
pARMS: A Package for the Parallel Iterative Solution of

General Large Sparse Linear System ∗

Reference Manual

November 10, 2010

1 Introduction

This reference manual is a supplementary material to the user’s guide, and aims to introduce
first-time or “basic” users to some of the features of the pARMS package. Please contact do-
sei@cs.umn.edu or saad@cs.umn.edu for more details.

This manual will mainly highlight functions users will need to call. Functions that are
defined as part of the package, but used mainly internally will not be included here. The main
areas covered are the parms mem.h file reference, and the parms comm, parms map, parms mat,
parms pc, parms operator, parms solver object structs.

In what follows, depending on the version of pARMS compiled (i.e. real (with -DDBL flag)
or complex (with -DDBL CMPLX flag)) the type FLOAT will either represent a double - for the
real case, or a complex double - for the complex case. The type REAL represents a real floating
point number.

2 Memory

2.1 parms mem.h File Reference:

This file contains function definitions that allow for efficient memory control for the pARMS
package.

2.2 Function Details

• PARMS ALLOC(n)
This is used for allocating n bytes, which is useful for reducing the number of calls to the
malloc functions, by combining multiple malloc calls together.

• PARMS FREE(p)
Free the memory allocated for some object p. Here, p could be a simple vector array or a
pARMS struct object.

• PARMS NEWARRAY(p, n)
Allocate memory for an array p, of size n bytes. Here, p could be defined as an array of
integer or real entries for instance (eg. int *p)

∗This work was supported in part by NSF under grant NSF/ACI-0305120, and in part by the Minnesota Super-
computing Institute

1

• PARMS NEWARRAY0(p, n)
Allocate memory for an array p, of size n bytes and initialize entries to zero.

• PARMS NEW(p)
Allocate memory for a pARMS struct object p. p could be for instance, a matrix object -
parms mat.

• PARMS NEW0(p)
Allocate memory for a pARMS struct object p, and initialize to zero

• PARMS RESIZE(p, size)
Changes the size of an allocated memory referenced by p.

3 pARMS Communication Object

3.1 parms comm.h File Reference:

The pARMS communication handler is used to facilitate the efficient computation of the matrix-
vector product. Most of these functions will likely never be called directly by the user, but have
been included here to reference purposes.

3.2 Function Details

• int parms CommCreate(parms Comm *comm, MPI Comm mpicomm)
Create a pARMS communication object.

• int parms CommDataBegin(parms Comm comm, void *data, int offset)
Exchange data for the matrix-vector product. This function exchanges the interface variables.
The parameter offset indicates the distance between the start of the data to be exchanged,
and the start of the local vector. This is useful for Schur complement based preconditioners
since the data parameter is only the interface part of the local vector, rather than the entire
local vector.

• int parms CommDataEnd(parms Comm comm)
Wait for all messages after data is sent to a recieve buffer. After calling this function, you
may use the data in the recieve buffer safely.

• int parms CommFree(parms Comm *comm)
Free memory allocation for parms Comm object.

• int parms CommGetNumRecv(parms Comm comm)
Get the total number of variables recieved.

• int parms CommGetNumSend(parms Comm comm)
Get the total number of variables sent.

• int parms CommGetRecvBuf(parms Comm comm, FLOAT **rbuf)
Get the receive buffer.

• int parms CommView(parms Comm comm, parms Viewer v)
Dump the communication handler, comm, to a file prescribed by the pARMS viewer object
v.

2

4 pARMS Map Object

4.1 parms Map.h File Reference

The parms Map object represents how data are distributed across processors. It is the most
important object in pARMS. All other types of objects are created based on it. Users must make
sure the routines used for creating a parms Map object are consistent with the graph partitioning
routines creating a parms Map object.

4.2 Function Details

• int parms MapCreateFromDist(parms Map *map, int *vtxdist, int *part, MPI Comm
mpicomm, int offset, int dof, VARSTYPE vtype)
Create a parms Map object based on the output from a parallel graph partitioner. Here, we
assume ParMetis is used.

