
User Documentation for kinsol v2.3.0

Aaron M. Collier, Alan C. Hindmarsh, Radu Serban, and Carol S. Woodward

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

April 2005

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

This research was supported under the auspices of the U.S. Department of Energy by the Uni-
versity of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Approved for public release; further dissemination unlimited

Contents

List of Tables v

List of Figures vii

1 Introduction 1

1.1 Historical Background . 1

1.2 Changes from previous versions . 2

1.3 Reading this User Guide . 2

2 KINSOL Installation Procedure 5

2.1 Installation steps . 5

2.2 Configuration options . 6

2.3 Configuration examples . 10

3 Mathematical Considerations 11

4 Code Organization 13

4.1 SUNDIALS organization . 13

4.2 KINSOL organization . 13

5 Using KINSOL 17

5.1 Data types . 17

5.2 Header Files . 18

5.3 A Skeleton of the User’s Main Program . 18

5.4 User-callable functions . 21

5.4.1 KINSOL initialization and deallocation functions 21

5.4.2 Linear solver specification function . 22

5.4.3 KINSOL solver function . 22

5.4.4 Optional input functions . 24

5.4.5 Optional output functions . 31

5.5 User-supplied functions . 36

5.5.1 Problem-defining function . 36

5.5.2 Jacobian information (SPGMR matrix-vector product) 36

5.5.3 Preconditioning (SPGMR linear system solution) 37

5.5.4 Preconditioning (SPGMR Jacobian data) . 38

5.6 A parallel band-block-diagonal preconditioner module 38

5.7 FKINSOL, a Fortran-C interface module . 42

5.7.1 FKINSOL routines . 43

5.7.2 FKINSOL optional input and output . 44

5.7.3 Usage of the FKINSOL interface module . 44

5.7.4 Usage of the FKINBBD interface to KINBBDPRE 48

iii

6 Description of the NVECTOR module 51
6.1 The NVECTOR SERIAL implementation . 55
6.2 The NVECTOR PARALLEL implementation . 57
6.3 NVECTOR functions used by KINSOL . 60

7 Providing Alternate Linear Solver Modules 61

8 Generic Linear Solvers in SUNDIALS 63
8.1 The DENSE module . 63

8.1.1 Type DenseMat . 63
8.1.2 Accessor Macros . 63
8.1.3 Functions . 64
8.1.4 Small Dense Matrix Functions . 64

8.2 The SPGMR Module . 65

9 KINSOL Constants 67
9.1 KINSOL input constants . 67
9.2 KINSOL output constants . 67

Bibliography 69

Index 71

iv

List of Tables

2.1 SUNDIALS libraries and header files . 7

5.1 Optional inputs for KINSOL and KINSPGMR . 24
5.2 Optional outputs from KINSOL and KINSPGMR 32
5.3 Description of the FKINSOL optional input-output arrays IOPT and ROPT 44

6.1 Description of the NVECTOR operations . 53
6.2 List of vector functions usage by KINSOL code modules 60

v

List of Figures

4.1 Organization of the SUNDIALS suite . 14
4.2 Overall structure diagram of the KINSOL package 15

5.1 Diagram of the user program and KINSOL package for the solution of nonlinear systems 19

vii

Chapter 1

Introduction

kinsol is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers. This suite consists of cvode, kinsol, and ida, and variants of these. kinsol is
a general-purpose nonlinear system solver based on Newton-Krylov solver technology.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran.
In particular, the NKSOL package, written at LLNL, was the first Newton-Krylov solver package
written for solution of systems arising in solution of partial differential equations [3]. This Fortran

code made use of Newton’s method to solve the discrete nonlinear systems and applied a precondi-
tioned Krylov linear solver for solution of the Jacobian system at each nonlinear iteration. The key
to the Newton-Krylov method was that the matrix-vector multiplies required by the Krylov method
could effectively be approximated by a finite difference of the nonlinear system-defining function,
preventing a requirement for the formation of the actual Jacobian matrix. Significantly less memory
was required for the solver as a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver into C and port it to
distributed memory parallel machines. Both Newton and Krylov methods are easily implemented in
parallel, and this effort gave rise to the kinsol package. kinsol is similar to NKSOL in functionality,
except that it provides for more options in the choice of linear system tolerances and has a more
modular design to provide flexibility for future enhancements.

There are several motivations for choosing the C language for kinsol. First, a general move-
ment away from Fortran and toward C in scientific computing is apparent. Second, the pointer,
structure, and dynamic memory allocation features in C are extremely useful in software of this
complexity, with the great variety of method options offered. Finally, we prefer C over C++ for
kinsol because of the wider availability of C compilers, the potentially greater efficiency of C, and
the greater ease of interfacing the solver to applications written in Fortran.

In the process of translating NKSOL into C, the overall kinsol organization has been changed
considerably. One key feature of the kinsol organization is that a separate module devoted to vector
operations has been created. This module facilitated extension to multiprosessor environments with
minimal impact on the rest of the solver. The new vector module design is shared across the
sundials suite. This nvector module is written in terms of abstract vector operations with the
actual routines attached by a particular implementation (such as serial or parallel) of nvector. This
allows writing the sundials solvers in a manner independent of the actual nvector implementation
(which can be user-supplied), as well as allowing more than one nvector module linked into an
executable file.

2 Introduction

1.2 Changes from previous versions

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build systems has been further improved to make
it more robust.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, kinsol now provides
a set of routines (with prefix KINSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix KINGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of set- and
get-type routines. For more details see Chapter 5.
Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-

vector products and preconditioner information) were simplified by reducing the number of argu-
ments. The same information that was previously accessible through such arguments can now be
obtained through set-type functions.

1.3 Reading this User Guide

The structure of this document is as follows:

• The next chapter discusses how to install the kinsolpackage.

• In Chapter 3, we provide short descriptions of the numerical methods implemented by kinsol

for the solution of nonlinear systems.

• The following chapter describes the structure of the sundials suite of solvers (§4.1) and the
software organization of the kinsol solver (§4.2).

• In Chapter 5, we give an overview of the usage of kinsol, as well as a complete description of
the user interface and of the user-defined routines for solution of nonlinear systems.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, as well as details of the two nvector implementations provided
with sundials: a serial implementation (§6.1) and a parallel implementation, based on MPI

(§6.2).

• Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide
his/her own such module.

• Chapter 8 describes the generic linear solvers shared by all sundials solvers.

• Finally, Chapter 9 lists the constants used for input to and output from kinsol.

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as KINMalloc) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules are
written in all capitals.

1.3 Reading this User Guide 3

Acknowledgments. We wish to acknowledge the contributions to previous versions of the kinsol

code and user guide of Allan G. Taylor.

Chapter 2

KINSOL Installation Procedure

The installation of kinsol is accomplished by installing the sundials suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file
contains solvers other than kinsol.
Generally speaking, the installation procedure outlined in §2.1 below will work on commodity

LINUX/UNIX systems without modification. Users are still encouraged, however, to carefully read
the entire chapter before attempting to install the sundials suite, in case non-default choices are
desired for compilers, compilation options, or the like. In lieu of reading the option list below, the
user may invoke the configuration script with the help flag to view a complete listing of available
options, which may be done by issuing

% ./configure --help

from within the sundials directory.
In the descriptions below, build tree refers to the directory under which the user wants to build

and/or install the sundials package. By default, the sundials libraries and header files are installed
under the subdirectories build tree/lib and build tree/include, respectively. Also, source tree refers
to the directory where the sundials source code is located. The chosen build tree may be different
from the source tree, thus allowing for multiple installations of the sundials suite with different
configuration options.
Concerning the installation procedure outlined below, after invoking the tar command with the

appropriate options, the contents of the sundials archive (or the source tree) will be extracted to
a directory named sundials. Since the name of the extracted directory is not version-specific it is
recommended that the user refrain from extracting the archive to a directory containing a previous
version/release of the sundials suite. If the user is only upgrading and the previous installation of
sundials is not needed, then the user may remove the previous installation by issuing

% rm -rf sundials

from a shell command prompt.
Even though the installation procedure given below presupposes that the user will use the default

vector modules supplied with the distribution, using the sundials suite with a user-supplied vector
module normally will not require any changes to the build procedure.

2.1 Installation steps

To install the sundials suite, given a downloaded file named sundials file.tar.gz, issue the following
commands from a shell command prompt, while within the directory where source tree is to be
located. The names of installed libraries and header files are listed in Table 2.1 for reference. (For
brevity, the corresponding .c files are not listed.) Regarding the file extension .lib appearing in
Table 2.1, shared libraries generally have an extension of .so and static libraries have an extension
of .a. (See Options for library support for additional details.)

6 KINSOL Installation Procedure

1. gunzip sundials file.tar.gz

2. tar -xf sundials file.tar [creates sundials directory]

3. cd build tree

4. path to source tree/configure options [options can be absent]

5. make

6. make install

7. make examples

8. If system storage space conservation is a priority, then issue
% make clean

and/or
% make examples_clean

from a shell command prompt to remove unneeded object files.

2.2 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may
be used to indicate which MPI implementation should be used. Also, if the user wants to use
non-default language compilers, then, again, the necessary shell environment variables must be
appropriately redefined. The remainder of this section provides explanations of available configure
script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=build tree

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=PREFIX/lib

--disable-examples

All available example programs are automatically built unless this option is given. The example
executables are stored under the following subdirectories of the associated solver:

build tree/solver/examples ser : serial C examples

build tree/solver/examples par : parallel C examples (MPI-enabled)

build tree/solver/fcmix/examples ser : serial Fortran examples

build tree/solver/fcmix/examples par : parallel Fortran examples (MPI-enabled)

Note: Some of these subdirectories may not exist depending upon the solver and/or the config-
uration options given.

2.2 Configuration options 7

Table 2.1: SUNDIALS libraries and header files

Module Libraries Header files
shared libsundials shared.lib sundialstypes.h

sundialsmath.h

sundials config.h

dense.h

smalldense.h

band.h

spgmr.h

iterative.h

nvector.h

nvector serial libsundials nvecserial.lib nvector serial.h

libsundials fnvecserial.a

nvector parallel libsundials nvecparallel.lib nvector parallel.h

libsundials fnvecparallel.a

cvode libsundials cvode.lib cvode.h

libsundials fcvode.a cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

cvodes libsundials cvodes.lib cvodes.h

cvodea.h

cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

ida libsundials ida.lib ida.h

idadense.h

idaband.h

idaspgmr.h

idabbdpre.h

kinsol libsundials kinsol.lib kinsol.h

libsundials fkinsol.a kinspgmr.h

kinbbdpre.h

8 KINSOL Installation Procedure

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, and
kinsol.

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).

--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in non-
standard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named
libfoo.a or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may
be used to build sundials with realtype alternatively defined as a single-precision floating-
point numeric data type (float C-type) if ARG=single, or as a long double C-type if
ARG=extended.

Default: ARG=double

Options for Fortran support

--disable-f77

Using this option will disable all Fortran support. The fcvode, fkinsol and fnvector

modules will not be built regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

The configuration script will attempt to automatically determine the function name mangling scheme
required by the specified Fortran compiler, but the following two options may be used to override
the default behavior.

--with-f77underscore=ARG

This option pertains to the fkinsol, fcvode and fnvector Fortran-C interface modules
and is used to specify the number of underscores to append to function names so Fortran

routines can properly link with the associated sundials libraries. Valid values for ARG are:
none, one and two.

