 00053 * \f$N_5(\xi,\eta,\zeta) = \xi (1-\eta) \zeta \f$ 00054 * 00055 * \f$N_6(\xi,\eta,\zeta) = \xi \eta \zeta \f$ 00056 * 00057 * \f$N_7(\xi,\eta,\zeta) = (1-\xi) \eta \zeta \f$ 00058 * 00059 */ 00060 class MESQUITE_EXPORT LinearHexahedron : public MappingFunction3D 00061 { 00062 public: 00063 virtual EntityTopology element_topology() const; 00064 00065 virtual int num_nodes() const; 00066 00067 virtual void coefficients( Sample location, 00068 NodeSet nodeset, 00069 double* coeff_out, 00070 size_t* indices_out, 00071 size_t& num_coeff_out, 00072 MsqError& err ) const; 00073 00074 virtual void derivatives( Sample location, 00075 NodeSet nodeset, 00076 size_t* vertex_indices_out, 00077 MsqVector< 3 >* d_coeff_d_xi_out, 00078 size_t& num_vtx, 00079 MsqError& err ) const; 00080 00081 virtual void ideal( Sample location, MsqMatrix< 3, 3 >& jacobian_out, MsqError& err ) const; 00082 }; 00083 00084 } // namespace MBMesquite 00085 00086 #endif