– vtxdist: An integer array of size nproc + 1, where nproc is the number of processors.
It indicates the range of vertices that are local to each processor (i.e. processor i stores
vertices in the range of (vtxdist[i], vtxdist[i + 1]).)

– part: An integer array of size equal to the number of locally stored vertices. part[j]
indicates the processor id to which the vertex with local index j and global index
vtxdist[pid] + j belongs to (where pid is the processor id).

– offset: This refers to the C or FORTRAN array start index - 1 for FORTRAN and 0
for C.

– dof: This is the number of variables associated with each vertex.

– vtype: This refers to the ordering of the variables. Assuming the variables ui and vi
are associated with the vertex i, two styles of numbering could be used as follows:

1. INTERLACED: Variables are ordered as u1, v1, u2, v2, ...

2. NONINTERLACED: Variables are ordered as u1, u2, u3, ..., v1, v2, v3, ...

• int parms MapCreateFromGlobal(parms Map *map, int gsize, int *npar, MPI Comm
mpicomm, int offset, int dof, VARSTYPE vtype)
Create a parms Map object based on the partitioning results of a serial graph partitioner.
Here we assume Metis is used.

– gsize: The total number of vertices (or global size)

– npar: An integer array of size gsize. Node i resides on processor npar[i].

– offset: This refers to the C or FORTRAN array start index - 1 for FORTRAN and 0
for C.

– dof: This is the number of variables associated with each vertex.

– vtype: This refers to the ordering of the variables. Assuming the variables ui and vi
are associated with the vertex i, two styles of numbering could be used as follows:

1. INTERLACED: Variables are ordered as u1, v1, u2, v2, ...

2. NONINTERLACED: Variables are ordered as u1, u2, u3, ..., v1, v2, v3, ...

• int parms MapCreateFromLocal(parms Map *map, int size, int offset)
Create a parms Map object directly the on the local processor. This is ideal for applications
where, say a grid is defined locally. Hence the local variables already reside on the local
processor.

– size: The total number of unknowns on the local processor

3

– offset: This refers to the C or FORTRAN array start index - 1 for FORTRAN and 0
for C.

• int parms MapCreateFromPetsc(parms Map *map, int m, int M, MPI Comm
mpicomm)
Create a parms Map object based on the default partitioning strategy in PETSc.

– m: The local size of variables

– M: The global size of variables.

• int parms MapCreateFromPtr(parms Map *map, int gsize, int *nodes, int *p2nodes,
MPI Comm mpicomm, int dof, VARSTYPE vtype)
Create a parms Map object based on the partitioning results of a general (or user defined)
graph partitioning strategy such as DSE.

– gsize: The total number of vertices (or global size)

– nodes: An array of size gsize, containing a list of all vertices stored processor by
processor.

– p2nodes: An integer array of size nproc+1. If k1 = p2nodes[i] and k2 = p2nodes[i+1],
then processor i contains the vertices in the range of (nodes[k1], nodes[k2]).

– dof: This is the number of variables associated with each vertex.

– vtype: This refers to the ordering of the variables. Assuming the variables ui and vi
are associated with the vertex i, two styles of numbering could be used as follows:

1. INTERLACED: Variables are ordered as u1, v1, u2, v2, ...

2. NONINTERLACED: Variables are ordered as u1, u2, u3, ..., v1, v2, v3, ...

• int parms MapFree(parms Map *map)
Free the pARMS map object, map.

• int parms MapGetGlobalSize(parms Map map)
Get the global size of variables.

• int parms MapLocalSize(parms Map map)
Get the local size of variables.

• int parms MapGetNumProcs(parms Map map)
Get the number of processors.

• int parms MapGetPid(parms Map map)
Get the processor id.