Default: ARG=one

--with-f77case=ARG

Use this option to specify whether the external names of the fkinsol, fcvode and fnvector

Fortran-C interface functions should be lowercase or uppercase so Fortran routines can
properly link with the associated sundials libraries. Valid values for ARG are: lower and
upper.

Default: ARG=lower

2.2 Configuration options 9

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used
to disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers
to be used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sun-

dials configuration script will automatically check under the subdirectories MPIDIR/include
and MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin

will also be searched for the C and Fortran MPI compiler scripts, unless the user uses
--with-mpicc=no or --with-mpif77=no.

--with-mpi-incdir=INCDIR

--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler
script, but instead would rather use a serial complier and provide the flags necessary to compile
the MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include, LIBDIR=MPIDIR/lib and LIBS=-lmpi

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared
libraries on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sun-

dials libraries being built if the system supports shared libraries. To build only shared libraries
also specify --disable-static.

Note: The fcvode and fkinsol libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

10 KINSOL Installation Procedure

Options for cross-compilation

If the sundials suite will be cross-compiled (meaning the build procedure will not be completed on
the actual destination system, but rather on an alternate system with a different architecture) then
the following two options should be used:

--build=BUILD

This particular option is used to specify the canonical system/platform name for the build
system.

--host=HOST

If cross-compiling, then the user must use this option to specify the canonical system/platform
name for the destination system.

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen
compiler) as the C language compiler, use CC=xcc in the configure step.

CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

2.3 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The above example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags.

% configure CC=gcc --disable-examples --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich

This example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no
option explicitly disables the use of the corresponding MPI compiler script. In addition, since
the --with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include
and -L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions.
The --disable-examples option disables the examples (which means a Fortran compiler is not
required). The --with-mpi-libs option is still needed so that the configure script can check if gcc
can link with the appropriate MPI library as -lmpi is the internal default.

Chapter 3

Mathematical Considerations

kinsol solves nonlinear algebraic systems in real space, which we write as

F (u) = 0 , F : RN → RN , (3.1)

given an initial guess u0.
kinsol employs the Inexact Newton method developed in [1, 3, 5] and further described in [6, 8],

resulting in the following iteration:

Inexact Newton iteration

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Approximately solve J(un)δn = −F (un)
(b) Set un+1 = un + λδn, 0 < λ ≤ 1
(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. As this code module
is anticipated for use on large systems, only iterative methods are provided to solve the system in
step 2(a). These solutions are only approximate. At each stage in the iteration process, a scalar
multiple of the approximate solution, δn, is added to un to produce a new iterate, un+1. A test for
convergence is made before the iteration continues.
The linear iterative method currently implemented is one of the class of Krylov methods, GMRES

[2, 9], provided through the spgmr module common to all sundials codes. Use of spgmr provides
a linear solver which, by default, is applied in a matrix-free manner, with matrix-vector products
Jv obtained by either finite difference quotients or a user-supplied routine. In the case where finite
differences are used, the matrix-vector product J(u)v is approximated by a quotient of the form
given by

J(u)v ≈ [F (u+ σv)− F (u)]/σ (3.2)

where u is the current approximation to a root of (3.1), and σ is a scalar. The choice of σ is taken
from [3] and is given by

σ =
max{|uT v|, typuT |v|}

‖v‖2
sign(uT v)

√
U , (3.3)

where typu is a vector of typical values for the absolute values of the solution (and can be taken to
be inverses of the scale factors given for u as described below), and U is unit roundoff. Convergence
of the Newton method is maintained as long as the value of σ remains appropriately small as shown
in [1].
To the above methods are added scaling and preconditioning. Scaling is allowed for both the

solution vector and the system function vector. For scaling to be used, the user should supply values

12 Mathematical Considerations

Du, which are diagonal elements of the scaling matrix such that Duun has all components roughly
the same magnitude when un is close to a solution, and DF , which are diagonal scaling matrix
elements such that DFF has all components roughly the same magnitude when un is not too close
to a solution. In the text below, we use the following scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (3.4)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these
values are automatically incorporated into the calculation of σ in (3.3). Additionally, right precon-
ditioning is provided if the preconditioning setup and solve routines are supplied by the user. In
this case, GMRES is applied to the linear systems (JP−1)(Pδ) = −F , where P denotes the right
preconditioning matrix.
Two methods of applying a computed step δn to the previously computed solution vector are

implemented. The first and simplest is the Inexact Newton strategy which applies step 2(b) as above
with λ always set to 1. The other method is a global strategy, which attempts to use the direction
implied by δn in the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option employs both the
α and β conditions of the Goldstein-Armijo linesearch given in [6] for step 2(b), where λ is chosen
to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length
relative to the initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution. For more details, the reader is referred to [6].
Stopping criteria for the Newton method are applied to both of the nonlinear residual and the

step length. For the former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U 1/3. For the latter, the Newton
method will terminate when the maximum scaled step is below a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U 2/3. Only the first condition
(small residual) is considered a successful completion of kinsol. The second condition (small step)
may indicate that the iteration is stalled near a point for which the residual is still unacceptable.
Three options for stopping criteria for the linear system solve are implemented, including the

two algorithms of Eisenstat and Walker [7]. The Krylov iteration must pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

• Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

• Eisenstat and Walker Choice 2

ηn = γ

(‖F (un)‖DF

‖F (un−1)‖DF

)α

,

where default values of γ and α are 0.9 and 2, respectively.

• ηn = constant with 0.1 as the default.

The default is Eisenstat and Walker Choice 1. For both options 1 and 2, appropriate safeguards are
incorporated to ensure that η does not decrease too quickly [7].
As a user option, kinsol permits the application of inequality constraints, ui > 0 and ui < 0, as

well as ui ≥ 0 and ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint,
may be imposed on each component. kinsol will reduce step lengths in order to ensure that no
constraint is violated. Specifically, if a new Newton iterate will violate a constraint, the maximum
(over all i) step length along the Newton direction that will satisfy all constraints is found and δn
in Step 2(b) is scaled to take a step of that length.

Chapter 4

Code Organization

4.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems),
kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition,
variants of these which also do sensitivity analysis calculations are available or in development.
cvodes, an extension of cvode that provides both forward and adjoint sensitivity capabilities is
available, while idas is currently in development.
The various solvers of this family share many subordinate modules. For this reason, it is organized

as a family, with a directory structure that exploits that sharing (see Fig. 4.1). The following is a
list of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs dy/dt = f(t, y, p) with sensitivity analysis capa-
bilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

4.2 KINSOL organization

The kinsol package is written in the ANSI C language. This section summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.
The overall organization of the kinsol package is shown in Figure 4.2. The central solver module,

implemented in the files kinsol.h and kinsol.c, deals with the solution of a nonlinear algebraic
system using either an Inexact Newton method or a line search method for the global strategy.
Although this module contains logic for the Newton iteration, it has no knowledge of the method
used to solve the linear systems that arise. For any given user problem, the user must specify which
linear solver module to use.
At present, the package includes the following kinsol linear system module:

• kinspgmr: scaled preconditioned GMRES method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.
The kinspgmr package includes an algorithm for the approximation by difference quotients of

the product between the Jacobian matrix and a vector of appropriate length. The user has the option
of providing a routine for this operation. With kinspgmr, the preconditioning must be supplied by
the user, in two phases: setup (preprocessing of preconditioner data) and solve.

14 Code Organization

CVDIAG CVDENSE CVBAND CVSPGMR IDADENSE IDABAND IDASPGMR

IDA KINSOL

KINSPGMR

CVODE CVODES

SUNDIALS

DENSE SPGMR
ITERATIVE

BAND NVECTOR

NVECTOR_SERIAL NVECTOR_PARALLEL

(a) High-level diagram

nvector.h
dense.h
spgmr.h
...

sundialstypes.h
sundialsmath.h

...

...
......

cvdense.h
cvspgmr.h

cvodes.h
cvodea.h
cvdense.h
cvspgmr.h
...

cvode.c
cvdense.c
cvspgmr.c

cvodes.c
cvodea.c
cvdense.c
cvspgmr.c

kinsol.h
kinspgmr.h
...

ida.h
idadense.h
idaspgmr.h
...

kinsol.c
kinspgmr.c

ida.c
idadense.c
idaspgmr.c
...

cvode.h

configure

nvector.c
dense.c
spgmr.c

sundialsmath.c

...

source

fcmix fcmix

doc

examples_par

examples_ser examples_ser

examples_par

doc doc

examples_par

examples_ser

source sourcesourcesource

includeincludeincludeincludeinclude

shared cvode cvodes kinsol ida nvec_ser nvec_par

sundials

examples_ser

examples_par

doc

(b) Directory structure

Figure 4.1: Organization of the SUNDIALS suite

4.2 KINSOL organization 15

SUNDIALS

IDA

SPGMR
ITERATIVE

KINBBDPRE

NVECTOR_PARALLEL

NVECTOR

NVECTOR_SERIAL

CVODES CVODE KINSOL

KINSPGMR

Figure 4.2: Overall structure diagram of the kinsol package. Modules specific to kinsol are
distinguished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.
Grayed boxes refer to the encompassing sundials structure.

16 Code Organization

A kinsol linear solver module consists of four routines, devoted to (1) memory allocation and
initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central kinsol module to each of the associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.
Linear solver modules are also decomposed in another way. The module kinspgmr is a set of

interface routines built on top of a generic solver module spgmr. The interface deals with the use of
these methods in the kinsol context, whereas the generic solver is independent of the context. While
the generic solvers here were generated with sundials in mind, our intention is that they be usable
in other applications as general-purpose solvers. This separation also allows for any generic solver
to be replaced by an improved version, with no necessity to revise the kinsol package elsewhere.

kinsol also provides a preconditioner module called kinbbdpre which works in conjunction
with nvector parallel to generate a preconditioner that is a block-diagonal matrix with each
block being a band matrix, as further described in §5.6.
All state information used by kinsol to solve a given problem is saved in a structure, and a

pointer to that structure is returned to the user. There is no global data in the kinsol package, and
so in this respect it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the kinsol memory structure. The reentrancy of kinsol

was motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor
setting where two or more different problems are solved by intermixed calls to the package from one
user program.

Chapter 5

Using KINSOL

This chapter is concerned with the use of kinsol for the solution of nonlinear systems. The following
subsections treat the header files, the layout of the user’s main program, description of the kinsol

user-callable routines, and user-supplied functions. The listings of the sample programs in the
companion document [4] may also be helpful. Those codes may be used as templates (with the
removal of some lines involved in testing), and are included in the kinsol package.

kinsol uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 9.

5.1 Data types

The sundialstypes.h file contains the definition of the type realtype, which is used by the sundi-

als solvers for all floating-point data. The type realtype can be float, double, or long double,
with the default being double. The user can change the precision of the sundials solvers arithmetic
at the configuration stage (see §2.2).
Additionally, based on the current precision, sundialstypes.h defines BIG REAL to be the largest

value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with
no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes
it a float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to
be a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to
1.0 if realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double.
sundials uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the
type double, float, or long double in their code (assuming the typedef for realtype matches this
choice). Thus, a previously existing piece of ANSI C code can use sundials without modifying the
code to use realtype, so long as the sundials libraries use the correct precision (for details see
§2.2).

