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Chapter 1

Introduction

cvodes [26] is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALge-
braic equation Solvers [16]. This suite consists of cvode, kinsol and ida, and variants of these with
sensitivity analysis capabilities. cvodes is a solver for stiff and nonstiff initial value problems (IVPs)
for systems of ordinary differential equation (ODEs). In addition to solving stiff and nonstiff ODE
systems, cvodes has sensitivity analysis capabilities, using either the forward or the adjoint methods.

1.1 Historical background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
were previously written at LLNL are vode [1] and vodpk [3]. vode is a general-purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [24]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
vodpk is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [2]. The
capabilities of both vode and vodpk were combined in the C-language package cvode [8, 9].

At present, cvodes contains three Krylov methods that can be used in conjuction with Newton
iteration: the GMRES (Generalized Minimal RESidual) [25], Bi-CGStab (Bi-Conjugate Gradient Sta-
bilized) [27], and TFQMR (Transpose-Free Quasi-Minimal Residual) linear iterative methods [11]. As
Krylov methods, these require almost no matrix storage for solving the Newton equations as compared
to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix, and for
most problems preconditioning is essential for an efficient solution. For very large stiff ODE systems,
the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the three Krylov methods in cvodes, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGFStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on the
desired Krylov subspace size.

In the process of translating the vode and vodpk algorithms into C, the overall cvode organiza-
tion has changed considerably. One key feature of the cvode organization is that the linear system
solvers comprise a layer of code modules that is separated from the integration algorithm, thus allow-
ing for easy modification and expansion of the linear solver array. A second key feature is a separate
module devoted to vector operations; this facilitated the extension to multiprosessor environments
with only a minimal impact on the rest of the solver, resulting in pvode [5], the parallel variant of
cvode.

cvodes is written with a functionality that is a superset of that of the pair cvode/pvode.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.



2 Introduction

Enabling forward sensititivity computations in cvodes will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. cvodes provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of cvodes was concurrent with a redesign of the vector operations module across the
sundials suite. The key feature of the new nvector module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of nvector. This allows writing the sundials solvers in a manner independent of
the actual nvector implementation (which can be user-supplied), as well as allowing more than one
nvector module to be linked into an executable file.

There were several motivations for choosing the C language for cvode, and later for cvodes.
First, a general movement away from Fortran and toward C in scientific computing was and still is
apparent. Second, the pointer, structure, and dynamic memory allocation features in C are extremely
useful in software of this complexity. Finally, we prefer C over C++ for cvodes because of the wider
availability of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing
the solver to applications written in extended Fortran.

1.2 Changes from previous versions

Changes in v2.4.0

cvspbcg and cvsptfqmr modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spbcg) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr)
linear solver modules, respectively (for details see Chapter 5). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

A new interpolation method was added to the cvodea adjoint module. The function CVadjMalloc

has an additional argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvodes and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see §2.

Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint cvodea module.

Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.

Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the root
finding procedure on the integration first step.
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Changes in v2.1.1

This cvodes release includes bug fixes related to forward sensitivity computations (possible loss of
accuray on a BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In
addition, we have added the option of activating and deactivating forward sensitivity calculations on
successive cvodes runs without memory allocation/deallocation.

Other changes in this minor sundials release affect the build system.

Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvodes now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §5.5.5 and §5.5.7.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians,
preconditioner information, and sensitivity right hand sides) were simplified by reducing the number
of arguments. The same information that was previously accessible through such arguments can now
be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cvodes (and all of sundials) has been completely redesigned and is now based on
a configure script.

1.3 Reading this user guide

This user guide is a combination of general usage instructions. Specific example programs are pro-
vided as a separate document. We expect that some readers will want to concentrate on the general
instructions, while others will refer mostly to the examples.

There are different possible levels of usage of cvodes. The most casual user, with an IVP problem
only, can get by with reading §3.1, then §5 through §5.5.4 only, and looking at examples in [18]. In
addition, to solve a forward sensitivity problem the user should read §3.2, followed by §6 through
§6.2.3 only, and look at examples in [18].

In a different direction, a more advanced user with an IVP problem may want to (a) use a package
preconditioner (§5.9), (b) supply his/her own Jacobian or preconditioner routines (§5.6), (c) do mul-
tiple runs of problems of the same size (§5.5.8), (d) supply a new nvector module (§8), or even (e)
supply a different linear solver module (§4.2). An advanced user with a forward sensitivity problem
may also want to (a) provide his/her own sensitivity equations right-hand side routine (§6.3), (b) per-
form multiple runs with the same number of sensitivity parameters (§6.2.1), or (c) extract additional
diagnostic information (§6.2.3). A user with an adjoint sensitivity problem needs to understand the
IVP solution approach at the desired level and also go through §3.3 for a short mathematical descrip-
tion of the adjoint approach, §7 for the usage of the adjoint module in cvodes, and the examples
in [18].

The structure of this document is as follows:

• In Chapter 2 we begin with instructions for the installation of cvodes, within the structure of
sundials.

• In Chapter 3, we give short descriptions of the numerical methods implemented by cvodes

for the solution of initial value problems for systems of ODEs, continue with an overview of
the mathematical aspects of sensitivity analysis, both forward (§3.2) and adjoint (§3.3), and
conclude with a description of stability limit detection (§3.4).
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• The following chapter describes the structure of the sundials suite of solvers (§4.1) and the
software organization of the cvodes solver (§4.2).

• Chapter 5 is the main usage document for cvodes for simulation applications. It includes a
complete description of the user interface for the integration of ODE initial value problems.
Readers that are not interested in using cvodes for sensitivity analysis can then skip the next
two chapters.

• Chapter 6 describes the usage of cvodes for forward sensitivity analysis as an extension of its
IVP integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 5. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 7 describes the usage of cvodes for adjoint sensitivity analysis. We begin by describing
the cvodes checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

• Chapter 8 gives a brief overview of the generic nvector module shared amongst the various
components of sundials, as well as details on the two nvector implementations provided with
sundials: a serial implementation (§8.1) and a parallel implementation based on MPI (§8.2).

• Chapter 9 describes the specifications of linear solver modules as supplied by the user.

• Chapter 10 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, Chapter 11 lists the constants used for input to and output from cvodes.

Finally, the reader should be aware of the following notational conventions in this user guide: Pro-
gram listings and identifiers (such as CVodeMalloc) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as cvdense, are written in all capitals. In the Index, page numbers that appear in bold indicate the
main reference for that entry.



Chapter 2

CVODES Installation Procedure

The installation of cvodes is accomplished by installing the sundials suite as a whole, according to
the instructions that follow. The same procedure applies whether or not the downloaded file contains
solvers other than cvodes.

Generally speaking, the installation procedure outlined in §2.1 below will work on commodity
LINUX/UNIX systems without modification. Users are still encouraged, however, to carefully read
the entire chapter before attempting to install the sundials suite, in case non-default choices are
desired for compilers, compilation options, or the like. In lieu of reading the option list below, the
user may invoke the configuration script with the help flag to view a complete listing of available
options, which may be done by issuing

% ./configure --help

from within the sundials directory.
In the descriptions below, build tree refers to the directory under which the user wants to build

and/or install the sundials package. By default, the sundials libraries and header files are installed
under the subdirectories build tree/lib and build tree/include, respectively. Also, source tree refers
to the directory where the sundials source code is located. The chosen build tree may be different
from the source tree, thus allowing for multiple installations of the sundials suite with different
configuration options.

Concerning the installation procedure outlined below, after invoking the tar command with the
appropriate options, the contents of the sundials archive (or the source tree) will be extracted to
a directory named sundials. Since the name of the extracted directory is not version-specific it is
recommended that the user refrain from extracting the archive to a directory containing a previous
version/release of the sundials suite. If the user is only upgrading and the previous installation of
sundials is not needed, then the user may remove the previous installation by issuing

% rm -rf sundials

from a shell command prompt.
Even though the installation procedure given below presupposes that the user will use the default

vector modules supplied with the distribution, using the sundials suite with a user-supplied vector
module normally will not require any changes to the build procedure.

2.1 Installation steps

To install the sundials suite, given a downloaded file named sundials file.tar.gz, issue the following
commands from a shell command prompt, while within the directory where source tree is to be located.

1. gunzip sundials file.tar.gz

2. tar -xf sundials file.tar [creates sundials directory]
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3. cd build tree

4. path to source tree/configure options [options can be absent]

5. make

6. make install

7. make examples

8. If system storage space conservation is a priority, then issue
make clean

and/or
make examples_clean

from a shell command prompt to remove unneeded object files.

2.2 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may be
used to indicate which MPI implementation should be used. Also, if the user wants to use non-default
language compilers, then, again, the necessary shell environment variables must be appropriately
redefined. The remainder of this section provides explanations of available configure script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=build tree

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=PREFIX/lib

--disable-examples

All available example programs are automatically built unless this option is given. The example
executables are stored under the following subdirectories of the associated solver:

build tree/solver/examples ser : serial C examples

build tree/solver/examples par : parallel C examples (MPI-enabled)

build tree/solver/fcmix/examples ser: serial Fortran examples

build tree/solver/fcmix/examples par: parallel Fortran examples (MPI-enabled)

Note: Some of these subdirectories may not exist depending upon the solver and/or the configu-
ration options given.

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, and
kinsol.
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--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).

--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in nonstan-
dard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named libfoo.a

or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may be
used to build sundials with realtype alternatively defined as a single-precision floating-point
numeric data type (float C-type) if ARG=single, or as a long double C-type if
ARG=extended.

Default: ARG=double

Users should not build sundials with support for single-precision floating-point arithmetic on !

32- or 64-bit systems. This will almost certainly result in unreliable numerical solutions. The
configuration option --with-precision=single is intended for systems on which single-precision
arithmetic involves at least 14 decimal digits.

Options for Fortran support

--disable-f77

Using this option will disable all Fortran support. The fcvode, fkinsol, fida, and fnvector

modules will not be built, regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

The configuration script will attempt to automatically determine the function name mangling scheme
required by the specified Fortran compiler, but the following two options may be used to override
the default behavior.

--with-f77underscore=ARG

This option pertains to the fcvode, fkinsol, fida, and fnvector Fortran-C interface mod-
ules and is used to specify the number of underscores to append to function names so Fortran

routines can properly link with the associated sundials libraries. Valid values for ARG are: none,
one and two.

Default: ARG=one

--with-f77case=ARG

Use this option to specify whether the external names of the fcvode, fkinsol, fida, and fn-

vector Fortran-C interface functions should be lowercase or uppercase so Fortran routines
can properly link with the associated sundials libraries. Valid values for ARG are: lower and
upper.

Default: ARG=lower
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Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used to
disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers to be
used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sundi-

als configuration script will automatically check under the subdirectories MPIDIR/include and
MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin will also
be searched for the C and Fortran MPI compiler scripts, unless the user uses --with-mpicc=no
or --with-mpif77=no.

--with-mpi-incdir=INCDIR

--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler script,
but instead would rather use a serial complier and provide the flags necessary to compile the
MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include and LIBDIR=MPIDIR/lib

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared libraries
on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sundials

libraries being built if the system supports shared libraries. To build only shared libraries also
specify --disable-static.

Note: The fcvode, fkinsol, and fida libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.
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Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen compiler)
as the C language compiler, use CC=xcc in the configure step.

CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

2.3 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The above example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags.

% configure CC=gcc --disable-examples --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich

This example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no

option explicitly disables the use of the corresponding MPI compiler script. In addition, since the
--with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include and
-L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions. The
--disable-examples option disables the examples (which means a Fortran compiler is not re-
quired). The --with-mpi-libs option is required so that the configure script can check if gcc can
link with the appropriate MPI library.

2.4 Installed libraries and exported header files

Using the standard sundials build system, the command

% make install

will install the libraries under libdir and the public header files under incdir. The default values for
these directories are build tree/lib and build tree/include, respectively, but can be changed using
the configure script options --prefix, --includedir and --libdir (see §2.2). For example, a global
installation of sundials on a *NIX system could be accomplished using

% configure --prefix=/usr/local
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Although all installed libraries reside under libdir, the public header files are further organized into
subdirectories under incdir.

The installed libraries and exported header files are listed for reference in Table 2.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries (see Options for library
support for additional details).

A typical user program need not explicitly include any of the shared sundials header files from
under the incdir/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and safe to do so
(e.g., the functions declared in sundials smalldense.h could be used in building a preconditioner).

2.5 Building SUNDIALS without the configure script

If the configure script cannot be used (e.g., when building sundials under Microsoft Windows with-
out using Cygwin), or if the user prefers to own the build process (e.g., when sundials is incorporated
into a larger project with its own build system), then the header and source files for a given module
can be copied from the source tree to some other location and compiled separately.

The following files are required to compile a sundials solver module:

• public header files located under source tree/solver/include

• implementation header files and source files located under source tree/solver/source

• (optional) Fortran/C interface files located under source tree/solver/fcmix

• shared public header files located under source tree/shared/include

• shared source files located under source tree/shared/source

• (optional) nvector serial header and source files located under source tree/nvec ser

• (optional) nvector parallel header and source files located under source tree/nvec par

• configuration header file sundials config.h (see below)

A sample header file that, appropriately modified, can be used as sundials config.h (otherwise
created automatically by the configure script) is provided below. The various preprocessor macros
defined within sundials config.h have the following uses:

• Precision of the sundials realtype type

Only one of the macros SUNDIALS SINGLE PRECISION, SUNDIALS DOUBLE PRECISION and
SUNDIALS EXTENDED PRECISION should be defined to indicate if the sundials realtype type is
an alias for float, double, or long double, respectively.

• Use of generic math functions

If SUNDIALS USE GENERIC MATH is defined, then the functions in sundials math.(h,c) will use
the pow, sqrt, fabs, and exp functions from the standard math library (see math.h), regardless
of the definition of realtype. Otherwise, if realtype is defined to be an alias for the float

C-type, then sundials will use powf, sqrtf, fabsf, and expf. If realtype is instead defined
to be a synonym for the long double C-type, then powl, sqrtl, fabsl, and expl will be used.

Note: Although the powf/powl, sqrtf/sqrtl, fabsf/fabsl, and expf/expl routines are not
specified in the ANSI C standard, they are ISO C99 requirements. Consequently, these routines
will only be used if available.
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Table 2.1: SUNDIALS libraries and header files (names are relative to libdir for libraries and to incdir
for header files)

shared Libraries n/a
Header files sundials/sundials types.h sundials/sundials math.h

sundials/sundials config.h sundias/sundials nvector.h
sundials/sunials smalldense.h sundials/sundials dense.h
sundials/sundials iterative.h sundials/sundials band.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h
sundials/sundials spgmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector parallel.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode.h

cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h cvode/cvode spils.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h
cvode/cvode spgmr.h cvode/cvode spbcgs.h
cvode/cvode sptfqmr.h cvode/cvode impl.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes.h cvodea.h

cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h cvodes/cvodes spils.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h
cvodes/cvodes spgmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes sptfqmr.h cvodes/cvodes impl.h
cvodes/cvodea impl.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida.h

ida/ida dense.h ida/ida band.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h ida/ida impl.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol.h

kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h kinsol/kinsol impl.h
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• Fortran name-mangling scheme

The macros given below are used to transform the C-language function names defined in the
Fortran-C inteface modules in a manner consistent with the preferred Fortran compiler,
thus allowing native C functions to be called from within a Fortran subroutine. The name-
mangling scheme can be specified either by appropriately defining the parameterized macros
(using the stringization operator, ##, if necessary)

– F77 FUNC(name,NAME)

– F77 FUNC (name,NAME)

or by defining one macro from each of the following lists:

– SUNDIALS CASE LOWER or SUNDIALS CASE UPPER

– SUNDIALS UNDERSCORE NONE, SUNDIALS UNDERSCORE ONE, or SUNDIALS UNDERSCORE TWO

For example, to specify that mangled C-language function names should be lowercase with one
underscore appended include either

#define F77_FUNC(name,NAME) name ## _

#define F77_FUNC_(name,NAME) name ## _

or

#define SUNDIALS_CASE_LOWER 1

#define SUNDIALS_UNDERSCORE_ONE 1

in the sundials config.h header file.

• Use of an MPI communicator other than MPI COMM WORLD in Fortran

If the macro SUNDIALS MPI COMM F2C is defined, then the MPI implementation used to build
sundials defines the type MPI Fint and the function MPI Comm f2c, and it is possible to use
MPI communicators other than MPI COMM WORLD with the Fortran-C interface modules.
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1 /*

2 * -----------------------------------------------------------------

3 * Copyright (c) 2005, The Regents of the University of California.

4 * Produced at the Lawrence Livermore National Laboratory.

5 * All rights reserved.

6 * For details , see sundials/shared/LICENSE.

7 * -----------------------------------------------------------------

8 * SUNDIALS configuration header file

9 * -----------------------------------------------------------------

10 */

11

12

13 /* Define SUNDIALS version number

14 * ------------------------------ */

15

16 #define SUNDIALS_PACKAGE_VERSION "2.2.0"

17

18 /* Define precision of SUNDIALS data type ’realtype ’

19 * ------------------------------------------------- */

20

21 /* Define SUNDIALS data type ’realtype ’ as ’double ’ */

22 #define SUNDIALS_DOUBLE_PRECISION 1

23

24 /* Define SUNDIALS data type ’realtype ’ as ’float ’ */

25 /* #define SUNDIALS_SINGLE_PRECISION 1 */

26

27 /* Define SUNDIALS data type ’realtype ’ as ’long double ’ */

28 /* #define SUNDIALS_EXTENDED_PRECISION 1 */

29

30 /* Use generic math functions

31 * -------------------------- */

32

33 #define SUNDIALS_USE_GENERIC_MATH 1

34

35 /* FCMIX: Define Fortran name -mangling macro

36 * ----------------------------------------- */

37

38 #define F77_FUNC(name ,NAME) name ## _

39 #define F77_FUNC_(name ,NAME) name ## _

40

41 /* FCMIX: Define case of function names

42 * ------------------------------------ */

43

44 /* FCMIX: Make function names lowercase */

45 /* #define SUNDIALS_CASE_LOWER 1 */

46

47 /* FCMIX: Make function names uppercase */

48 /* #define SUNDIALS_CASE_UPPER 1 */

49

50 /* FCMIX: Define number of underscores to append to function names

51 * --------------------------------------------------------------- */

52

53 /* FCMIX: Do NOT append any underscores to functions names */

54 /* #define SUNDIALS_UNDERSCORE_NONE 1 */

55

56 /* FCMIX: Append ONE underscore to function names */

57 /* #define SUNDIALS_UNDERSCORE_ONE 1 */

58

59 /* FCMIX: Append TWO underscores to function names */

60 /* #define SUNDIALS_UNDERSCORE_TWO 1 */

61

62 /* FNVECTOR: Allow user to specify different MPI communicator

63 * ---------------------------------------------------------- */

64

65 #define SUNDIALS_MPI_COMM_F2C 1





Chapter 3

Mathematical Considerations

cvodes solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract
form

ẏ = f(t, y) , y(t0) = y0 , (3.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable,
and usually this is time, it certainly need not be. cvodes solves both stiff and non-stiff systems.
Roughly speaking, stiffness is characterized by the presence of at least one rapidly damped mode,
whose time constant is small compared to the time scale of the solution itself.

Additionally, if (3.1) depends on some parameters p ∈ RNp , i.e.

ẏ = f(t, y, p)

y(t0) = y0(p) ,
(3.2)

cvodes can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, cvodes computes the sensitivities of the
solution with respect to the parameters p, while in the second case, cvodes computes the gradient of
a derived function with respect to the parameters p.

3.1 IVP solution

The methods used in cvodes are variable-order, variable-step multistep methods, based on formulas
of the form

K1
∑

i=0

αn,iy
n−i + hn

K2
∑

i=0

βn,iẏ
n−i = 0 . (3.3)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvodes must appropriately choose one of two multistep methods. For non-stiff problems, cvodes

includes the Adams-Moulton formulas , characterized by K1 = 1 and K2 = q above, where the order q
varies between 1 and 12. For stiff problems, cvodes includes the Backward Differentiation Formulas
(BDF) in so-called fixed-leading coefficient (FLC) form, given by K1 = q and K2 = 0, with order q
varying between 1 and 5. The coefficients are uniquely determined by the method type, its order, the
recent history of the step sizes, and the normalization αn,0 = −1. See [4] and [21].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, y
n)− an = 0 , (3.4)

where an ≡
∑

i>0(αn,iy
n−i + hnβn,iẏ

n−i), must be solved (approximately) at each integration step.
For this, cvodes offers the choice of either functional iteration, suitable only for non-stiff systems,
and various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, y
n(m)) + an ,
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involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (3.5)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (3.6)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data. For the Newton corrections, cvodes provides a choice of six methods:

• dense direct solver,

• band direct solver,

• diagonal approximate Jacobian solver,

• scaled preconditioned GMRES (Generalized Minimal Residual method) without restarts,

• scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method), or

• scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method).

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcg, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [2]. Note that the direct linear solvers (dense and band) can only
be used with serial vector representations.

In the process of controlling errors at various levels, cvodes uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (3.7)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, diagonal), the iteration is a modified Newton iteration
since the iteration matrix M is fixed throughout the nonlinear iterations. However, for any of the
Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free manner,
with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. The
matrix M (for the direct solvers) or preconditioner matrix P (Krylov cases) is updated as infrequently
as possible to balance the high costs of matrix operations against other costs. Specifically, this matrix
update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,

• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,

• a non-fatal convergence failure just occurred, or

• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may involve a reevaluation of J (in M)
or of Jacobian data (in P ) if Jacobian error was the likely cause of the failure. More generally, the
decision is made to reevaluate J (or instruct the user to reevaluate Jacobian data in P ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,
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• a convergence failure occurred with an outdated matrix, and the value γ̄ (γ at the last update)
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a reduction of the step size.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m)−yn(0)‖ ≤ ε. Letting
yn denote the exact solution of (3.4), we want to ensure that the iteration error yn − yn(m) is small
relative to ε, specifically that it is less than 0.1ε. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R = 1 when M or P is updated. After computing a correction δm = yn(m)−yn(m−1), we update
R if m > 1 as

R← max{0.3R, ‖δm‖/‖δm−1‖} .
Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε .

We allow at most 3 iterations, but this limit can be changed by the user. We also declare the iteration
diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace hn by hn/4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 · (0.1ε).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [fi(t, y + σjej)− fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0/Wj

}

,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in (3.7).
In the dense case, this scheme requires N evaluations of f , one for each column of J . In the band
case, the columns of J are computed in groups by the Curtis-Powell-Reid algorithm, with the number
of f evaluations equal to the bandwidth.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Jv = [f(t, y + σv)− f(t, y)]/σ . (3.8)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvodes, that makes it an ODE “solver” rather than just an ODE method, is

its control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) +O(hq+2)
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for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] +O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ε ≡ 1/|C ′| .

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ε/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1). The
ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, cvodes returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvodes periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1, but the order
is varied dynamically after that. The basic idea is to pick the order q for which a polynomial of order
q best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change is made to the step size or
order. At the current order q, selecting a new step size is done exactly as when the error test fails,
giving a tentative step size ratio

h′/h = (ε/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q+1 steps at order q, and then we consider only orders
q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q ′),
behaves asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do not
bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is limited
to 104.

The various algorithmic features of cvodes described above, as inherited from vode and vodpk,
are documented in [1, 3, 15]. They are also summarized in [16].

Normally, cvodes takes steps until a user-defined output value t = tout is overtaken, and then
it computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvodes not to integrate
past a given stopping point t = tstop.

3.2 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (3.2). In
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addition to numerically solving the ODEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or in short sensitivity equations):

ṡi =
∂f

∂y
si +

∂f

∂pi
, si(t0) =

∂y0(p)

∂pi
, (3.9)

obtained by applying the chain rule of differentiation to the original ODEs (3.2).

When performing forward sensitivity analysis, cvodes carries out the time integration of the
combined system, (3.2) and (3.9), by viewing it as an ODE system of size N(Ns +1), where Ns is the
number of model parameters pi, with respect to the desired sensitivities (Ns ≤ Np). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original ODEs. In particular, for stiff systems, for which cvodes

employs a Newton iteration, the original ODE system and all sensitivity systems share the same
Jacobian matrix, and therefore the same iteration matrix M in (3.6).

The sensitivity equations are solved with the same linear multistep formula that was selected for
the original ODEs and, if Newton iteration was selected, the same linear solver is used in the correction
phase for both state and sensitivity variables. In addition, cvodes offers the option of including (full
error control) or excluding (partial error control) the sensitivity variables from the local error test.

3.2.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined ODE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct

In this approach [7], the nonlinear system (3.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving
(3.9) after the (BDF or Adams) discretization is used to eliminate ṡi. Although the system
matrix of the above linear system is based on exactly the same information as the matrix M in
(3.6), it must be updated and factored at every step of the integration, in contrast to M which
is updated only occasionally. For problems with many parameters (relative to the problem
size), the staggered direct method can outperform the methods described below [22]. However,
the computational cost associated with matrix updates and factorizations makes this method
unattractive for problems with many more states than parameters (such as those arising from
semidiscretization of PDEs) and is therefore not implemented in cvodes.

• Simultaneous Corrector

In this method [23], the discretization is applied simultaneously to both the original equations
(3.2) and the sensitivity systems (3.9) resulting in the following nonlinear system

Ĝ(ŷn) ≡ ŷn − hnβn,0f̂(tn, ŷn)− ân = 0 ,

where f̂ = [f(t, y, p), . . . , (∂f/∂y)(t, y, p)si + (∂f/∂pi)(t, y, p), . . .], and ân is comprised of the
terms in the discretization that depend on the solution at previous integration steps. This
combined nonlinear system can be solved using a modified Newton method as in (3.5) by solving
the corrector equation

M̂ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (3.10)
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at each iteration, where

M̂ =















M
−γJ1 M
−γJ2 0 M

...
...

. . .
. . .

−γJNs
0 . . . 0 M















,

M is defined as in (3.6), and Ji = (∂/∂y) [(∂f/∂y)si + (∂f/∂pi)]. It can be shown that 2-step
quadratic convergence can be attained by using only the block-diagonal portion of M̂ in the
corrector equation (3.10). This results in a decoupling that allows the reuse of M without
additional matrix factorizations. However, the products (∂f/∂y)si and the vectors ∂f/∂pi must
still be reevaluated at each step of the iterative process (3.10) to update the sensitivity portions
of the residual Ĝ.