• int parms MapGetGlobalIndices(parms Map map, int *lvars)
Get the global indices for the local variables residing on this processor. On return, the vector
lvars contain the global indices of the variables on this processor.

• int *parms MapFree(parms Map map, int gindex)
Returns a pointer to the local index for a given global index gindex. If NULL, then the
variable with global index gindex does not reside on the local processor.

• int parms MapView(parms Map map, parms Viewer v)
Dump the pARMS map object to a file prescribed by the pARMS viewer object v.

4

5 pARMS Mat Object

5.1 parms mat.h File Reference:

The parms mat object defines a serial or distributed matrix in CSR storage format. During the
setup phase for the distributed matrix, the local sub-matrix is reordered so that interior (or inde-
pendent) variables are labeled first, followed by the interface variables.

5.2 Function Details

• int parms MatCreate(parms Mat *mat, parms Map map)
Create a pARMS mat object based on data distribution layout map.

• int parms MatFree(parms Mat *mat)
Free memory allocation for pARMS mat object.

• int parms MatGetDiag(parms Mat mat, void **mat)
Get the diagonal part of the local matrix. On return, mat contains the diagonal part of the
local matrix.

• int parms MatMVPY(parms Mat mat, FLOAT alpha, FLOAT *x, FLOAT beta,
FLOAT y, FLOAT, z)
Perform z = alpha ×mat × x + beta × y, where alpha and beta are scalars, and x, y and z
are vectors.

• int parms MatSetCommType(parms Mat mat, COMMTYPE ctype)
Set the communication style across processors. The communication styles associated with
the variable ctype are:

– P2P: point-to-point (data copied to or from auxilliary buffers).

– DERIVED: derived datatype

• int parms MatSetValues(parms Mat mat, int m, int *im, int *ia, int *ja, FLOAT
*values, INSERTMODE mode)
Insert or add values to the parms Mat object, mat. Here, we assume the entries are given in
CSR format (ia, ja, values):

– m: The number of rows to be inserted

– im: An array of size m containing the global indices of the rows to be inserted

– ia: An array pointer of size m + 1, pointing to the beginning of each row in array ja

– ja: An array of global column indices

– values: An array of values to be inserted

– mode: The insert mode. One of two choices:

∗ INSERT: Insert values into the parms Mat object

∗ ADD: Add values to the parms Mat object

• int parms MatSetElementMatrix(parms Mat mat, int m, int *im, int *ia, int *ja,
FLOAT *values, INSERTMODE mode)
Insert or add values to the parms Mat object, mat. This assumes the values are being set
or added element-by-element. Hence this is suitable for applications where one loops over
domain elements to set the matrix values (such as a finite element application). A call to
parms MatAssembleElementMatrix() is required to complete the matrix once all entries have
been added. We assume the entries are given in CSR format (ia, ja, values):

5

– m: The number of rows to be inserted

– im: An array of size m containing the global indices of the rows to be inserted

– ia: An array pointer of size m + 1, pointing to the beginning of each row in array ja

– ja: An array of global column indices

– values: An array of values to be inserted

– mode: The insert mode. One of two choices:

∗ INSERT: Insert values into the parms Mat object

∗ ADD: Add values to the parms Mat object

• int parms MatAssembleElementMatrix(parms Mat mat)
Assembles the (finite) element matrix and updates off-processor contributions.

• int parms MatResetRowValues(parms Mat mat, int m, int *im, int *ia, int *ja,
FLOAT *values)
Insert values to the parms Mat object, mat. This assumes the matrix values for this row have
already been set, and are to be replaced by new ones provided as input. Here, we assume
the entries are given in CSR format (ia, ja, values):

– m: The number of rows to be inserted

– im: An array of size m containing the global indices of the rows to be inserted

– ia: An array pointer of size m + 1, pointing to the beginning of each row in array ja

– ja: An array of global column indices

– values: An array of values to be inserted

• int parms MatReset(parms Mat mat, NNZSTRUCT nonzerostructure)
Reset the parms Mat object, mat, to be re-used.