18 Using KINSOL

5.2 Header Files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• kinsol.h, the header file for kinsol, which defines several types and various constants, and
includes function prototypes.

kinsol.h also includes sundialstypes.h, which defines the types realtype and booleantype and
constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter 6

for details). For the two nvector implementations that are included in the kinsol package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation, nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both of these files include in turn the header file nvector.h, which defines the abstract
N Vector type.
Finally, a linear solver module header file is required. At the present time, kinsol offers only

a Krylov linear solver, kinspgmr, whose corresponding header file is kinspgmr.h, This in turn
includes a header file (iterative.h) which enumerates the kind of preconditioning and the choices
for the Gram-Schmidt process.
Other headers may be needed, according to the choice of preconditioner, etc. For example, in

the kinwebs example [4], preconditioning is done with a block-diagonal matrix. For this, the header
smalldense.h is included.

5.3 A Skeleton of the User’s Main Program

A high-level view of the combined user program and kinsol package is shown in Figure 5.1. The
following is a skeleton of the user’s main program (or calling program) for the solution of a nonlinear
problem. Most steps are independent of the nvector implementation used; where this is not
the case, usage specifications are given for the two implementations provided with kinsol: steps
marked with [P] correspond to nvector parallel, while steps marked with [S] correspond to
nvector serial.

1. Initialize MPI

[P] MPI Init(&argc, &argv); to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument
counter and array received by main.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set
of processes.

3. Set vector with initial guess

To set the vector u of initial values, use functions defined by a particular nvector implemen-
tation. If a realtype array udata already exists, containing the initial guess of u0, make the
call:

[S] u = NV Make Serial(N, udata);

[P] u = NV Make Parallel(comm, Nlocal, N, udata);

5.3 A Skeleton of the User’s Main Program 19

NV_DATA_S(...)
NV_LENGTH_S(...)
NV_Ith_S(...)

NV_DATA_P(...)
NV_LOCLENGTH_P(...)

NV_Ith_P(...)
NV_GLOBLENGTH_P(...)

NVECTOR_SERIAL

nvector_serial.h
nvector_serial.c

NVECTOR_PARALLEL

nvector_parallel.h
nvector_parallel.c

KINMalloc(...)

KINSol(...)

KINFree(...)

kinsol.h , kinsol.c

Main KINSOL Solver

kinspgmr.h , kinspgmr.c

 KINSPGMR

KINSpgmr(...)

User’s Program

main() {

jtimes(...){...} , PrecSetup(...){...} and PrecSolve(...){...}

func(...){...}

}

 N_VDestroy_Serial(u) or N_VDestroy_Paralle(u)

 KINFree(kin_mem)

 u = N_VNew_Serial(...) or N_VNew_Parallel(...)

 kin_mem = KINCreate(...)

 KINMalloc(kin_mem, func, ...)

 KINSpgmr(...)

 KINSol(..., u, ...)

Figure 5.1: Diagram of the user program and KINSOL package for the solution of nonlinear systems

20 Using KINSOL

Otherwise, make the call:

[S] u = NV New Serial(N);

[P] u = NV New Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(u)

[P] NV DATA P(u)

Here comm is theMPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes
are to be used, comm must be MPI COMM WORLD.

4. Create kinsol object

Call kin mem = KINCreate(); to create the kinsolmemory block. KINCreate returns a pointer
to the kinsol memory structure.

5. Set optional inputs

Call KINSet* routines to change any optional inputs that control the behavior of kinsol from
their default values.

6. Allocate internal memory

Call KINMalloc(...); to specify the problem defining function F , allocate internal memory for
kinsol, and initialize kinsol. KINMalloc returns an error flag to indicate success or an illegal
argument value (for details see §5.4.1).

7. Attach linear solver module

Initialize the linear solver module by calling KINSpgmr(...); to specify the maximum dimension
of the Krylov subspace.

8. Set linear solver optional inputs

Call KINSpgmrSet* routines to change optional inputs for the kinspgmr linear solver.

9. Solve problem

Call KINSol(...); to solve the nonlinear problem for a given initial guess (see §5.4.3 for details).

10. Get optional outputs

Call KINGet* functions to obtain optional output from kinsol, and call KINSpgmrGet* functions
for optional outputs from kinspgmr. See §5.4.5.

11. Deallocate memory for solution vector

Upon completion of the solution, deallocate memory for the vector u by calling the destructor
function defined by the nvector implementation:

[S] NV Destroy Serial(u);

[P] NV Destroy Parallel(u);

12. Free solver memory

Call KINFree(kin mem); to free the memory allocated for kinsol.

13. [P] Finalize MPI

Call MPI Finalize(); to terminate MPI.

5.4 User-callable functions 21

5.4 User-callable functions

This section describes the kinsol functions that are called by the user to set up and solve a nonlinear
problem. Some of these are required. However, starting with §5.4.4, the functions listed involve
optional inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of
kinsol. In any case, refer to §5.3 for the correct order of these calls.

5.4.1 KINSOL initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only
after the problem solution is complete, as it frees the kinsol memory block created and allocated
by the first two calls.

KINCreate

Call kin mem = KINCreate();

Description The function KINCreate instantiates a kinsol solver object.

Arguments This function has no arguments.

Return value If successful, KINCreate returns a pointer to the newly created kinsol memory block
(of type void *). If an error occurred, KINCreate prints an error message to stderr
and returns NULL.

KINMalloc

Call flag = KINMalloc(kin mem, func, tmpl);

Description The function KINMalloc specifies the problem-defining function, allocates internal
memory, and initializes kinsol.

Arguments kin mem (void *) pointer to the kinsol memory block returned by KINCreate.

func (KINSysFn) is the C function which computes F in the nonlinear prob-
lem. This function has the form func(u, fval, f data) (for full details
see §5.5.1).

tmpl (N Vector) is an N Vector which is used as a template to create (by cloning)
necessary vectors in kin mem.

Return value The return flag flag (of type int) will be one of the following:

KIN SUCCESS The call to KINMalloc was successful.

KIN MEM NULL The kinsol memory block was not initialized through a previous call
to KINCreate.

KIN MEM FAIL A memory allocation request has failed.

KIN ILL INPUT An input argument to KINMalloc has an illegal value.

Notes If an error occurred, KINMalloc also prints an error message to the file specified by
the optional input errfp.

KINFree

Call KINFree(kin mem);

Description The function KINFree frees the pointer allocated by a previous call to KINMalloc.

Arguments The argument is the pointer to the kinsol memory block (of type void *).

Return value The function KINFree has no return value.

22 Using KINSOL

5.4.2 Linear solver specification function

As previously explained, Newton iteration requires the solution of linear systems of the form (2).
At the present time there is only one solver available for this task, kinspgmr. This is an iterative
solver that uses a scaled preconditioned GMRES method.
To attach the kinspgmr linear solver, after the call to KINCreate but before any call to KINSol,

the user’s program must call KINSpgmr, as documented below. The first argument passed to this
function is the kinsol memory pointer returned by KINCreate. The call to this function links
the linear solver to the main kinsol memory block and allows the user to specify parameters for
kinspgmr

The kinspgmr linear solver is actually built on top of a generic linear system solver, which may
be of interest in itself. This generic solver, spgmr, is described separately in Chapter 8.

KINSpgmr

Call flag = KINSpgmr(kin mem, maxl);

Description The function KINSpgmr selects the kinspgmr linear solver.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPGMR MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The kinspgmr initialization was successful.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR ILL INPUT The nvector module used does not implement a required op-
eration.

KINSPGMR MEM FAIL A memory allocation request failed.

Notes The kinspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (2).

Within kinsol, only right preconditioning is available. For specification of the pre-
conditioner, see §5.4.4 and §5.5.
If preconditioning is done, user-supplied functions define the right preconditioner ma-
trices P , which approximate the Newton matrix from (2).

5.4.3 KINSOL solver function

KINSol

Call flag = KINSol(kin mem, u, strategy, u scale, f scale);

Description The function KINSol computes an approximate solution of the nonlinear system.

Arguments kin mem (void *) pointer to the kinsol memory block.

u (N Vector) vector set to initial guess by user before calling KINSol, but
which upon return contains an approximate solution of the nonlinear system
F (u) = 0 the computed solution vector.

strategy globalization strategy applied to the Newton method. It must be one of
KIN INEXACT NEWTON or KIN LINESEARCH.

u scale vector containing diagonal elements of scaling matrixDu for vector u chosen
so that the components of Du·u (as a matrix multiplication) all have about
the same magnitude when u is close to a root of F (u).

f scale vector containing diagonal elements of scaling matrix DF for F (u) chosen
so that the components of DF · F (u) (as a matrix multiplication) all have
roughly the same magnitude when u is not too near a root of F (u).

5.4 User-callable functions 23

Return value On return, KINSol returns the approximate solution in the vector u. The return value
flag (of type int) will be one of the following:

KIN SUCCESS

KINSol succeeded; the scaled norm of F (u) is less than fnormtol.

KIN INITIAL GUESS OK

The guess u = u0 satisfied the system F (u) = 0 within the tolerances specified.

KIN STEP LT STPTOL

kinsol stopped based on scaled step length. This means that the current iterate
may be an approximate solution of the given nonlinear system, but it is also quite
possible that the algorithm is “stalled” (making insufficient progress) near an invalid
solution, or that the scalar scsteptol is too large (see KINSetScaledStepTol in
§5.4.4 to change scsteptol from its default value).

KIN MEM NULL

The kinsol memory block pointer was NULL.

KIN ILL INPUT

An input parameter was invalid.

KIN NO MALLOC

The kinsol memory was not allocated by a call to KINMalloc.

KIN LINESEARCH NONCONV

The line search algorithm was unable to find an iterate sufficiently distinct from
the current iterate, or could not find an iterate satisfying the sufficient decrease
condition.

Failure to satisfy the sufficient decrease condition could mean the current iterate is
“close” to an approximate solution of the given nonlinear system, the finite difference
approximation of the matrix-vector product J(u)v is inaccurate, or the real scalar
scsteptol is too large.

KIN MAXITER REACHED

The maximum number of nonlinear iterations has been reached.

KIN MXNEWT 5X EXCEEDED

Five consecutive steps have been taken that satisfy the inequality ‖Dup‖L2 > 0.99
mxnewtstep, where p denotes the current step and mxnewtstep is a scalar upper
bound on the scaled step length.

Such a failure may mean that ‖DFF (u)‖L2 asymptotes from above to a finite value,
or the real scalar mxnewtstep is too small.

KIN LINESEARCH BCFAIL

The line search algorithm was unable to satisfy the “beta-condition” for MXNBCF +1
nonlinear iterations (not necessarily consecutive), which may indicate the algorithm
is making poor progress.

KIN LINSOLV NO RECOVERY

The user-supplied routine psolve encountered a recoverable error, but the precon-
ditioner is already current.

KIN LINIT FAIL

The linear solver initialization routine (linit) encountered an error.

KIN LSETUP FAIL

The user-supplied routine pset (used to set up the preconditioner data) encountered
an unrecoverable error.

KIN LSOLVE FAIL

Either the user-supplied routine psolve (used to to solve the preconditioned linear
system) encountered an unrecoverable error, or the linear solver routine (lsolve)
encountered an error condition.