• Staggered corrector
In this approach [10], as in the staggered direct method, the nonlinear system (3.4) is solved
first using the Newton iteration (3.5). Then a separate Newton iteration is used to solve the
sensitivity system (3.9):

M [s
n(m+1)
i − s

n(m)
i ] =

−
[

s
n(m)
i − γ

(

∂f

∂y
(tn, y

n, p)s
n(m)
i +

∂f

∂pi
(tn, y

n, p)

)

− ai,n

]

, (3.11)

where ai,n =
∑

j>0(αn,js
n−j
i + hnβn,j ṡ

n−j
i ). In other words, a modified Newton iteration is

used to solve a linear system. In this approach, the vectors ∂f/∂pi need be updated only
once per integration step, after the state correction phase (3.5) has converged. Note also that
Jacobian-related data can be reused at all iterations (3.11) to evaluate the products (∂f/∂y)si.

cvodes implements the simultaneous corrector method and two flavors of the staggered corrector
method which differ only if the sensitivity variables are included in the error control test. In the
full error control case, the first variant of the staggered corrector method requires the convergence of
the iterations (3.11) for all Ns sensitivity systems and then performs the error test on the sensitivity
variables. The second variant of the method will perform the error test for each sensitivity vector
si, (i = 1, 2, . . . , Ns) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors si fails a
convergence or error test.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (3.11) will theoretically converge after one iteration.

3.2.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, cvodes provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being



3.3 Adjoint sensitivity analysis 21

dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of cvodes can provide different values as an option.

3.2.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (3.9): analytic
evaluation, automatic differentiation, complex-step approximation, and finite differences (or direc-
tional derivatives). cvodes provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), cvodes can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (∂f/∂y)si and (∂f/∂pi), or using directional derivatives to eval-
uate [(∂f/∂y)si + (∂f/∂pi)]. As is typical for finite differences, the proper choice of perturbations is a
delicate matter. cvodes takes into account several problem-related features: the relative ODE error
tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and the weighted root-mean-square
norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂f/∂y)si and ∂f/∂pi in the right-
hand side of (3.9) can be evaluated separately:

∂f

∂y
si ≈

f(t, y + σysi, p)− f(t, y − σysi, p)

2σy
, (3.12)

∂f

∂pi
≈ f(t, y, p+ σiei)− f(t, y, p− σiei)

2σi
, (3.12’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

simultaneously:

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + σsi, p+ σei)− f(t, y − σsi, p− σei)

2σ
, (3.13)

σ = min(σi, σy) ,

or by adaptively switching between (3.12)+(3.12’) and (3.13), depending on the relative size of the
estimated finite difference increments σi and σy.

These procedures for choosing the perturbations (δi, δy, δ) and switching (ρmax) between finite
difference and directional derivative formulas have also been implemented for first-order formulas.
Forward finite differences can be applied to (∂f/∂y)si and ∂f/∂pi separately, or the single directional
derivative formula

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + δsi, p+ δei)− f(t, y, p)

δ

can be used. In cvodes, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (3.13) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

3.3 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an ODE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
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respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (3.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ tf

t0

g(t, y, p)dt , (3.14)

or, alternatively, the gradient dg/dp of the function g(t, x, p) at time tf. The function g must be
smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [6]. Introducing a Lagrange multiplier λ, we form the augmented objective
function

I(p) = G(p)−
∫ t1

t0

λ∗ (ẏ − f(t, y, p)) dt , (3.15)

where ∗ denotes the conjugate transpose. The gradient of G with respect to p is

dG

dp
=

dI

dp
=

∫ t1

t0

(gp + gys)dt−
∫ t1

t0

λ∗ (ṡ− fys− fp) dt , (3.16)

where subscripts on functions such as f or g are used to denote partial derivatives and s = [s1, . . . , sNs
]

is the matrix of solution sensitivities. Applying integration by parts to the term λ∗ṡ and selecting λ
such that

λ̇ = −
(

∂f

∂y

)

∗

λ−
(

∂g

∂y

)

∗

λ(t1) = 0 ,

(3.17)

the gradient of G with respect to p is nothing but

dG

dp
= λ∗(t0)s(t0) +

∫ t1

t0

(gp + λ∗fp) dt . (3.18)

The gradient of g(t1, y, p) with respect to p can be then obtained by using the Leibnitz differentiation
rule. Indeed, from (3.14),

dg

dp
(t1) =

d

dt1

dG

dp

and therefore, taking into account that dG/dp in (3.18) depends on t1 both through the upper inte-
gration limit and through λ and that λ(t1) = 0,

dg

dp
(t1) = µ∗(t0)s(t0) + gp(t1) +

∫ t1

t0

µ∗fpdt , (3.19)

where µ is the sensitivity of λ with respect to the final integration limit and thus satisfies the following
equation, obtained by taking the total derivative with respect to t1 of (3.17):

µ̇ = −
(

∂f

∂y

)

∗

µ

µ(t1) =

(

∂g

∂y

)

∗

t=t1

.

(3.20)

The final condition on µ(t1) follows from (∂λ/∂t)+ (∂λ/∂t1) = 0 at t1, and therefore, µ(t1) = −λ̇(t1).
The first thing to notice about the adjoint system (3.17) is that there is no explicit specification

of the parameters p; this implies that, once the solution λ is found, the formula (3.18) can then be
used to find the gradient of G with respect to any of the parameters p. The same holds true for the
system (3.20) and the formula (3.19) for gradients of g(t1, y, p). The second important remark is that
the adjoint systems (3.17) and (3.20) are terminal value problems which depend on the solution y(t)
of the original IVP (3.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (3.2) to cvodes during the backward integration phase of (3.17) or
(3.20). The approach adopted in cvodes, based on checkpointing, is described below.
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Figure 3.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

3.3.1 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
cvodes implements variable-step integration formulas, it is unlikely that the states will be available
at the desired time and so some form of interpolation is needed. The cvodes implementation being
also variable-order, it is possible that during the forward integration phase the order may be reduced
as low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. cvodes implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, cvodes settles for a compromise between storage space and execution time by implementing
a so-called checkpointing scheme. At the cost of at most one additional forward integration, this
approach offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To
begin with, based on the problem size N and the available memory, the user decides on the number
Nd of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors
in the case of variable-degree polynomial interpolation that can be kept in memory for the purpose
of interpolation. Then, during the first forward integration stage, after every Nd integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During
the backward integration stage, the adjoint variables are integrated from t1 to t0 going from one
checkpoint to the previous one. The backward integration from checkpoint i + 1 to checkpoint i is
preceded by a forward integration from i to i+ 1 during which Nd the vectors y (and, if necessary ẏ)
are generated and stored in memory for interpolation1 (see Fig. 3.1).

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval of
integration. If no checkpoints are necessary (Nd is larger than the number of integration steps taken

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §3.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.
The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used

by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams
method for which the order can reach 12.
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in the solution of (3.2)), the total cost of an adjoint sensitivity computation can be as low as one
forward plus one backward integration. In addition, cvodes provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (3.14).

Finally, we note that the adjoint sensitivity module in cvodes provides the necessary infrastructure
to integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (3.2), including adjoint systems (3.17) or (3.20), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (3.18) or (3.19). In particular, for ODE systems arising from
semi-discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

3.4 BDF stability limit detection

cvodes includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, cvodes uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
λ in the open left half-plane the method is unconditionally stable (for any step size) for the standard
scalar model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product hλ must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue λ of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents hλ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations since the oscillation generally must
be followed by the solver, but this requires step sizes (h ∼ 1/ν, where ν is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/ν. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [13]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvodes for choosing step
size and order based on estimated local truncation errors. The stald algorithm works directly with
history data that is readily available in cvodes. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order regardless of the outcome of the error-based
algorithm. The stald algorithm has been tested in combination with the vode solver on linear
advection-dominated advection-diffusion problems [14], where it works well. The implementation in
cvodes has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.
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This stability limit detection option adds some computational overhead to the cvodes solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a cvodes solution with this option turned off appears to take an
inordinately large number of steps for orders between 3 and 5 for no apparent reason in terms of the
solution time scale, then there is a good chance that step sizes are being limited by stability, and that
turning on the option will improve efficiency.

3.5 Rootfinding

The cvodes solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (3.1), cvodes can also find the roots of a set of user-defined
functions gi(t, y) that depend both on t and on the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvodes. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and
then (when a sign change is found) to hone in on the root(s) with a modified secant method [12]. In
addition, each time g is computed, cvodes checks to see if gi(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any gi is found at a point t, cvodes computes g at t+ δ for a
small increment δ, slightly further in the direction of integration, and if any gi(t+δ) = 0 also, cvodes

stops and reports an error. This way, each time cvodes takes a time step, it is guaranteed that the
values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvodes has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that
thi is further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn,
the end of the time step last taken, or the next requested output time tout if this comes sooner. The
endpoint tlo is either tn−1, the last output time tout (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward tn if an
exact zero was found. The algorithm checks gi at thi for zeros and for sign changes in (tlo, thi). If
no sign changes were found, then either a root is reported (if some gi(thi) = 0) or we proceed to the
next time interval (starting at thi). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is
reset to tmid according to which subinterval is found to include the sign change. If there is none in
(tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ ,
and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs. high,
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i.e., toward tlo vs. toward thi) in which the sign change was found in the previous two passes. If
the two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.



Chapter 4

Code Organization

4.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems), kinsol

(for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition, variants
of these which also do sensitivity analysis calculations are available or in development. cvodes, an
extension of cvode that provides both forward and adjoint sensitivity capabilities is available, while
idas is currently in development.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 4.1). The following is a list
of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs dy/dt = f(t, y, p) with sensitivity analysis capabil-
ities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

4.2 CVODES organization

The cvodes package is written in ANSI C. The following summarizes the basic structure of the
package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvodes package is shown in Figure 4.2. The basic elements of the
structure are a module for the basic integration algorithm (including forward sensitivity analysis), a
module for adjoint sensitivity analysis, and a set of modules for the solution of linear systems that
arise in the case of a stiff system. The central integration module, implemented in the files cvodes.h,
cvodea.h, cvodes impl.h, cvodea impl.h, cvodes.c, and cvodea.c, deals with the evaluation of
integration coefficients, the functional or Newton iteration process, estimation of local error, selection
of step size and order, and interpolation to user output points, among other issues. Although this
module contains logic for the basic Newton iteration algorithm, it has no knowledge of the method
being used to solve the linear systems that arise. For any given user problem, one of the linear system
modules is specified, and is then invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. cvodes provides three different strategies
for dealing with the correction stage for the sensitivity variables: CV SIMULTANEOUS, CV STAGGERED



28 Code Organization

CVODE CVODES KINSOL

SUNDIALS

IDA

DENSE

SPBCGSPGMR

BAND

SPTFQMR

CVDIAG CVDENSE CVBAND

CVSPGMR CVSPBCG CVSPTFQMR IDASPGMR

IDADENSE IDABAND

IDASPBCG IDASPTFQMR KINSPGMR

KINDENSE

KINSPBCG

KINBAND

KINSPTFQMR

PARALLEL

NVECTOR

SERIAL

GENERIC LINEAR SOLVERS

LINEAR SOLVER
INTERFACES

NVECTOR MODULES

(a) High-level diagram

examples_ser

examples_par

examples_ser

examples_par examples_par

source

includeinclude

source

include

source

include

source

shared cvode cvodes kinsol ida nvec_ser

nvec_par
include

source

examples_ser

examples_par

docdoc

examples_ser

doc doc

fcmix fcmix fcmix

examples_ser

examples_par

examples_ser

examples_par examples_par

examples_ser

sundials

(b) Directory structure of the source tree
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Figure 4.2: Overall structure of the cvodes package. Modules specific to cvodes are distinguished
by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.

and CV STAGGERED1 (see §3.2 and §6.2.1). The cvodes package includes an algorithm for the ap-
proximation of the sensitivity equations right-hand sides by difference quotients, but the user has the
option of supplying these right-hand sides directly.

The adjoint sensitivity module provides the infrastructure needed for the backward integration
of any system of ODEs which depends on the solution of the original IVP, in particular the adjoint
system and any quadratures required in evaluating the gradient of the objective functional. This
module deals with the setup of the checkpoints, the interpolation of the forward solution during the
backward integration, and the backward integration of the adjoint equations.

At present, the package includes the following six cvodes linear solver modules:

• cvdense: LU factorization and backsolving with dense matrices;

• cvband: LU factorization and backsolving with banded matrices;

• cvdiag: an internally generated diagonal approximation to the Jacobian;

• cvspgmr: scaled preconditioned GMRES method;

• cvspbcg: scaled preconditioned Bi-CGStab method;

• cvsptfqmr: scaled preconditioned TFQMR method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

In the case of the direct methods cvdense and cvband, the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. In the case of the Krylov iterative methods cvspgmr,
cvspbcg, and cvsptfqmr, the package includes an algorithm for the approximation of the product
between the Jacobian matrix and a vector of appropriate length by difference quotients. Again,
the user has the option of providing a routine for this operation. For the Krylov methods, the
preconditioner must be supplied by the user in two parts: setup (preprocessing of Jacobian data)
and solve. While there is no default choice of preconditioner analogous to the difference-quotient
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approximation in the direct case, the references [2] and [3], together with the example programs
included with cvodes, offer considerable assistance in building preconditioners.

Each cvodes linear solver module consists of four routines devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence. The call list within the central cvodes module for each of the five associated functions
is fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules cvdense, cvband,
cvspgmr, cvspbcg, and cvsptfqmr is a set of interface routines built on top of a generic solver
module, named dense, band, spgmr, spbcg, and sptfqmr, respectively. The interfaces deal with
the use of these methods in the cvodes context, whereas the generic solver is independent of the
context. While the generic solvers here were generated with sundials in mind, our intention is that
they be usable in other applications as general-purpose solvers. This separation also allows for any
generic solver to be replaced by an improved version, with no necessity to revise the cvodes package
elsewhere.

cvodes also provides two preconditioner modules for use with any of the Krylov iterative linear
solvers. The first one, cvbandpre, is intended to be used with nvector serial and provides banded
difference-quotient Jacobian-based preconditioner and solver routines. The second preconditioner
module, cvbbdpre, works in conjunction with nvector parallel and generates a preconditioner
that is a block-diagonal matrix with each block being a band matrix.

All state information used by cvodes to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the cvodes package, and
so in this respect it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the cvodes memory structure. The reentrancy of cvodes was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from within a single user
program.
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Using CVODES for IVP Solution

This chapter is concerned with the use of cvodes for the solution of initial value problems (IVPs).
The following sections treat the header files and the layout of the user’s main program, and provide
descriptions of the cvodes user-callable functions and user-supplied functions.

This usage is essentially equivalent to using cvode [19]. The listings of the sample programs in
the companion document [17] may also be helpful. Those codes may be used as templates and are
included in the cvodes package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers since these linear solver modules need to form the complete system Jacobian.
The following cvodes modules can only be used with nvector serial: cvdense, cvband and
cvbandpre. Also, the preconditioner module cvbbdpre can only be used with nvector parallel.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 11.

5.1 Access to libraries and header files

At this point, it is assumed that the installation of cvodes, following the procedure described in
Chapter 2, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvodes. The relevant library files are

• libdir/libsundials cvodes.lib,

• libdir/libsundials nvec*.lib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include

• incdir/include/cvodes

• incdir/include/sundials
The directories libdir and incdir are the install libray and include directories. For a default installation,
these are build tree/lib and build tree/include, respectively, where build tree was defined in Chapter
2.

Note that an application cannot link to both the cvode and cvodes libraries because both
contain user-callable functions with the same names (to ensure that cvodes is backward compatible
with cvode). Therefore, applications that contain both IVP problems and IVPs with sensitivity
analysis, should use cvodes.
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5.2 Data Types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §2.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the
type double, float, or long double in their code (assuming the typedef for realtype matches this
choice). Thus, a previously existing piece of ANSI C code can use sundials without modifying the
code to use realtype, so long as the sundials libraries use the correct precision (for details see §2.2).

5.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvodes.h, the main header file for cvodes, which defines the several types and various constants,
and includes function prototypes.

Note that cvodes.h includes sundials types.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see §8 for details).

For the two nvector implementations that are included in the cvodes package, the corresponding
header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel (MPI) implementation, nvector parallel.

Note that both these files in turn include the header file sundials nvector.h which defines the
abstract N Vector data type.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a linear
solver module header file will be required. The header files corresponding to the various linear solvers
availble for use with cvodes are:

• cvodes dense.h, which is used with the dense direct linear solver in the context of cvodes.
This in turn includes a header file (sundials dense.h) which defines the DenseMat type and
corresponding accessor macros;
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• cvodes band.h, which is used with the band direct linear solver in the context of cvodes.
This in turn includes a header file (sundials band.h) which defines the BandMat type and
corresponding accessor macros;

• cvodes diag.h, which is used with the diagonal linear solver in the context of cvodes;

• cvodes spgmr.h, which is used with the Krylov solver spgmr in the context of cvodes;

• cvodes spbcgs.h, which is used with the Krylov solver spbcg in the context of cvodes;

• cvodes sptfqmr.h; which is used with the Krylov solver sptfqmr in the context of cvodes;

The header files for the Krylov iterative solvers include cvodes spils.h which defined common
fuunctions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and for the choices for the Gram-Schmidt process for spgmr.

Other headers may be needed, depending upon the choice of preconditioner, etc. In one of
the examples in [18], preconditioning is done with a block-diagonal matrix. For this, the header
sundials smalldense.h is included.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of
an ODE IVP. Some steps are independent of the nvector implementation used; where this is not
the case, usage specifications are given for the two implementations provided with cvodes: steps
marked with [P] correspond to nvector parallel, while steps marked with [S] correspond to nvec-

tor serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv); to initialize MPI if used by the user’s program. Here argc and
argv are the command line argument counter and array received by main, respectively.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processes.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by a particular nvector

implementation. If a realtype array ydata containing the initial values of y already exists, then
make the call:

[S] y0 = N VMake Serial(N, ydata);

[P] y0 = N VMake Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:

[S] y0 = N VNew Serial(N);

[P] y0 = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPI COMM WORLD.
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4. Create cvodes object

Call cvode mem = CVodeCreate(lmm, iter); to create the cvodes memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the cvodes memory structure. See §5.5.1 for details.

5. Allocate internal memory

Call CVodeMalloc(...); to provide required problem specifications, allocate internal memory for
cvodes, and initialize cvodes. CVodeMalloc returns a flag, the value of which indicates either
success or an illegal argument value. See §5.5.1 for details.

6. Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of cvodes from
their default values. See §5.5.5.1 for details.

7. Attach linear solver module

If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §5.5.3):
[S] ier = CVDense(...);

[S] ier = CVBand(...);

ier = CVDiag(...);

ier = CVSpgmr(...);

ier = CVSpbcg(...);

ier = CVSptfqmr(...);

8. Set linear solver optional inputs

Call CV*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §5.5.5 for details.

9. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §5.8.1 for details.

10. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,

itask); Set itask to specify the return mode. The vector y (which can be the same as the vector
y0 above) will contain y(t). See §5.5.4 for details.

11. Get optional outputs

Call CV*Get* functions to obtain optional output. See §5.5.7 and §5.8.1 for details.

12. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor
function defined by the nvector implementation:

[S] N VDestroy Serial(y);

[P] N VDestroy Parallel(y);

13. Free solver memory

Call CVodeFree(&cvode mem); to free the memory allocated for cvodes.
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14. [P] Finalize MPI

Call MPI Finalize(); to terminate MPI.

5.5 User-callable functions for IVP solution

This section describes the cvodes functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §5.5.5, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of cvodes. In
any case, refer to §5.4 for the correct order of these calls. Calls related to rootfinding are described in
§5.8.

5.5.1 CVODES initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the cvodes memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm, iter);

Description The function CVodeCreate instantiates a cvodes solver object and specifies the solution
method.

Arguments lmm (int) specifies the linear multistep method and may be one of two possible values:
CV ADAMS or CV BDF.

iter (int) specifies the type of nonlinear solver iteration and may be either CV NEWTON

or CV FUNCTIONAL.

The recommended choices for (lmm, iter) are (CV ADAMS, CV FUNCTIONAL) for nonstiff
problems and (CV BDF, CV NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created cvodes memory block
(of type void *). If an error occurred, CVodeCreate prints an error message to stderr

and returns NULL.

CVodeMalloc

Call flag = CVodeMalloc(cvode mem, f, t0, y0, itol, reltol, abstol);

Description The function CVodeMalloc provides required problem and solution specifications, allo-
cates internal memory, and initializes cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes f in the ODE. This function
has the form f(t, y, ydot, f data) (for full details see §5.6.1).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

itol (int) is one of CV SS, CV SV, or CV WF. Here itol = SS indicates scalar
relative error tolerance and scalar absolute error tolerance, while itol =
CV SV indicates scalar relative error tolerance and vector absolute error tol-
erance. The latter choice is important when the absolute error tolerance
needs to be different for each component of the ODE. If itol = CV WF, the
arguments reltol and abstol are ignored and the user is expected to pro-
vide a function to evaluate the error weight vector W , replacing (3.7). See
CVodeSetEwtFn in §5.5.5.1.

reltol (realtype) is the relative error tolerance.
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abstol (void *) is a pointer to the absolute error tolerance. If itol = CV SS,
abstol must be a pointer to a realtype variable. If itol = CV SV, abstol
must be an N Vector variable.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeMalloc was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeMalloc has an illegal value.

Notes See also §5.5.2 for advice on tolerances.

The tolerance values in reltol and abstol may be changed between calls to CVode (see
CVodeSetTolerances in §5.5.5.1).
It is the user’s responsibility to provide compatible itol and abstol arguments.!

If an error occurred, CVodeMalloc also sends an error message to the error handler
function.

CVodeFree

Call CVodeFree(&cvode mem);

Description The function CVodeFree frees the memory allocated by a previous call to CVodeMalloc.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeFree has no return value.

5.5.2 Advice on choice and use of tolerances

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 1.0E-4
means that errors are controlled to .01%. We do not recommend using reltol larger than 1.0E-3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvsdenx in the cvode package, and the discussion of it in the cvode Examples document [17]. In
that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservately, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the
actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol =
1.0E-6. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
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solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in y returned by cvodes, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t, y).

5.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (3.5).
There are six cvodes linear solvers currently available for this task: cvdense, cvband, cvdiag,
cvspgmr, cvspbcg, and cvsptfqmr. The first three are direct solvers and their names indicate the
type of approximation used for the Jacobian J = ∂f/∂y; cvdense, cvband, and cvdiag work with
dense, banded, and diagonal approximations to J , respectively. The last three cvodes linear solvers
— cvspgmr, cvspbcg, and cvsptfqmr — are Krylov iterative solvers, which use scaled precondi-
tioned GMRES, scaled preconditioned Bi-CGStab, and scaled preconditioned TFQMR, respectively.
Together, they are refered to as cvspils (from scaled preconditioned iterative linear solvers).

With any of the Krylov methods, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. For a given preconditioner matrix, the merits of left
vs. right preconditioning are unclear in general, and the user should experiment with both choices.
Performance will differ because the inverse of the left preconditioner is included in the linear system
residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or
the right only, rather than using one factor on each side. For the specification of a preconditioner, see
the iterative linear solver sections in §5.5.5 and §5.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the
Newton matrix M = I − γJ of (3.6).

To specify a cvodes linear solver, after the call to CVodeCreate but before any calls to CVode,
the user’s program must call one of the functions CVDense, CVBand, CVDiag, CVSpgmr, CVSpbcg, or
CVSptfqmr, as documented below. The first argument passed to these functions is the cvodes memory
pointer returned by CVodeCreate. A call to one of these functions links the main cvodes integrator
to a linear solver and allows the user to specify parameters which are specific to a particular solver,
such as the half-bandwidths in the cvband case. The use of each of the linear solvers involves certain
constants and possibly some macros, that are likely to be needed in the user code. These are available
in the corresponding header file associated with the linear solver, as specified below.

In each case except the diagonal approximation case cvdiag, the linear solver module used by
cvodes is actually built on top of a generic linear system solver, which may be of interest in itself.
These generic solvers, denoted dense, band, spgmr, spbcg, and sptfqmr, are described separately
in Chapter 10.

CVDense

Call flag = CVDense(cvode mem, N);
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Description The function CVDense selects the cvdense linear solver.

The user’s main program must include the cvodes dense.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of:

CVDENSE SUCCESS The cvdense initialization was successful.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE ILL INPUT The cvdense solver is not compatible with the current nvector

module.

CVDENSE MEM FAIL A memory allocation request failed.

Notes The cvdense linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided with sundials, only
nvector serial is compatible.

CVBand

Call flag = CVBand(cvode mem, N, mupper, mlower);

Description The function CVBand selects the cvband linear solver.

The user’s main program must include the cvodes band.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

Return value The return value flag (of type int) is one of:

CVBAND SUCCESS The cvband initialization was successful.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND ILL INPUT The cvband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside of its
valid range (0 . . . N−1).

CVBAND MEM FAIL A memory allocation request failed.

Notes The cvband linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided with sundials,
only nvector serial is compatible. The half-bandwidths are to be set such that the
nonzero locations (i, j) in the banded (approximate) Jacobian satisfy −mlower ≤ j−i ≤
mupper.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main function must include the cvodes diag.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.
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CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector

module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the current cvodes linear solvers. The
cvdiag solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.

CVSpgmr

Call flag = CVSpgmr(cvode mem, pretype, maxl);

Description The function CVSpgmr selects the cvspgmr linear solver.

The user’s main function must include the cvodes spgmr.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (3.5).

CVSpbcg

Call flag = CVSpbcg(cvode mem, pretype, maxl);

Description The function CVSpbcg selects the cvspbcg linear solver.

The user’s main function must include the cvodes spbcgs.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspbcg solver uses a scaled preconditioned Bi-CGStab iterative method to solve
the linear system (3.5).
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CVSptfqmr

Call flag = CVSptfqmr(cvode mem, pretype, maxl);

Description The function CVSptfqmr selects the cvsptfqmr linear solver.

The user’s main function must include the cvodes sptfqmr.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvsptfqmr solver uses a scaled preconditioned TFQMR iterative method to solve
the linear system (3.5).

5.5.4 CVODE solver function

This is the central step in the solution process - the call to perform the integration of the IVP.

CVode

Call flag = CVode(cvode mem, tout, yout, tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype *) the time reached by the solver.

itask (int) a flag indicating the job of the solver for the next user step. The
CV NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP

option tells the solver to take just one internal step and then return the
solution at the point reached by that step. The CV NORMAL TSTOP and
CV ONE STEP TSTOP modes are similar to CV NORMAL and CV ONE STEP, re-
spectively, except that the integration never proceeds past the value tstop

(specified through the function CVodeSetStopTime).

Return value On return, CVode returns a vector yout and a corresponding independent variable value
t =*tret, such that yout is the computed value of y(t).

In CV NORMAL mode (with no errors), *tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no roots were found.

CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §5.5.5.1).

CV ROOT RETURN CVode succeeded and found one or more roots. If nrtfn > 1, call
CVodeGetRootInfo to see which gi were found to have a root. See
§5.8 for more information.

CV MEM NULL The cvode mem argument was NULL.
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CV NO MALLOC The cvodes memory was not allocated by a call to CVodeMalloc.