– m: The number of rows to be inserted

– im: An array of size m containing the global indices of the rows to be inserted

– ia: An array pointer of size m + 1, pointing to the beginning of each row in array ja

– ja: An array of global column indices

– values: An array of values to be inserted

– nonzerostructure: The nonzero pattern to use. One of two choices:

∗ DIFFERENT NONZERO STRUCTURE: Resets the matrix object to receive
data using a different nonzero structure from before

∗ SAME NONZERO STRUCTURE: Resets the matrix object to receive data
using the same nonzero structure as before

• int parms MatSetup(parms Mat mat)
Setup the pARMS matrix object mat. This is the most important function for the parms Mat
object. It sets up the data structure needed for the distributed matrix-vector multiplication
by dividing the local variables into two categories: interior, and interface variables.

• int parms MatVec(parms Mat mat, FLOAT *x, FLOAT *y
Perform y = mat× x, where x and y are vectors.

• int parms MatView(parms Mat mat, parms Viewer v)
Dump the parms Matrix object to a file prescribed by the pARMS viewer object v.

6

6 pARMS Operator Object

6.1 parms Operator.h File Reference:

The parms Operator struct defines the different ilu-based local preconditioners included in the
package (ILU0, ILU(k), ILUT, Symmetric ARMS, and ARMS-ddPQ (non-symmetric)). These
functions are typically not called directly by the user, but could come in handy if one would like
to define one’s own operator.

6.2 Function Details

• int parms OperatorApply(parms Operator M, FLOAT *y, FLOAT *x)
Perform x = M−1y, where x and y are the solution and right-hand-side vectors respectively.
Assuming M = LU , this function solves LUx = y.

• int parms OperatorAscend(parms Operator M, FLOAT *y, FLOAT *x)
Assuming M = LU , this function performs the backward solve Ux = y, where x and y are
the solution and right-hand-side vectors respectively.

• int parms OperatorCreate(parms Operator *M)
Create an Operator object.

• int parms OperatorFree(parms Operator *M)
Free memory for the parms Operator object.

• int parms OperatorGetNnz(parms Operator M, int *nnz mat, int *nnz pc)
Get number of non-zeros in the original matrix, nnz mat, and the preconditioned matrix,
nnz pc. Note: nnz mat and nnz pc are actually pointers to the number of non-zeros in the
original matrix and the preconditioned matrix respectively.

• int parms OperatorGetSchurPos(parms Operator M)
Get the start position of the Schur complement in the local matrix.

• int parms OperatorInvS(parms Operator M, FLOAT *y, FLOAT *x)
Perform the Schur complement solve. Assume

M =

(
L 0

EU−1 I

)(
U L−1F
0 S

)
,

then this function solves Sx = y, for some solution vector x, and rhs vector y.

• int parms OperatorLsol(parms Operator M, FLOAT *y, FLOAT *x)
Assuming M = LU , this function performs the forward solve Lx = y, where x and y are the
solution and right-hand-side vectors respectively.

• int parms OperatorView(parms Operator M, parms Viewer v)
Output the L and U parts of the parms Operator to a file prescribed by the pARMS viewer
object v.

7 pARMS Preconditioner Object

7.1 parms pc.h File Reference:

Preconditioner related functions for the pARMS solver package. There are three main global
preconditioners included in the package: Block Jacobi, Restricted Additive Schwarz, and Schur
complement. Each of these global preconditioners utilize one of five different local preconditioners
(operators) for the linear solve. They are: ILU0, ILU(k), ILUT, Standard (symmetric) ARMS,
and Non-symmetric ARMS (ARMS-ddPQ).