24 Using KINSOL

Table 5.1: Optional inputs for KINSOL and KINSPGMR

Optional input Function name Default
KINSOL main solver

Pointer to an error file KINSetErrFile stderr

Pointer to an info file KINSetInfoFile stdout

Data for problem-defining function KINSetFdata NULL

Verbosity level of output KINSetPrintLevel 0
Max. number of nonlinear iterations KINSetNumMaxIters 200
No initial preconditioner setup KINSetNoPrecInit FALSE

Max. iterations without prec. setup KINSetMaxPrecCalls 10
Form of η coefficient KINSetEtaForm KIN ETACHOICE1

Constant value of η KINSetEtaConstValue 0.1
Values of γ and α KINSetEtaParams 0.9 and 2.0
Lower bound on ε KINSetNoMinEps FALSE

Max. scaled length of Newton step KINSetMaxNewtonStep 1000‖Duu0‖2
Rel. error for F.D. Jv KINSetRelErrFunc

√
uround

Function-norm stopping tolerance KINSetFuncNormTol
3
√
uround

Scaled-step stopping tolerance KINSetScaledSteptol uround2/3

Inequality constraints on solution KINSetConstraints NULL

Nonlinear system function KINSetSysFunc none
KINSPGMR linear solver

Max. number of restarts KINSpgmrSetMaxRestarts 0
Preconditioner functions and data KINSpgmrSetPreconditioner NULL, NULL, NULL
Jacobian-vector product function and data KINSpgmrSetJacTimesVecFn internal DQ, NULL

Notes The components of vectors u scale and f scale should be strictly positive.

KIN SUCCESS = 0, KIN INITIAL GUESS OK = 1, and KIN STEP LT STPTOL = 2. All
remaining return values are negative and therefore a test flag < 0 will trap all KINSol
failures.

5.4.4 Optional input functions

kinsol provides an extensive list of functions that can be used to change from their default values
various optional input parameters that control the behavior of the kinsol solver. Table 5.1 lists
all optional input functions in kinsol, which are then described in detail in the remainder of this
section. For the most casual use of kinsol, the reader can skip to §5.5.
We note that, on error return, all of these functions also print an error message to stderr (or

to the file pointed to by errfp if already specified). We also note that all error return values are
negative, so a test flag < 0 will catch any error.

Main solver optional input functions

The calls listed here can be executed in any order. However, if KINSetErrFile is to be called, that
call should be first, in order to take effect for any later error message.

KINSetErrFile

Call flag = KINSetErrFile(kin mem, errfp);

Description The function KINSetErrFile specifies the pointer to the file where all kinsol error
messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

errfp (FILE *) pointer to output file.

5.4 User-callable functions 25

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the kinsol memory pointer is NULL).

! If KINSetErrFile is to be called, it should be called before any other optional
input functions, in order to take effect for any later error message.

KINSetInfoFile

Call flag = KINSetInfoFile(kin mem, infofp);

Description The function KINSetInfoFile specifies the pointer to the file where all informative
messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

infofp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for infofp is stderr.

KINSetPrintLevel

Call flag = KINSetPrintLevel(kin mem, printfl);

Description The function KINSetPrintLevel specifies the level of verbosity of the output.

Arguments kin mem (void *) pointer to the kinsol memory block.

printfl (int) flag indicating the level of verbosity. Must be one of:

0 no information displayed.

1 for each nonlinear iteration display the following information: the scaled
Euclidean `2 norm of the system function evaluated at the current iter-
ate, the scaled norm of the Newton step (only if using KIN INEXACT NEWTON),
and the number of function evaluations performed so far.

2 display level 1 output and the following values for each iteration:
‖F (u)‖DF

(only for KIN INEXACT NEWTON).
‖F (u)‖DF ,∞ (for KIN INEXACT NEWTON and KIN LINESEARCH).

3 display level 2 output plus additional values used by the global strategy
(only if using KIN LINESEARCH), and statistical information for the linear
solver.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument printfl had an illegal value.

Notes The default value for printfl is 0.

26 Using KINSOL

KINSetFdata

Call flag = KINSetFdata(kin mem, f data);

Description The function KINSetFdata specifies the pointer to user-defined memory that is to be
passed to the user-supplied function implementing the nonlinear system residual.

Arguments kin mem (void *) pointer to the kinsol memory block.

f data (void *) pointer to the user-defined memory.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for f data is NULL.

KINSetNumMaxIters

Call flag = KINSetNumMaxIters(kin mem, mxiter);

Description The function KINSetNumMaxIters specifies the maximum number of nonlinear itera-
tions allowed.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxiter (long int) maximum number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum number of iterations was non-positive.

Notes The default value for mxiter is MXITER DEFAULT = 200.

KINSetNoPrecInit

Call flag = KINSetNoPrecInit(kin mem, noPrecInit);

Description The function KINSetNoPrecInit specifies whether an initial call to the preconditioner
setup function should be made or not.

Arguments kin mem (void *) pointer to the kinsol memory block.

noPrecInit (booleantype) flag controlling whether or not an initial call to the pre-
conditioner setup function is made.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noPrecInit is FALSE, meaning that an initial call to the precon-
ditioner setup function will be made.

KINSetMaxPrecCalls

Call flag = KINSetMaxPrecCalls(kin mem, msbpre);

Description The function KINSetMaxPrecCalls specifies the maximum number of nonlinear iter-
ations that can be performed between calls to the preconditioner setup function.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbpre (long int) maximum number of nonlinear iterations without a call to the
preconditioner setup function.

Return value The return value flag (of type int) is one of:

5.4 User-callable functions 27

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbpre was negative.

Notes The default value for msbpre is MSBPRE = 10.

KINSetEtaForm

Call flag = KINSetEtaForm(kin mem, etachoice);

Description The function KINSetEtaForm specifies the method for computing the value of the η
coefficient used in the calculation of the linear solver convergence tolerance.

Arguments kin mem (void *) pointer to the kinsol memory block.

etachoice (int) flag indicating the method for computing η. etachoice must be one
of KIN ETACHOICE1, KIN ETACHOICE2, or KIN ETACONSTANT (see Chapter
3 for details).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument etachoice had an illegal value.

Notes The default value for etachoice is KIN ETACHOICE1.

KINSetEtaConstValue

Call flag = KINSetEtaConstValue(kin mem, eta);

Description The function KINSetEtaConstValue specifies the constant value for η in the case
etachoice = KIN ETACONSTANT.

Arguments kin mem (void *) pointer to the kinsol memory block.

eta (realtype) constant value for η.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument eta had an illegal value

Notes The default value for eta is 0.1. The valid values are 0.0 < eta ≤ 1.0.

KINSetEtaParams

Call flag = KINSetEtaParams(kin mem, egamma, ealpha);

Description The function KINSetEtaParams specifies the parameters γ and α in the formula for η,
in the case etachoice = KIN ETACHOICE2.

Arguments kin mem (void *) pointer to the kinsol memory block.

egamma (realtype) value of the γ parameter.

ealpha (realtype) value of the α parameter.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments egamma or ealpha had an illegal value.

28 Using KINSOL

Notes The default values for egamma and ealpha are 0.9 and 2.0, respectively.

The valid values for ealpha are 1.0 < ealpha ≤ 2.0. If ealpha = 0.0, then its value
is set to 2.0.

The valid values for egamma are 0.0 < egamma ≤ 1.0. If egamma = 0.0, then its value
is set to 0.9.

KINSetNoMinEps

Call flag = KINSetNoMinEps(kin mem, noMinEps);

Description The function KINSetNoMinEps specifies a flag that controls whether or not the value
of ε, the scaled linear residual tolerance, is bounded from below.

Arguments kin mem (void *) pointer to the kinsol memory block.

noMinEps (booleantype) flag controlling the bound on ε.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noMinEps is FALSE.

KINSetMaxNewtonStep

Call flag = KINSetMaxNewtonStep(kin mem, mxnewtstep);

Description The function KINSetMaxNewtonStep specifies the maximum allowable scaled length of
the Newton step.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxnewtstep (realtype) maximum scaled step length.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum step was non-positive.

Notes The default value of mxnewtstep is 1000 ‖u0‖Du
, where u0 is the initial guess.

KINSetRelErrFunc

Call flag = KINSetRelErrFunc(kin mem, relfunc);

Description The function KINSetRelErrFunc specifies the relative error in computing F (u), which
is used in the difference quotient approximation of the Jacobian-vector product.

Arguments kin mem (void *) pointer to the kinsol memory block.

relfunc (realtype) relative error in F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The relative error was non-positive.

Notes The default value for relfunc is
√
unit roundoff.

5.4 User-callable functions 29

KINSetFuncNormTol

Call flag = KINSetFuncNormTol(kin mem, fnormtol);

Description The function KINSetFuncNormTol specifies the scalar used as a stopping tolerance on
the scaled maximum norm of the system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

fnormtol (realtype) tolerance for stopping based on scaled function norm.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for fnormtol is 3
√
unit roundoff.

KINSetScaledStepTol

Call flag = KINSetScaledStepTol(kin mem, scsteptol);

Description The function KINSetScaledStepTol specifies the scalar used as a stopping tolerance
on the minimum scaled step length.

Arguments kin mem (void *) pointer to the kinsol memory block.

scsteptol (realtype) tolerance for stopping based on scaled step length..

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for scsteptol is (unit roundoff)2/3.

KINSetConstraints

Call flag = KINSetConstraints(kin mem, constraints);

Description The function KINSetConstraints specifies a vector that defines inequality constraints
for each component of the solution vector u.

Arguments kin mem (void *) pointer to the kinsol memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ui.

1.0 then ui will be constrained to be ui > 0.0.

−1.0 then ui will be constrained to be ui < 0.0.
2.0 then ui will be constrained to be ui ≥ 0.0.

−2.0 then ui will be constrained to be ui ≤ 0.0.
Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The constraint vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed.

The function creates a private copy of the constraints vector. Consequently, the user-
supplied vector can be freed after the function call, and the constraints can only be
changed by calling this function.

30 Using KINSOL

KINSetSysFunc

Call flag = KINSetSysFunc(kin mem, func);

Description The function KINSetSysFunc specifies the user-provided function that evaluates the
nonlinear system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

func (KINSysFn) user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument func was NULL.

Notes The nonlinear system function is initially specified through KINMalloc. The option
of changing the system function is provided for a user who wishes to solve several
problems of the same size but with different functions.

Linear solver optional input functions

The kinspgmr linear solver module allows for various optional inputs, which are described here.
The call to KINSpgmr is used to communicate the maximum dimension of the Krylov subspace to
be used (maxl).
If preconditioning is to be done within the spgmr method, then the user must supply a precondi-

tioner solve function psolve and specify it through a call to KINSpgmrSetPrecSolveFn. The evalu-
ation and preprocessing of any Jacobian-related data needed by the user’s preconditioner solve func-
tion is done in the optional user-supplied function psetup. Both of these functions are fully specified
in §5.5. If used, the psetup function should be specified through a call to KINSpgmrSetPrecSetupFn.
Optionally, the kinspgmr solver passes the pointer it receives through KINSpgmrSetPrecData to
the preconditioner setup and solve functions. This allows the user to create an arbitrary structure
with relevant problem data and access it during the execution of the user-supplied preconditioner
functions without using global data in the program. The pointer prec data may be identical to
f data, if the latter was specified through KINSetFdata.
The kinspgmr solver requires a function to compute an approximation to the product between

the Jacobian matrix J(u) and a vector v. The user can supply his/her own Jacobian-vector product
approximation function, or use the difference quotient function KINSpgmrDQJtimes that comes with
the kinspgmr solver. A user-defined Jacobian-vector function must be of type KINSpgmrJtimesFn
and can be specified through a call to KINSpgmrSetJacTimesVecFn (see §5.5 for specification details).
As with the preconditioner user data structure prec data, the user can specify, through a call to
KINSpgmrSetJacData, a pointer to a user-defined data structure, jac data, which the kinspgmr

solver passes to the Jacobian-vector product function jtimes each time it is called. The pointer
jac data may be identical to prec data and/or f data.