CV ILL INPUT One of the inputs to CVode is illegal. This includes the situation
where a root of one of the root functions was found both at a point
t and also very near t. It also includes the situation where a com-
ponent of the error weight vector becomes negative during internal
time-stepping. The CV ILL INPUT flag will also be returned if the
linear solver initialization function (called by the user after calling
CVodeCreate) failed to set the linear solver-specific lsolve field in
cvode mem Finally, if the initial time t0 and the final time tout are
too close to each other and the user did not specify an initial step
size, CVode will also return CV ILL INPUT.. In any case, the user
should see the error message for details.

CV TOO MUCH WORK The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hmin.

CV CONV FAILURE Either convergence test failures occurred too many times (MXNCF =

10) during one internal time step, or with |h| = hmin.

CV LINIT FAIL The linear solver’s initialization function failed.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV RHSFUNC FAIL The right-hand side function failed in an unrecoverable manner.

CV FIRST RHSFUNC FAIL The right-hand side function had a recoverable error at the
first call.

CV REPTD RHSFUNC ERR Convergence tests occurred too many times due to repeated re-
coverable errors in the right-hand side function. The CV REPTD RHSFUNC ERR

will also be returned if the right-hand side function had repeated re-
coverable errors during the estimation of an initial step size.

CV UNREC RHSFUNC ERR The right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

CV RTFUNC FAIL The rootfinding function failed.

Notes The vector yout can occupy the same space as the y0 vector of initial conditions that
was passed to CVodeMalloc.

In the CV ONE STEP mode, tout is only used on the first call to get the direction and a
rough scale of the independent variable.

All failure return values are negative and so the test ier < 0 will trap all CVode failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

5.5.5 Optional input functions

cvodes provides an extensive set of functions that can be used to change from their default values
various optional input parameters that control the behavior of the cvodes solver. Table 5.1 lists
all optional input functions in cvodes which are then described in detail in the remainder of this
section, begining with those for the main cvodes solver and continuing with those for the linear solver
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modules. Note that the diagonal linear solver module has no optional inputs. For the most casual use
of cvodes, the reader can skip to §5.6.

We note that, on error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0

will catch all errors.

5.5.5.1 Main solver optional input functions

The calls listed here can be executed in any order.
However, if CVodeSetErrHandlerFn or CVodeSetErrFile are to be called, that call should be first, in
order to take effect for any later error message.

CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ehfun (CVErrHandlerFn) is the C error handler function (see §5.6.2).
eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function ehfun and data pointer eh data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default internal error handler function directs error messages to the file specified
by the file pointer errfp (see CVodeSetErrFile below).

Error messages indicating that the cvodes solver memory is NULL will always be directed
to stderr.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all cvodes messages
should be directed in case the default cvodes error handler function is used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the cvodes memory pointer is NULL).

If CVodeSetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

CVodeSetFdata

Call flag = CVodeSetFdata(cvode mem, f data);

Description The function CVodeSetFdata specifies the user-defined data block f data to be passed
to the user-supplied right-hand side function f , and attaches it to the main cvodes

memory block.
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Table 5.1: Optional inputs for cvodes, cvdense, cvband, and cvspils

Optional input Function name Default
CVODE main solver

Error handler function CVodeSetErrHandlerFn internal fn.
Pointer to an error file CVodeSetErrFile stderr

Data for right-hand side function CVodeSetFdata NULL

Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet FALSE

Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Integration tolerances CVodeSetTolerances none
Ewt compuation function CVodeSetEwtFn internal fn.

CVDENSE linear solver
Dense Jacobian function and data CVDenseSetJacFn internal DQ,

NULL
CVBAND linear solver

Band Jacobian function and data CVBandSetJacFn internal DQ,
NULL

CVSPILS linear solvers
Preconditioner functions and data CVSpilsSetPreconditioner all NULL
Jacobian-times-vector function and data CVSpilsSetJacTimesVecFn internal DQ,

NULL
Preconditioning type CVSpilsSetPrecType none
Ratio between linear and nonlinear tolerances CVSpilsSetDelt 0.05
Type of Gram-Schmidt orthogonalization(a) CVSpilsSetGSType classical GS
Maximum Krylov subspace size(b) CVSpilsSetMaxl 5

(a) Only for cvspgmr
(b) Only for cvspbcg and cvsptfqmr
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Arguments cvode mem (void *) pointer to the cvodes memory block.

f data (void *) pointer to the user-defined data block.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If f data is not specified, a NULL pointer is passed to the f function.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrder(cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxord (int) value of the maximum method order.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The specified value maxord is negative or larger than its previous value.

Notes The default value is ADAMS Q MAX = 12 for the Adams-Moulton method and BDF Q MAX

= 5 for the BDF method. Since maxord affects the memory requirements for the internal
cvodes memory block, its value cannot be increased past its previous value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT mxsteps is non-positive.

Notes Passing mxsteps= 0 results in cvodes using the default value (500).

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that t+ h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxhnil (int) maximum number of warning messages

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.
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CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §3.4 for further details.

Arguments cvode mem (void *) pointer to the cvodes memory block.

stldet (booleantype) flag controlling stability limit detection (TRUE = on; FALSE
= off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The linear multistep method is not set to CV BDF.

Notes The default value is FALSE. If stldet = TRUE when BDF is used and the method order
is greater than or equal to 3, then an internal function, CVsldet, is called to detect a
possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hin (realtype) value of the initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvodes estimates the initial step size to be the solution h of the equation
‖0.5h2ÿ‖WRMS = 1, where ÿ is an estimated second derivative of the solution at t0.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hmin (realtype) minimum absolute value of the step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hmax (realtype) maximum absolute value of the step size.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.

Notes Pass hmax= 0 to obtain the default value ∞.

CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is ∞.

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxnef (int) maximum number of error test failures allowed on one step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.
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CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §3.1).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlscoef (realtype) coefficient in nonlinear convergence test.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvode mem (void *) pointer to the cvodes memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
§5.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

CVodeSetTolerances

Call flag = CVodeSetTolerances(cvode mem, itol, reltol, abstol);

Description The function CVodeSetTolerances resets the integration tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

itol (int) is either CV SS or CV SV, where itol = CV SS indicates scalar rela-
tive error tolerance and scalar absolute error tolerance, while itol=CV SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each component of the ODE.
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reltol (realtype) the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=CV SS, abstol
must be a pointer to a realtype variable. If itol=CV SV, abstol must be
an N Vector variable.

Return value The return value flag (of type int) is one of

CV SUCCESS The tolerances have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT An input argument has an illegal value.

Notes The integration tolerances are initially specified in the call to CVodeMalloc (see §5.5.1).
This function call is needed only if the tolerances are being changed from their values
beween successiv calls to CVode.

It is the user’s responsibility to provide compatible itol and abstol arguments.!

It is illegal to call CVodeSetTolerances before a call to CVodeMalloc.

CVodeSetEwtFn

Call flag = CVodeSetEwtFn(cvode mem, efun, e data);

Description The function CVodeSetEwtFn specifies the user-defined function to be used in computing
the error weight vector W , which is normally defined by Eq.(3.7).

Arguments cvode mem (void *) pointer to the cvodes memory block.

efun (CVEwtFn) is the C function which defines the ewt vector (see §5.6.3).
e data (void *) pointer to user data passed to efun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function efun and data pointer e data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes This function can be called between successive calls to CVode.

If not needed, pass NULL for edata.

It is illegal to call CVodeSetEwtFn before a call to CVodeMalloc.!

5.5.5.2 Dense linear solver

The cvdense solver needs a function to compute a dense approximation to the Jacobian matrix
J(t, y). This function must be of type CVDenseJacFn. The user can supply his/her own dense Jacobian
function, or use the default difference quotient function CVDenseDQJac that comes with the cvdense

solver. To specify a user-supplied Jacobian function djac and associated user data jac data, cvdense

provides the function CVDenseSetJacFn. The cvdense solver passes the pointer jac data to its dense
Jacobian function. This allows the user to create an arbitrary structure with relevant problem data
and access it during the execution of the user-supplied Jacobian function, without using global data
in the program. The pointer jac data may be identical to f data, if the latter was specified through
CVodeSetFdata.

CVDenseSetJacFn

Call flag = CVDenseSetJacFn(cvode mem, djac, jac data);

Description The function CVDenseSetJacFn specifies the dense Jacobian approximation function to
be used and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

djac (CVDenseJacFn) user-defined dense Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.
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Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes By default, cvdense uses the difference quotient function CVDenseDQJac. If NULL is
passed to djac, this default function is used.

The function type CVDenseJacFn is described in §5.6.4.

5.5.5.3 Band linear solver

The cvband solver needs a function to compute a banded approximation to the Jacobian matrix
J(t, y). This function must be of type CVBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default difference quotient function CVBandDQJac that
comes with the cvband solver. To specify a user-supplied Jacobian function bjac and associated
user data jac data, cvband provides the function CVBandSetJacFn. The cvband solver passes the
pointer jac data to its banded Jacobian approximation function. This allows the user to create an
arbitrary structure with relevant problem data and access it during the execution of the user-supplied
Jacobian function, without using global data in the program. The pointer jac data may be identical
to f data, if the latter was specified through CVodeSetFdata.

CVBandSetJacFn

Call flag = CVBandSetJacFn(cvode mem, bjac, jac data);

Description The function CVBandSetJacFn specifies the banded Jacobian approximation function to
be used and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

bjac (CVBandJacFn) user-defined banded Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes By default, cvband uses the difference quotient function CVBandDQJac. If NULL is
passed to bjac, this default function is used.

The function type CVBandJacFn is described in §5.6.5.

5.5.5.4 SPILS linear solver

If any preconditioning is to be done within one of the cvspils linear solvers, then the user must supply
a preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-

tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §5.6. If used, the psetup function should also be specified in the call
to CVSpilsSetPreconditioner. Optionally, a cvspils solver passes the pointer p data received
through CVSpilsSetPreconditioner to the preconditioner psetup and psolve functions. This al-
lows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied preconditioner functions without using global data in the program. The
pointer p data may be identical to f data, if the latter was specified through CVodeSetFdata.

Ther cvspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the difference quotient function CVSpilsDQJtimes that comes with



50 Using CVODES for IVP Solution

the cvspils solvers. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn
and can be specified through a call to CVSpilsSetJacTimesVecFn (see §5.6.6 for specification de-
tails). As with the preconditioner user data structure p data, the user can also specify, in the call to
CVSpilsSetJacTimesVecFn, a pointer to a user-defined data structure, jac data, which the cvspils

solver passes to the Jacobian-times-vector function jtimes each time it is called. The pointer jac data

may be identical to p data and/or f data.

CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve, p data);

Description The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function.

psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.

p data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The function type CVSpilsPrecSolveFn is described in §5.6.7. The function type
CVSpilsPrecSetupFn is described in §5.6.8.

CVSpilsSetJacTimesVecFn

Call flag = CVSpilsSetJacTimesVecFn(cvode mem, jtimes, jac data);

Description The function CVSpilsSetJacTimesFn specifies the Jacobian-vector function to be used
and the pointer to user data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

jtimes (CVSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes By default, the cvspils linear solvers use an internal difference quotient function
CVSpilsDQJtimes. If NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesVecFn is described in §5.6.6.

CVSpilsSetPrecType

Call flag = CVSpilsSetPrecType(cvode mem, pretype);

Description The function CVSpilsSetPrecType resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the type of preconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.
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CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

Notes The preconditioning type is initially set in the call to the linear solver’s specification
function (see §5.5.3). This function call is needed only if pretype is being changed from
its original value.

CVSpilsSetGSType

Call flag = CVSpilsSetGSType(cvode mem, gstype);

Description The function CVSpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used with the cvspgmr solver (one of the enumeration constants MODIFIED GS or
CLASSICAL GS). These correspond to using modified Gram-Schmidt and classical Gram-
Schmidt, respectively.

Arguments cvode mem (void *) pointer to the cvodes memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The Gram-Schmidt orthogonalization type gstype is not valid.

Notes The default value is MODIFIED GS.

This option is available only for the cvspgmr linear solver. !

CVSpilsSetDelt

Call flag = CVSpilsSetDelt(cvode mem, delt);

Description The function CVSpilsSetDelt specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvodes memory block.

delt (realtype)

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The factor delt is negative.

Notes The default value is 0.05.

Passing a value delt= 0.0 also indicates using the default value.

CVSpilsSetMaxl

Call flag = CVSpilsSetMaxl(cv mem, maxl);

Description The function CVSpilsSetMaxl resets maximum Krylov subspace dimension for the Bi-
CGStab or TFQMR methods.

Arguments cv mem (void *) pointer to the cvodes memory block.

maxl (int) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cv mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The maximum subspace dimension is initially specified in the call to the linear solver
specification function (see §5.5.3). This function call is needed only if maxl is being
changed from its previous value.

This option is available only for the cvspbcg and cvsptfqmr linear solvers.!

5.5.6 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by cvodes.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(k)y/dt(k)(t), where tn−hu ≤ t ≤ tn, tn denotes the current internal time reached, and
hu is the last internal step size successfully used by the solver. The user may request k
= 0, 1, ..., qu, where qu is the current order.

Arguments cvode mem (void *) pointer to the cvodes memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.

CV BAD K k is not in the range 0, 1, ..., qu.

CV BAD T t is not in the interval [tn − hu, tn].

CV BAD DKY The dky argument was NULL.

CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.

5.5.7 Optional output functions

cvodes provides an extensive set of functions that can be used to obtain solver performance infor-
mation. Table 5.2 lists all optional output functions in cvodes, which are then described in detail
in the remainder of this section, begining with those for the main cvodes solver and continuing with
those for the linear solver modules. Where the name of an output from a linear solver module would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added here (e.g. lenrwLS).
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Table 5.2: Optional outputs from cvodes, cvdense, cvband, cvdiag, and cvspils

Optional output Function name
CVODES main solver

Size of cvodes real and integer workspaces CVodeGetWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup function CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

No. of order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

All cvodes integrator statistics CVodeGetIntegratorStats

cvodes nonlinear solver statistics CVodeGetNonlinSolvStats

Array showing roots found CvodeGetRootInfo

No. of calls to user root function CVodeGetNumGEvals

Name of constant associated with a return flag CVodeGetReturnFlagName

CVDENSE linear solver
Size of cvdense real and integer workspaces CVDenseGetWorkSpace

No. of Jacobian evaluations CVDenseGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVDenseGetNumRhsEvals

Last return from a cvdense function CVDenseGetLastFlag

Name of constant associated with a return flag CVDenseGetReturnFlagName

CVBAND linear solver
Size of cvband real and integer workspaces CVBandGetWorkSpace

No. of Jacobian evaluations CVBandGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVBandGetNumRhsEvals

Last return from a cvband function CVBandGetLastFlag

Name of constant associated with a return flag CVBandGetReturnFlagName

CVDIAG linear solver
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvdiag function CVDiagGetLastFlag

Name of constant associated with a return flag CVDiagGetReturnFlagName

CVSPILS linear solvers
Size of real and integer workspaces CVSpilsGetWorkSpace

No. of linear iterations CVSpilsGetNumLinIters

No. of linear convergence failures CVSpilsGetNumConvFails

No. of preconditioner evaluations CVSpilsGetNumPrecEvals

No. of preconditioner solves CVSpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations CVSpilsGetNumJtimesEvals

No. of r.h.s. calls for finite diff. Jacobian-vector evals. CVSpilsGetNumRhsEvals

Last return from a linear solver function CVSpilsGetLastFlag

Name of constant associated with a return flag CVSpilsGetReturnFlagName
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5.5.7.1 Main solver optional output functions

cvodes provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvodes memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Functions are also provided to
extract statistics related to the performance of the cvodes nonlinear solver used. As a convenience,
additional information extraction functions provide the optional outputs in groups. These optional
output functions are described next.

CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvodes real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrw (long int) the number of realtype values in the cvodes workspace.

leniw (long int) the number of integer values in the cvodes workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §5.8), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 96 + (maxord+5) ∗Nr + 3∗nrtfn;
• if itol = CV SV: lenrw = lenrw +Nr;

where Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 40 + (maxord+5) ∗Ni + nrtfn;

• if itol = CV SV: leniw = leniw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial

and 2*npes for nvector parallel and npes processors).

For the default value of maxord, with no rootfinding, and with itol 6= CV SV, these
lengths are given roughly by:

• For the Adams method: lenrw = 96 + 17N and leniw = 57

• For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §5.7.1 and §6.2.1 for more details.

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvodes to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the
local error test condition.
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CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §3.4).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized through a call to CVodeSetStabLimDet,
then nslred=0.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi given by (3.7).

Arguments cvode mem (void *) pointer to the cvodes memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for eweight. !
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CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for ele.!

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the esti-
mated local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of the two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,

&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvodes integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.

nfevals (long int) number of calls to the user’s f function.

nlinsetups (long int) number of calls made to the linear solver setup function.

netfails (long int) number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvodes nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description The function CVodeGetReturnFlagName returns the name of the cvode constant cor-
responding to flag.

Arguments The only argument, of type int is a return flag from a cvode function.

Return value The return value is a string containing the name of the corresponding constant.

5.5.7.2 Dense linear solver

The following optional outputs are available from the cvdense module: workspace requirements,
number of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-
difference Jacobian approximation, and last return value from a cvdense function.

CVDenseGetWorkSpace

Call flag = CVDenseGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDenseGetWorkSpace returns the cvdense real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvdense workspace.

leniwLS (long int) the number of integer values in the cvdense workspace.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output values have been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.
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Notes In terms of the problem size N , the actual size of the real workspace is 2N 2 realtype

words, and the actual size of the integer workspace is N integer words.

CVDenseGetNumJacEvals

Call flag = CVDenseGetNumJacEvals(cvode mem, &njevals);

Description The function CVDenseGetNumJacEvals returns the number of calls made to the dense
Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

CVDenseGetNumRhsEvals

Call flag = CVDenseGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDenseGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference dense Jacobian approxi-
mation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVDenseDQJac difference quo-
tient function is used.

CVDenseGetLastFlag

Call flag = CVDenseGetLastFlag(cvode mem, &lsflag);

Description The function CVDenseGetLastFlag returns the last return value from a cvdense rou-
tine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (int) the value of the last return flag from a cvdense function.

Return value The return value flag (of type int) is one of

CVDENSE SUCCESS The optional output value has been successfully set.

CVDENSE MEM NULL The cvode mem pointer is NULL.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized.

Notes If the cvdense setup function failed (CVode returned CV LSETUP FAIL), then the value
of lsflag corresponds to the column index (numbered from one) of a diagonal element
with value zero that was encountered during the LU factorization of the dense Jacobian
matrix.
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CVDenseGetReturnFlagName

Call name = CVDenseGetReturnFlagName(flag);

Description The function CVDenseGetReturnFlagName returns the name of the cvdense constant
corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvdense function.

Return value The return value is a string containing the name of the corresponding constant.

5.5.7.3 Band linear solver

The following optional outputs are available from the cvband module: workspace requirements,
number of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-
difference Jacobian approximation, and last return value from a cvband function.

CVBandGetWorkSpace

Call flag = CVBandGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVBandGetWorkSpace returns the cvband real and integer workspace
sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvband workspace.

leniwLS (long int) the number of integer values in the cvband workspace.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output values have been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes In terms of the problem size N and Jacobian half-bandwidths, the actual size of the
real workspace is (2 mupper+3 mlower+2)N realtype words, and the actual size of
the integer workspace is N integer words.

CVBandGetNumJacEvals

Call flag = CVBandGetNumJacEvals(cvode mem, &njevals);

Description The function CVBandGetNumJacEvals returns the number of calls made to the banded
Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

CVBandGetNumRhsEvals

Call flag = CVBandGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVBandGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference banded Jacobian approxi-
mation.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVBandDQJac difference quotient
function is used.

CVBandGetLastFlag

Call flag = CVBandGetLastFlag(cvode mem, &lsflag);

Description The function CVBandGetLastFlag returns the value of the last return flag from a
cvband routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (int) the value of the last return flag from a cvband function.

Return value The return value flag (of type int) is one of

CVBAND SUCCESS The optional output value has been successfully set.

CVBAND MEM NULL The cvode mem pointer is NULL.

CVBAND LMEM NULL The cvband linear solver has not been initialized.

Notes If the cvband setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag corresponds to the column index (numbered from one) of a diagonal element
with value zero that was encountered during the LU factorization of the banded Jacobian
matrix.

CVBandGetReturnFlagName

Call name = CVBandGetReturnFlagName(flag);

Description The function CVBandGetReturnFlagName returns the name of the cvband constant
corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvband function.

Return value The return value is a string containing the name of the corresponding constant.

5.5.7.4 Diagonal linear solver

The following optional outputs are available from the cvdiag module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a cvdiag function.

CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvdiag workspace.

leniwLS (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output valus have been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.
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CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag is equal to CVDIAG INV FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).

CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(flag);

Description The function CVDiagGetReturnFlagName returns the name of the cvdiag constant
corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvdiag function.

Return value The return value is a string containing the name of the corresponding constant.

5.5.7.5 SPILS linear solvers

The following optional outputs are available from the cvspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to the
right-hand side routine for finite-difference Jacobian-vector product approximation, and last return
value from a linear solver function.
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CVSpilsGetWorkSpace

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVSpilsGetWorkSpace returns the global sizes of the cvspgmr real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvspils workspace.

leniwLS (long int) the number of integer values in the cvspils workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
(maxl+5) ∗N+ maxl ∗( maxl+4) + 1 realtype words for cvspgmr,
9 ∗N realtype words for cvspbcg,
and 11 ∗N realtype words for idasptfqmr.

In a parallel setting, the above values are global — summed over all processors.

CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumConvFails

Call flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

Description The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecEvals

Call flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

Description The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = FALSE.
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Arguments cvode mem (void *) pointer to the cvodes memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvodes memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector function, jtimes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.
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CVSpilsGetLastFlag

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);

Description The function CVSpilsGetLastFlag returns the last return value from a cvspils routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

flag (int) the value of the last return flag from a cvspils function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes If the cvspils setup function failed (CVode returned CV LSETUP FAIL), lsflag will be
SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the cvspgmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL, indicating
that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an unrecover-
able failure in the Jacobian-times-vector function; SPGMR PSOLVE FAIL UNREC, indicat-
ing that the preconditioner solve function psolve failed unrecoverably; SPGMR GS FAIL,
indicating a failure in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating
that the matrix R was found to be singular during the QR solve phase.

If the cvspbcg solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL, indicating
that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an unrecoverable
failure in the Jacobian-times-vector function; or SPBCG PSOLVE FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.

If the cvsptfqmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag con-
tains the error return flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL, in-
dicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating an
unrecoverable failure in the Jacobian-times-vector function; or SPTFQMR PSOLVE FAIL UNREC,
indicating that the preconditioner solve function psolve failed unrecoverably.

CVSpilsGetReturnFlagName

Call name = CVSpilsGetReturnFlagName(flag);

Description The function CVSpilsGetReturnFlagName returns the name of the cvspils constant
corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvspils function.

Return value The return value is a string containing the name of the corresponding constant.

5.5.8 CVODES reinitialization function

The function CVodeReInit reinitializes the main cvodes solver for the solution of a problem, where a
prior call to CVodeMalloc has been made. The new problem must have the same size as the previous
one. CVodeReInit performs the same input checking and initializations that CVodeMalloc does, but
does no memory allocation as it assumes that the existing internal memory is sufficient for the new
problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV ADAMS to CV BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate CV*Set* calls, as
described in §5.5.3
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CVodeReInit

Call flag = CVodeReInit(cvode mem, f, t0, y0, itol, reltol, abstol);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

f (CVRhsFn) is the C function which computes f in the ODE. This function
has the form f(N, t, y, ydot, f data) (for full details see §5.6).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

itol (int) is one of CV SS, CV SV, or CV WF, where itol = CV SS indicates scalar
relative error tolerance and scalar absolute error tolerance, while itol =

CV SV indicates scalar relative error tolerance and vector absolute error
tolerance. The latter choice is important when the absolute error toler-
ance needs to be different for each component of the ODE. If itol=CV WF,
the arguments reltol and abstol are ignored and the user is expected to
provide a function to evaluate the error weight vector W from (3.7). See
CVodeSetEwtFn in §5.5.5.1.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=CV SS, abstol
must be a pointer to a realtype variable. If itol=CV SV, abstol must be
an N Vector variable.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC Memory space for the cvodes memory block was not allocated through
a previous call to CVodeMalloc.

CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

It is the user’s responsibility to provide compatible itol and abstol arguments. !

5.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iterative algorithms.

5.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

CVRhsFn

Definition typedef int (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,

void *f data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.
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Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

f data is the f data pointer passed to CVodeSetFdata.

Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV RHSFUNC FAIL is returned).

Notes Allocation of memory for ydot is handled within cvodes.

For efficiency considerations, the right-hand side function is not evaluated at the con-!

verged solution of the nonlinear solver. Therefore, a recoverable error in CVRhsFn at
that point cannot be corrected (as it will occur when the right-hand side function is
called the first time during the following integration step and a successful step can-
not be undone). However, if the use program also includes quadrature integration, the
state variables can be checked for legality in the call to CVQuadRhsFn which is called
at the converged solution of the nonlinear system and therefore cvodes can be flagged
to attempt to recover from such a situation. Also, if sensitivity analysis is performed
with one of the staggered methods, the ODE right-hand side function is called at the
converged solution of the nonlinear system and a recoverable error at that point will be
captured and cvodes will try to correct it.

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. This include the situation when this oc-
currs at the very first call to the CVRhsFn (in which case cvodes returns CV FIRST RHSFUNC ERR)
or if a recoverable error is reported when CVRhsFn is called after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC RHSFUNC ERR).

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVSetErrFile), the user may provide a function of type CVErrHandlerFn to process
any such messages. The function type CVErrHandlerFn is defined as follows:

CVErrHandlerFn

Definition typedef void (*CVErrHandlerFn)(int error code,

const char *module, const char *function,

char *msg, void *eh data);

Purpose This function processes error and warning messages from cvodes and its sub-modules.

Arguments error code is the error code.

module is the name of the cvodes module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (CV WARNING) for warnings. If a function
returning a pointer to memory (e.g. CVBBDPrecAlloc) encounters an error, it sets
error code to 0 before returning NULL.
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5.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. The function type CVEwtFn is defined as follows:

CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *e data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the vector for which the WRMS norm must be computed.

ewt is the output vector containing the error weights.

e data is the e data pointer passed to CVodeSetEwtFn.

Return value A CVEwtFn function type must return 0 if it successfuly set the error weights and −1
otherwise. In case of failure, a message is printed and the integration stops.

Notes Allocation of memory for ewt is handled within cvodes.

The error weight vector must have all components positive. It is the user’s responsiblity !

to perform this test and return −1 if it is not satisfied.

5.6.4 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e., CVDense is called in Step
7 of §5.4), the user may provide a function of type CVDenseJacFn defined by:

CVDenseJacFn

Definition typedef (*CVDenseJacFn)(long int N, DenseMat J, realtype t,

N Vector y, N Vector fy, void *jac data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J = ∂f/∂y (or an approximation to it).