7

7.2 Function Details

• int parms PCCreate(parms PC *pc, parms Mat mat)
Create a preconditioner object based on the matrix mat

• int parms PCCreateAbstract(parms PC *pc)
Create an abstract preconditioner object. This may be useful for creating one’s own global
preconditioner

• int parms PCFree(parms PC *pc)
Free memory for the preconditioner object

• int parms PCGetName(parms PC pc, char **name)
Return the name of the preconditioner

• int parms PCGetRatio(parms PC pc, double *ratio)
Get the ratio of the number of non-zero entries of the preconditioner, to that of the original
matrix. On return, ratio points to this value.

• int parms PCILUGetName(parms PC pc, char **iluname)
Return the name of the local ilu-based preconditioner

• int parms PCSetBsize(parms PC pc, int bsize)
Set the size of the B block for the ARMS reordering of the matrix

A =

(
B F
E C

)
.

• int parms PCSetFill(parms PC pc, int *fill)
Set the fill-in parameter for ILUT, ILUK and ARMS. Here, fill is an array of size 7. Let

A =

(
B F
E C

)
≈

(
LB 0

EU−1
B I

)(
UB L−1

B F
0 S

)
= M,

then during the factorization, the entries in fill are used as follows:

– fill[0] - amount of fill-in kept in LB

– fill[1] - amount of fill-in kept in UB

– fill[2] - amount of fill-in kept in EU−1
B

– fill[3] - amount of fill-in kept in L−1
B F

– fill[4] - amount of fill-in kept in the formation of S

– fill[5] - amount of fill-in kept in the L part of the factorization of S, LS

– fill[6] - amount of fill-in kept in the U part of the factorization of S, US

If the local preconditioner is ILUT or ILUK, then the level of fill parameter for these pre-
conditioners will take the value of fill[0].

• int parms PCILUSetType(parms PC pc, PCILUTYPE pctype)
Set the local preconditioner type:

– PCILU0: ILU0 preconditioner

– PCILUK: ILU(k) preconditioner

– PCILUT: ILUT preconditioner

– PCARMS: ARMS preconditioner

8

For the ARMS preconditioner, one can use either the symmetric ARMS or the non-symmetric
variant (ARMS-ddPQ) by setting the permutation type. See parms PCSetPermType(...).

• int parms PCSetInnerEps(parms PC pc, REAL eps)
Set the convergence tolerance, eps, for the inner GMRES solve, when the Schur (global)
preconditioner is used.

• int parms PCSetInnerKSize(parms PC pc, int im)
Set the restart size, im, for the inner GMRES solve, when the Schur (global) preconditioner
is used.

• int parms PCSetInnerMaxits(parms PC pc, int imax)
Set the maximum iteration count, imax, for the inner GMRES solve, when the Schur (global)
preconditioner is used.

• int parms PCSetNlevels(parms PC pc, int nlevel)
Set the number of levels for ILUK and ARMS.

• int parms PCSetOP(parms PC pc, parms Mat mat)
Set the matrix to be used to create the preconditioning matrix. The preconditioner will be
built from the matrix mat.

• int parms PCSetParams(parms PC pc, int nflags, char **params)
Set the parameters for the preconditioner object. Ideal for setting parameters collectively.
Supported parameters are:

– tol: the drop tolerance

– fil: the fill-in

– nlev: the number of levels

– bsize: the block size for finding independent sets in ARMS

– tolind: the drop tolerance for finding independent sets

– iksize: the restart size for the inner GMRES

– imax: the number of iterations for the inner GMRES

The argument nflags is the number of parameters to be set. The argument params is a
pointer to an array pointer of characters containing the parameter name, followed by the
value to be set. Thus, say we wish to set the restart dimension for the inner GMRES to
10, and the number of iterations for the inner GMRES to 20, then params could take the
form: char *params = {‘iksize’,‘10’,‘imax’,‘20’}. We can then call parms PCSetParams(pc,
2, ¶ms) to set these parameter values for the preconditioner. Alternatively, we could
also call the parms PCSetInnerKSize(...) and the parms PCSetInnerMaxits(...) to set these
parameters individually.