KINSpgmrSetMaxRestarts

Call flag = KINSpgmrSetMaxRestarts(kin mem, maxrs);

Description The function KINSpgmrSetMaxRestarts specifies the maximum number of times the
spgmr linear solver can be restarted.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxrs (int) maximum number of restarts.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional value has been successfully set.

KINSPGMR ILL INPUT The maximum number of restarts specified is negative.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

5.4 User-callable functions 31

KINSpgmrSetPreconditioner

Call flag = KINSpgmrSetPreconditioner(kin mem, psetup, psolve, prec data);

Description The function KINSpgmrSetPreconditioner specifies the preconditioner setup and
solve function and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

psetup (KINSpgmrPrecSetupFn) user-defined preconditioner setup function.

psolve (KINSpgmrPrecSolveFn) user-defined preconditioner solve function.

prec data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

Notes The function type KINSpgmrPrecSetupFn is described in §5.5.4. The function type
KINSpgmrPrecSolveFn is described in §5.5.3.

KINSpgmrSetJacTimesVecFn

Call flag = KINSpgmrSetJacTimesVecFn(kin mem, jtimes, jac data);

Description The function KINSpgmrSetJacTimesVecFn specifies the Jacobian-vector product func-
tion to be used and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimes (KINSpgmrJacTimesVecFn) user-defined Jacobian-vector product function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

Notes By default, kinspgmr uses the difference quotient function KINSpgmrDQJtimes. If
NULL is passed to jtimes, this default function is used.

The function type KINSpgmrJacTimesVecFn is described in §5.5.2.

5.4.5 Optional output functions

kinsol provides an extensive list of functions that can be used to obtain solver performance infor-
mation. Table 5.2 lists all optional output functions in kinsol, which are then described in detail
in the remainder of this section.

Main solver optional output functions

kinsol provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements and solver performance statis-
tics. These optional output functions are described next.

KINGetWorkSpace

Call flag = KINGetWorkSpace(kin mem, &lenrw, &leniw);

Description The function KINGetWorkSpace returns the kinsol integer and real workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrw (long int) the number of realtype values in the kinsol workspace.

32 Using KINSOL

Table 5.2: Optional outputs from KINSOL and KINSPGMR

Optional output Function name
KINSOL main solver

Size of kinsol real and integer workspaces KINGetWorkSpace

Number of function evaluations KINGetNumFuncEvals

Number of nonlinear iterations KINGetNumNolinSolvIters

Number of β-condition failures KINGetNumBetaCondFails

Number of backtrack operations KINGetNumBacktrackOps

Scaled norm of F KINGetFuncNorm

Scaled norm of the step KINGetStepLength

KINSPGMR linear solver
Size of kinspgmr real and integer workspaces KINSpgmrGetWorkSpace

No. of linear iterations KINSpgmrGetNumLinIters

No. of linear convergence failures KINSpgmrGetNumConvFails

No. of preconditioner evaluations KINSpgmrGetNumPrecEvals

No. of preconditioner solves KINSpgmrGetNumPrecSolves

No. of Jacobian-vector product evaluations KINSpgmrGetNumJtimesEvals

No. of fct. calls for finite diff. Jacobian-vector evals. KINSpgmrGetNumFuncEvals

Last return from a kinspgmr function KINSpgmrGetLastFlag

leniw (long int) the number of integer values in the kinsol workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes In terms of the problem size N , the actual size of the real workspace is 17 + 5N
realtype words. The real workspace is increased by an additional N words if con-
straint checking is enabled (see KINSetConstraints).

The actual size of the integer workspace (without distinction between int and long

int) is 22 + 5N (increased by N if constraint checking is enabled).

KINGetNumFuncEvals

Call flag = KINGetNumFuncEvals(kin mem, &nfevals);

Description The function KINGetNumFuncEvals returns the number of evaluations of the system
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevals (long int) number of calls to the user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumNonlinSolvIters

Call flag = KINGetNumNonlinSolvIters(kin mem, &nniters);

Description The function KINGetNumNonlinSolvIters returns the number of nonlinear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nniters (long int) number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

5.4 User-callable functions 33

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBetaCondFails

Call flag = KINGetNumBetaCondFails(kin mem, &nbcfails);

Description The function KINGetNumBetaCondFails returns the number of β-condition failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbcfails (long int) number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBacktrackOps

Call flag = KINGetNumBacktrackOps(kin mem, &nbacktr);

Description The function KINGetNumBacktrackOps returns the number of backtrack operations
(step length adjustments) performed by the line search algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbacktr (long int) number of backtrack operations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetFuncNorm

Call flag = KINGetFuncNorm(kin mem, &fnorm);

Description The function KINGetFuncNorm returns the scaled Euclidean `2 norm of the nonlinear
system function F (u) evaluated at the current iterate.

Arguments kin mem (void *) pointer to the kinsol memory block.

fnorm (realtype) current scaled norm of F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetStepLength

Call flag = KINGetStepLength(kin mem, &steplength);

Description The function KINGetStepLength returns the scaled Euclidean `2 norm of the step
used during the previous iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

steplength (realtype) scaled norm of the Newton step.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

34 Using KINSOL

Linear solver optional output functions

The functions available to access various optional outputs that describe the performance of the
kinspgmr module are described below.

KINSpgmrGetWorkSpace

Call flag = KINSpgmrGetWorkSpace(kin mem, &lenrwSG, &leniwSG);

Description The function KINSpgmrGetWorkSpace returns the real and integer workspace sizes
used by kinspgmr.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwSG (long int) the number of realtype values in the kinspgmr workspace.

leniwSG (long int) the number of integer values in the kinspgmr workspace.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output values have been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of
the real workspace is (maxl+5) ∗ N+ maxl ∗(maxl+4) + 1 realtype words. (In a
parallel setting, this value is global - summed over all processes.)

KINSpgmrGetNumLinIters

Call flag = KINSpgmrGetNumLinIters(kin mem, &nliters);

Description The function KINSpgmrGetNumLinIters returns the cumulative number of linear iter-
ations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

KINSpgmrGetNumConvFails

Call flag = KINSpgmrGetNumConvFails(kin mem, &nlcfails);

Description The function KINSpgmrGetNumConvFails returns the cumulative number of linear
convergence failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

5.4 User-callable functions 35

KINSpgmrGetNumPrecEvals

Call flag = KINSpgmrGetNumPrecEvals(kin mem, &npevals);

Description The function KINSpgmrGetNumPrecEvals returns the number of preconditioner eval-
uations, i.e., the number of calls made to psetup.

Arguments kin mem (void *) pointer to the kinsol memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

KINSpgmrGetNumPrecSolves

Call flag = KINSpgmrGetNumPrecSolves(kin mem, &npsolves);

Description The function KINSpgmrGetNumPrecSolves returns the cumulative number of calls
made to the preconditioner solve function, psolve.

Arguments kin mem (void *) pointer to the kinsol memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

KINSpgmrGetNumJtimesEvals

Call flag = KINSpgmrGetNumJtimesEvals(kin mem, &njvevals);

Description The function KINSpgmrGetNumJtimesEvals returns the cumulative number made to
the Jacobian-vector product function, jtimes.

Arguments kin mem (void *) pointer to the kinsol memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

KINSpgmrGetNumRhsEvals

Call flag = KINSpgmrGetNumRhsEvals(kin mem, &nfevalsSG);

Description The function KINSpgmrGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsSG (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

Notes The value nfevalsSG is incremented only if the default KINSpgmrDQJtimes difference
quotient function is used.

36 Using KINSOL

KINSpgmrGetLastFlag

Call flag = KINSpgmrGetLastFlag(kin mem, &flag);

Description The function KINSpgmrGetLastFlag returns the last return value from a kinspgmr

routine.

Arguments kin mem (void *) pointer to the kinsol memory block.

flag (int) the value of the last return flag from a kinspgmr function.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The optional output value has been successfully set.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR LMEM NULL The kinspgmr linear solver has not been initialized.

Notes If the kinspgmr setup function failed (KINSOL returned KIN LSETUP FAIL), flag con-
tains the return value of the preconditioner setup function psetup.

If the kinspgmr solve function failed (KINSOL returned KIN LSOLVE FAIL), flag con-
tains the error return flag from SpgmrSolve and will be one of: SPGMR CONV FAIL, in-
dicating a failure to converge; SPGMR QRFACT FAIL, indicating a singular matrix found
during the QR factorization; SPGMR PSOLVE FAIL REC, indicating that the precondi-
tioner solve function psolve failed recoverably; SPGMR MEM NULL, indicating that the
spgmr memory is NULL; SPGMR ATIMES FAIL, indicating a failure in the Jacobian-
vector product function; SPGMR PSOLVE FAIL UNREC, indicating that the precondi-
tioner solve function psolve failed unrecoverably; SPGMR GS FAIL, indicating a failure
in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the matrix R
was found to be singular during the QR solve phase.

5.5 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a
function that provides Jacobian-related information for the linear solver, and (optionally) one or
two functions that define the preconditioner for use in the spgmr algorithm.

5.5.1 Problem-defining function

The user must provide a function of type KINSysFn defined as follows:

KINSysFn

Definition typedef void (*KINSysFn)(N Vector u, N Vector fval, void *f data);

Purpose This function computes F (u) for a given value of the vector u.

Arguments u is the current value of the variable vector, u.

fval is the output vector F (u).

f data is a pointer to user data, same as the pointer f data passed to KINSetFdata.

Return value A KINSysFn function type does not have a return value.

Notes Allocation of memory for fval is handled within kinsol.

5.5.2 Jacobian information (SPGMR matrix-vector product)

The user may provide a function of type KINSpgmrJacTimesVecFn to evaluate Jacobian-vector prod-
ucts for the kinspgmr linear solver module. This function has the following form:

5.5 User-supplied functions 37

KINSpgmrJacTimesVecFn

Definition typedef int (*KINSpgmrJacTimesVecFn)(N Vector v, N Vector Jv,

N Vector u, booleantype *new u,

void *jac data);

Purpose This function computes the product Jv = (∂F/∂u)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the output vector computed.

u is the current (unscaled) value of the iterate.

new u is a flag (reset by user) indicating if the iterate u has been updated in the
interim. The Jacobian-vector product needs to be updated/reevaluated, if
appropriate, unless new u = FALSE.

jac data is a pointer to user data, the same as the jac data parameter passed to
KINSpgmrSetJacData.

Return value The value to be returned by the Jacobian-vector product function should be 0 if
successful. Any other return value will result in an unrecoverable error of the spgmr

generic solver, in which case the solution process is halted.

Notes If a user-defined routine is not given, then an internal kinspgmr function, using
difference quotient approximations, is used.

If the user-provided KINSpgmrJacTimesVec function needs the unit roundoff, this can
be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

! The user is responsible for resetting the value of new u to FALSE.