Arguments N is the problem size.

J is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

jac data is the jac data pointer passed to CVDenseSetJacFn.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVDenseJacFn as temporary storage or work space.

Return value A CVDenseJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvdense sets last flag

on CVDENSE JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV LSETUP FAIL and cvdense sets last flag

on CVDENSE JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the N by N dense matrix J with an
approximation to the Jacobian matrix J at the point (t, y). Only nonzero elements need
to be loaded into J because J is set to the zero matrix before the call to the Jacobian
function. The type of J is DenseMat.
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The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the DenseMat type. DENSE ELEM(J, i, j) references the (i, j)-th element of the dense
matrix J (i, j = 0 . . . N−1). This macro is meant for small problems for which efficiency
of access is not a major concern. Thus, in terms of the indices m and n ranging from 1
to N , the Jacobian element Jm,n can be set using the statement DENSE ELEM(J, m-1,

n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a pointer to the first element of
the j-th column of J (j = 0 . . . N − 1), and the elements of the j-th column can then
be accessed using ordinary array indexing. Consequently, Jm,n can be loaded using the
statements col n = DENSE COL(J, n-1); col n[m-1] = Jm,n. For large problems, it
is more efficient to use DENSE COL than to use DENSE ELEM. Note that both of these
macros number rows and columns starting from 0.

The DenseMat type and accessor macros DENSE ELEM and DENSE COL are documented
in §10.1.
If the user’s CVDenseJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §5.5.7.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

5.6.5 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand is called in Step
7 of §5.4), the user may provide a function of type CVBandJacFn defined as follows:

CVBandJacFn

Definition typedef int (*CVBandJacFn)(long int N, long int mupper,

long int mlower, BandMat J, realtype t,

N Vector y, N Vector fy, void *jac data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the banded Jacobian J = ∂f/∂y (or a banded approximation
to it).

Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

J is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

jac data is the jac data pointer passed to CVBandSetJacFn.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVBandJacFn as temporary storage or work space.

Return value A CVBandJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvband sets last flag

on CVBAND JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV LSETUP FAIL and cvband sets last flag

on CVBAND JACFUNC UNRECVR).
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Notes A user-supplied band Jacobian function must load the band matrix J of type BandMat

with the elements of the Jacobian J(t, y) at the point (t,y). Only nonzero elements
need to be loaded into J because J is initialized to the zero matrix before the call to the
Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the BandMat type. BAND ELEM(J, i, j) references the (i, j)-th el-
ement of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement BAND ELEM(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, BAND COL(J, j) returns a pointer to the diagonal element of
the j-th column of J, and if we assign this address to realtype *col j, then the i-th
element of the j-th column is given by BAND COL ELEM(col j, i, j), counting from 0.
Thus, for (m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J,

n-1); BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the j-th column
can also be accessed via ordinary array indexing, but this approach requires knowledge
of the underlying storage for a band matrix of type BandMat. The array col n can
be indexed from −mupper to mlower. For large problems, it is more efficient to use
BAND COL and BAND COL ELEM than to use the BAND ELEM macro. As in the dense case,
these macros all number rows and columns starting from 0.

The BandMat type and the accessor macros BAND ELEM, BAND COL and BAND COL ELEM

are documented in §10.2.
If the user’s CVBandJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §5.5.7.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

5.6.6 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (CVSp* is called
in step 7 of §5.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following
form:

CVSpilsJacTimesVecFn

Definition typedef int (*CVSpilsJacTimesVecFn)(N Vector v, N Vector Jv,

realtype t, N Vector y, N Vector fy,

void *jac data, N Vector tmp);

Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

jac data is the jac data pointer passed to CVSp*SetJacTimesVecFn.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.
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Return value The value to be returned by the Jacobian-vector product function should be 0 if success-
ful. Any other return value will result in an unrecoverable error of the spgmr generic
solver, in which case the integration is halted.

Notes If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §5.5.7.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

5.6.7 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz =
r, where P may be either a left or right preconditioner matrix. This function must be of type
CVSpilsPrecSolveFn, defined as follows:

CVSpilsPrecSolveFn

Definition typedef int (*CVSpilsPrecSolveFn)(realtype t, N Vector y, N Vector fy,

N Vector r, N Vector z,

realtype gamma, realtype delta,

int lr, void *p data, N Vector tmp);

Purpose This function solves the preconditioned system Pz = r.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

r is the right-hand side vector of the linear system.

z is the computed output vector.

gamma is the scalar γ appearing in the Newton matrix given by M = I − γJ .

delta is an input tolerance to be used if an iterative method is employed in the so-
lution. In that case, the residual vector Res = r − Pz of the system should
be made less than delta in the weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt call CVodeGetErrWeights (see §5.5.7.1).

lr is an input flag indicating whether the preconditioner solve function is to use
the left preconditioner (lr = 1) or the right preconditioner (lr = 2);

p data is the p data pointer passed to CVSp*SetPreconditioner.

tmp is a pointer to memory allocated for a variable of type N Vector which can be
used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

5.6.8 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type CVSpilsPrecSetupFn, defined as follows:

CVSpilsPrecSetupFn
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Definition typedef int (*CVSpilsPrecSetupFn)(realtype t, N Vector y, N Vector fy,

booleantype jok, booleantype *jcurPtr,

realtype gamma, void *p data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of a CVSpilsPrecSetupFn are as follows:

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

jok is an input flag indicating whether the Jacobian-related data needs to be
updated. The jok argument provides for the reuse of Jacobian data in the
preconditioner solve function. jok = FALSE means that the Jacobian-related
data must be recomputed from scratch. jok = TRUE means that the Jacobian
data, if saved from the previous call to this function, can be reused (with the
current value of gamma). A call with jok = TRUE can only occur after a call
with jok = FALSE.

jcurPtr is a pointer to a flag which should be set to TRUE if Jacobian data was recom-
puted, or set to FALSE if Jacobian data was not recomputed, but saved data
was still reused.

gamma is the scalar γ appearing in the Newton matrix M = I − γP .

p data is the p data pointer passed to CVSp*SetPreconditioner.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can be
used by CVSpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recov-
erable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization of the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current step size, the
error weights, etc. To obtain these, use the CVodeGet* functions described in §5.5.7.1.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

5.7 Integration of pure quadrature equations

If the system of ODEs contains pure quadratures, it is more efficient to treat them separately by
excluding them from the nonlinear solution stage. To do this, begin by excluding the quadrature
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variables from the vector y and the quadrature equations from within f. The following is an overview
of the sequence of calls in a user’s main program in this situation. Steps that are unchanged from the
skeleton program presented in §5.4 are grayed out.

1. [P] Initialize MPI

2. Set problem dimensions

[S] Set N to the problem size N (excluding quadrature variables), and Nq to the number of quadra-
ture variables.

[P] Set Nlocal to the local vector length (excluding quadrature variables), and Nqlocal to the
local number of quadrature variables.

3. Set vector of initial values

4. Create cvodes object

5. Allocate internal memory

6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

10. Initialize quadrature integration

Call CVodeQuadMalloc to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §5.7.1 for details.

11. Set optional inputs for quadrature integration

Call CVodeSetQuadFdata to specify user data required for the evaluation of the quadrature equa-
tion right-hand side. Call CVodeSetQuadErrCon to indicate whether or not quadrature variables
shoule be used in the step size control mechanism, and to specify the integration tolerances for
quadrature variables. See §5.7.4 for details.

12. Advance solution in time

13. Extract quadrature variables

Call CVodeGetQuad to obtain the values of the quadrature variables at the current time. See §5.7.3
for details.

14. Get optional outputs

15. Get quadrature optional outputs

Call CVodeGetQuad* functions to obtain optional output related to the integration of quadratures.
See §5.7.5 for details.

16. Deallocate memory for solution vector and for the vector of quadrature variables

17. Free solver memory

18. [P] Finalize MPI

CVodeQuadMalloc can be called and quadrature-related optional inputs (step 11 above) can be set,
anywhere between steps 4 and 12.
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5.7.1 Quadrature initialization functions

The function CVodeQuadMalloc activates integration of quadrature equations and allocates internal
memory related to these calculations. The form of the call to this function is as follows:

CVodeQuadMalloc

Call flag = CVodeQuadMalloc(cvode mem, fQ, yQ0);

Description The function CVodeQuadMalloc provides required problem specifications, allocates in-
ternal memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

fQ (CVQuadRhsFn) is the C function which computes fQ, the right-hand side
of the quadrature equations. This function has the form fQ(t, y, yQdot,

fQ data) (for full details see §5.7.6).
yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadMalloc was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV MEM FAIL A memory allocation request failed.

Notes If an error occured, CVodeQuadMalloc also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased by:

• Base value: lenrw = lenrw + (maxord+5)Nq

• With itolQ = CV SV (see CVodeSetQuadErrCon): lenrw = lenrw +Nq

the size of the integer workspace is increased by:

• Base value: leniw = leniw + (maxord+5)Nq

• With itolQ = CV SV: leniw = leniw +Nq

The function CVodeQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature related internal memory and must follow a call to CVodeQuadMalloc (and
maybe a call to CVodeReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to CVodeQuadMalloc. The call to the CVodeQuadReInit function has the form:

CVodeQuadReInit

Call flag = CVodeQuadReInit(cvode mem, fQ, yQ0);

Description The function CVodeQuadReInit provides required problem specifications and reinitial-
izes the quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

fQ (CVQuadRhsFn) is the C function which computes fQ, the right-hand side of
the quadrature equations.

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV NO QUAD Memory space for the quadrature integration was not allocated by a prior
call to CVodeQuadMalloc.

Notes If an error occured, CVodeQuadReInit also sends an error message to the error handler
function.
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5.7.2 CVODE solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §5.5.4. However, in this case the return value flag can also be one of the following:
CV QRHSFUNC FAIL The quadrature right-hand side function failed in an unrecoverable manner.

CV FIRST QRHSFUNC FAIL The quadrature right-hand side function failed at the first call.

CV REPTD QRHSFUNC ERR Convergence tests occurred too many times due to repeated recoverable er-
rors in the quadrature right-hand side function. The CV REPTD RHSFUNC ERR

will also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

CV UNREC RHSFUNC ERR The quadrature right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
quadrature right-hand side function fails recoverably after an error test
failed while at order one.

5.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadMalloc, or reinitialized by a call
to CVodeQuadReInit, then cvodes computes both a solution and quadratures at time t. However,
CVode will still return only the solution y in y. Solution quadratures can be obtained using the
following function:

CVodeGetQuad

Call flag = CVodeGetQuad(cvode mem, t, yQ);

Description The function CVodeGetQuad returns the quadrature solution vector after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.

t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by cvodes.

yQ (N Vector) the computed quadrature vector.

Return value The return value flag of CVodeGetQuad is one of:

CV SUCCESS CVodeGetQuad was successful.

CV MEM NULL cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY yQ is NULL.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by CVodeGetQuad with k = 0, but may also
be called directly by the user.

CVodeGetQuadDky

Call flag = CVodeGetQuadDky(cvode mem, t, k, dkyQ);

Description The function CVodeGetQuadDky returns derivatives of the quadrature solution vector
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.
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t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by cvodes.

k (int) order of the requested derivative.

dkyQ (N Vector) the vector containing the derivative. This vector must be allo-
cated by the user.

Return value The return value flag of CVodeGetQuadDky is one of:

CV SUCCESS CVodeGetQuadDky succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY The vector dkyQ is NULL.

CV BAD K k is not in the range 0, 1, ..., qu.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also sent to the error handler function.

5.7.4 Optional inputs for quadrature integration

cvodes provides the following optional input functions to control the integration of quadrature equa-
tions.

CVodeSetQuadFdata

Call flag = CVodeSetQuadFdata(cvode mem, fQ data);

Description The function CVodeSetQuadFdata specifies the user-defined data block fQ data and
attaches it to the main cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

fQ data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If fQ data is not specified, a NULL pointer is passed to all user-supplied functions that
have it as an argument. Note that fQ data can be the same as the pointer f data set
through CVodeSetFdata.

CVodeSetQuadErrCon

Call flag = CVodeSetQuadErrCon(cvode mem, errconQ, itolQ, reltolQ, abstolQ);

Description The function CVodeSetQuadErrCon specifies whether or not the quadrature variables
should be used in the step size control mechanism, and if so, specifies the integration
tolerances for the quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconQ (booleantype) specifies whether quadrature variables are included (TRUE)
or not (FALSE) in the error control mechanism. If errconQ=FALSE, the
following three arguments are ignored.

itolQ (int) is either CV SS or CV SV, where itolQ = CV SS indicates scalar relative
error tolerance and scalar absolute error tolerance, while itolQ = CV SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each quadrature variable.

reltolQ (realtype *) is a pointer to the relative error tolerance.
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abstolQ (void *) is a pointer to the absolute error tolerance. If itolQ=CV SS,
abstolQ must be a pointer to a realtype variable. If itolQ = CV SV,
abstolQ must be an N Vector variable.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT An input argument to CVodeSetQuadErrCon has an illegal value.

Notes By default, errconQ is set to FALSE.

It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadMalloc.!

5.7.5 Optional outputs for quadrature integration

cvodes provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadNumRhsEvals

Call flag = CVodeGetQuadNumRhsEvals(cvode mem, &nfQevals);

Description The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls made to the user’s fQ function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

CVodeGetQuadNumErrTestFails

Call flag = CVodeGetQuadNumErrTestFails(cvode mem, &nQetfails);

Description The function CVodeGetQuadNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

CVodeGetQuadErrWeights

Call flag = CVodeGetQuadErrWeights(cvode mem, eQweight);

Description The function CVodeGetQuadErrWeights returns the quadrature error weights at the
current time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:
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CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight. !

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadErrCon with errconQ = TRUE), CVodeGetQuadErrWeights does not set
the eQweight vector.

CVodeGetQuadStats

Call flag = CVodeGetQuadStats(cvode mem, &nfQevals, &nQetfails);

Description The function CVodeGetQuadStats returns the cvodes integrator statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls to the user’s fQ function.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

5.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations. This function must be of type CVQuadRhsFn defined as follows:

CVQuadRhsFn

Definition typedef int (*CVQuadRhsFn)(realtype t, N Vector y,

N Vector yQdot, void *fQ data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yQdot is the output vector fQ(t, y).

fQ data is the fQ data pointer passed to CVodeSetQuadFdata.

Return value A CVQuadRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV QRHSFUNC FAIL is re-
turned).

Notes Allocation of memory for yQdot is automatically handled within cvodes.

Both y and yQdot are of type N Vector, but they typically have different internal
representations. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each nvector implementation).
For the sake of computational efficiency, the vector functions in the two nvector

implementations provided with cvodes do not perform any consistency checks with
respect to their N Vector arguments (see §8.1 and §8.2).
There are two situations in which recovery is not possible even if CVQuadRhsFn function
returns a recoverable error flag. This include the situation when this occurrs at the very
first call to the CVQuadRhsFn (in which case cvodes returns CV FIRST QRHSFUNC ERR)
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or if a recoverable error is reported when CVQuadRhsFn is called after an error test
failure, while the linear multistep method order is equal to 1 (in which case cvodes

returns CV UNREC QRHSFUNC ERR).

5.8 Rootfinding

While solving the IVP, cvodes has the capability to find the roots of a set of user-defined functions.
This section describes the user-callable functions used to initialize and define the rootfinding problem
and to obtain solution information, and it also describes the required user-supplied function.

5.8.1 User-callable functions for rootfinding

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g, g data);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

nrtfn (int) is the number of root functions gi.

g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)
whose roots are sought. See §5.8.2 for details.

g data (void *) pointer to the user data for use by the user’s root function g.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.

CV MEM NULL The cvode mem argument was NULL.

CV MEM FAIL A memory allocation failed.

CV ILL INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rootsfound (int *) an int array of length nrtfn showing the indices of the user
functions gi found to have a root. For i = 0, . . . ,nrtfn−1, rootsfound[i]= 1
if gi has a root, and 0 if not.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for the vector rootsfound.!
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CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

5.8.2 User-supplied function for rootfinding

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef int (*CVRootFn)(realtype t, N Vector y, realtype *gout,

void *g data);

Purpose This function implements a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are sought.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

gout is the output array, of length nrtfn, with components gi(t, y).

g data is the g data pointer passed to CVodeRootInit.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occured (in
which case the integration is halted and CVode returns CV RTFUNC FAIL).

Notes Allocation of memory for gout is automatically handled within cvodes.

5.9 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvodes provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

5.9.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with any of the Krylov iterative
linear solvers, in a serial setting. It uses difference quotients of the ODE right-hand side function f

to generate a band matrix of bandwidth ml +mu + 1, where the number of super-diagonals (mu, the
upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth) are specified by the user,
and uses this to form a preconditioner for use with the Krylov linear solver. Although this matrix
is intended to approximate the Jacobian ∂f/∂y, it may be a very crude approximation. The true
Jacobian need not be banded, or its true bandwidth may be larger than ml +mu + 1, as long as the
banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the cvbandpre module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §5.3), to use the cvbandpre

module, the main program must include the header file cvodes bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §5.4 are grayed out.
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1. Set problem dimensions

2. Set vector of initial values

3. Create cvodes object

4. Allocate internal memory

5. Set optional inputs

6. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

bp data = CVBandPrecAlloc(cvode mem, N, mu, ml);

to allocate memory for and to initialize a data structure (pointed to by bp data) to be passed to
the appropriate CVSp* linear solver.

7. Attach the Krylov linear solver, one of:

flag = CVBPSpgmr(cvode mem, pretype, maxl, bp data);

flag = CVBPSpbcg(cvode mem, pretype, maxl, bp data);

flag = CVBPSptfqmr(cvode mem, pretype, maxl, bp data);

Each function CVBPSp* is a wrapper around the corresponding specification function CVSp* and
performs the following actions:

•Attaches the cvspils linear solver to the main cvodes solver memory;

•Sets the preconditioner data structure for cvbandpre;

•Sets the preconditioner setup function for cvbandpre;

•Sets the preconditioner solve function for cvbandpre;

The arguments pretype and maxl are described below. The last argument of CVBPSp* is the
pointer to the cvbandpre data returned by CVBandPrecAlloc.

8. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to CVSp* optional input functions.

9. Advance solution in time

10. Deallocate memory for solution vector

11. Free the cvbandpre data structure

CVBandPrecFree(&bp data);

12. Free solver memory

The user-callable functions that initialize, attach, and deallocate the cvbandpre preconditioner
module (steps 6, 7 and 11 above) are described in more detail below.

CVBandPrecAlloc

Call bp data = CVBandPrecAlloc(cvode mem, N, mu, ml);

Description The function CVBandPrecAlloc initializes and allocates memory for the cvbandpre

preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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N (long int) problem dimension.

mu (long int) upper half-bandwidth of the Jacobian approximation.

ml (long int) lower half-bandwidth of the Jacobian approximation.

Return value If successful, CVBandPrecAlloc returns a pointer to the newly created cvbandpre

memory block (of type void *). If an error occurred, CVBandPrecAlloc returns NULL.

Notes The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with −ml ≤ j − i ≤ mu.

CVBPSpgmr

Call flag = CVBPSpgmr(cvode mem, pretype, maxl, bp data);

Description The function CVBPSpgmr links the cvbandpre data to the cvspgmr linear solver and
attaches the latter to the cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) specifies the preconditioning type and must be either PREC LEFT or
PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bp data (void *) pointer to the cvbandpre data structure.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBPSpbcg

Call flag = CVBPSpbcg(cvode mem, pretype, maxl, bp data);

Description The function CVBPSpbcg links the cvbandpre data to the cvspbcg linear solver and
attaches the latter to the cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bp data (void *) pointer to the cvbandpre data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBPSptfqmr

Call flag = CVBPSptfqmr(cvode mem, pretype, maxl, bp data);

Description The function CVBPSptfqmr links the cvbandpre data to the cvsptfqmr linear solver
and attaches the latter to the cvodes memory block.
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Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bp data (void *) pointer to the cvbandpre data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBandPrecFree

Call CVBandPrecFree(&bp data);

Description The function CVBandPrecFree frees the pointer allocated by CVBandPrecAlloc.

Arguments The only argument passed to CVBandPrecFree is the pointer to the cvbandpre data
structure (of type void *).

Return value The function CVBandPrecFree has no return value.

The following three optional output functions are available for use with the cvbandpre module:

CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(bp data, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the sizes of the cvbandpre real and
integer workspaces.

Arguments bp data (void *) pointer to the cvbandpre data structure.

lenrwBP (long int) the number of realtype values in the cvbandpre workspace.

leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of:

CVBANDPRE SUCCESS The optional output values have been successfully set.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

Notes In terms of problem size N and smu = min(N − 1, mu+ml), the actual size of the real
workspace is (2 ml + mu + smu +2)N realtype words, and the actual size of the integer
workspace is N integer words.

The workspaces referred to here exist in addition to those given by the corresponding
CVSp***GetWorkSpace function.

CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(bp data, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function for finite difference banded Jacobian approximation
used within the preconditioner setup function.

Arguments bp data (void *) pointer to the cvbandpre data structure.

nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVBANDPRE SUCCESS The optional output value has been successfully set.
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CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the cor-
responding CVSp***GetNumRhsEvals function, and also from nfevals, returned by
CVodeGetNumRhsEvals. The total number of right-hand side function evaluations is
the sum of all three of these counters.

CVBandPrecGetReturnFlagName

Call name = CVBandPrecGetReturnFlagName(flag);

Description The function CVBandPrecGetReturnFlagName returns the name of the cvbandpre con-
stant corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvbandpre function.

Return value The return value is a string containing the name of the corresponding constant.

5.9.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvodes lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (3.5) that must
be solved at each time step. The linear algebraic system is large, sparse and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [20] and is
included in a software module within the cvodes package. This module works with the parallel vector
module nvector parallel and is usable with any of the Krylov iterative linear solvers. It generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The blocks
need not have the same number of super- and sub-diagonals and these numbers may vary from block
to block. This Band-Block-Diagonal Preconditioner module is called cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function g(t, y) which approximates
the function f(t, y) in the definition of the ODE system (3.1). However, the user may set g = f .
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends both on ym

and on components of blocks ym′ associated with neighboring subdomains (so-called ghost-cell data).
Let ȳm denote ym augmented with those other components on which gm depends. Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM )]T (5.1)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (5.2)

where
Pm ≈ I − γJm (5.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
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mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mu + ml +1 is retained. Neither
pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g, if smaller
values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (5.4)

reduces to solving each of the equations
Pmxm = bm (5.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatments of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvbbdpre module calls two user-provided functions to construct P : a required function gloc

(of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer f data that
is passed by the user to CVodeSetFdata and that was passed to the user’s function f, and neither
function has a return value. The user is responsible for providing space (presumably within f data)
for components of y that are communicated between processes by cfn, and that are then used by
gloc, which is not expected to do any communication.

CVLocalFn

Definition typedef int (*CVLocalFn)(long int Nlocal, realtype t, N Vector y,

N Vector glocal, void *f data);

Purpose This function computes g(t, y). It loads the vector glocal as a function of t and y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

glocal is the output vector.

f data is the f data pointer passed to CVodeSetFdata.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes This function assumes that all interprocess communication of data needed to calculate
glocal has already been done, and that this data is accessible within f data.

The case where g is mathematically identical to f is allowed.

CVCommFn

Definition typedef int (*CVCommFn)(long int Nlocal, realtype t,

N Vector y, void *f data);

Purpose This function performs all interprocess communication necessary for the execution of
the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

f data is the f data pointer passed to CVodeSetFdata.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).
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Notes The cfn function is expected to save communicated data in space defined within the
data structure f data.

Each call to the cfn function is preceded by a call to the right-hand side function f

with the same (t, y) arguments. Thus, cfn can omit any communication done by f if
relevant to the evaluation of glocal. If all necessary comunication was done in f, then
cfn = NULL can be passed in the call to CVBBDPrecAlloc (see below).

Besides the header files required for the integration of the ODE problem (see §5.3), to use the
cvbbdpre module, the main program must include the header file cvodes bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §5.4 are grayed out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create cvodes object

5. Allocate internal memory

6. Set optional inputs

7. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

bbd data = CVBBDPrecAlloc(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory for and to initialize a data structure bbd data (of type void *) to be
passed to the Krylov linear solver selected (in the next step). The last two arguments passed
to CVBBDPrecAlloc are the two user-supplied functions described above.

8. Attach the Krylov linear solver, one of:

flag = CVBBDSpgmr(cvode mem, pretype, maxl, bbd data);

flag = CVBBDSpbcg(cvode mem, pretype, maxl, bbd data);

flag = CVBBDSptfqmr(cvode mem, pretype, maxl, bbd data);

The function CVBPSp* is a wrapper around the corresponding specification function CVSp* and
performs the following actions:

•Attaches the cvspils linear solver to the main cvodes solver memory;

•Sets the preconditioner data structure for cvbbdpre;

•Sets the preconditioner setup function for cvbbdpre;

•Sets the preconditioner solve function for cvbbdpre;

The arguments pretype and maxl are described below. The last argument of CVBBDSp* is the
pointer to the cvbbdpre data returned by CVBBDPrecAlloc.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to cvspils optional input functions.

10. Advance solution in time
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11. Deallocate memory for solution vector

12. Free the cvbbdpre data structure

CVBBDPrecFree(&bbd data);

13. Free solver memory

14. Finalize MPI

The user-callable functions that initialize, attach, and deallocate the cvbbdpre preconditioner module
(steps 7, 8, and 12 above) are described next.

CVBBDPrecAlloc

Call bbd data = CVBBDPrecAlloc(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecAlloc initializes and allocates memory for the cvbbdpre pre-
conditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

local N (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely=

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value If successful, CVBBDPrecAlloc returns a pointer to the newly created cvbbdpre memory
block (of type void *). If an error occurred, CVBBDPrecAlloc returns NULL.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it is
replaced with 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same for every process.

CVBBDSpgmr

Call flag = CVBBDSpgmr(cvode mem, pretype, maxl, bbd data);

Description The function CVBBDSpgmr links the cvbbdpre data to the cvspgmr linear solver and
attaches the latter to the cvodes memory block.



5.9 Preconditioner modules 89

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) preconditioning type. Must be either PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bbd data (void *) pointer to the cvbbdpre data structure.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDSpbcg

Call flag = CVBBDSpbcg(cvode mem, pretype, maxl, bbd data);

Description The function CVBBDSpbcg links the cvbbdpre data to the cvspbcg linear solver and
attaches the latter to the cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bbd data (void *) pointer to the cvbbdpre data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDSptfqmr

Call flag = CVBBDSptfqmr(cvode mem, pretype, maxl, bbd data);

Description The function CVBBDSptfqmr links the cvbbdpre data to the cvsptfqmr linear solver
and attaches the latter to the cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

pretype (int) preconditioning type. Must be one of PREC LEFT or PREC RIGHT.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

bbd data (void *) pointer to the cvbbdpre data structure.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.