• int parms PCSetPermScalOptions(parms PC pc, int *meth, int flag)
Set the permutation and scaling options for the interlevel blocks (when the ARMS local
preconditioner is used). The argument meth is an array pointer of size 4, which takes values
of 0 or 1, with the following meaning:

– meth[0]: non-symmetric row permutation - (1 = yes, and 0 = no)

– meth[1]: column permutations (eg. ILUTP instead of ILUT) - (1 = yes, and 0 = no)

– meth[2]: diagonal row scaling - (1 = yes, and 0 = no)

– meth[3]: diagonal column scaling - (1 = yes, and 0 = no)

9

The argument flag indicates the level for which to set these parameters: flag = 0 indicates
that these options will be set for the last level block only; flag = 1 indicates that they will
be set for the intermediate level blocks only.

NOTE: Currently meth[1] is only used at the last level block, for the flag = 1, the value of
meth[1] does not matter.

• int parms PCSetPermType(parms PC pc, int type)
Set the type of permutation for ARMS: type = 0 implies standard symmetric ARMS, and
type = 1 implies non-symmetric ARMS (ARMS-ddPQ).

• int parms PCSetTol(parms PC pc, double *tol)
Set the drop tolerance for ILUT and ARMS. Here, tol is an array of size 7. Let

A =

(
B F
E C

)
≈

(
LB 0

EU−1
B I

)(
UB L−1

B F
0 S

)
= M,

then during the factorization, the entries in tol are used as follows:

– tol[0] - threshold for dropping in LB

– tol[1] - threshold for dropping in UB

– tol[2] - threshold for dropping in EU−1
B

– tol[3] - threshold for dropping in L−1
B F

– tol[4] - threshold for dropping in the formation of S

– tol[5] - threshold for dropping in the L part of the factorization of S, LS

– tol[6] - threshold for dropping in the U part of the factorization of S, US

If the local preconditioner is ILUT, then the drop tolerance parameter for this preconditioner
will take the value of tol[0].

• int parms PCSetTolInd(parms PC pc, REAL tolind)
Set the tolerance for finding independent sets (for ARMS).

• int parms PCSetType(parms PC pc, PCTYPE pctype)
Set the (global) preconditioner type, pctype. Currently supported preconditioners are: PCBJ
- block Jacobi; PCRAS - restricted additive Schwarz; and PCSCHUR - Schur complement.

• int parms PCSetup(parms PC pc)
Setup the preconditioner - create the preconditioning matrix.

• int parms PCSolve(parms PC pc, FLOAT *y, FLOAT *x)
Perform the (global) preconditioner solve Mx = y, for some preconditioner M , solution
vector x, and rhs vector y.

• int parms PCView(parms PC pc, parms Viewer v)
Dump the preconditioner object to a file prescribed by the pARMS viewer object v.

8 pARMS Solver Object

8.1 parms Solver.h File Reference:

Functions related to the Krylov subspace methods. Currently, only GMRES and FGMRES (de-
fault) are supported.

10

8.2 Function Details

• int parms SolverApply(parms Solver solver, FLOAT *x, FLOAT *y)
Solve the equation Ax = y, for some matrix A, solution vector x, and rhs vector y.

• int parms SolverCreate(parms Solver *solver, parms Mat mat, parms PC pc)
Create a pARMS solver object.

• int parms SolverFree(parms Solver *solver)
Free memory allocation for the pARMS solver object.

• int parms SolverGetIts(parms Solver solver)
Get the iteration count.

• int parms SolverGetMat(parms Solver solver, parms Mat *mat)
Get the matrix of the linear system. On return, a pointer to the matrix mat is returned.

• int parms SolverGetPC(parms Solver solver, parms PC *pc)
Get the preconditioning matrix. On return, a pointer to the preconditioner pc is returned.

• int parms SolverGetResidual(parms Solver solver, FLOAT *y, FLOAT *x, FLOAT
*rvec) Get the residual vector. Here, x is the solution vector, y is the right hand side vector,
and rvec is the computed residual vector to be returned.