5.5.3 Preconditioning (SPGMR linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r
where P is the preconditioner matrix. This function must be of type KINSpgmrPrecSolveFn, defined
as follows:

KINSpgmrPrecSolveFn

Definition typedef int (*KINSpgmrPrecSolveFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

N Vector v, void *prec data,

N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

v on input, v is set to the right-hand side vector of the linear system, r. On
output, v must contain the solution z of the linear system Pz = r.

prec data is a pointer to user data - the same as the prec data parameter passed to
the function KINSpgmrSetPrecData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error, and negative for an unrecoverable error.

38 Using KINSOL

5.5.4 Preconditioning (SPGMR Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then this needs to be done in a user-supplied C function of type KINSpgmrPrecSetupFn, defined as
follows:

KINSpgmrPrecSetupFn

Definition typedef int (*KINSpgmrPrecSetupFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

void *prec data, N Vector tmp1,

N Vector tmp2);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of a KINSpgmrPrecSetupFn are as follows:

u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

prec data is a pointer to user data - the same as the prec data parameter passed to
the function KINSpgmrSetPrecData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINSpgmrPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error, and negative for an unrecoverable error.

Notes The user-supplied preconditioner setup subroutine should compute the right precon-
ditioner matrix P (stored in the memory block referenced by the prec data pointer)
used to form the scaled preconditioned linear system

(DFJ(u)P
−1D−1

u) · (DuPx) = −DFF (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are
stored in the vectors uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the
preconditioner solve function, but will instead be called only as often as necessary to
achieve convergence of the Newton iteration.

If the preconditioner solve routine requires no preparation, then a preconditioner setup
function need not be given.

5.6 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, kinsol provides a band-block-diagonal preconditioner module kinbbdpre,
to be used with the parallel N Vector module described in §6.2.
This module provides a preconditioner matrix for kinsol that is block-diagonal with banded

blocks. The blocking corresponds to the distribution of the dependent variable vector u amongst the
processes. Each preconditioner block is generated from the Jacobian of the local part (associated
with the current process) of a given function G(u) approximating F (u) (G = F is allowed). The

5.6 A parallel band-block-diagonal preconditioner module 39

blocks are generated by each process via a difference quotient scheme, utilizing a specified banded
structure. This structure is given by upper and lower half-bandwidths, mu and ml, defined as the
number of non-zero diagonals above and below the main diagonal, respectively.
This pair of parameters need not be the true half-bandwidths of the Jacobian of the local block of

G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the system outside a certain bandwidth are considerably weaker than those within the
band. Reducing mu and ml lumps the outer Jacobian elements into the computed elements within
the narrower band. This loss of accuracy in the Jacobian may (or may not) be offset by the lower
cost of the narrower band matrices, so users should experiment with the values of mu and ml.
The kinbbdpre module calls two user-provided functions to construct P : a required function

Gloc (of type KINLocalFn) which approximates the nonlinear system function function G(u) ≈ F (u)
and which is computed locally, and an optional function Gcomm (of type KINCommFn) which performs
all interprocess communication necessary to evaluate the approximate function G. These are in
addition to the user-supplied nonlinear system function that evaluates F (u). Both functions take as
input the same pointer f data as that passed by the user to KINSetFdata and passed to the user’s
function func, and neither function has a return value. The user is responsible for providing space
(presumably within f data) for components of u that are communicated by Gcomm from the other
processes, and that are then used by Gloc, which is not expected to do any communication.

KINLocalFn

Definition typedef void (*KINLocalFn)(long int Nlocal, N Vector u,

N Vector gval, void *f data);

Purpose This function computes G(u), and outputs the resulting vector as gval.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

gval is the output vector.

f data is a pointer to user data - the same as the f data parameter passed to
KINSetFdata.

Return value A KINLocalFn function type does not have a return value.

Notes This function assumes that all interprocess communication of data needed to calculate
gval has already been done, and this data is accessible within f data.

Memory for u and gval is handled within the preconditioner module.

The case where G is mathematically identical to F is allowed.

KINCommFn

Definition typedef void (*KINCommFn)(long int Nlocal, N Vector u, void *f data);

Purpose This function performs all interprocess communications necessary for the execution of
the gloc function above, using the input vector u.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

f data is a pointer to user data - the same as the f data parameter passed to
KINSetFdata.

Return value A KINCommFn function type does not have a return value.

Notes The Gcomm function is expected to save communicated data in space defined within
the structure f data.

Each call to the Gcomm function is preceded by a call to the system function func with
the same u argument. Thus Gcomm can omit any communications done by func if
relevant to the evaluation of Gloc. If all necessary communication was done in func,
then Gcomm = NULL can be passed in the call to KINBBDPrecAlloc (see below).

40 Using KINSOL

Besides the header files required for the solution of a nonlinear problem (see §5.2), to use the
kinbbdpre module, the main program must include the header file kinbbdpre.h which declares the
needed function prototypes.
The following is a summary of the usage of this module and describes the sequence of calls in

the user main program. Steps that are unchanged from the user main program presented in §5.3 are
grayed out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector with initial guess

4. Create kinsol object

5. Set optional inputs

6. Allocate internal memory

7. Initialize the kinbbdpre preconditioner module

Specify the upper and lower half-bandwidths mu, ml and call

bbd data = KINBBDPrecAlloc(kin mem, Nlocal, mu, ml,

dq rel u, Gloc, Gcomm);

to allocate memory for and initialize a data structure bbd data to be passed to the kinspgmr

linear solver. The last two arguments of KINBBDPrecAlloc are the two user-supplied functions
described above.

8. Attach the kinspgmr linear solver

flag = KINBBDSpgmr(kin mem, maxl, bbd data);

The function KINBBDSpgmr is a wrapper around the kinspgmr specification function KINSpgmr

and performs the following actions:

•Attaches the kinspgmr linear solver to the main cvode solver memory;

•Sets the preconditioner data structure for kinbbdpre;

•Sets the preconditioner setup function for kinbbdpre;

•Sets the preconditioner solve function for kinbbdpre;

The argument maxl is described below. The last argument of KINBBDSpgmr is the pointer to the
kinbbdpre data returned by KINBBDPrecAlloc.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to kinspgmr optional input functions.

10. Solve problem

11. Get optional output

12. Deallocate memory for solution vector

13. Free the kinbbdpre data structure

KINBBDPrecFree(bbd data);

14. Free solver memory

5.6 A parallel band-block-diagonal preconditioner module 41

15. Finalize MPI

The three user-callable functions that initialize, attach, and deallocate the kinbbdpre precon-
ditioner module (steps 7, 8, and 13 above) are described next.

KINBBDPrecAlloc

Call bbd data = KINBBDPrecAlloc(kin mem, Nlocal, mu, ml,

dq rel u, Gloc, Gcomm);

Description The function KINBBDPrecAlloc initializes and allocates memory for the kinbbdpre

preconditioner.

Arguments kin mem (void *) pointer to the kinsol memory block.

Nlocal (long int) local vector length.

mu (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

ml (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

dq rel u (realtype) the relative increment in components of u used in the difference
quotient approximations. The default is dq rel u=

√
unit roundoff, which

can be specified by passing dq rel u= 0.0.

Gloc (KINLocalFn) the C function which computes the approximation G(u) ≈
F (u).

Gcomm (KINCommFn) the optional C function which performs all interprocess com-
munication required for the computation of G(u).

Return value If successful, KINBBDPrecAlloc returns a pointer to the newly created kinbbdpre

memory block (of type void *). If an error occurred, KINBBDPrecAlloc returns NULL.

Notes The half-bandwidths mu and ml need not be the true half-bandwidths of the Jacobian
of the local block of G, when smaller values may provide a greater efficiency.

Moreover, the half-bandwidth values need not be the same for every process.

KINBBDSpgmr

Call flag = KINBBDSpgmr(kin mem, maxl, bbd data);

Description The function KINBBDSpgmr links the kinbbdpre data to the kinspgmr linear solver
and attaches the latter to the kinsol memory block.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPGMR MAXL= 5.

bbd data (void *) pointer to the kinbbdpre data structure.

Return value The return value flag (of type int) is one of:

KINSPGMR SUCCESS The kinspgmr initialization was successful.

KINSPGMR MEM NULL The kin mem pointer is NULL.

KINSPGMR ILL INPUT The nvector module used does not implement a required op-
eration.

KINSPGMR MEM FAIL A memory allocation request failed.

KIN PDATA NULL The kinbbdpre preconditioner has not been initialized.

42 Using KINSOL

KINBBDPrecFree

Call KINBBDPrecFree(bbd data);

Description The function KINBBDPrecFree frees the pointer allocated by KINBBDPrecAlloc.

Arguments The only argument of KINBBDPrecFree is the pointer to the kinbbdpre data structure
(of type void *).

Return value The function KINBBDPrecFree has no return value.

The following two optional output functions are available for use with the kinbbdpre module:

KINBBDPrecGetWorkSpace

Call flag = KINBBDPrecGetWorkSpace(bbd data, &lenrwBBDP, &leniwBBDP);

Description The function KINBBDPrecGetWorkSpace returns the local kinbbdpre real and integer
workspace sizes.

Arguments bbd data (void *) pointer to the kinbbdpre data structure.

lenrwBBDP (long int) local number of realtype values in the kinbbdpre workspace.

leniwBBDP (long int) local number of integer values in the kinbbdpre workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN PDATA NULL The kinbbdpre preconditioner has not been initialized.

Notes In terms of the local vector dimension Nl, the actual size of the real workspace is Nl (2
ml + mu + smu +2) realtype words, where smu = min(Nl − 1, mu + ml).

The actual size of the integer workspace is Nl integer words.

KINBBDPrecGetNumGfnEvals

Call flag = KINBBDPrecGetNumGfnEvals(bbd data, &ngevalsBBDP);

Description The function KINBBDPrecGetNumGfnEvals returns the number of calls to the user
Gloc function due to the finite difference approximation of the Jacobian blocks used
within kinbbdpre’s preconditioner setup function.

Arguments bbd data (void *) pointer to the kinbbdpre data structure.

ngevalsBBDP (long int) the number of calls to the user Gloc function.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN PDATA NULL The kinbbdpre preconditioner has not been initialized.

5.7 FKINSOL, a Fortran-C interface module

The fkinsol interface module is a package of C functions which support the use of the kinsol

solver, for the solution nonlinear systems F (u) = 0, in a mixed Fortran/C setting. While kinsol

is written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to kinsol for both
the serial and the parallel nvector implementations, and may also be used with user-supplied
mixed Fortran/C nvector implementations.

5.7 FKINSOL, a Fortran-C interface module 43

5.7.1 FKINSOL routines

The user-callable functions, with the corresponding kinsol functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to NV New Serial.

– FNVINITP (defined by nvector parallel) interfaces to NV New Parallel.

– FNVFREES (defined by nvector serial) interface to NV Destroy Serial.

– FNVFREEP (defined by nvector parallel) interfaces to NV Destroy Parallel.

• Interface to the main kinsol module

– FKINMALLOC interfaces to KINCreate, KINSet* functions, and KINMalloc.

– FKINSOL interfaces to KINSol, KINGet* functions, and to the optional output functions
for the kinspgmr linear solver module.

– FKINFREE interfaces to KINFree.

• Interface to the kinspgmr solver module

– FKINSPGMR interfaces to KINSpgmr and spgmr optional input functions.

– FKINSPGMRSETJAC interfaces to KINSpgmrSetJacTimesVecFn.

– FKINSPGMRSETPREC interfaces to KINSpgmrSetPrecSetupFn and KINSpgmrSetPrecSolveFn.