90 Using CVODES for IVP Solution

CVBBDPrecFree

Call CVBBDPrecFree(&bbd data);

Description The function CVBBDPrecFree frees the memory allocated by CVBBDPrecAlloc.

Arguments The only argument passed to CVBBDPrecFree is the address of the pointer to the cvbb-

dpre data structure (of type void *).

Return value The function CVBBDPrecFree has no return value.

The cvbbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvodes

for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to CVSpgmr, CVSpbcg, or CVSptfqmr, and/or one or more
of the corresponding CVSp***Set*** functions, must also be made.

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(bbd data, mudq, mldq, dqrely, gloc, cfn);

Description The function CVBBDPrecReInit re-initializes the cvbbdpre preconditioner.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

mudq (long int) upper half-bandwidth to be used in the difference quotient Jaco-
bian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Jaco-
bian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which can

be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value The return value flag (of type int) is one of

CVBBDPRE SUCCESS The cvspbcg re-initialization was successful.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced with 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(bbd data, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.

leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of:

CVBBDPRE SUCCESS The optional output values have been successfully set.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.
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Notes In terms of local N and smu = min(local N - 1, mukeep + mlkeep), the actual size
of the real workspace is (2 mlkeep + mukeep + smu +2) local N realtype words, and
the actual size of the integer workspace is local N integer words. These values are local
to each process.

The workspaces referred to here exist in addition to those given by the corresponding
CVSp***GetWorkSpace function.

CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(bbd data, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

Arguments bbd data (void *) pointer to the cvbbdpre data structure.

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

Return value The return value flag (of type int) is one of

CVBBDPRE SUCCESS The optional output value has been successfully set.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPrecGetReturnFlagName

Call name = CVBBDPrecGetReturnFlagName(flag);

Description The function CVBBDPrecGetReturnFlagName returns the name of the cvbbdpre con-
stant corresponding to flag.

Arguments The only argument, of type int is a return flag from a cvbbdpre function.

Return value The return value is a string containing the name of the corresponding constant.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with cvbbdpre also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional cvodes output and
npsolves and nfevalsLS are linear solver optional outputs (see §5.5.7).





Chapter 6

Using CVODES for Forward
Sensitivity Analysis

This chapter describes the use of cvodes to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the cvodes user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program and
(optionally) define an additional routine which computes the right-hand side of the sensitivity systems
(3.9). The only departure from this philosophy is due to the CVRhsFn type definition (§5.6). Without
changing the definition of this type, the only way to pass values of the problem parameters to the
ODE right-hand side function is to require the user data structure f data to contain a pointer to the
array of real parameters p.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 11.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in §5.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of
cvodes. The user program is to have these steps in the order indicated, unless otherwise noted. For
the sake of brevity, we defer many of the details to the later sections. As in §5.4, most steps are
independent of the nvector implementation used; where this is not the case, usage specifications
are given for the two implementations provided with cvodes: steps marked with [P] correspond
to nvector parallel, while steps marked with [S] correspond to nvector serial. Differences
between the user main program in §5.4 and the one below start only at step (9).

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§5.4).

1. [P] Initialize MPI

2. Set problem dimensions

3. Set initial values

4. Create cvodes object

5. Allocate internal memory
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6. Set optional inputs

7. Attach linear solver module

8. Set linear solver optional inputs

9. Define the sensitivity problem

•Number of sensitivities (required)

Set Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)

If cvodes will evaluate the right-hand sides of the sensitivity systems, set p, an array of
Np real parameters upon which the IVP depends. Only parameters with respect to which
sensitivities are (potentially) desired need to be included. Attach p to the user data structure
f data. For example, f data->p = p;

If the user provides a function to evaluate the sensitivity right-hand side, p need not be
specified.

•Parameter list (optional)

If cvodes will evaluate the right-hand sides of the sensitivity systems, set plist, an array
of Ns integer flags to specify the parameters p with respect to which solution sensitivities are
to be computed. If sensitivities with respect to the j-th problem parameter are desired, set
plisti = j, for some i = 0, . . . , Ns − 1.

If plist is not specified, cvodes will compute sensitivities with respect to the first Ns

parameters; i.e., plisti = i, i = 0, . . . , Ns − 1.

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be
specified.

•Parameter scaling factors (optional)

If cvodes estimates tolerances for the sensitivity solution vectors (based on tolerances for
the state solution vector) or if cvodes will evaluate the right-hand sides of the sensitivity
systems using the internal difference-quotient function, the results will be more accurate if
order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄plisti
= |pi|

can be used.

If pbar is not specified, cvodes will use p̄i = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies toler-
ances for the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of f data are arbitrary, but they
must agree with the arguments passed to CVodeSetSensParams below.

10. Set sensitivity initial conditions

Set the Ns vectors yS0[i] of N initial values for sensitivities (for i = 0, . . . , Ns− 1).

First, create an array of Ns vectors by making the call

[S] yS0 = N VNewVectorArray Serial(Ns, N);

[P] yS0 = N VNewVectorArray Parallel(Ns, N);

and, for each i = 1, · · · ,Ns, load initial values for the i-th sensitivity vector into the structure
defined by:

[S] NV DATA S(yS0[i])

[P] NV DATA P(yS0[i])
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If the initial values for the sensitivity variables are already available in realtype arrays, create
an array of Ns “empty” vectors by making the call

[S] yS0 = N VNewVectorArrayEmpty Serial(Ns, N);

[P] yS0 = N VNewVectorArrayEmpty Parallel(Ns, N);

and then attach the realtype array yS0 i containing the initial values of the i-th sensitivity
vector using

[S] N VSetArrayPointer Serial(yS0 i, yS0[i]);

[P] N VSetArrayPointer Parallel(yS0 i, yS0[i]);

11. Activate sensitivity calculations

Call flag = CVodeSensMalloc(...); to activate forward sensitivity computations and allocate
internal memory for cvodes related to sensitivity calculations (see §6.2.1).

12. Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control
the behavior of cvodes in computing forward sensitivities.

13. Advance solution in time

14. Extract sensitivity solution

After each successful return from CVode, the solution of the original IVP is available in the y

argument of CVode, while the sensitivity solution can be extracted into yS (which can be the same
as yS0) by calling the routine flag = CVodeGetSens(cvode mem, t, yS); (see §6.2.3).

15. Deallocate memory for solution vector

16. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors yS0:

[S] N VDestroyVectorArray Serial(yS0, Ns);

[P] N VDestroyVectorArray Parallel(yS0, Ns);

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS0 i.

17. Free user data structure

18. Free solver memory

19. Free vector specification memory

6.2 User-callable routines for forward sensitivity analysis

This section describes the cvodes functions, additional to those presented in §5.5, that are called by
the user to setup and solve a forward sensitivity problem.

6.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensMalloc. The form of the
call to this routine is as follows:
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CVodeSensMalloc

Call flag = CVodeSensMalloc(cvode mem, Ns, ism, yS0);

Description The routine CVodeSensMalloc activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method and can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1:

• In the CV SIMULTANEOUS approach, the state and sensitivity variables
are corrected at the same time. If CV NEWTON was selected as the non-
linear system solution method, this amounts to performing a modified
Newton iteration on the combined nonlinear system;

• In the CV STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

• In the CV STAGGERED1 approach, all corrections are done sequentially,
first for the state variables and then for the sensitivity variables, one
parameter at a time. If the sensitivity variables are not included in
the error control, this approach is equivalent to CV STAGGERED. Note
that the CV STAGGERED1 approach can be used only if the user-provided
sensitivity right-hand side function is of type CVSensRhs1Fn (see §6.3).

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensMalloc was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeSensMalloc has an illegal value.

Notes If an error occured, CVodeSensMalloc also prints an error message to the file specified
by the optional input errfp.

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased by:

• Base value: lenrw = lenrw + (maxord+5)NsN

• With itolS = CV SV (see CVodeSetSensTolerances): lenrw = lenrw +NsN

the size of the integer workspace is increased by:

• Base value: leniw = leniw + (maxord+5)NsN

• With itolS = CV SV: leniw = leniw +NsN

The routine CVodeSensReInit, useful during the solution of a sequence of problems of same size,
reinitializes the sensitivity-related internal memory and must follow a call to CVodeSensMalloc (and
maybe a call to CVodeReInit). The number Ns of sensitivities is assumed to be unchanged since the
call to CVodeSensMalloc. The call to the CVodeSensReInit function has the form:
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CVodeSensReInit

Call flag = CVodeSensReInit(cvode mem, ism, yS0);

Description The routine CVodeSensReInit reinitializes forward sensitivity computations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

ism (int) a flag used to select the sensitivity solution method and can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1.

yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector con-
taining the initial values of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS Memory space for sensitivity integration was not allocated through a
previous call to CVodeSensMalloc.

CV ILL INPUT An input argument to CVodeSensReInit has an illegal value.

CV MEM FAIL A memory allocation request has failed.

Notes All arguments of CVodeSensReInit are the same as those of CVodeSensMalloc.

If an error occured, CVodeSensReInit also prints an error message to the file specified
by the optional input errfp.

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensMalloc),
the user must call

CVodeSensFree

Call CVodeSensFree(cvode mem);

Description The function CVodeSensFree frees the memory allocated for forward sensitivity com-
putaions by a previous call to CVodeSensMalloc.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeSensFree has no return value.

Notes After a call to CVodeSensFree, forward sensitivity computations can be reactivated only
by calling again CVodeSensMalloc.

To activate and deactivate forward sensitivity calculations for successive cvodes runs, without having
to allocate and deallocate memory, the following function is provided:

CVodeSensToggleOff

Call CVodeSensToggleOff(cvode mem);

Description The function CVodeSensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.

Return value The return value flag of CVodeSensToggle is one of:

CV SUCCESS CVodeGetSens was successful.

CV MEM NULL cvode mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using CVodeSensReInit).
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6.2.2 CVODE solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode is exactly
the same as in §5.5.4. However, in this case the return value flag can also be one of the following:

CV SRHSFUNC FAIL The sensitivity right-hand side function failed in an unrecoverable manner.

CV FIRST SRHSFUNC FAIL The sensitivity right-hand side function failed at the first call.

CV REPTD SRHSFUNC ERR Convergence tests occurred too many times due to repeated recoverable er-
rors in the sensitivity right-hand side function. The CV REPTD RHSFUNC ERR

will also be returned if the sensitivity right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV UNREC SRHSFUNC ERR The sensitivity right-hand function had a recoverable error, but no recovery
was possible. This failure mode is rare, as it can occur only if the sensitivity
right-hand side function fails recoverably after an error test failed while at
order one.

6.2.3 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensMalloc, or reinitialized
by a call to CVSensReInit, then cvodes computes both a solution and sensitivities at time t. However,
CVode will still return only the solution y in y. Solution sensitivities can be obtained through one of
the following functions:

CVodeGetSens

Call flag = CVodeGetSens(cvode mem, t, yS);

Description The function CVodeGetSens returns the sensitivity solution vectors after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

yS (N Vector *) the computed forward sensitivity vectors.

Return value The return value flag of CVodeGetSens is one of:

CV SUCCESS CVodeGetSens was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY yQ is NULL.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also printed.

The function CVodeGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by CVodeGetSens with k = 0, but may also be
called directly by the user.

CVodeGetSensDky

Call flag = CVodeGetSensDky(cvode mem, t, k, dkyS);

Description The function CVodeGetSensDky returns derivatives of the sensitivity solution vectors
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.
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t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivatives.

dkyS (N Vector *) the vectors containing the derivatives. The space for dkyS

must be allocated by the user.

Return value The return value flag of CVodeGetSensDky is one of:

CV SUCCESS CVodeGetSensDky succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY One of the vectors dkyS is NULL.

CV BAD K k is not in the range 0, 1, ..., qu.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also printed.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetSens1 and CVodeGetSensDky1, defined as follows:

CVodeGetSens1

Call flag = CVodeGetSens1(cvode mem, t, is, yS);

Description The function CVodeGetSens1 returns the is-th sensitivity solution vector after a suc-
cessful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yS (N Vector) the computed forward sensitivity vector.

Return value The return value flag of CVodeGetSens1 is one of:

CV SUCCESS CVodeGetSens1 was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD IS The index is is not in the allowed range.

CV BAD DKY yQ is NULL.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also printed.

CVodeGetSensDky1

Call flag = CVodeGetSensDky1(cvode mem, t, k, is, dkyS);

Description The function CVodeGetSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeMalloc.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).
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Table 6.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity right-hand side fct. and data CVodeSetSensRhsFn internal DQ
Sensitivity right-hand side fct. and data CVodeSetSensRhs1Fn internal DQ
Sensitivity scaling factors CVodeSetSensPbar NULL

Type of DQ approximation CVodeSetSensRho 0.0
Error control strategy CVodeSetSensErrCon FALSE

Sensitivity integration tolerances CVodeSetSensTolerances estimated
Maximum no. of nonlinear iterations CVodeSetSensMaxNonlinIters 3

dkyS (N Vector) the vector containing the derivative. The space for dkyS must
be allocated by the user.

Return value The return value flag of CVodeGetSensDky1 is one of:

CV SUCCESS CVodeGetQuadDky1 succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY One of the vectors dkyS is NULL.

CV BAD IS The index is is not in the allowed range.

CV BAD K k is not in the range 0, 1, ..., qu.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also printed.

6.2.4 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to CVodeSetSens* functions. Table 6.1 lists all forward sensitivity optional input
functions in cvodes which are described in detail in the remainder of this section.

CVodeSetSensRhsFn

Call flag = CVodeSetSensRhsFn(cvode mem, fS, data);

Description The function CVodeSetSensRhsFn specifies the user-supplied C function used to evaluate
the sensitivity right-hand sides (for all parameters at once) and he user data block for
use by the user-supplied sensitivity right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

fS (CVSensRhsFn) user-defined sensitivity right-hand side function.

fS data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes This type of function is not compatible with the CV STAGGERED1 sensitivity solution!

method (argument ism to CVodeSensMalloc). The compatibility test is performed at
the first step in CVode.

Passing fS=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.

The pointer fS data can be the same as the pointer f data, specified in a prior call to
CVodeSetFdata (see §5.5.5.1) and passed to the user’s right-hand side function f.
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CVodeSetSensRhs1Fn

Call flag = CVodeSetSensRhs1Fn(cvode mem, fS, data);

Description The function CVodeSetSensRhs1Fn specifies the user-supplied C function used to eval-
uate the sensitivity right-hand sides (one parameter at a time) and he user data block
for use by the user-supplied sensitivity right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

fS (CVSensRhs1Fn) user-defined sensitivity right-hand side function.

fS data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes This type of sensitivity right-hand side function must be used when the CV STAGGERED1

sensitivity solution method is selected through CVodeSensMalloc, but can also be used
with the other two choices (CV SIMULTANEOUS and CV STAGGERED).

Passing fS=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.

The pointer fS data can be the same as the pointer f data, specified in a prior call to
CVodeSetFdata (see §5.5.5.1) and passed to the user’s right-hand side function f.

CVodeSetSensParams

Call flag = CVodeSetSensParams(cvode mem, p, pbar, plist);

Description The function CVodeSetSensParams specifies problem parameter information for sensi-
tivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

p (realtype *) a pointer to the array of real problem parameters used to
evaluate f(t, y, p). If non-NULL, p must point to a field in the user’s data
structure f data passed to the righ-hand side function. (See §6.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbarmust
have all its components > 0.0. (See §6.1).

plist (int *) an array of Ns non-negative flags to specify which parameters to
use in estimating the sensitivity equations. If non-NULL, plist must have
all components ≥ 0. (See §6.1).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV ILL INPUT An argument has an illegal value.

Notes This function must be preceeded by a call to CVodeSensMalloc. !

CVodeSetSensRho

Call flag = CVodeSetSensRho(cvode mem, rho);

Description The function CVodeSetSensRho specifies the difference quotient strategy in the case in
which the right-hand side of the sensitivity equations are to be computed by cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rho (realtype) value of the selection parameter.

Return value The return value flag (of type int) is one of:
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CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is rho= 0.0. See §3.2 for details.

CVodeSetSensErrCon

Call flag = CVodeSetSensErrCon(cvode mem, errconS);

Description The function CVodeSetSensErrCon specifies the error control strategy for sensitivity
variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconS (booleantype) specifies whether sensitivity variables are included (TRUE) or
not (FALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, errconS is set to FALSE. If errconS=TRUE then both state variables and
sensitivity variables are included in the error tests. If errconS=FALSE then the sensi-
tivity variables are excluded from the error tests. Note that, in any event, all variables
are considered in the convergence tests.

CVodeSetSensTolerances

Call flag = CVodeSetSensTolerances(cvode mem, itolS, reltolS, abstolS);

Description The function CVodeSetSensTolerances specifies the integration tolerances for sensitiv-
ity variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

itolS (int) is one of CV SS, CV SV, or CV EE, where itolS = CV SS indicates scalar
relative error tolerance and scalar absolute error tolerance, while itolS =
CV SV indicates scalar relative error tolerance and vector absolute error tol-
erance. If itolS = CV EE, the arguments reltolS and abstolS are ignored
and cvodes will estimate tolerances for the sensitivity variables based on
the state tolerances and the scaling factors p̄.

reltolS (realtype) is the relative error tolerance.

abstolS (void *) is a pointer to the absolute error tolerance. If itolS = CV SS, then
abstolS must be a pointer to an array of realtype variables. If itolS =
CV SV, then abstolS must be an array of Ns variables of type N Vector. In
the latter case, abstolS should be created and set in the same manner as
the vectors of initial values for the sensitivity variables (see §6.1).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV ILL INPUT An input argument to CVodeSetSensTolerances has an illegal value.

Notes The default behavior is for cvodes to estimate appropriate integration tolerances for
the sensitivity variables based on the state tolerances and the scaling factors p̄. See §3.2
for details.

It is the user’s responsibility to provide compatible itolS and abstolS arguments.!

This function must be preceeded by a call to CVodeSensMalloc.
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Table 6.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity r.h.s. function CVodeGetNumSensRhsEvals

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens

No. of sensitivity local error test failures CVodeGetNumSensErrTestFails

No. of calls to lin. solv. setup routine for sens. CVodeGetNumSensLinSolvSetups

Error weight vector for sensitivity variables CVodeGetSensErrWeights

No. of sens. nonlinear solver iterations CVodeGetNumSensNonlinSolvIters

No. of sens. convergence failures CVodeGetNumSensNonlinSolvConvFails

No. of staggered nonlinear solver iterations CVodeGetNumStgrSensNonlinSolvIters

No. of staggered convergence failures CVodeGetNumStgrSensNonlinSolvConvFails

CVodeSetSensMaxNonlinIters

Call flag = CVodeSetSensMaxNonlinIters(cvode mem, maxcorS);

Description The function CVodeSetSensMaxNonlinIters specifies the maximum number of nonlin-
ear solver iterations for sensitivity variables per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.

6.2.5 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 6.2 and described in detail in the remainder of this section.

CVodeGetNumSensRhsEvals

Call flag = CVodeGetNumSensRhsEvals(cvode mem, &nfSevals);

Description The function CVodeGetNumSensRhsEvals returns the number of calls to the sensitivity
right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes In order to accommodate any of the three possible sensitivity solution methods, the
default internal finite difference quotient functions evaluate the sensitivity right-hand
sides one at a time. Therefore, nfSevals will always be a multiple of the number of
sensitivity parameters (the same as the case in which the user supplies a routine of type
CVSensRhs1Fn).
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CVodeGetNumRhsEvalsSens

Call flag = CVodeGetNumRhsEvalsSens(cvode mem, &nfevalsS);

Description The function CVodeGetNumRhsEvalsSEns returns the number of calls to the user’s right-
hand side function due to the internal finite difference approximation of the sensitivity
right-hand sides.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsS (long int) number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity right-hand sides.

CVodeGetNumSensErrTestFails

Call flag = CVodeGetNumSensErrTestFails(cvode mem, &nSetfails);

Description The function CVodeGetNumSensErrTestFails returns the number of local error test
failures for the sensitivity variables that have occured.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see CVodeSetSensErrCon in §6.2.4). Even in that case, this counter is not
incremented if the ism=CV SIMULTANEOUS sensitivity solution method has been used.

CVodeGetNumSensLinSolvSetups

Call flag = CVodeGetNumSensLinSolvSetups(cvode mem, &nlinsetupsS);

Description The function CVodeGetNumSensLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if Newton iteration has been used and if either the
ism=CV STAGGERED or the ism=CV STAGGERED1 sensitivity solution method has been
specified in the call to CVodeSensMalloc (see §6.2.1).
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CVodeGetSensStats

Call flag = CVodeGetSensStats(cvode mem, &nfSevals, &nfevalsS,

&nSetfails, &nlinsetupsS);

Description The function CVodeGetSensStats returns all of the above sensitivity-related solver
statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

nfevalsS (long int) number of calls to the user-supplied right-hand side function.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CVodeGetSensErrWeights

Call flag = CVodeGetSensErrWeights(cvode mem, eSweight);

Description The function CVodeGetSensErrWeights returns the sensitivity error weights at the cur-
rent time. These are the reciprocals of the Wi of (3.7) for the sensitivity variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eSweight (N Vector S) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

CVodeGetNumSensNonlinSolvIters

Call flag = CVodeGetNumSensNonlinSolvIters(cvode mem, &nSniters);

Description The function CVodeGetNumSensNonlinSolvIters returns the number of nonlinear iter-
ations performed for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the ism was CV STAGGERED or CV STAGGERED1 in the
call to CVodeSensMalloc (see §6.2.1).
In the CV STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear
iterations performed for each sensitivity equation. These individual counters can be
obtained through a call to CVodeGetNumStgrSensNonlinSolvIters (see below).
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CVodeGetNumSensNonlinSolvConvFails

Call flag = CVodeGetNumSensNonlinSolvConvFails(cvode mem, &nSncfails);

Description The function CVodeGetNumSensNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the ism was CV STAGGERED or CV STAGGERED1 in the
call to CVodeSensMalloc (see §6.2.1).
In the CV STAGGERED1 case, the value of nSncfails is the sum of the number of non-
linear convergence failures that occured for each sensitivity equation. These individual
counters can be obtained through a call to CVodeGetNumStgrSensNonlinConvFails

(see below).

CVodeGetSensNonlinSolvStats

Call flag = CVodeGetSensNonlinSolvStats(cvode mem, &nSniters, &nSncfails);

Description The function CVodeGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CVodeGetNumStgrSensNonlinSolvIters

Call flag = CVodeGetNumStgrSensNonlinSolvIters(cvode mem, nSTGR1niters);

Description The function CVodeGetNumStgrSensNonlinSolvIters returns the number of nonlinear
(functional or Newton) iterations performed for each sensitivity equation separately, in
the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSTGR1niters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1niters.!
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CVodeGetNumStgrSensNonlinSolvConvFails

Call flag = CVodeGetNumStgrSensNonlinSolvConvFails(cvode mem, nSTGR1ncfails);

Description The function CVodeGetNumStgrSensNonlinSolvConvFails returns the number of non-
linear convergence failures that have occurred for each sensitivity equation separately,
in the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSTGR1ncfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1ncfails. !

6.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §5.6, when using cvodes

for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right-hand side of the sensitivity equations (3.9).

By default, cvodes uses difference quotient approximation routines for the right-hand sides of the
sensitivity equations. However, cvodes allows the option for user-defined sensitivity right-hand side
routines (which also provides a mechanism for interfacing cvodes to routines generated by automatic
differentiation).

6.3.1 Sensitivity equations right-hand side (all at once)

If the CV SIMULTANEOUS or CV STAGGERED approach was selected in the call to CVodeSensMalloc, the
user may provide the right-hand sides of the sensitivity equations (3.9), for all sensitivity parameters
at once, through a function of type CVSensRhsFn defined by:

CVSensRhsFn

Definition typedef int (*CVSensRhsFn)(int Ns, realtype t,

N Vector y, N Vector ydot,

N Vector *yS, N Vector *ySdot,

void *fS data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for all sensitivity equations at
once. It must compute the vectors (∂f/∂y)si(t)+(∂f/∂pi) and store them in ySdot[i].

Arguments t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

yS contains the current values of the sensitivity vectors.

ySdot is the output of CVSensRhsFn. On exit it must contain the sensitivity right-
hand side vectors.

f data is a pointer to user data - the same as the fS data parameter passed to
CVodeSetSensRhsFn.

tmp1

tmp2 are N Vectors which can be used as temporary storage.
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Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is re-
turned).

Notes A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the!

CV STAGGERED1 approach.

Allocation of memory for ySdot is handled within cvodes.

For efficiency considerations, the right-hand side function is not evaluated at the con-!

verged solution of the nonlinear solver. Therefore, a recoverable error in CVSensRhsFn

at that point cannot be corrected (as it will occur when the right-hand side function is
called the first time during the following integration step and a successful step cannot
be undone).

There are two situations in which recovery is not possible even if CVSensRhsFn function
returns a recoverable error flag. This include the situation when this occurrs at the very
first call to the CVSensRhsFn (in which case cvodes returns CV FIRST SRHSFUNC ERR)
or if a recoverable error is reported when CVSensRhsFn is called after an error test
failure, while the linear multistep method order is equal to 1 (in which case cvodes

returns CV UNREC SRHSFUNC ERR).

6.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a
time, through a function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of
type CVSensRhs1Fn is compatible with any valid value of the CVodeSensMalloc argument ism, and is
required if ism=CV STAGGERED1. The type CVSensRhs1Fn is defined by

CVSensRhs1Fn

Definition typedef int (*CVSensRhs1Fn)(int Ns, realtype t,

N Vector y, N Vector ydot,

int iS, N Vector yS, N Vector ySdot,

void *fS data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for one sensitivity equation at
a time. It must compute the vector (∂f/∂y)si(t) + (∂f/∂pi) for i=iS and store it in
ySdot.

Arguments t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

iS is the index of the parameter for which the sensitivity right-hand side must be
computed.

yS contains the current value of the iS-th sensitivity vector.

ySdot is the output of CVSensRhs1Fn. On exit it must contain the iS-th sensitivity
right-hand side vector.

f data is a pointer to user data - the same as the fS data parameter passed to
CVodeSetSensRhs1Fn.

tmp1

tmp2 are N Vectors which can be used as temporary storage.

Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is re-
turned).
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Notes Allocation of memory for ySdot is handled within cvodes.

For efficiency considerations, the right-hand side function is not evaluated at the con- !

verged solution of the nonlinear solver. Therefore, a recoverable error in CVSensRhs1Fn

at that point cannot be corrected (as it will occur when the right-hand side function is
called the first time during the following integration step and a successful step cannot
be undone).