• int parms SolverGetResidualNorm(parms Solver solver, FLOAT *y, FLOAT *x,
REAL *rnorm) Get the 2-norm of the residual. Here, x is the solution vector, y is the
right hand side vector, and rnorm is a pointer to the computed residual norm to be returned.
Note that we assume that the residual has not been pre-computed. If the residual vector is
already known, then we may simply call parms VecGetNorm2(...) to compute the norm (or
use the BLAS routines).

• int parms SolverSetParam(parms Solver solver, PARAMTYPE ptype, char *param)
Set a parameter for the solver. The argument ptype takes one of the following values:

– MAXITS: maximum iteration count

– KSIZE: restart dimension for GMRES

– DTOL: convergence tolerance

The argument param is a pointer to the value to be set.

• int parms SolverSetType(parms Solver solver, SOLVERTYPE stype)
Set the type of Krylov solver to use. stype takes the value SOLGMRES for GMRES (left
preconditioned), and SOLFGMRES for the default (right preconditioned) FGMRES.

• int parms SolverView(parms Solver solver, parms Viewer v)
Dump the solver object to a file prescribed by the pARMS viewer object v.

9 parms sys.h File Reference

This file contains the macros and typedefs needed by all other header files. The enumerations
below define some typdefs and the choices they take:

• enum VARSTYPE {INTERLACED, NONINTERLACED}

• enum INSERTMODE {INSERT, ADD}

• enum COMMTYPE {P2P, DERIVED}

11

• enum SOLVERTYPE {SOLFGMRES, SOLGMRES}

• enum PARAMTYPE {MAXITS, KSIZE, DTOL}

• enum MATTYPE {MAT NULL=-1, MAT VCSR=0, MAT CSR=1}

• enum PCTYPE {PCBJ, PCSCHUR, PCRAS}

• enum PCILUTYPE {PCILU0, PCILUK, PCILUT, PCARMS}

10 pARMS Timer Object

10.1 parms Timer.h File Reference

Functions related to the parms Timer object.

10.2 Function Details

• void parms TimerCreate(parms Timer *tt)
Create a timer object

• int parms TimerFree(parms Timer *tt)
Free memory for parms Timer object

• double parms TimerGet(parms Timer tt)
Return the elapsed wall clock time in seconds, since the last call to parms TimerReset,
parms TimerResetDelay, or parms TimerRestart.

• int parms TimerPause(parms Timer tt)
Pause the parms timer object.

• int parms TimerReset(parms Timer tt)
Reset parms Timer object.

• int parms TimerResetDelay(parms Timer tt, double delay)
Reset the elapsed time of the parms Timer object, tt, to delay.

• int parms TimerRestart(parms Timer tt)
Restart the timer.

• int parms TimerView(parms Timer tt, parms Viewer v)
Dump the parms Timer object to a file prescribed by the pARMS viewer object v.

11 pARMS Vectors

Vectors in pARMS are defined by the standard C array pointers. This was done to simplify
the code, and also allow for easy portability to application programs or codes. Nonetheless, some
vector functions have been defined as part of this package to facilitate easy coding with the package.
Some of these functions have blas versions, and these versions should be used whenever the user
has blas-lapack installed (See README file).

12

11.1 Function Details

• int parms VecAXPY(FLOAT *vec, FLOAT *x, FLOAT alpha, parms Map map)
Perform vec = alpha× x + vec, where alpha is a scalar, and vec and x are vectors. (NOTE:
pARMS will use daxpy (or zaxpy for complex arithmetic) if blas is installed).

• int parms VecAYPX(FLOAT *vec, FLOAT *x, FLOAT alpha, parms Map map)
Perform vec = alpha× vec + x, where alpha is a scalar, and vec and x are vectors.