The user-supplied functions, each listed with the corresponding interface function which calls it
(and its type within kinsol), are as follows:

fkinsol routine (Fortran) kinsol function (C) kinsol function type
FKFUN FKINfunc KINSysFn

FKPSOL FKINPSol KINSpgmrPrecSolveFn

FKPSET FKINPSet KINSpgmrPrecSetupFn

FKJTIMES FKINJtimes KINSpgmrJacTimesVecFn

In contrast to the case of direct use of kinsol, the names of all user-supplied routines here are fixed,
in order to maximize portability for the resulting mixed-language program.

Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user rou-
tines called by them, appear as dummy names which are mapped to actual values by a series of
definitions in the header files fkinsol.h and fkinbbd.h. By default, those mapping definitions
depend in turn on the C macro F77 FUNC defined in the header file config.h by configure. How-
ever, the set of flags - SUNDIALS CASE UPPER, SUNDIALS CASE LOWER, SUNDIALS UNDERSCORE NONE,
SUNDIALS UNDERSCORE ONE, and SUNDIALS UNDERSCORE TWO can be explicitly defined in config.h

when configuring sundials via the --with-f77underscore and --with-f77case options to over-
ride the default behavior if necessary (see Chapter 2). Either way, the names into which the dummy
names are mapped are in upper or lower case and have up to two underscores appended.
The user must also ensure that variables in the user Fortran code are declared in a manner

consistent with their counterparts in kinsol. All real variables must be declared as REAL, DOUBLE
PRECISION, or perhaps as REAL*n, where n denotes the number of bytes, depending on whether
kinsol was built in single, double or extended precision (see Chapter 2). Moreover, some of the
Fortran integer variables must be declared as INTEGER*4 or INTEGER*8 according to the C type
long int. These integer variables include: the array of integer optional inputs and outputs (IOPT),
problem dimensions (NEQ, NLOCAL, NGLOBAL), and Jacobian half-bandwidths (MU and ML). This is
particularly important when using kinsol and the fkinsol package on 64-bit architectures.

44 Using KINSOL

Table 5.3: Description of the FKINSOL optional input-output arrays IOPT and ROPT

Integer input-output array IOPT
Index Optional input Optional output kinsol function

kinsol main solver
1 PRINTFL KINSetPrintLevel

2 MXITER KINSetNumMaxIters

3 PRECOND NO INIT KINSetNoPrecInit

4 NNI KINGetNumNonlinSolvIters

5 NFE KINGetNumFuncEvals

6 NBCF KINGetNumBetaCondFails

7 NBKTRK KINGetNumBacktrackOps

8 ETACHOICE KINSetEtaForm

9 NO MIN EPS KINSetNoMinEps

kinspgmr linear solver
11 NLI KINSpgmrGetNumLinIters

12 NPE KINSpgmrGetNumPrecEvals

13 NPS KINSpgmrGetNumPrecSolves

14 NCFL KINSpgmrGetNumConvFails

15 LS FLAG KINSpgmrGetLastFlag

Real input-output array ROPT
Index Optional input Optional output kinsol function

1 MXNEWTSTEP KINSetMaxNewtonStep

2 RELFUNC KINSetRelErrFunc

3 FNORM KINGetFuncNorm

4 STEPL KINGetStepLength

5 ETACONST KINSetEtaConstValue

6 ETAGAMMA KINSetEtaParams

7 ETAALPHA KINSetEtaParams

5.7.2 FKINSOL optional input and output

In order to keep the number of user-callable fkinsol interface routines to a minimum, optional
inputs and outputs to the kinsol solver and to related modules are not accessed through individual
functions, but rather through a pair of arrays, IOPT of integer type and ROPT of real type. Table 5.3
lists the entries in these two arrays and specifies the fkinsol user-callable routine which sets/accesses
the corresponding optional variable, as well as the kinsol optional function which is actually called.
For more details on the optional inputs and outputs, see §5.4.4 and §5.4.5.

5.7.3 Usage of the FKINSOL interface module

The usage of fkinsol requires calls to several interface functions, depending on the method options
selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding kinsol functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by
an interface function. The usage of fkinsol with the band-block-diagonal preconditioner module
kinbbdpre is described in the next subsection.
Steps marked with [S] in the instructions below apply to the serial nvector implementation

(nvector serial) only, while those marked with [P] apply to nvector parallel.

1. Nonlinear system function specification

The user must in all cases supply the following Fortran routine

5.7 FKINSOL, a Fortran-C interface module 45

SUBROUTINE FKFUN(U, FVAL)

DIMENSION U(*), FVAL(*)

It must set the FVAL array to F (u), the system function, as a function of the array U. Here U
and FVAL are arrays representing vectors, which are distributed vectors in the parallel case.

2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS(NEQ, IER)

where NEQ is the size of vectors and IER is a return completion flag which is set to 0 on success
and −1 if a failure occurred.
[P] To initialize the parallel vector module, the user must make the following call:

CALL FNVINITP(NLOCAL, NGLOBAL, IER)

in which the arguments are: NLOCAL the local size of vectors for this process, NGLOBAL the
system size (and the global size of vectors, that is the sum of all values of NLOCAL). The return
completion flag IER is set to 0 upon successful return and to −1 otherwise. Note that ifMPI was
initialized by the user, the communicator must be set to MPI COMM WORLD. If not, this routine
initializes MPI and sets the communicator equal to MPI COMM WORLD.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FKINMALLOC

Call CALL FKINMALLOC(MSBPRE, FNORMTOL, SCSTEPTOL, CONSTRAINTS,

& OPTIN, IOPT, ROPT, IER)

Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes kinsol.

Arguments MSBPRE is the maximum number of preconditioning solve calls without call-
ing the preconditioning setup routine. A value of 0 indicates the
default.

FNORMTOL is the tolerance on the scaled maximum norm of F (u) to accept
convergence.

SCSTEPTOL is the tolerance on minimum scaled step size.
CONSTRAINTS is an array of constraint values on the components of the solution

u.
OPTIN is an integer flag indicating whether input values in IOPT and/or

ROPT are to be used for input. A value of 0 means no and a value
of 1 indicates yes.

IOPT is an array of integer optional inputs and outputs (must be declared
as INTEGER*4 or INTEGER*8 according to the C type long int).

ROPT is an array of real optional inputs and outputs.

Return value IER is the return completion flag. Its possible values are 0 indicating success or
−1 indicating failure.

Notes The optional inputs and outputs associated with the main kinsol integrator are
listed in Table 5.3. If any of the optional inputs are used, the others must be set
to zero to indicate default values.

46 Using KINSOL

Since kinsol maintains a private copy of the constraints vector, the CONSTRAINTS
array passed as an argument to FKINMALLOC can be reused after the function call.

! If OPTIN is set to 1, then FKINSOL will set the applicable optional outputs
before returning, so the IOPT and ROPT arrays should not be reused.

4. Linear solver specification

The solution method in kinsol involves the solution of linear systems related to the Jacobian
of the nonlinear system.

For the Scaled Preconditioned GMRES solution of the linear systems, the user must make the
call:

CALL FKINSPGMR(MAXL, MAXLRST, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension (0 indicates
default). MAXLRST is the maximum number of linear system restarts (0 indicates default). IER
is the return completion flag (possible values are 0: success and −1: failure).
As an option when using the spgmr linear solver, the user may supply a routine that computes
the product of the system Jacobian J = ∂F/∂u and a given vector v. If supplied, it must have
the following form:

SUBROUTINE FKJTIMES(V, Z, NEWU, U, IER)

DIMENSION V(*), Z(*), U(*)

This must set the array Z to the product Jv, where J is the Jacobian matrix J = ∂F/∂u, and V
is a given array. Here U is an array containing the current value of the unknown vector u. NEWU
is an input integer indicating whether U has changed since FKJTIMES was last called (1 = yes, 0
= no). If FKJTIMES computes and saves Jacobian data, then no such computation is necessary
when NEWU = 0. The arguments V, Z, and U are arrays of length NEQ, the problem size, or the
local length of all distributed vectors in the parallel case. FKJTIMES should return IER = 0 if
successful, or a nonzero IER otherwise.

If the user program includes the FKJTIMES routine for the evaluation of the Jacobian vector
product, the following call must be made:

CALL FKINSPGMRSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian times vector approximation. The
argument IER is an error return flag which can be 0 for success or nonzero if an error occurred.

If preconditioning is to be done, then, following the call to FKINSPGMR, the user must call

CALL FKINSPGMRSETPREC(FLAG, IER)

with FLAG 6= 0, and the user program must include the following routine for solution of the
preconditioner linear system:

SUBROUTINE FKPSOL (U, USCALE, FVAL, FSCALE, VTEM, FTEM, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEM(*), FTEM(*)

Typically this routine will use only U, FVAL, VTEM and FTEM. It must solve the preconditioned
linear system Pz = r, where r = VTEM is input, and store the solution z in VTEM as well. Here
P is the right preconditioner. If scaling is being used, the routine supplied must also account
for scaling on either coordinate or function value, as given in the arrays USCALE and FSCALE,
respectively.

5.7 FKINSOL, a Fortran-C interface module 47

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FKPSET (U, USCALE, FVAL, FSCALE, VTEMP1, VTEMP2, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEMP1(*), VTEMP2(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the so-
lution of the preconditioned linear systems by FKPSOL. The variables U through FSCALE are for
use in the preconditioning setup process. Typically, the system function FKFUN is called before
any calls to FKPSET, so that FVAL will have been updated. U is the current solution iterate. The
arrays VTEMP1 and VTEMP2 are available for work space. If scaling is being used, USCALE and
FSCALE are available for those operations requiring scaling. NEQ is the problem size.

On return, set IER = 0 if FKPSET was successful or set IER = 1 if an error occurred.

! If the user calls FKINSPGMRSETPREC, the routine FKINPSET must be provided, even if it’s
empty.

5. Problem solution Solving the nonlinear system is accomplished by making the following call:

CALL FKINSOL(U, GLOBALSTRAT, USCALE, FSCALE, IER)

The arguments are as follows. U is an array containing the initial guess on input, and the solution
on return. GLOBALSTRAT is an integer (type INTEGER) defining the global strategy choice (1
specifies Inexact Newton, while 2 indicates line search). USCALE is an array of scaling factors
for the U vector. FSCALE is an array of scaling factors for the FVAL vector. IER is an integer
completion flag and will have one of the following values: 0 to indicate success, 1 to indicate
that the initial guess satisfies F (u) = 0 within tolerances, 2 to indicate apparent stalling (small
step), or a negative value to indicate an error or failure. The possible negative return values and
the corresponding KINSol return values (see §5.4.3) are: -1: KIN MEM NULL, -2: KIN ILL INPUT,
-3: KIN NO MALLOC, -4: KIN MEM FAIL, -5: KIN LINESEARCH NONCONV, -6: KIN MAXITER REACHED,
-7: KIN MXNEWT 5X EXCEEDED, -8: KIN LINESEARCH BCFAIL, -9: KIN LINSOLV NO RECOVERY, -10:
KIN LINIT FAIL, -11: KIN LSETUP FAIL, -12: KIN LSOLVE FAIL, and -13: KIN PDATA NULL.

The current values of the optional outputs are available in IOPT and ROPT (see Table 5.3).

6. Memory deallocation To free the internal memory created by the call to FKINMALLOC, make
the call

CALL FKINFREE

and then, depending on the nvector version (serial or parallel), either

CALL FNVFREES

or

CALL FNVFREEP

respectively.