There are two situations in which recovery is not possible even if CVSensRhs1Fn function
returns a recoverable error flag. This include the situation when this occurrs at the very
first call to the CVSensRhs1Fn (in which case cvodes returns CV FIRST SRHSFUNC ERR)
or if a recoverable error is reported when CVSensRhs1Fn is called after an error test
failure, while the linear multistep method order is equal to 1 (in which case cvodes

returns CV UNREC SRHSFUNC ERR).

6.4 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of cvodes

may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection. A comparison of the solver diagnostics
reported for cvsdenx and the second run of the cvsfwddenx example in [18] indicates that this may
not always be the case.

The short explanation of this behavior is that the step size selection implemented by the error
control mechanism in cvodes is based on the magnitude of the correction calculated by the nonlinear
solver. As mentioned in §6.2.1, even with partial error control selected in the call to CVodeSensMalloc,
the sensitivity variables are included in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method (§3.2), the nonlinear system that is solved at each
step involves both the state and sensitivity equations. In this case, it is easy to see how the sensitivity
variables may affect the convergence rate of the nonlinear solver and therefore the step size selection.
The case of the staggered corrector approach is more subtle. After all, in this case (ism=CV STAGGERED

or ism=CV STAGGERED1 in the call to CVodeSensMalloc), the sensitivity variables at a given step are
computed only once the solver for the nonlinear state equations has converged. However, if the
nonlinear system corresponding to the sensitivity equations has convergence problems, cvodes will
attempt to improve the initial guess by reducing the step size in order to provide a better prediction
of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of
the sensitivity system, cvodes may trigger a call to the linear solver’s setup routine which typically
involves reevaluation of Jacobian information (Jacobian approximation in the case of cvdense and
cvband, or preconditioner data in the case of cvspgmr). The new Jacobian information will be used
by subsequent calls to the nonlinear solver for the state equations and, in this way, potentially affect
the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given
system of ODEs on the step size selection (through the mechanisms described above) is problem-
dependent and can therefore lead to either an increase or decrease of the total number of steps that
cvodes takes to complete the simulation. At first glance, one would expect that the impact of the
sensitivity variables, if any, would be in the direction of increasing the step size and therefore reducing
the total number of steps. The argument for this is that the presence of the sensitivity variables in
the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a
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smaller final correction), or to additional calls to the linear solver setup routine (and therefore more
up-to-date Jacobian information), both of which will lead to larger steps being taken by cvodes.
However, this is true only locally. Overall, a larger integration step taken at a given time may lead
to step size reductions at later times (due to either nonlinear solver convergence failures or error test
failures).



Chapter 7

Using CVODES for Adjoint
Sensitivity Analysis

This chapter describes the use of cvodes to compute sensitivities of derived functions using adjoint
sensitivity analysis. As mentioned before, the adjoint sensitivity module of cvodes provides the in-
frastructure for integrating backward in time any system of ODEs that depends on the solution of
the original IVP, by providing various interfaces to the main cvodes integrator, as well as several
supporting user-callable functions. For this reason, in the following sections we refer to the backward
problem and not to the adjoint problem when discussing details relevant to the ODEs that are inte-
grated backward in time. The backward problem can be the adjoint problem (3.17) or (3.20), and
can be augmented with some quadrature differential equations.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 11.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in §5.

7.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of cvodes. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §5.4, most steps are independent of the nvector

implementation used; where this is not the case, usage specifications are given for the two implemen-
tations provided with cvodes: steps marked with [P] correspond to nvector parallel, while steps
marked with [S] correspond to nvector serial.

1. Include necessary header files

Besides cvodes.h, the main program must also include cvodea.h which defines additional types
and constants and includes function prototypes for the adjoint sensitivity module user-callable
functions. In addition, the main program should include an nvector implementation header file
(nvector serial.h or nvector parallel.h for the two implementations provided with cvodes)
and, if Newton iteration was selected, the main header file of the desired linear solver module.

2. [P] Initialize MPI

Forward problem

3. Set problem dimensions for the forward problem

4. Set initial conditions for the forward problem
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5. Create cvodes object for the forward problem

6. Allocate internal memory for the forward problem

7. Set optional inputs for the forward problem

8. Attach linear solver module for the forward problem

9. Set linear solver optional inputs for the forward problem

10. Allocate space for the adjoint computation

Call cvadj mem = CVadjMalloc() to allocate memory for the combined forward-backward prob-
lem (see §7.2.1 for more details). This call requires Nd, the number of steps between two consecutive
checkpoints. CVadjMalloc also specifies the type of interpolation used (see §3.3.1).

11. Integrate forward problem

Call CVodeF, a wrapper for the cvodes main integration function CVode, either in CV NORMAL

mode to the time tout or in CV ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §7.2.2)). The final value of tret, denoted tfinal, is then the
maximum allowable value for the endpoint t1.

Backward problem

12. Set problem dimensions for the backward problem

[S] set NB, the number of variables in the backward problem
[P] set NB and NBlocal

13. Set final values for the backward problem

Set the vector yB0 of final values for the backward problem.

14. Create cvodes object for the backward problem

Call CVodeCreateB, a wrapper for CVodeCreate, to create the cvodes memory block and specify
the solution method (linear multistep method and nonlinear solver iteration type) for the backward
problem. Unlike CVodeCreate, the function CVodeCreateB does not return a pointer to the newly
created memory block. Instead, this pointer is attached to the adjoint memory block (returned
by CVadjMalloc and passed as the first argument to CVodeCreateB).

15. Allocate memory for the backward problem

Call CVodeMallocB, a wrapper for CVodeMalloc, to allocate internal memory and initialize cvodes

at tB0 for the backward problem (see §7.2.3).

16. Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control
the behavior of cvodes. Unlike their counterparts for the forward problem, these functions take
as their first argument the adjoint memory block returned by CVadjMalloc.

17. Attach linear solver module for the backward problem

If Newton iteration is chosen, initialize the linear solver module for the backward problem by
calling the appropriate wrapper function: CVDenseB, CVBandB, CVDiagB, CVSpgmrB, CVSpbcgB, or
CVSptfqmr (see §7.2.4). Note that it is not required to use the same linear solver module for both
the forward and the backward problems; for example, the forward problem could be solved with
the cvdense linear solver and the backward problem with cvspgmr.

18. Initialize quadrature calculation



7.2 User-callable functions for adjoint sensitivity analysis 113

If additional quadrature equations must be evaluated, call CVodeQuadMallocB, a wrapper around
CVodeQuadMalloc, to initialize and allocate memory for quadrature integration. Optionally, call
CVodeSetQuad*B functions to change from their default values optional inputs that control the
integration of quadratures during the backward phase.

19. Integrate backward problem

Call CVodeB, a second wrapper around the cvodes main integration function CVode, to integrate
the backward problem from tB0 (see §7.2.5). This function can be called either in CV NORMAL or
CV ONE STEP mode. Typically, CVodeB will be called in CV NORMAL mode with an end time equal
to the initial time of the forward problem.

20. Extract quadrature variables

If applicable, call CVodeGetQuadB, a wrapper around CVodeGetQuad, to extract the values of the
quadrature variables at the time returned by the last call to CVodeB.

21. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to CVodeFree to free the cvodes

memory block for the forward problem, and a call to CVadjFree (see §7.2.1) to free the memory
allocated for the combined problem. Note that CVadjFree also deallocates the cvodes memory
for the backward problem.

22. Finalize MPI

[P] If MPI was initialized by the user main program, call MPI Finalize();.

The above user interface to the adjoint sensitivity module in cvodes was motivated by the desire
to keep it as close as possible in look and feel to the one for ODE IVP integration. Note that if steps
(12)-(20) are not present, a program with the above structure will have the same functionality as one
described in §5.4 for integration of ODEs, albeit with some overhead due to the checkpointing scheme.

7.2 User-callable functions for adjoint sensitivity analysis

7.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF, memory for the combined
forward-backward problem must be allocated by a call to the function CVadjMalloc. The form of the
call to this function is

CVadjMalloc

Call cvadj mem = CVadjMalloc(cvode mem, Nd, interpType);

Description The function CVadjMalloc allocates internal memory for the combined forward and
backward integration, other than the cvodes memory block. Space is allocated for the
Nd interpolation data points and a linked list of checkpoints is initialized.

Arguments cvode mem (void *) is the cvodes memory block for the forward problem returned
by a previous call to CVodeCreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be CV POLYNOMIAL

or CV HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §3.3.1).
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Return value If successful, CVadjMalloc returns a pointer of type void *. The user does not need
to access this memory block but must pass it to other adjoint module user-callable
functions. In case of failure (cvode mem is NULL, an input has an illegal value, or a
memory request fails), CVadjMalloc prints an error message to the standard output
stream stderr and returns NULL.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. CVadjMalloc attempts to allocate
space for (2Nd+3) variables of type N Vector.

CVadjFree

Call CVadjFree(&cvadj mem);

Description The function CVadjFree frees the memory allocated by a previous call to CVadjMalloc.

Arguments The only argument is the address of the pointer to the adjoint memory block (of type
void *).

Return value The function CVadjFree has no return value.

Notes This function frees all memory allocated by CVadjMalloc. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the cvodes memory for the backward integration phase.

If the user wishes to change the interpolation method after the call to CVadjMalloc, this can be done
through a call to the function CVadsSetInterpType. The form of the call to this function is

CVadjSetInterpType

Call flag = CVadjSetInterpType(cvadj mem, interpType);

Description The function CVadjSetInterpType resets the interpolation method to interpType.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

interpType (int) specifies the type of interpolation used and can be CV POLYNOMIAL

or CV HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §3.3.1).

Return value The return flag (of type int) is one of:

CV SUCCESS The call to CVadjSetInterpType was successful.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV ILL INPUT The input argument interpType has an illegal value.

CV MEM FAIL An error occured while trying to allocate memory for the interpolation
module.

Notes The function CVadjSetInterpType performs memory deallocation and allocation.

7.2.2 Forward integration function

The function CVodeF is very similar to the cvodes function CVode (see §5.5.4) in that it integrates
the solution of the forward problem and returns the solution in y. At the same time, however, CVodeF
stores checkpoint data every Nd integration steps. CVodeF can be called repeatedly by the user. The
call to this function has the form

CVodeF

Call flag = CVodeF(cvadj mem, tout, yout, tret, itask, ncheck);

Description The function CVodeF integrates the forward problem over an interval in t and saves
checkpointing data.
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Arguments cvadj mem (void *) pointer to the adjoint memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype *) the time reached by the solver.

itask (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just
passed the user-specified tout parameter. The solver then interpolates in
order to return an approximate value of y(tout). The CV ONE STEP option
tells the solver to just take one internal step and return the solution at the
point reached by that step. The CV NORMAL TSTOP and CV ONE STEP TSTOP

modes are similar to CV NORMAL and CV ONE STEP, respectively, except that
the integration never proceeds past the value tstop (specified through the
function CVodeSetStopTime).

Return value On return, CVodeF returns a vector yout and a corresponding independent variable
value t =*tret, such that yout is the computed value of y(t). Additionally, it returns
in ncheck the number of checkpoints saved. The return value flag (of type int) will
be one of the following. For more details see §5.5.4.
CV SUCCESS CVodeF succeeded.

CV TSTOP RETURN CVodeF succeeded by reaching the optional stopping point.

CV NO MALLOC The function CVodeMalloc has not been previously called.

CV ILL IPUT One of the inputs to CVodeF is illegal.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step or occurred with |h| = hmin.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step or occurred with |h| = hmin.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeF
failures.

At this time, CVodeF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file
as needed. The data stored at each checkpoint is basically a snapshot of the cvodes

internal memory block and contains enough information to restart the integration from
that time and to proceed with the same step size and method order sequence as during
the forward integration.

In addition, CVodeF also stores interpolation data between consecutive checkpoints so
that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no check points
were necessary, there is no need for the second forward integration phase.

Although it is legal to define a value for tstop and then call CVodeF in CV NORMAL TSTOP !

or CV ONE STEP TSTOP modes, after a return with flag = TSTOP RETURN, the integration
should not be continued (no tstop information is stored at checkpoints).

It is illegal to change the integration tolerances between consecutive calls to CVodeF, as !

this information is not captured in the checkpoints data.
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7.2.3 Backward problem initialization functions

The functions CVodeCreateB and CVodeMallocB must be called in the order listed. They instantiate
a cvodes solver object, provide problem and solution specifications, and allocate internal memory
for the backward problem.

CVodeCreateB

Call flag = CVodeCreateB(cvadj mem, lmm, iter);

Description The function CVodeCreateB instantiates a cvodes solver object and specifies the solu-
tion method for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

lmm (int) specifies the linear multistep method and must be one of two possible
values: CV ADAMS or CV BDF.

iter (int) specifies the type of nonlinear solver iteration and must be either
CV NEWTON or CV FUNCTIONAL.

Return value If successful, CVodeCreateB stores a pointer to the newly created cvodes memory
block (of type void *) for the backward problem. The return flag (of type int) is one
of:

CV SUCCESS The call to CVodeCreateB was successful.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV MEM FAIL An error occured while trying to create the cvodes memory block for
the backward problem.

The function CVodeMallocB is essentially a call to CVodeMalloc with some particularization for back-
ward integration as described below.

CVodeMallocB

Call flag = CVodeMallocB(cvadj mem, fB, tB0, yB0, itolB, reltolB, abstolB);

Description The function CVodeMallocB provides required problem and solution specifications, al-
locates internal memory, and initializes cvodes for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

fB (CVRhsFnB) is the C function which computes fB, the right-hand side of the
backward ODE problem. This function has the form fB(t, y, yB, yBdot,

f dataB) (for full details see §7.3).
tB0 (realtype) specifies the endpoint where final conditions are provided for

the backward problem.

yB0 (N Vector) is the final value of the backward problem.

itolB (int) is one of CV SS or CV SV where itol=CV SS indicates scalar relative
error tolerance and scalar absolute error tolerance, while itol=CV SV indi-
cates scalar relative error tolerance and vector absolute error tolerance.

reltolB (realtype) is the relative error tolerance.

abstolB (void *) is a pointer to the absolute error tolerance. If itolB = CV SS,
abstolB must be a pointer to a realtype variable. If itolB = CV SV,
abstolB must be an N Vector variable.

Return value The return flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeMallocB was successful.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV BAD TB0 The final time tB0 is outside the interval over which the forward prob-
lem was solved.
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CV MEM NULL The cvodes memory block for the backward problem was not initial-
ized through a previous call to CVodeCreateB.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeMallocB has an illegal value.

Notes It is the user’s responsibility to provide compatible itolB and abstolB arguments. !

The memory allocated by CVodeMallocB is deallocated by the function CVadjFree.

For the case when it is needed to solve several different backward problems corresponding to the
same original problem, cvodes provides a mechanism to reuse the existing checkpoints. The function
CVodeReInitB reinitializes the cvodes memory block for the backward problem, where a prior call to
CVodeMallocB has been made with the same problem size NB. CVodeReInitB performs the same input
checking and initializations that CVodeMallocB does, but does no memory allocation, assuming that
the existing internal memory is sufficient for the new problem. Note that CVReInitB is essentially a
wrapper for CVodeReInit and so all details given for CVodeReInit in §5.5.8 apply. The call to the
CVodeReInitB function has the form

CVodeReInitB

Call flag = CVodeReInitB(cvadj mem, fB, tB0, yB0, itolB, reltolB, abstolB);

Description The function CVodeReInitB provides required problem specifications and reinitializes
cvodes for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

fB (CVRhsFnB) is the C function which computes fB, the right-hand side of the
backward ODE problem. This function has the form fB(t, y, yB, yBdot,

f dataB) (for full details see §7.3).
tB0 (realtype) specifies the endpoint where final conditions are provided for

the backward problem.

yB0 (N Vector) is the final value of the backward problem.

itolB (int) is either CV SS or CV SV, where itol=CV SS indicates scalar relative
error tolerance and scalar absolute error tolerance, while itol=CV SV indi-
cates scalar relative error tolerance and vector absolute error tolerance.

reltolB (realtype) is the relative error tolerance.

abstolB (void *) is a pointer to the absolute error tolerance. If itolB = CV SS,
abstolB must be a pointer to a realtype variable. If itolB = CV SV,
abstolB must be an N Vector variable.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInitB was successful.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV BAD TB0 The final time tB0 is outside the interval over which the forward prob-
lem was solved.

CV MEM NULL The cvodes memory block for the backward problem was not initial-
ized through a previous call to CVodeCreateB.

CV NO MALLOC Memory space for the cvodes memory block for the backward problem
was not allocated through a previous call to CVodeMallocB.

CV ILL INPUT An input argument to CVodeReInitB has an illegal value.

Notes It is the user’s responsibility to provide compatible itolB and abstolB arguments. !

7.2.4 Linear solver initialization functions for backward problem

All linear solver modules in cvodes provide additional specification functions for the case in which
Newton iteration is selected for the solution of the backward problem. The initialization functions



118 Using CVODES for Adjoint Sensitivity Analysis

described in §5.5.3 cannot be directly used since the optional user-defined Jacobian-related functions
have different prototypes for the backward problem than for the forward problem (see §7.3).

The following six wrapper functions can be used to initialize one of the linear solver modules for
the backward problem. Their arguments are identical to those of the functions in §5.5.3 with the
exception of their first argument which must be the pointer to the adjoint memory block returned by
CVadjMalloc.

flag = CVDenseB(cvadj_mem, nB);

flag = CVDiagB(cvadj_mem);

flag = CVBandB(cvadj_mem, nB, mupperB, mlowerB);

flag = CVSpgmrB(cvadj_mem, pretypeB, maxlB);

flag = CVSpbcgB(cvadj_mem, pretypeB, maxlB);

flag = CVSptfqmrB(cvadj_mem, pretypeB, maxlB);

flag = CVSpbcgB(cvadj_mem, pretypeB, maxlB);

flag = CVSptfqmrB(cvadj_mem, pretypeB, maxlB);

Their return value flag (of type int) can have any of the return values of their counterparts.
If the cvadj mem argument was NULL, flag will be CVDENSE ADJMEM NULL, CVDIAG ADJMEM NULL,
CVBAND ADJMEM NULL, or CVSPILS ADJMEM NULL.

7.2.5 Backward integration function

The function CVodeB performs the integration of the backward problem. It is essentially a wrapper
for the cvodes main integration function CVode and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integrations
between consecutive checkpoints. The first run integrates the original IVP forward in time and stores
interpolation data; the second run integrates the backward problem backward in time and performs
the required interpolation to provide the solution of the IVP to the backward problem.

The call to this function has the form

CVodeB

Call flag = CVodeB(cvadj mem, tBout, yBout, tBret, itaskB);

Description The function CVodeB integrates the backward ODE problem over an interval in t.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

tBout (realtype) the next time at which a computed solution is desired.

yBout (N Vector) the computed solution vector of the backward problem.

tBret (realtype *) the time reached by the solver.

itaskB (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user specified tBout parameter. The solver then interpolates in order to
return an approximate value of yB(tBout). The CV ONE STEP option tells
the solver to just take one internal step and return the solution at the point
reached by that step.

Return value On return, CVodeB returns a vector yBout and a corresponding independent variable
value t =*tBret, such that yBout is the computed value of the solution of the backward
problem.

The return value flag (of type int) will be one of the following. For more details see
§5.5.4.
CV SUCCESS CVodeB succeeded.

CV NO MALLOC The cvodes memory for the backward problem was NULL.

CV ILL INPUT One of the inputs to CVode is illegal.

CV BAD ITASK The itaskB argument has an illegal value.
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CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV ADJMEM NULL The cvadj mem argument was NULL.

CV BCKMEM NULL The cvodes memory for the backward problem was not created
through a call to CVodeCreateB.

CV BAD TBOUT The desired output time tBout is outside the interval over which the
forward problem was solved.

CV REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

CV FWD FAIL An error occured during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeB
failures.

7.2.6 Optional input functions for the backward problem

7.2.6.1 Main solver optional input functions

The adjoint module in cvodes provides wrappers for most of the optional input functions defined
in §5.5.5.1. The only difference is that the first argument of the optional input functions for the
backward problem is the pointer to the adjoint memory block, cvadj mem, of type void *, returned
by CVadjMalloc. The optional input functions defined for the backward problem are:

flag = CVodeSetErrHandlerB(cvadj_mem, ehfunB, eh\_dataB);

flag = CVodeSetErrFileB(cvadj_mem, errfpB);

flag = CVodeSetIterTypeB(cvadj_mem, iterB);

flag = CVodeSetFdataB(cvadj_mem, f_dataB);

flag = CVodeSetMaxOrdB(cvadj_mem, maxordB);

flag = CVodeSetMaxNumStepsB(cvadj_mem, mxstepsB);

flag = CVodeSetStabLimDetB(cvadj_mem, stldetB);

flag = CVodeSetInitStepB(cvadj_mem, hinB);

flag = CVodeSetMinStepB(cvadj_mem, hminB);

flag = CVodeSetMaxStepB(cvadj_mem, hmaxB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be CV ADJMEM NULL if the cvadj mem argument was NULL.

7.2.6.2 Dense linear solver

Optional inputs for the cvdense linear solver module can be set for the backward problem through
the following function:

CVDenseSetJacFnB

Call flag = CVDenseSetJacFnB(cvadj mem, djacB, jac dataB);

Description The function CVDenseSetJacFnB specifies the dense Jacobian approximation function
to be used for the backward problem and the pointer to user data.

Arguments cvadj mem (void *) pointer to the adjoint memory block.
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djacB (CVDenseJacFnB) user-defined dense Jacobian approximation function.

jac dataB (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

CVDENSE SUCCESS The optional value has been successfuly set.

CVDENSE MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVDENSE LMEM NULL The cvdense linear solver has not been initialized through a
call to CVDenseB.

CVDENSE ADJMEM NULL The cvadj mem argument was NULL.

Notes The function type CVDenseJacFnB is described in §7.3.

7.2.6.3 Band linear solver

Optional inputs for the cvband linear solver module can be set for the backward problem through
the following function:

CVBandSetJacFnB

Call flag = CVBandSetJacFnB(cvadj mem, bjacB, jac dataB);

Description The function CVBandSetJacFnB specifies the banded Jacobian approximation function
to be used for the backward problem and the pointer to user data.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

bjacB (CVBandJacFnB) user-defined banded Jacobian approximation function.

jac dataB (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

CVBAND SUCCESS The optional value has been successfuly set.

CVBAND MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVBAND LMEM NULL The cvband linear solver has not been initialized through a call
to CVBandB.

CVBAND ADJMEM NULL The cvadj mem argument was NULL.

Notes The function type CVBandJacFnB is described in §7.3.

7.2.6.4 SPILS linear solvers

Optional inputs for the cvspils linear solver module can be set for the backward problem through
the following functions:

CVSpilsSetPreconditionerB

Call flag = CVSpilsSetPreconditionerB(cvadj mem, psolveB, psetupB, p dataB);

Description The function CVSpilsSetPrecSolveFnB specifies the preconditioner setup and solve
functions and the pointer to user data for the backward integration.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

psolveB (CVSpilsPrecSolveFnB) user-defined preconditioner solve function.

psetupB (CVSpilsPrecSetupFnB) user-defined preconditioner setup function.

p dataB (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.



7.2 User-callable functions for adjoint sensitivity analysis 121

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The function types CVSpilsPrecSolveFnB and CVSpilsPrecSetupFnB are described in
§7.3.

CVSpilsSetJacTimesVecFnB

Call flag = CVSpilsSetJacTimesVecFnB(cvadj mem, jtimesB, jac data);

Description The function CVSpilsSetJacTimesFnB specifies the Jacobian-vector product function
to be used and te pointer to user data.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

jtimesB (CVSpilsJacTimesVecFnB) user-defined Jacobian-vector product function.

jac dataB (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The function type CVSpilsJacTimesVecFnB is described in §7.3.

CVSpilsSetGSTypeB

Call flag = CVSpilsSetGSType(cvadj mem, gstypeB);

Description The function CVSpilsSetGSTypeB specifies the type of Gram-Schmidt orthogonaliza-
tion to be used with cvspgmr. This must be one of the enumeration constants
MODIFIED GS or CLASSICAL GS. These correspond to using modified Gram-Schmidt and
classical Gram-Schmidt, respectively.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

gstypeB (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ILL INPUT The Gram-Schmidt orthogonalization type gstypeB is not valid.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The default value is MODIFIED GS.

This option is available only with cvspgmr. !

CVSpilsSetDeltB

Call flag = CVSpilsSetDeltB(cvadj mem, deltB);

Description The function CVSpilsSetDeltB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvadj mem (void *) pointer to the adjoint memory block.
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deltB (realtype) the value of the convergence test constant reduction factor.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ILL INPUT The factor deltB is negative.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The default value is 0.05. Passing a value deltB= 0.0 also indicates using the default
value.

CVSpilsSetMaxlB

Call flag = CVSpilsSetMaxlB(cvadj mem, maxlB);

Description The function CVSpilsSetMaxlB resets maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

maxlB (realtype) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ILL INPUT The factor deltB is negative.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The maximum subspace dimension is initially specified in the call to CVSpbcgB or
CVSptfqmrB. The call to CVSpilsSetMaxlB is needed only if maxl is being changed
from its previous value.

This option is available only for the cvspbcg and cvsptfqmr linear solvers.!

CVSpilsSetPrecTypeB

Call flag = CVSpilsSetPrecTypeB(cvadj mem, pretypeB);

Description The function CVSpilsSetPrecTypeB resets the type of preconditioning to be used.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

pretypeB (int) specifies the type of prconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional value has been successfuly set.

CVSPILS MEM NULL The cvodes solver memory block was not created through a call
to CVodeCreateB.

CVSPILS LMEM NULL The cvspgmr linear solver has not been initialized.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS ADJMEM NULL The cvadj mem argument was NULL.

Notes The preconditioning type is initially specified in the call to the linear solver specification
function (see §7.2.4). The call to CVSpilsSetPrecTypeB is needed only if pretypeB is
being changed from its previous value.
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7.2.7 Optional output functions for the backward problem

The user of the adjoint module in cvodes has access to any of the optional output functions described
in §5.5.7, both for the main solver and for the linear solver modules. The first argument of these
CVodeGet* and CV*Get* functions is the cvodes memory block for the backward problem. In order
to call any of these functions, the user must first call the following function to obtain a pointer to this
memory block:

CVadjGetCVodeBmem

Call cvode memB = CVadjGetCVodeBmem(cvadj mem);

Description The function CvadjGetCVodeBmem returns a pointer to the cvodes memory block for
the backward problem.

Arguments The argument cvadj mem (of type void *) is a pointer to the adjoint memory block
returned by CVadjMalloc.

Return value The return value, cvode memB (of type void *), is a pointer to the cvodes memory for
the backward problem.

Notes The user should not modify in any way cvode memB. !

7.2.8 Backward integration of pure quadrature equations

7.2.8.1 Backward quadrature initialization functions

The function CVodeQuadMallocB initializes and allocates memory for the backward integration of
quadrature equations. It has the following form:

CVodeQuadMallocB

Call flag = CVodeQuadMallocB(cvadj mem, fQB, yQB0);

Description The function CVodeQuadMallocB provides required problem specifications, allocates in-
ternal memory, and initializes backward quadrature integration.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

fQB (CVQuadRhsFnB) is the C function which computes fQB, the right-hand side
of the backward quadrature equations. This function has the form fQB(t,

y, yB, qBdot, fQ dataB) (for full details see below).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadMallocB was successful.