• int parms VecDOT(FLOAT *vec, FLOAT *x, FLOAT value, parms Map map)
Perform the inner product of two vectors. On return, value contains the result. (NOTE:
pARMS will use ddot (zdotu for complex arithmetic) if blas is installed).

• int parms VecDOTC(FLOAT *vec, FLOAT *x, REAL value, parms Map map)
Perform the inner product of two (complex-valued) vectors. On return, value contains the
result of the dot product between vec and the complex conjugate of x. (NOTE: pARMS will
use zdotc if blas is installed).

• int parms VecGetNorm2(FLOAT *vec, REAL *value, parms Map map)
Return a pointer to the 2-norm of the vector vec.

• int parms VecGather(FLOAT *self, FLOAT *ga, parms Map map)
Gather a distributed vector, vec, into a global array, ga.

• int parms VecInvPermAux(FLOAT *vec, FLOAT *aux, parms Map map)
Perform the inverse permutation on the vector vec. On return, aux contains the (inversely)
permuted vector.

• int parms VecPermAux(FLOAT *vec, FLOAT *aux, parms Map map)
Permute the vector vec, into aux. On return, aux contains the permuted vector.

• int parms VecScale(FLOAT *vec, FLOAT alpha, parms Map map)
Scale the vector vec by the scalar alpha.

• int parms VecSetValues(FLOAT *vec, int m, int *im, FLOAT *values, INSERT-
MODE mode, parms Map map)
Insert values into the vector vec. Here, m is the number of variables to be inserted; im is
an array of global variable indices; value is an array of the values to be inserted; and mode
is the insert mode: ADD will add values to the vector entries, and INSERT will insert the
values into the vector.

• int parms VecSetElementVector(FLOAT *vec, int m, int *im, FLOAT *values,
INSERTMODE mode, parms Map map)
Insert values into the vector vec. This assumes the vector values are being set element-by-
element. A call to parms VecAssembleElementVector() is required to complete the vector
once all entries have been added. Here, m is the number of variables to be inserted; im is
an array of global variable indices; value is an array of the values to be inserted; and mode
is the insert mode: ADD will add values to the vector entries, and INSERT will insert the
values into the vector.

• int parms VecAssembleElementVector(FLOAT *vec, int m, int *im, FLOAT *val-
ues, INSERTMODE mode, parms Map map)
Completes setting up values for the distributed vector vec. A preceding call to parms VecSetElementVector()
should have been made prior to calling this function.

13

12 pARMS Viewer Object

12.1 parms Viewer File Reference:

Functions related to parms Viewer object.

12.2 Function Details

• int parms ViewerCreate(parms Viewer *v, char *filename)
Create a parms Viewer object. If PARMS COUT and PARMS CERR are input as filename,
they stand for standard output and standard error, respectively. Otherwise, each processor
creates a file ”fnameID.dat”, where ID is the ID of processor.

• int parms ViewerFree(parms Viewer *v)
Free the memory for the parms Viewer object.

• int parms ViewerGetName(parms Viewer v, char **fname)
Retrieve the filename.

• int parms ViewerGetFP(parms Viewer v, char **fp)
Get a pointer to the file pointer.

• int parms ViewerStoreFP(parms Viewer v, FILE *fp)
Store fp to the parms Viewer object.

13 FORTRAN

Fortran wrappers have been provided for each of the above pARMS objects. The calling sequence
is the same as above, except with the additional standard fortran argument - ierr. This is typically
the last argument in each of the wrapper functions except for the parms Map object functions :
parms mapgetglobalsize(parms Map *self, int *gsize); parms mapgetlocalsize(parms Map *self, int
*lsize); parms mapgetnumprocs(parms Map *self, int *numpro); parms mapgetglobaltolocal(parms Map
*self, int *gindex, int *lindex) and parms mapgetpid(parms Map *self, int *pid), where the ierr
takes on the value returned by the function - (in this case gsize, lsize, numpro, lindex, and pid
respectively).

14

