
0.1 EntitySequence & SequenceData

The SequenceData class manages as set of arrays of per-entity values. Each
SequenceData has a start and end handle denoting the block of entities for which
the arrays contain data. The arrays managed by a SequenceData instance are
divided into three groups:

• Type-specific data (connectivity, coordinates, etc.): zero or more arrays.

• Adjacency data: zero or one array.

• Dense tag data: zero or more arrays.

The abstract EntitySequence class is a non-strict subset of a SequenceData.
It contains a pointer to a SequenceData and the start and end handles to indi-
cate the subset of the referenced SequenceData. The EntitySequence class is
used to represent the regions of valid (or allocated) handles in a SequenceData.
A SequenceData is expected to be referenced by one or more EntitySequence
instances.

Initial EntitySequence and SequenceData pairs are typically created in one
of two configurations. When reading from a file, a SequenceData will be created
to represent all of a single type of entity contained in a file. As all entries in the
SequenceData correspond to valid handles (entities read from the file) a single
EntitySequence instance corresponding to the entire SequenceData is initially
created. The second configuration arises when allocating a single entity. If no
entities have been allocated yet, a new SequenceData must be created to store
the entity data. It is created with a constant size (e.g. 4k entities). The new
EntitySequence corresponds to only the first entity in the SequenceData: the
one allocated entity. As subsequent entities are allocated, the EntitySequence
is extended to cover more of the corresponding SequenceData.

Concrete subclasses of the EntitySequence class are responsible for rep-
resenting specific types of entities using the array storage provided by the
SequenceData class. They also handle allocating SequenceData instances with
appropriate arrays for storing a particular type of entity. Each concrete subclass
typically provides two constructors corresponding to the two initial allocation
configurations described in the previous paragraph. EntitySequence imple-
mentations also provide a split method, which is a type of factory method. It
modifies the called sequence and creates a new sequence such that the range of
entities represented by the original sequence is split.

The VertexSequence class provides an EntitySequence for storing ver-
tex data. It references a SequenceData containing three arrays of doubles
for storing the blocked vertex coordinate data. The ElementSequence class
extends the EntitySequence interface with element-specific functionality. The
UnstructuredElemSeq class is the concrete implementation of ElementSequence
used to represent unstructured elements, polygons, and polyhedra. MeshSetSequence
is the EntitySequence used for storing entity sets.

1



Each EntitySequence implementation also provides an implementation of
the values per entity method. This value is used to determine if an exist-
ing SequenceData that has available entities is suitable for storing a particular
entity. For example, UnstructuredElemSeq returns the number of nodes per el-
ement from values per entity. When allocating a new element with a specific
number of nodes, this value is used to determine if that element may be stored
in a specific SequenceData. For vertices, this value is always zero. This could
be changed to the number of coordinates per vertex, allowing representation of
mixed-dimension data. However, API changes would be required to utilize such
a feature. Sequences for which the corresponding data cannot be used to store
new entities (e.g. structured mesh discussed in a later section) will return -1 or
some other invalid value.

0.2 TypeSequenceManager & SequenceManager

The TypeSequenceManager class maintains an organized set of EntitySequence
instances and corresponding SequenceData instances. It is used to manage all
such instances for entities of a single MBEntityType. TypeSequenceManager
enforces the following four rules on its contained data:

1. No two SequenceData instances may overlap.

2. No two EntitySequence instances may overlap.

3. Every EntitySequence must be a subset of a SequenceData.

4. Any pair of EntitySequence instances referencing the same SequenceData
must be separated by at least one unallocated handle.

The first three rules are required for the validity of the data model. The
fourth rule avoids unnecessary inefficiency. It is implemented by merging such
adjacent sequences. In some cases, other classes (e.g. SequenceManager) can
modify an EntitySequence such that the fourth rule is violated. In such cases,
the TypeSequenceManager::notify prepended or TypeSequenceManager::notify appended
method must be called to maintain the integrity of the data1. The above rules
(including the fourth) are assumed in many other methods of the TypeSequenceManager
class, such that those methods will fail or behave unexpectedly if the managed
data does not conform to the rules.

TypeSequenceManager contains three principal data structures. The first is
a std::set of EntitySequence pointers sorted using a custom comparison op-
erator that queries the start and end handles of the referenced sequences. The
comparison operation is defined as: a->end_handle() < b->start_handle().
This method of comparison has the advantage that a sequence corresponding to
a specific handle can be located by searching the set for a “sequence” beginning

1This source of potential error can be eliminated with changes to the entity set represen-
tation. This is discussed in a later section.

2



and ending with the search value. The lower bound and find methods pro-
vided by the library are guaranteed to return the sequence, if it exists. Using
such a comparison operator will result in undefined behavior if the set contains
overlapping sequences. This is acceptable, as rule two above prohibits such
a configuration. However, some care must be taken in writing and modifying
methods in TypeSequenceManager so as to avoid having overlapping sequences
as a transitory state of some operation.

The second important data member of TypeSequenceManager is a pointer
to the last referenced EntitySequence. This “cached” value is used to speed up
searches by entity handle. This pointer is never null unless the sequence is empty.
This rule is maintained to avoid unnecessary branches in fast query paths. In
cases where the last referenced sequence is deleted, TypeSequenceManager will
typically assign an arbitrary sequence (e.g. the first one) to the last referenced
pointer.

The third data member of TypeSequenceManager is a std::set of SequenceData
instances that are not completely covered by a EntitySequence instance2.
This list is searched when allocating new handles. TypeSequenceManager also
embeds in each SequenceData instance a reference to the first corresponding
EntitySequence so that it may be located quickly from only the SequenceData
pointer.

The SequenceManager class contains an array of TypeSequenceManager
instances, one for each MBEntityType. It also provides all type-specific op-
erations such as allocating the correct EntitySequence subtype for a given
MBEntityType.

0.3 Structured Mesh

Structured mesh storage is implemented using subclasses of SequenceData:
ScdElementData and ScdVertexData. The StructuredElementSeq class is
used to access the structured element connectivity. A standard VertexSequence
instance is used to access the ScdVertexData because the vertex data storage
is the same as for unstructured mesh.

0.4 MeshSetSequence

The representation of mesh sets within a MeshSetSequence results in significant
complication of the code for working with the data model described in this
document. Much common code for allocating handles, sequences, etc. could
be moved from type-specific functions in SequenceManager to general purpose
methods in TypeSequenceManager, where such general purpose methods would
rely on factory/clone methods provided by EntitySequence implementations
to handle tasks such as creating new sequences or new data instances. However,

2Given rule four for the data managed by a TypeSequenceManager, any SequenceData for
which all handles are allocated will be referenced by exactly one EntitySequence.

3



the current entity set representation requires that the MeshSetSequence know
the type of any mesh sets (vector vs. range) when the corresponding handle is
allocated. This necessitates an separate code path for entity sets for all handle
allocation tasks. A new representation for entity sets that utilized a common,
simple data structure as opposed to the current std::vector and MBRange
storage mechanisms could defer the handling of the set type until a later time
(after handle allocation), eliminating the special handling of entity sets during
handle allocation.

4