CV MEM NULL The cvodes solver memory block was not created through a previous
call to CVodeCreateB.

CV MEM FAIL A memory allocation request has failed.

CV ADJMEM NULL The cvadj mem argument was NULL.

The integration of quadrature equations during the backward phase can be re-initialized by calling

CVodeQuadReInitB

Call flag = CVodeQuadReInitB(cvadj mem, fQB, yQB0);

Description The function CVodeQuadReInitB re-initializes the backward quadrature integration.

Arguments cvadj mem (void *) pointer to the adjoint memory block.

fQB (CVQuadRhsFnB) is the C function which computes fQB, the right-hand side
of the backward quadrature equations.

yQB0 (N Vector) is the value of the quadrature variables at tB0.
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Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInitB was successful.

CV MEM NULL The cvodes solver memory block was not created through a previous
call to CVodeCreateB.

CV NO QUAD Quadrature integration was not activated through a previous call to
CVodeQuadMallocB.

CV ADJMEM NULL The cvadj mem argument was NULL.

7.2.8.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB, cvodes provides
a wrapper for the function CVodeGetQuad (see §5.7.3). The call to this function has the form

CVodeGetQuadB

Call flag = CVodeGetQuadB(cvadj mem, yQB);

Description The function CVodeGetQuadB returns the quadrature solution vector after a successful
return from CVodeB.

Arguments cvadj mem (void *) pointer to the adjoint memory returned by CVadjMalloc.

yQB (N Vector) the computed backward quadrature vector.

Return value The return value flag of CVodeGetQuadB is one of:

CV SUCCESS CVodeGetQuadB was successful.

CV MEM NULL The cvodes solver memory block was not created through a previous
call to CVodeCreateB.

CV NO QUAD Quadrature integration was not initialized through a previous call to
CVodeQuadMallocB..

Cv BAD DKY yQB is NULL.

CV ADJMEM NULL The cvadj mem argument was NULL.

7.2.8.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §5.7.4:

flag = CVodeSetQuadFdataB(cvadj_mem, fQ_dataB);

flag = CVodeSetQuadErrConB(cvadj_mem, errconQB, itolQB, reltolQB, abstolQB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be CV ADJMEM NULL if the cvadj mem argument was NULL.

Access to optional outputs related to backward quadrature integration can be obtained by calling
the corresponding CVodeGetQuad* functions (see §5.7.5). A pointer to the cvodes memory block for
the backward problem, required as the first argument of these functions, can be obtained through a
call to the functions CVadjGetCVodeBmem (see §7.2.7).

7.2.9 Optional output from the adjoint module

7.2.9.1 Checkpoint information function

For debugging purposes, cvodes provides a function CVadjGetCheckPointsInfo which returns partial
information from the linked list of checkpoints generated by CVodeF. The call to this function has the
form:
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CVadjGetCheckPointsInfo

Call flag = CVadjCheckPointsList(cvadj mem, ckpnt);

Description The function CVadjGetCheckPointsList returns a structure array with checkpoint in-
formation.

Arguments cvadj mem (void *) pointer to the adjoint memory returned by CVadjMalloc.

ckpnt (CVadjCheckPointRec *) an array of ncheck+1 structures with checkpoint
information, where ncheck is the numebr of checkpoints returned by CVodeF.

Return value The return value flag of CVadjGetCheckPointsInfo is one of:

CV SUCCESS CVadjGetCheckPointsInfo was successful.

CV ADJMEM NULL The cvadj mem argument was NULL.

Notes For an example of using CVadjGetCheckPointsInfo, see the cvadjdenx example.

The type CVadjCheckPointRec is defined in the header file cvodea.h:

typedef struct {

unsigned int my_addr;

unsigned int next_addr;

realtype t0;

realtype t1;

long int nstep;

int order;

realtype step;

} CVadjCheckPointRec;

The fields in this structure have the following meanings:
my addr Address of current checkpoint.

next addr Address of next checkpoint.

t0

t1 Time interval between current and next checkpoint.

nstep Step number at which the current checkpoint was saved.

order Linear multistep method order at the current checkpoint.

step Integration stepsize at current checkpoint.

7.2.9.2 Interpolation data

Fo debugging purposes, cvodea provides two extraction functions which return the data stored for
interpolation purposes.

CVadjGetDataPointHermite

Call int = CVadjGetDataPointHermite(cvadj mem, which, &t, y, yd);

Description The function CVadjGetDataPointHermite returns the time and two vectors associated
with the which interpolation data point.

Arguments cvadj mem (void *) pointer to the adjoint memory returned by CVadjMalloc.

which (long int) index of the intepolation data point.

t (realtype *)

y (N Vector)

yd (N Vector) time, solution, and solution derivative for the forward problem
stored for interpolation purposes at the which data point.

Return value The return value flag is one of:
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CV SUCCESS CVadjGetDataPointHermite was successful.

CV ILL INPUT The interpolation type was not cubic Hermite.

CV ADJMEM NULL The cvadj mem argument was NULL.

Notes It is the user’s responsibility to allocate space for y and yd.

CVadjGetDataPointPolynomial

Call int = CVadjGetDataPointPolynomial(cvadj mem, which, &t, order, y);

Description The function CVadjGetDataPointPolynomial returns the time and two vectors associ-
ated with the which interpolation data point.

Arguments cvadj mem (void *) pointer to the adjoint memory returned by CVadjMalloc.

which (long int) index of the intepolation data point.

t (realtype *)

order (int)

yd (N Vector) time, method order, and solution of the forward problem stored
for interpolation purposes at the which data point.

Return value The return value flag is one of:

CV SUCCESS CVadjGetDataPointPolynomial was successful.

CV ILL INPUT The interpolation type was not variable-order polynomial.

CV ADJMEM NULL The cvadj mem argument was NULL.

Notes It is the user’s responsibility to allocate space for y.

7.2.9.3 Return flag name

The names of constants associated with cvodea-specific return values can be obtained by calling the
following function:

CVadjGetReturnFlagName

Call name = CVadjGetReturnFlagName(flag);

Description The function CVadjGetReturnFlagName returns the name of the cvodea constant cor-
responding to flag.

Arguments The only argument, of type int is a return flag from a cvodea function.

Return value The return value is a string containing the name of the corresponding constant.

7.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward
problem, when using the adjoint sensitivity module in cvodes, the user must supply one function
defining the backward problem ODE and, optionally, functions to supply Jacobian-related information
(if Newton iteration is chosen) and one or two functions that define the preconditioner (if one of the
cvspils solvers is selected) for the backward problem. Type definitions for all these user-supplied
functions are given below.

7.3.1 ODE right-hand side for the backward problem

The user must provide a function of type CVRhsFnB defined as follows:
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CVRhsFnB

Definition typedef int (*CVRhsFnB)(realtype t, N Vector y, N Vector yB,

N Vector yBdot, void *f dataB);

Purpose This function computes the right-hand side of the backward problem ODE system. This
could be (3.17) or (3.20).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

yBdot is the output vector containing the right-hand side of the backward ODE
problem.

f dataB is a pointer to user data - the same as the f dataB parameter passed to
CVodeSetFdataB.

Return value A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV RHSFUNC FAIL).

Notes Allocation of memory for yBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically
have different internal representations from y. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from
each nvector implementation). For the sake of computational efficiency, the vector
functions in the two nvector implementations provided with cvodes do not perform
any consistency checks with respect to their N Vector arguments (see §8.1 and §8.2).
The f dataB pointer is passed to the user’s fB function every time it is called and can
be the same as the f data pointer used for the forward problem.

Before calling the user’s CVRhsFnB, cvodea needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurrs in the interpo-
lation, cvodea triggers an unrecoverable failure in the righ-hand side function which
will halt the integration and CVodeB will return CV RHSFUNC FAIL.

7.3.2 Quadrature right-hand side for the backward problem

The user must provide a function of type CVQuadRhsFnB defined by

CVQuadRhsFnB

Definition typedef int (*CVQuadRhsFnB)(realtype t, N Vector y, N Vector yB,

N Vector qBdot, void *fQ dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

qBdot is the output vector containing the right-hand side of the backward quadra-
ture equations.

fQ dataB is a pointer to user data - the same as the fQ dataB parameter passed to
CVodeSetQuadFdataB.

Return value A CVQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV QRHSFUNC FAIL).
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Notes Allocation of memory for qBdot is handled within cvodes.

The y, yB, and yQBdot arguments are all of type N Vector, but they typically all have
different internal representations. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector

implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with cvodes do not perform any consistency
checks with repsect to their N Vector arguments (see §8.1 and §8.2).
The fQ dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the f data pointer used for the forward problem.

Before calling the user’s CVQuadRhsFnB, cvodea needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurrs in the
interpolation, cvodea triggers an unrecoverable failure in the quadrature righ-hand
side function which will halt the integration and CVodeB will return CV QRHSFUNC FAIL.

7.3.3 Jacobian information for the backward problem (direct method with
dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is selected for the backward problem
(i.e. CVDenseB is called in step 17 of §7.1), the user may provide, through a call to CVDenseSetJacFnB

(see §7.2.6), a function of the following type:

CVDenseJacFnB

Definition typedef int (*CVDenseJacFnB)(long int nB, DenseMat JB, realtype t,

N Vector y, N Vector yB, N Vector fyB,

void *jac dataB, N Vector tmp1B,

N Vector tmp2B, N Vector tmp3B);

Purpose This function computes the dense Jacobian of the backward problem (or an approxi-
mation to it). If the backward problem is the adjoint of the original IVP, then this
Jacobian is just the transpose of J = ∂f/∂y with a change in sign.

Arguments nB is the backward problem size.

J is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

fyB is the current value of the right-hand side of the backward problem.

jac dataB is a pointer to user data - the same as the jac dataB parameter passed to
CVDenseSetJacDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by CVDenseJacFnB as temporary storage or work space.

Return value A CVDenseJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvdense sets last flag

on CVDENSE JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvdense sets last flag

on CVDENSE JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the nB by nB dense matrix JB with
an approximation to the Jacobian matrix at the point (t,y,yB), where y is the solution
of the original IVP at time t and yB is the solution of the backward problem at the
same time. Only nonzero elements need to be loaded into JB as this matrix is set to
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zero before the call to the Jacobian function. The type of JB is DenseMat. The user is
referred to §5.6.4 for details regarding accessing a DenseMat object.

Before calling the user’s CVDenseJacFnB, cvodea needs to evaluate (through interpo- !

lation) the values of the states from the forward integration. If an error occurrs in the
interpolation, cvodea triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvdense sets last flag

on CVDENSE JACFUNC UNRECVR).

7.3.4 Jacobian information for the backward problem (direct method with
banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is selected for the backward problem
(i.e. CVBandB is called in step 17 of §7.1), the user may provide, through a call to CVBandSetJacFnB

(see §7.2.6), a function the following type:

CVBandJacFnB

Definition typedef int (*CVBandJacFnB)(long int nB,

long int mupperB, long int mlowerB,

BandMat JB, realtype t, N Vector y,

N Vector yB, N Vector fyB, void *jac dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the banded Jacobian of the backward problem (or a banded
approximation to it).

Arguments nB is the backward problem size.

mlowerB

mupperB are the lower and upper half-bandwidth of the Jacobian.

JB is the output Jacobian matrix.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

fyB is the current value of the right-hand side of the backward problem.

jac dataB is a pointer to user data - the same as the jac dataB parameter passed to
CVBandSetJacDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by CVBandJacFnB as temporary storage or work space.

Return value A CVBandJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvband sets last flag

on CVBAND JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvdense sets last flag

on CVBAND JACFUNC UNRECVR).

Notes A user-supplied band Jacobian function must load the band matrix JB (of type BandMat)
with the elements of the Jacobian at the point (t,y,yB), where y is the solution of the
original IVP at time t and yB is the solution of the backward problem at the same
time. Only nonzero elements need to be loaded into JB because JB is preset to zero
before the call to the Jacobian function. More details on the accessor macros provided
for a BandMat object and on the rest of the arguments passed to a function of type
CVBandJacFnB are given in §5.6.5.
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Before calling the user’s CVBandJacFnB, cvodea needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurrs in the
interpolation, cvodea triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvband sets last flag

on CVBAND JACFUNC UNRECVR).

7.3.5 Jacobian information for the backward problem (matrix-vector prod-
uct)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (CVSp*B is called
in step 17 of §7.1), the user may provide a function of type CVSpilsJacTimesVecFnB in the following
form:

CVSpilsJacTimesVecFnB

Definition typedef int (*CVSpilsJacTimesVecFnB)(N Vector vB, N Vector JvB,

realtype t, N Vector y,

N Vector yB, N Vector fyB,

void *jac dataB, N Vector tmpB);

Purpose This function computes the action of the Jacobian on a given vector vB for the backward
problem (or an approximation to it).

Arguments vB is the vector by which the Jacobian must be multiplied to the right.

JvB is the output vector computed.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

fyB is the current value of the right-hand side of the backward problem.

jac dataB is a pointer to user data - the same as the jac dataB parameter passed to
CVSp*SetJacTimesVecFnB.

tmpB is a pointer to memory allocated for a vector which can be used for work
space.

Return value The return value of a function of type CVSpilsJtimesFnB should be 0 if successful or
nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
result of the product between the Jacobian of the backward problem at the point (t,y,
yB) and the vector vB. Here, y is the solution of the original IVP at time t and yB is
the solution of the backward problem at the same time. The rest of the arguments are
equivalent to those passed to a function of type CVSpilsJacTimesVecFn (see §5.6.6).
If the backward problem is the adjoint of ẏ = f(t, y), then this function is to compute
−(∂f/∂y)T vB .

7.3.6 Preconditioning for the backward problem (linear system solution)

If preconditioning is used during integration of the backward problem, then the user must provide a
C function to solve the linear system Pz = r, where P may be either a left or a right preconditioner
matrix. This function must be of type CVSpilsPrecSolveFnB defined by

CVSpilsPrecSolveFnB
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Definition typedef int (*CVSpilsPrecSolveFnB)(realtype t, N Vector y, N Vector yB,

N Vector fyB, N Vector rB,

N Vector zB, realtype gammaB,

realtype deltaB, int lrB,

void *P dataB, N Vector tmpB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

fyB is the current value of the right-hand side of the backward problem.

rB is the right-hand side vector of the linear system.

zB is the output vector computed.

gammaB is the scalar γ appearing in the Newton matrix.

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

lrB is an input flag indicating whether the preconditioner solve function is to use
the left preconditioner (lr=1) or the right preconditioner (lr=2);

P dataB is a pointer to user data - the same as the P dataB parameter passed to the
function CVSp*SetPreconditionerB.

tmpB is a pointer to memory allocated for a vector which can be used for work space.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

7.3.7 Preconditioning for the backward problem (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type CVSpilsPrecSetupFnB defined by

CVSpilsPrecSetupFnB

Definition typedef int (*CVSpilsPrecSetupFnB)(realtype t, N Vector y, N Vector yB,

N Vector fyB, booleantype jokB,

booleantype *jcurPtrB,

realtype gammaB, void *P dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of a CVSpilsPrecSetupFnB are as follows:

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

fyB is the current value of the right-hand side of the backward problem.

jokB is an input flag indicating whether Jacobian-related data needs to be recom-
puted.

jcurPtrB is a pointer to an output integer flag which is to be set to TRUE if Jacobian
data was recomputed, or to FALSE if Jacobian data was not recomputed but
saved data was still reused.

gammaB is the scalar γ appearing in the Newton matrix.
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P dataB is a pointer to user data - the same as the P dataB parameter passed to
CVSpilsSetPreconditionerB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for vectors which can be used as temporary
storage or work space.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

7.4 Using CVODES preconditioner modules for the backward
problem

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear
systems can be greatly enhanced through preconditioning. Both preconditioner modules provided with
sundials, the banded preconditioner cvbandpre and the band-block-diagonal preconditioner module
cvbbdpre, provide interface functions through which they can be used on the backward integration
phase.

7.4.1 Using the banded preconditioner CVBANDPRE

The adjoint module in cvodes offers an interface to the banded preconditioner module cvbandpre

described in section §5.9.1. This preconditioner provides a band matrix preconditioner based on
difference quotients of the backward problem right-hand side function fB. It generates a banded
approximation to the Jacobian with mlB sub-diagonals and muB super-diagonals to be used with one
of the Krylov linear solvers.

In order to use the cvbandpre module in the solution of the backward problem, the user need
not define any additional functions. First, the user must initialize the cvbandpre module by calling

CVBandPrecAllocB

Call flag = CVBandPrecAlloc(cvadj mem, nB, muB, mlB);

Description The function CVBandPrecAllocB initializes and allocates memory for the cvbandpre

preconditioner for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

nB (long int) backward problem dimension.

muB (long int) upper half-bandwidth of the backward problem Jacobian ap-
proximation.

mlB (long int) lower half-bandwidth of the backward problem Jacobian ap-
proximation.

Return value If successful, CVBandPrecAlloc stores a pointer to the newly created cvbandpre mem-
ory block. The return value flag (of type int) is one of:

CVBANDPRE SUCCESS The call to CVBandPrecAllocB was successful.

CVBANDPRE MEM FAIL An error occured while trying to create the cvbandpre mem-
ory block.

CVBANDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvspgmr linear solver module with the cvbandpre preconditioner module,
make the following call:
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CVBPSpgmrB

Call flag = CVBPSpgmrB(cvadj mem, pretypeB, maxlB);

Description The function CVBPSpgmrB links the cvbandpre data to the cvspgmr linear solver and
attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.

CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBANDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvspbcg linear solver module with the cvbandpre preconditioner module,
make the following call:

CVBPSpbcgB

Call flag = CVBPSpbcgB(cvadj mem, pretypeB, maxlB);

Description The function CVBPSpbcgB links the cvbandpre data to the cvspbcg linear solver and
attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.

CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBANDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvsptfqmr linear solver module with the cvbandpre preconditioner mod-
ule, make the following call:

CVBPSptfqmrB

Call flag = CVBPSptfqmrB(cvadj mem, pretypeB, maxlB);

Description The function CVBPSptfqmrB links the cvbandpre data to the cvsptfqmr linear solver
and attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.
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Return value The return value flag (of type int) is one of:

CVBANDPRE ADJMEM NULL The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.

CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBANDPRE PDATA NULL The cvbandpre preconditioner has not been initialized.

CVBANDPRE ADJMEM NULL The cvadj mem argument was NULL.

To deallocate the cvbandpre preconditioner module memory used for the backward integration,
make the following call:

CVBandPrecFreeB

Call CVBandPrecFreeB(cvadj mem);

Description The function CVBandPrecFreeB frees the memory allocated by CVBandPrecAllocB.

Arguments The only argument passed to CVBandPrecFreeB is the pointer to the cvodea memory
block (of type void *).

Return value The function CVBandPrecFreeB has no return value.

Notes The call to CVBandPrecFreeB must preceed that to CVadjFree.

For more details on cvbandpre see §5.9.1.

7.4.2 Using the band-block-diagonal preconditioner CVBBDPRE

The adjoint module in cvodes offers an interface to the band-block-diagonal preconditioner module
cvbbdpre described in section §5.9.2. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the parallel vector module nvector parallel.

In order to use the cvbbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

7.4.2.1 Usage of CVBBDPRE for the backward problem

The cvbbdpre module is initialized by calling

CVBBDPrecAllocB

Call flag = CVBBDPrecAllocB(cvadj mem, NlocalB, mudqB, mldqB,

mukeepB, mlkeepB, dqrelyB, glocB, cfnB);

Description The function CVBBDPrecAllocB initializes and allocates memory for the cvbbdpre

preconditioner for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

NlocalB (long int) local vector dimension for the backward problem.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mukeepB (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeepB (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.
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dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which

can be specified by passing dqrely= 0.0.

glocB (CVLocalFnB) the C function which computes the approximation gB(t, y) to
the right-hand side of the backward problem.

cfnB (CVCommFnB) the optional C function which performs all interprocess com-
munication required for the computation of gB(t, y).

Return value If successful, CVBBDPrecAlloc stores a pointer to the newly created cvbbdpre memory
block. The return value flag (of type int) is one of:

CVBBDPRE SUCCESS The call to CVBBDPrecAllocB was successful.

CVBBDPRE PDATA NULL An error occured while trying to create the cvbbdpre memory
block.

CVBBDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvspgmr linear solver module with the cvbbdpre preconditioner module,
make the following call:

CVBBDSpgmrB

Call flag = CVBBDSpgmrB(cvadj mem, pretypeB, maxlB);

Description The function CVBBDSpgmrB links the cvbbdpre data to the cvspgmr linear solver and
attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.

CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvspbcg linear solver module with the cvbbdpre preconditioner module,
make the following call:

CVBBDSpbcgB

Call flag = CVBBDSpbcgB(cvadj mem, pretypeB, maxlB);

Description The function CVBBDSpbcgB links the cvbbdpre data to the cvspbcg linear solver and
attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.
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CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPRE ADJMEM NULL The cvadj mem argument was NULL.

To specify the use of the cvsptfqmr linear solver module with the cvbbdpre preconditioner module,
make the following call:

CVBBDSptfqmrB

Call flag = CVBBDSptfqmrB(cvadj mem, pretypeB, maxlB);

Description The function CVBBDSptfqmrB links the cvbbdpre data to the cvsptfqmr linear solver
and attaches the latter to the cvodes memory block for the backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

pretypeB (int) preconditioning type. Can be one of PREC LEFT or PREC RIGHT.

maxlB (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvodes memory block for the backward problem was not
initialized through a previous call to CVodeCreateB.

CVSPILS ILL INPUT The preconditioner type pretypeB is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPRE ADJMEM NULL The cvadj mem argument was NULL.

To reinitialize the cvbbdpre preconditioner module for the backward problem call the following
function:

CVBBDPrecReInitB

Call flag = CVBBDPrecReInitB(cvadj mem, mudqB, mldqB, dqrelyB, glocB, cfnB);

Description The function CVBBDPrecReInitB reinitializes the cvbbdpre preconditioner for the
backward problem.

Arguments cvadj mem (void *) pointer to the adjoint memory block returned by CVadjMalloc.

mudqB (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldqB (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

glocB (CVLocalFnB) the C function which computes the approximation gB(t, y) to
the right-hand side of the backward problem.

cfnB (CVCommFnB) the optional C function which performs all interprocess com-
munication required for the computation of gB(t, y).

Return value The return value flag (of type int) is one of:

CVBBDPRE SUCCESS The cvbbdpre initialization was successful.

CVBBDPRE PDATA NULL The cvbbdpre preconditioner has not been initialized.

CVBBDPRE ADJMEM NULL The cvadj mem argument was NULL.

To deallocate the cvbbdpre preconditioner module memory used for the backward integration, make
the following call:



7.4 Using CVODES preconditioner modules for the backward problem 137

CVBBDPrecFreeB

Call CVBBDPrecFreeB(cvadj mem);

Description The function CVBBDPrecFreeB frees the memory allocated by CVBBDPrecAllocB.

Arguments The only argument passed to CVBBDPrecFreeB is the pointer to the cvodea memory
block (of type void *).

Return value The function CVBBDPrecFreeB has no return value.

Notes The call to CVBBDPrecFreeB must preceed that to CVadjFree.

For more details on cvbbdpre see §5.9.2.

7.4.2.2 User-supplied functions for CVBBDPRE

To use the cvbbdpre module, the user must supply one or two functions which the module calls to
construct the preconditioner: a required function glocB (of type CVLocalFnB) which approximates
the right-hand side of the backward problem and which is computed locally, and an optional function
cfnB (of type CVCommFnB) which performs all interprocess communication necessary to evaluate this
approximate right-hand side (see §5.9.2). The prototypes for these two functions are described below.

CVLocalFnB

Definition typedef int (*CVLocalFnB)(long int NlocalB, realtype t,

N Vector y, N Vector yB, N Vector gB,

void *f dataB);

Purpose This function loads the vector gB as a function of t, y, and yB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.

gB is the output vector.

f dataB is a pointer to user data - the same as the f dataB parameter passed to
CVodeSetFdataB.

Return value A CVLocalFnB should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed un-
recoverably (in which case the integration is halted and CVodeB returns CV LSETUP FAIL).

Notes This routine assumes that all interprocess communication of data needed to calculate
gB has already been done, and this data is accessible within f dataB.

Before calling the user’s CVLocalFnB, cvodea needs to evaluate (through interpolation) !

the values of the states from the forward integration. If an error occurrs in the inter-
polation, cvodea triggers an unrecoverable failure in the preconditioner setup function
which will halt the integration (CVodeB returns CV LSETUP FAIL).

CVCommFnB

Definition typedef int (*CVCommFnB)(long int NlocalB, realtype t,

N Vector y, N Vector yB, void *f dataB);

Purpose This function performs all interprocess communications necessary for the execution of
the glocB function above, using the input vectors y and yB.

Arguments NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the dependent variable vector.
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f dataB is a pointer to user data - the same as the f dataB parameter passed to
CVodeSetFdataB.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV LSETUP FAIL).

Notes The cfnB function is expected to save communicated data in space defined within the
structure f dataB.

Each call to the cfnB function is preceded by a call to the function that evaluates the
right-hand side of the backward problem with the same t, y, and yB arguments. If there
is no additional communication needed, then pass cfnB = NULL to CVBBDPrecAllocB.



Chapter 8

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two provided
within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);
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realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 8.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 8.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for the data array.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded linear solvers, as well as the interfaces to the
banded preconditioners provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the interfaces to the
dense linear solver.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with an x that is guaranteed to
have all nonzero components.

continued on next page
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continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z: zi =
cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n− 1. This routine returns TRUE if all components of
x are nonzero (successful inversion) and returns FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns FALSE if any element failed the constraint
test, TRUE if all passed. It also sets a mask vector m, with elements equal
to 1.0 where the constraint test failed, and 0.0 where the test passed.
This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

8.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.
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Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
8.1. Their names are obtained from those in Table 8.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneVectorArrayEmpty Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);
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Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

8.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )
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#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 8.1 Their names are obtained from those in Table 8.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneVectorArrayEmpty Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.
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N_Vector *N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

8.3 NVECTOR functions used by CVODES

In Table 8.2 below, we list the vector functions in the nvector module within the cvodes package.
The table also shows, for each function, which of the code modules uses the function. The cvodes

column shows function usage within the main integrator module, while the remaining seven columns
show function usage within each of the six cvodes linear solvers (cvspils stands for any of cvspgmr,
cvspbcg, or cvsptfqmr), the cvbandpre and cvbbdpre preconditioner modules, and the cvodea

adjoint sensitivity module.
There is one subtlety in the cvspils column hidden by the table, explained here for the case of the

cvspgmr module). The dot product function N VDotProd is called both within the implementation file
cvodes spgmr.c for the cvspgmr solver and within the implementation files sundials spgmr.c and
sundials iterative.c for the generic spgmr solver upon which the cvspgmr solver is implemented.
Also, although N VDiv and N VProd are not called within the implementation file cvodes spgmr.c,
they are called within the implementation file sundials spgmr.c and so are required by the cvspgmr

solver module. This issue does not arise for the other three cvodes linear solvers because the generic
dense and band solvers (used in the implementation of cvdense and cvband) do not make calls to
any vector functions and cvdiag is not implemented using a generic diagonal solver.

At this point, we should emphasize that the cvodes user does not need to know anything about
the usage of vector functions by the cvodes code modules in order to use cvodes. The information
is presented as an implementation detail for the interested reader.

The vector functions listed in Table 8.1 that are not used by cvodes are: N VWL2Norm, N VL1Norm,
N VWrmsNormMask, N VConstrMask, N VCloneEmpty, and N VMinQuotient. Therefore a user-supplied
nvector module for cvodes could omit these six kernels.
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Table 8.2: List of vector functions usage by CVODES code modules
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N VClone X X X X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X X

N VSetArrayPointer X

N VLinearSum X X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X X X

N VMin X

N VCompare X

N VInvTest X



Chapter 9

Providing Alternate Linear Solver
Modules

The central cvodes module interfaces with the linear solver module to be used by way of calls to four
functions. These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are
as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: preprocess and evaluate the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification function (like those described in
§5.5.3) which will attach the above four functions to the main cvodes memory block. The cvodes

memory block is a structure defined in the header file cvodes impl.h. A pointer to such a structure
is defined as the type CVodeMem. The four fields in a CvodeMem structure that must point to the
linear solver’s functions are cv linit, cv lsetup, cv lsolve, and cv lfree, respectively. Note that
of the four interface functions, only the lsolve function is required. The lfree function must be
provided only if the solver specification function makes any memory allocation. For consistency with
the existing cvodes linear solver modules, we recommend that the return value of the specification
function be 0 for a successful return or a negative value if an error occurs (the pointer to the main
cvodes memory block is NULL, an input is illegal, the nvector implementation is not compatible, a
memory allocation fails, etc.)

To facilitate data exchange between the four interface functions, the field cv lmem in the cvodes

memory block can be used to attach a linear solver-specific memory block.
To be used during the backward integration with the cvodea module, a linear solver module must

also provide an additional user-callable specification function (like those described in §7.2.4) which
will attach the four functions to the cvodes memory block for the backward integration. Note that
this block (of type struct CVodeMemRec) is not directly accessible to the user, but rather is itself
a field (cvb mem) in the cvodea memory block. The cvodea memory block is a structure defined
in the header file cvodea impl.h. A pointer to such a structure is defined as the type CVadjMem.
The specification function for backward integration should also return a negative value if the adjoint
cvodea memory block is NULL.

An additional field (ca lmemB) in the cvodea memory block provides a hook-up for optionally
attaching a linear solver-specific memory block.

The four functions that interface between cvodes and the linear solver module necessarily have
fixed call sequences. Thus, a user wishing to implement another linear solver within the cvodes

package must adhere to this set of interfaces. The following is a complete description of the argument
list for each of these functions. Note that the argument list of each function includes a pointer to the
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main cvodes memory block, by which the function can access various data related to the cvodes

solution. The contents of this memory block (of type CVodeMem) are given in the file cvodes impl.h

(but not reproduced here, for the sake of space).

9.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(CVodeMem cv mem);

Purpose The purpose of linit is to complete linear solver-specific initializations, such as counters
and statistics.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

Return value An linit function should return 0 if it has successfully initialized the cvodes linear
solver and −1 otherwise.

9.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(CVodeMem cv mem, int convfail, N Vector ypred,

N Vector fpred, booleantype *jcurPtr,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It may
recompute Jacobian-related data if it is deemed necessary.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

convfail is an input flag used to indicate any problem that occurred during the solution
of the nonlinear equation on the current time step for which the linear solver
is being used. This flag can be used to help decide whether the Jacobian
data kept by a cvodes linear solver needs to be updated or not. Its possible
values are:

• NO FAILURES: this value is passed to lsetup if either this is the first call
for this step, or the local error test failed on the previous attempt at this
step (but the Newton iteration converged).

• FAIL BAD J: this value is passed to lsetup if (a) the previous Newton
corrector iteration did not converge and the linear solver’s setup function
indicated that its Jacobian-related data is not current, or (b) during the
previous Newton corrector iteration, the linear solver’s solve function
failed in a recoverable manner and the linear solver’s setup function
indicated that its Jacobian-related data is not current.

• FAIL OTHER: this value is passed to lsetup if during the current internal
step try, the previous Newton iteration failed to converge even though
the linear solver was using current Jacobian-related data.

ypred is the predicted y vector for the current cvodes internal step.

fpred is the value of the right-hand side at ypred, i.e. f(tn, ypred).

jcurPtr is a pointer to a boolean to be filled in by lsetup. The function should set
*jcurPtr = TRUE if its Jacobian data is current after the call, and should
set *jcurPtr = FALSE if its Jacobian data is not current. If lsetup calls for
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reevaluation of Jacobian data (based on convfail and cvodes state data), it
should return *jcurPtr = TRUE unconditionally; otherwise an infinite loop
can result.

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value An lsetup function should return 0 if successful, a positive value for a recoverable error,
and a negative value for an unrecoverable error.

9.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(CVodeMem cv mem, N Vector b, N Vector weight,

N Vector ycur, N Vector fcur);

Purpose The function lsolve must solve the linear equation Mx = b, where M is some approx-
imation to I − γJ , J = (∂f/∂y)(tn, ycur) (see Eq.(3.6)), and the right-hand side vector
b is input.

Arguments cv mem is the cvodes memory pointer of type CVodeMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the Wi of Eq.(3.7).

ycur is a vector that contains the solver’s current approximation to y(tn).

fcur is a vector that contains f(tn, ycur).

Return value An lsolve function should return a positive value for a recoverable error and a negative
value for an unrecoverable error. Success is indicated by a 0 return value.

9.4 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(CVodeMem cv mem);

Purpose The function lfree should free up any memory allocated by the linear solver.

Arguments The argument cv mem is the cvodes memory pointer of type CVodeMem.

Return value An lfree function has no return value.

Notes This function is called once a problem has been completed and the linear solver is no
longer needed.





Chapter 10

Generic Linear Solvers in
SUNDIALS

In this chapter, we describe five generic linear solver code modules that are included in cvodes, but
which are of potential use as generic packages in themselves, either in conjunction with the use of
cvodes or separately. These modules are:

• The dense matrix package, which includes the matrix type DenseMat, macros and functions for
DenseMat matrices, and functions for small dense matrices treated as simple array types.

• The band matrix package, which includes the matrix type BandMat, macros and functions for
BandMat matrices.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

• The spbcg package, which includes a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, which includes a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these generic solvers begin
with the prefix sundials . But despite this, each of the solvers is in fact generic, in that it is usable
completely independently of sundials.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
spgmr, spbcg and sptfqmr are only summarized briefly, since they are less likely to be of direct use
in connection with cvodes. The functions for small dense matrices are fully described, because we
expect that they will be useful in the implementation of preconditioners used with the combination
of cvodes and the cvspgmr, cvspbcg or cvsptfqmr solver.

10.1 The DENSE module

Relative to the sundials source tree, the files comprising the dense generic linear solver are as follows:

• header files (located in source tree/shared/include)
sundials dense.h sundials smalldense.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials dense.c sundials smalldense.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense package by itself (see §2.5 for details):
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• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the ABS macro and RAbs function.

The eight files listed above can be extracted from the sundials source tree and compiled by
themselves into a dense library or into a larger user code.

10.1.1 Type DenseMat

The type DenseMat is defined to be a pointer to a structure with a size and a data field:

typedef struct {

long int size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a dense
matrix, while the data field is a two dimensional array used for component storage. The elements of a
dense matrix are stored columnwise (i.e columns are stored one on top of the other in memory). If A is
of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given by the expression
(A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros below allow a user
to efficiently access individual matrix elements without writing out explicit data structure references
and without knowing too much about the underlying element storage. The only storage assumption
needed is that elements are stored columnwise and that a pointer to the j-th column of elements can
be obtained via the DENSE COL macro. Users should use these macros whenever possible.

10.1.2 Accessor Macros

The following two macros are defined by the dense module to provide access to data in the DenseMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N ×N DenseMat A, 0 ≤ j ≤ N − 1. The type of
the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is referenced
by col j[i].

10.1.3 Functions

The following functions for DenseMat matrices are available in the dense package. For full details,
see the header file sundials dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;



10.1 The DENSE module 155

• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

10.1.4 Small Dense Matrix Functions

The following functions for small dense matrices are available in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc returns
NULL. The underlying type of the dense matrix returned is realtype**. If we allocate a dense
matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th element of
the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th column of
a. The location a[0] contains a pointer to n2 contiguous locations which contain the elements
of a.

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in the
array if successful. It returns NULL if the memory request could not be satisfied.

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper triangular
matrix, then the upper triangular part of a (including its diagonal) contains U and the
strictly lower triangular part of a contains the multipliers, I − L.

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization. In this case it returns the column index (numbered from one) at which it
encountered the zero.

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU-factored
and the pivot array p has been set by a successful call to gefa(a,n,p). The solution x is written
into the b array.



156 Generic Linear Solvers in SUNDIALS

• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally appear
on paper. It is intended as a debugging tool with small values of n. The elements are printed
using the %g option. A blank line is printed before and after the matrix.

10.2 The BAND module

Relative to the sundials source tree, the files comprising the band generic linear solver are as follows:

• header files (located in source tree/shared/include)
sundials band.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials band.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
band package by itself (see §2.5 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines of the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MIN, MAX, and ABS macros and
RAbs function.

The six files listed above can be extracted from the sundials source tree and compiled by them-
selves into a band library or into a larger user code.
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10.2.1 Type BandMat

The type BandMat is the type of a large band matrix A (possibly distributed). It is defined to be a
pointer to a structure defined by:

typedef struct {

long int size;

long int mu, ml, smu;

realtype **data;

} *BandMat;

The fields in the above structure are:

• size is the number of columns (which is the same as the number of rows);

• mu is the upper half-bandwidth, 0 ≤ mu ≤ size−1;

• ml is the lower half-bandwidth, 0 ≤ ml ≤ size−1;

• smu is the storage upper half-bandwidth, mu ≤ smu ≤ size−1. The BandFactor routine writes
the LU factors into the storage for A. The upper triangular factor U, however, may have an
upper half-bandwidth as big as min(size−1,mu+ml) because of partial pivoting. The smu field
holds the upper half-bandwidth allocated for A.

• data is a two dimensional array used for component storage. The elements of a band matrix of
type BandMat are stored columnwise (i.e. columns are stored one on top of the other in memory).
Only elements within the specified half-bandwidths are stored.

If we number rows and columns in the band matrix starting from 0, then

– data[0] is a pointer to (smu+ml+1)*size contiguous locations which hold the elements
within the band of A

– data[j] is a pointer to the uppermost element within the band in the j-th column. This
pointer may be treated as an array indexed from smu−mu (to access the uppermost element
within the band in the j-th column) to smu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to smu−mu−1 give access to extra storage elements
required by BandFactor.

– data[j][i-j+smu] is the (i, j)-th element, j−mu ≤ i ≤ j+ml.

The macros below allow a user to access individual matrix elements without writing out explicit
data structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer into the
j-th column of elements can be obtained via the BAND COL macro. Users should use these macros
whenever possible.

See Figure 10.1 for a diagram of the BandMat type.

10.2.2 Accessor Macros

The following three macros are defined by the band module to provide access to data in the BandMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 10.1: Diagram of the storage for a band matrix of type BandMat. Here A is an N × N band
matrix of type BandMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandFactor and BandBacksolve

routines.
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• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

10.2.3 Functions

The following functions for BandMat matrices are available in the band package. For full details, see
the header file sundials band.h.

• BandAllocMat: allocation of a BandMat matrix;

• BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve;

• BandFactor: LU factorization with partial pivoting;

• BandBacksolve: solution of Ax = b using LU factorization;

• BandZero: load a matrix with zeros;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandAddI: increment a matrix by the identity matrix;

• BandFreeMat: free memory for a BandMat matrix;

• BandFreePiv: free memory for a pivot array;

• BandPrint: print a BandMat matrix to standard output.

10.3 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spbcg and sptfqmr). For full details, including usage instructions, see
the header files sundials spgmr.h and sundials iterative.h.

Relative to the sundials source tree, the files comprising the spgmr generic linear solver are as
follows:

• header files (located in source tree/shared/include)
sundials spgmr.h sundials iterative.h sundials nvector.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials spgmr.c sundials iterative.c sundials nvector.c
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Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself (see §2.5 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MAX and ABS macros and RAbs

and RSqrt functions.

The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic
N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.

The spgmr package can only be used in conjunction with an actual nvector implementation!

library, such as the nvector serial or nvector parallel provided with sundials.

The nine files listed above can be extracted from the sundials source tree and compiled by them-
selves into an spgmr library or into a larger user code.

10.3.1 Functions

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

10.4 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The spbcg package can only be used in conjunction with an actual nvector implementation!

library, such as the nvector serial or nvector parallel provided with sundials.

The files needed to use the spbcg module by itself are the same as for the spgmr module, with
sundials spbcgs.(h,c) replacing sundials spgmr.(h,c).
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10.4.1 Functions

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

10.5 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The sptfqmr package can only be used in conjunction with an actual nvector implementation !

library, such as the nvector serial or nvector parallel provided with sundials.
The files needed to use the sptfqmr module by itself are the same as for the spgmr module, with

sundials sptfqmr.(h,c) replacing sundials spgmr.(h,c).

10.5.1 Functions

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.
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CVODES Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

11.1 CVODES input constants

cvodes main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV FUNCTIONAL 1 Nonlinear system solution through functional iterations.
CV NEWTON 2 Nonlinear system solution through Newton iterations.
CV SS 1 Scalar relative tolerance, scalar absolute tolerance.
CV SV 2 Scalar relative tolerance, vector absolute tolerance.
CV EE 2 Estimated relative tolerance and absolute tolerance for sen-

sitivity variables.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.
CV NORMAL TSTOP 3 Solver returns at specified output time, but does not proceed

past the specified stopping time.
CV ONE STEP TSTOP 4 Solver returns after each successful step, but does not pro-

ceed past the specified stopping time.
CV SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
CV STAGGERED 2 Staggered corrector forward sensitivity method.
CV STAGGERED1 3 Staggered (variant) corrector forward sensitivity method.

cvodea adjoint solver module

CV HERMITE 1 Use Hermite interpolation.
CV POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
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PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

11.2 CVODES output constants

cvodes main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
CV TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
CV ERR FAILURE -3 Error test failures occurred too many times during one in-

ternal time step or minimum step size was reached.
CV CONV FAILURE -4 Convergence test failures occurred too many times during

one internal time step or minimum step size was reached.
CV LINIT FAIL -5 The linear solver’s initialization function failed.
CV LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
CV RHSFUNC FAIL -8 The right-hand side function failed in an unrecoverable man-

ner.
CV FIRST RHSFUNC ERR -9 The right-hand side function failed at the first call.
CV REPTD RHSFUNC ERR -10 The right-hand side function had repetead recoverable er-

rors.
CV UNREC RHSFUNC ERR -11 The right-hand side function had a recoverable error, but no

recovery is possible.
CV RTFUNC FAIL -12 The rootfinding function failed in an unrecoverable manner.
CV MEM FAIL -20 A memory allocation failed.
CV MEM NULL -21 The cvode mem argument was NULL.
CV ILL INPUT -22 One of the function inputs is illegal.
CV NO MALLOC -23 The cvode memory block was not allocated by a call to

CVodeMalloc.
CV BAD K -24 The derivative order k is larger than the order used.
CV BAD T -25 The time t s outside the last step taken.
CV BAD DKY -26 The output derivative vector is NULL.
CV NO QUAD -30 Quadrature integration was not activated.
CV QRHSFUNC FAIL -31 The quadrature right-hand side function failed in an unre-

coverable manner.
CV FIRST QRHSFUNC ERR -32 The quadrature right-hand side function failed at the first

call.
CV REPTD QRHSFUNC ERR -33 The quadrature ight-hand side function had repetead recov-

erable errors.
CV UNREC QRHSFUNC ERR -34 The quadrature right-hand side function had a recoverable

error, but no recovery is possible.
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CV BAD IS -40 The sensitivity index is larger than the number of sensitivi-
ties computed.

CV NO SENS -41 Forward sensitivity integration was not activated.
CV SRHSFUNC FAIL -42 The sensitivity right-hand side function failed in an unre-

coverable manner.
CV FIRST SRHSFUNC ERR -43 The sensitivity right-hand side function failed at the first

call.
CV REPTD SRHSFUNC ERR -44 The sensitivity ight-hand side function had repetead recov-

erable errors.
CV UNREC SRHSFUNC ERR -45 The sensitivity right-hand side function had a recoverable

error, but no recovery is possible.

cvodea adjoint solver module

CV ADJMEM NULL -101 The cvadj mem argument was NULL.
CV BAD TB0 -103 The final time for the adjoint problem is outside the interval

over which the forward problem was solved.
CV BCKMEM NULL -104 The cvodes memory for the backward problem was not cre-

ated.
CV REIFWD FAIL -105 Reinitialization of the forward problem failed at the first

checkpoint.
CV FWD FAIL -106 An error occured during the integration of the forward prob-

lem.
CV BAD ITASK -107 Wrong task for backward integration.
CV BAD TBOUT -108 The desired output time is outside the interval over which

the forward problem was solved.
CV GETY BADT -109 Wrong time in interpolation function.

cvdense linear solver module

CVDENSE SUCCESS 0 Successful function return.
CVDENSE MEM NULL -1 The cvode mem argument was NULL.
CVDENSE LMEM NULL -2 The cvdense linear solver has not been initialized.
CVDENSE ILL INPUT -3 The cvdense solver is not compatible with the current

nvector module.
CVDENSE MEM FAIL -4 A memory allocation request failed.
CVDENSE JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
CVDENSE JACFUNC RECVR -6 The Jacobian function had a recoverable error.
CVDENSE ADJMEM NULL -101 The cvadj mem argument was NULL.
CVDENSE LMEMB NULL -102 The cvdense linear solver has not been initialized for the

backward integration.

cvband linear solver module

CVBAND SUCCESS 0 Successful function return.
CVBAND MEM NULL -1 The cvode mem argument was NULL.
CVBAND LMEM NULL -2 The cvband linear solver has not been initialized.
CVBAND ILL INPUT -3 The cvband solver is not compatible with the current

nvector module, or an input value was illegal.
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CVBAND MEM FAIL -4 A memory allocation request failed.
CVBAND JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
CVBAND JACFUNC RECVR -6 The Jacobian function had a recoverable error.
CVBAND ADJMEM NULL -101 The cvadj mem argument was NULL.
CVBAND LMEMB NULL -102 The cvband linear solver has not been initialized for the

backward integration.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvec-

tor module.
CVDIAG MEM FAIL -4 A memory allocation request failed.
CVDIAG ADJMEM NULL -101 The cvadj mem argument was NULL.

cvspils linear solver modules

CVSPILS SUCCESS 0 Successful function return.
CVSPILS MEM NULL -1 The cvode mem argument was NULL.
CVSPILS LMEM NULL -2 The linear solver has not been initialized.
CVSPILS ILL INPUT -3 The solver is not compatible with the current nvector

module, or an input value was illegal.
CVSPILS MEM FAIL -4 A memory allocation request failed.
CVSPILS ADJMEM NULL -101 The cvadj mem argument was NULL.
CVSPILS LMEMB NULL -102 The linear solver has not been initialized for the backward

integration.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup function failed unrecoverably.

spbcg generic linear solver module
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SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPBCG PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPBCG PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup function failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup function failed unrecoverably.

cvbandpre preconditioner module

CVBANDPRE SUCCESS 0 Successful function return.
CVBANDPRE PDATA NULL -11 The preconditioner module has not been initialized.
CVBANDPRE RHSFUNC UNRECVR -12 The right-hand side function failed unrecoverably.
CVBANDPRE ADJMEM NULL -111 The cvadj mem argument was NULL.
CVBANDPRE MEM FAIL -112 A memory allocation failed.

cvbbdpre preconditioner module

CVBBDPRE SUCCESS 0 Successful function return.
CVBBDPRE PDATA NULL -11 The preconditioner module has not been initialized.
CVBBDPRE FUNC UNRECVR -12 A user supplied function failed unrecoverably.
CVBBDPRE ADJMEM NULL -111 The cvadj mem argument was NULL.
CVBBDPRE PDATAB NULL -112 The cvbbdpre preconditionr module has not been initial-

ized for the backward integration.
CVBBDPRE MEM FAIL -113 A memory allocation failed.
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preconditioner solve function, 49, 72, 130
selection of, 39
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CVSpilsGetNumPrecEvals, 64
CVSpilsGetNumPrecSolves, 65
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CVSpilsPrecSetupFnB, 131
CVSpilsPrecSolveFn, 72
CVSpilsPrecSolveFnB, 130
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CVSpilsSetDeltB, 121
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CVSpilsSetMaxl, 51
CVSpilsSetMaxlB, 122
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CVSpilsSetPrecTypeB, 122
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memory requirements, 63
optional input, 49–52, 120–122
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selection of, 39
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denalloc, 155
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denfree, 156
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denprint, 156
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dense generic linear solver
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large matrix, 154–155
small matrix, 155–156

macros, 154
type DenseMat, 154

DENSE COL, 70, 154
DENSE ELEM, 70, 154
DenseMat, 32, 69, 129, 154
denzero, 156

e data, 69
eh data, 68
error control

order selection, 18
sensitivity variables, 20
step size selection, 17–18

error messages, 42
user-defined handler, 42, 68

f data, 42, 68, 86
f dataB, 127, 137, 138
forward sensitivity analysis

absolute tolerance selection, 20–21
correction strategies, 19–20, 27, 96, 97
mathematical background, 18–21
right hand side evaluation, 21
right-hand side evaluation, 21, 107–109

fQ data, 77, 79
fQ dataB, 127
fS data, 107, 108

g data, 81
gefa, 155
generic linear solvers

band, 156
dense, 153
spbcg, 160
spgmr, 159
sptfqmr, 161
use in cvodes, 30

gesl, 155
GMRES method, 39, 159
Gram-Schmidt procedure, 51, 121

half-bandwidths, 38, 70–71, 82, 88
header files, 32, 81, 87

itask, 34, 40, 115
iter, 35, 47
itol, 35, 116, 117
itolQ, 77
itolS, 102

Jacobian approximation function
band

difference quotient, 49

user-supplied, 49, 70–71
user-supplied (backward), 120, 129

dense
difference quotient, 48
user-supplied, 48, 69–70
user-supplied (backward), 119, 128

diagonal
difference quotient, 38

Jacobian times vector
difference quotient, 49
user-supplied, 50

Jacobian-vector product
user-supplied, 71–72
user-supplied (backward), 121, 130

linit, 150
lmm, 35, 66
lsode, 1

maxl, 39, 40, 83, 84, 89
maxord, 44, 66
memory requirements

cvband linear solver, 61
cvbandpre preconditioner, 84
cvbbdpre preconditioner, 91
cvdense linear solver, 59
cvdiag linear solver, 62
cvodes solver, 75, 96
cvodes solver, 54
cvspgmr linear solver, 63

MODIFIED GS, 51, 121
MPI, 4

N VCloneEmptyVectorArray, 140
N VCloneVectorArray, 140
N VCloneVectorArray Parallel, 146
N VCloneVectorArray Serial, 144
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N VCloneVectorArrayEmpty Serial, 144
N VDestroyVectorArray, 140
N VDestroyVectorArray Parallel, 147
N VDestroyVectorArray Serial, 144
N Vector, 32, 139
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N VMake Serial, 144
N VNew Parallel, 146
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N VNewEmpty Parallel, 146
N VNewEmpty Serial, 144
N VPrint Parallel, 147
N VPrint Serial, 144
nonlinear system

definition, 15–16
Newton convergence test, 17
Newton iteration, 16–17
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NV COMM P, 146
NV CONTENT P, 145
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NV DATA P, 145
NV DATA S, 143
NV GLOBLENGTH P, 145
NV Ith P, 146
NV Ith S, 144
NV LENGTH S, 143
NV LOCLENGTH P, 145
NV OWN DATA P, 145
NV OWN DATA S, 143
NVECTOR module, 139
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nvector serial.h, 32

optional input
backward solver, 119
band linear solver, 49, 120
dense linear solver, 48–49, 119–120
forward sensitivity, 100–103
iterative linear solver, 49–52, 120–122
quadrature integration, 77–78, 124
solver, 42–48

optional output
backward solver, 123
band linear solver, 61–62
band-block-diagonal preconditioner, 90–91
banded preconditioner, 84–85
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dense linear solver, 59–61
diagonal linear solver, 62–63
forward sensitivity, 103–107
interpolated quadratures, 76
interpolated sensitivities, 98
interpolated solution, 52
interpolation data, 125
iterative linear solver, 63–66
quadrature integration, 78–79, 124
solver, 54–59

output mode, 18, 40, 115, 118

partial error control
explanation of cvodes behavior, 109

portability, 32
PREC BOTH, 39, 40, 50, 122
PREC LEFT, 39, 40, 50, 83, 84, 89, 122, 133, 135,

136
PREC NONE, 39, 40, 50, 122
PREC RIGHT, 39, 40, 50, 83, 84, 89, 122, 133, 135,

136
preconditioning

advice on, 29, 37
band-block diagonal, 85

banded, 81
setup and solve phases, 29
user-supplied, 49–50, 72, 120–121, 130, 131

pretype, 39, 40, 50, 83, 84, 89
pretypeB, 122, 133, 135, 136
pvode, 1

RCONST, 32
realtype, 32
reinitialization, 66, 117
right-hand side function, 67

backward problem, 126
forward sensitivity, 107–109
quadrature backward problem, 127
quadrature equations, 79

Rootfinding, 25, 34, 80

SMALL REAL, 32
spbcg generic linear solver

description of, 160
functions, 161

spgmr generic linear solver
description of, 159
functions, 160
support functions, 160

sptfqmr generic linear solver
description of, 161
functions, 161

Stability limit detection, 24
step size bounds, 45–46
sundials nvector.h, 32
sundials types.h, 32

TFQMR method, 40, 51, 122, 161
tolerances, 16, 35, 36, 48, 69, 77, 102, 116, 117

UNIT ROUNDOFF, 32
User main program

Adjoint sensitivity analysis, 111
cvbandpre usage, 81
cvbbdpre usage, 87
forward sensitivity analysis, 93
integration of quadratures, 74
IVP solution, 33

vode, 1
vodpk, 1

weighted root-mean-square norm, 16
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