48 Using KINSOL

5.7.4 Usage of the FKINBBD interface to KINBBDPRE

The fkinbbd interface sub-module is a package ofC functions which, as part of the fkinsol interface
module, support the use of the kinsol solver with the parallel nvector parallel module and the
kinbbdpre preconditioner module (see §5.6), for the solution of nonlinear problems in a mixed
Fortran/C setting.
The user-callable functions in this package, with the corresponding kinsol and kinbbdpre

functions, are as follows:

• FKINBBDINIT interfaces to KINBBDPrecAlloc.

• FKINBBDSPGMR interfaces to KINBBDSpgmr and spgmr optional input functions.

• FKINBBDOPT interfaces to kinbbdpre optional output functions.

• FKINBBDFREE interfaces to KINBBDPrecFree.

In addition to the Fortran right-hand side function FKFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within kinbbdpre or kinsol):

fkinbbd routine (Fortran) kinsol function (C) kinsol function type
FKLOCFN FKINgloc KINLocalFn

FKCOMMF FKINgcomm KINCommFn

FKJTIMES FKINJtimes KINSpgmrJacTimesVecFn

As with the rest of the fkinsol routines, the names of the user-supplied routines are mapped to
actual values through a series of definitions in the header file fkinbbd.h (see §5.7).
The following is a summary of the usage of this module. Steps that are unchanged from the main

program described in §5.7.3 are grayed out.

1. Nonlinear system function specification

2. nvector module initialization

3. Problem specification

4. Linear solver specification

To initialize the kinbbdpre preconditioner, make the following call:

CALL FKINBBDINIT(NLOCAL, MU, ML, IER)

The arguments are as follows. NLOCAL is the local size of vectors for this process. MU and ML are
the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients. These may be smaller than the true half-bandwidths of the Jacobian
of the local block of G, when smaller values may provide greater efficiency. IER is a return
completion flag. A value of 0 indicates success, while a value of −1 indicates that a memory
failure occurred or that an input had an illegal value.

To specify the spgmr linear system solver and use the kinbbdpre preconditioner, make the
following call:

CALL FKINBBDSPGMR(MAXL, MAXLRST, IER)

Its arguments are the same as those of FKINSPGMR (see step 4 in §5.7.3).
Optionally, to specify that spgmr should use the supplied FKJTIMES, make the call

CALL FKINSPGMRSETJAC(FLAG, IER)

5.7 FKINSOL, a Fortran-C interface module 49

with FLAG 6= 0.

5. Problem solution

6. kinbbdpre Optional outputs

To obtain the optional outputs associated with the kinbbdpre module, make the following call:

CALL FKINBBDOPT(LENRPW, LENIPW, NGE)

The arguments returned are as follows. LENRPW is the length of real preconditioner work space,
in realtype words. This size is local to the current process. LENIPW is the length of integer
preconditioner work space, in integer words. This size is local to the current process. NGE is the
cumulative number of G(u) evaluations (calls to FKLOCFN).

7. Memory deallocation

To free the internal memory created by the call to FKINBBDINIT, before calling FKINFREE and
FNVFREEP, the user must call

CALL FKINBBDFREE

Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two
provided within sundials, a serial and an MPI parallel implementations.
The generic N Vector type is a pointer to a structure that has an implementation-dependent

content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

52 Description of the NVECTOR module

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module also defines and implements the vector operations acting on
N Vector. These routines are nothing but wrappers for the vector operations defined by a particular
nvector implementation, which are accessed through the ops field of the N Vector structure. To
illustrate this point we show below the implementation of a typical vector operation from the generic
nvector module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines a function N VCloneVectorArray which

creates (by cloning) an array of count variables of type N Vector, each of the same type as an
existing N Vector. Its prototype is

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

and its definition is based on the implementation-specific N VClone operation. An array of variables
of type N Vector can be destroyed by calling N VDestroyVectorArray, whose prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should
be unique to that implementation in order to permit using more than one nvector module
(each with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used
to access different parts in the content field of the newly defined N Vector.

53

Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not copy the vector, but rather allocates
storage for the new vector.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded linear solvers, as well as the interfaces to the
banded preconditioners provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a con-
tiguous array of realtype. This routine is only used in the interfaces
to the dense linear solver.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n− 1. The yi may not be tested
for 0 values. It should only be called with an x that is guaranteed to
have all nonzero components.

continued on next page

54 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z:
zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, y);

Sets the components of the N Vector y to be the absolute values of
the components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine
may not check for division by 0. It should be called only with an x

which is guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.

N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1

i=0 (xiwi)
2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1

i=0 (xiwisign(idi))
2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1

i=0 (xiwi)
2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
continued on next page

6.1 The NVECTOR SERIAL implementation 55

continued from last page

Name Usage and Description

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the
components of the N Vector x, with prior testing for zero values:
zi = 1.0/xi, i = 0, . . . , n − 1. This routine returns TRUE if all com-
ponents of x are nonzero (successful inversion) and returns FALSE oth-
erwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if
ci = 1, xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint
on xi if ci = 0. This routine returns FALSE if any element failed the
constraint test, TRUE if all passed. It also sets a mask vector m, with
elements equal to 1.0 where the constraint test failed, and 0.0 where
the test passed. This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundialstypes.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, and a boolean flag own data which specifies the ownership
of data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The
suffix S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

56 Description of the NVECTOR module

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.
Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1 and provides the following user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VCloneEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array by using an
existing N Vector as a template.

N_Vector N_VCloneEmpty_Serial(N_Vector w);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VNewVectorArray Serial

This function creates an array of count serial vectors.

N_Vector *N_VNewVectorArray_Serial(int count, long int vec_length);

• N VNewVectorArrayEmpty Serial

This function creates an array of count serial vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Serial(int count, long int vec_length);

6.2 The NVECTOR PARALLEL implementation 57

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Serial or with N VNewVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• ! The nvector serial constructor functions N VNewEmpty Serial, N VCloneEmpty Serial,
N VMake Serial, and N VNewVectorArrayEmpty Serial set the field own data = FALSE. The
functions N VDestroy Serial and N VDestroyVectorArray Serial will not attempt to free
the pointer data for any N Vector with own data set to FALSE. In such a case, it is the user’s
responsibility to deallocate the data pointer.

• ! To maximize efficiency, vector operations in the nvector serial implementation that
have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector con-
tent structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

58 Description of the NVECTOR module

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part
of v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the
vector v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vec-
tors.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the
local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.
Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 and provides the following user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

6.2 The NVECTOR PARALLEL implementation 59

• N VCloneEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array by using an
existing N Vector as a template.

N_Vector N_VCloneEmpty_Parallel(N_Vector w);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VNewVectorArray Parallel

This function creates an array of count parallel vectors.

N_Vector *N_VNewVectorArray_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewVectorArrayEmpty Parallel

This function creates an array of count parallel vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Parallel or with N VNewVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
local component array via v data = NV DATA P(v) and then access v data[i] within the loop
than it is to use NV Ith P(v,i) within the loop.

• ! The nvector parallel constructor functions N VNewEmpty Parallel, N VMake Parallel,
N VCloneEmpty Parallel, and N VNewVectorArrayEmpty Parallel set the field own data =
FALSE. The functions N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• ! To maximize efficiency, vector operations in the nvector parallel implementation
that have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsability to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

60 Description of the NVECTOR module

6.3 NVECTOR functions used by KINSOL

In Table 6.2 below, we list the vector functions in the nvector module within the kinsol package.
The table also shows, for each function, which of the code modules uses the function. The kinsol

column shows function usage within the main solver module, the kinspgmr column shows function
usage within the linear solver, the kinbbdpre column shows function usage within the band-block-
diagonal preconditioner module, and the fkinsol column shows function usage within the fkinsol

interface module.
There is one subtlety in the kinspgmr column hidden by the table. The dot product function

N VDotProd is called both within the implementation file kinspgmr.c for the kinspgmr solver and
within the implementation files spgmr.c and iterative.c for the generic spgmr solver upon which
the kinspgmr solver is implemented.
At this point, we should emphasize that the kinsol user does not need to know anything about

the usage of vector functions by the kinsol code modules in order to use kinsol. The information
is presented as an implementation detail for the interested reader.

Table 6.2: List of vector functions usage by KINSOL code modules

k
in

s
o
l

k
in

s
p
g
m
r

k
in

b
b
d
p
r
e

f
k
in

s
o
l

N VClone X X X

N VDestroy X X X

N VSpace X

N VGetArrayPointer X X

N VSetArrayPointer X

N VLinearSum X X

N VConst X

N VProd X X

N VDiv X

N VMinQuotient X

N VScale X X X

N VAbs X

N VInv X

N VDotProd X

N VConstrMask X

N VMaxNorm X

N VL1Norm X

N VWL2Norm X X

N VMin X

The following vector operations listed in Table 6.1 are not used by kinsol: N VAddConst,
N VWrmsNorm, N VWrmsNormMask, N VCompare, and N VInvTest. Therefore a user-supplied nvec-

tor module for kinsol could omit these five functions.

Chapter 7

Providing Alternate Linear Solver
Modules

The central kinsol module interfaces with the linear solver module by way of calls to four routines.
These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification routine (like that described in
§5.4.2 for kinspgmr) which will attach the above four routines to the main kinsol memory block.
Note that of the four interface routines, only the lsolve routine is required. The lfree routine
must be provided only if the solver specification routine makes any memory allocation.
These four routines that interface between kinsol and the linear solver module necessarily have

fixed call sequences. Thus, a user wishing to implement another linear solver within the kinsol

package must adhere to this set of interfaces. The following is a complete description of the call
list for each of these routines. Note that the call list of each routine includes a pointer to the main
kinsol memory block, by which the routine can access various data related to the kinsol solution.
The contents of this memory block are given in the file kinsol impl.h (but not reproduced here,
for the sake of space).

Initialization routine. The type definition of linit is

linit

Definition int (*linit)(KINMem kin mem);

Purpose The purpose of linit is to complete initializations for a specific linear solver, such as
counters and statistics.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value An linit function should return 0 if it has successfully initialized the kinsol linear
solver and −1 otherwise.

Notes If an error does occur, an appropriate message should be sent to kin mem->kin errfp.

Setup routine. The type definition of lsetup is

62 Providing Alternate Linear Solver Modules

lsetup

Definition int (*lsetup)(KINMem kin mem);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It
may recompute Jacobian-related data if it deems necessary.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value The lsetup routine should return 0 if successful, a positive value for a recoverable
error, and a negative value for an unrecoverable error.

Solve routine. The type definition of lsolve is

lsolve

Definition int (*lsolve)(KINMem kin mem, N Vector x,

N Vector b, realtype *res norm);

Purpose The routine lsolve must solve the linear equation Jx = b, where J = ∂F/∂u is
evaluated at the current iterate and the right-hand side vector b is input.

Arguments kin mem is the kinsol memory pointer of type KINMem.

x is a vector set to an initial guess prior to calling lsolve. On return it should
contain the solution to Jx = b.

b is the right-hand side vector b, set to−F (u), evaluated at the current iterate.
res norm holds the value of the L2 norm of the residual vector upon return.

Return value lsolve returns a positive value for a recoverable error and a negative value for an
unrecoverable error. Success is indicated by a 0 return value.

Memory deallocation routine. The type definition of lfree is

lfree

Definition void (*lfree)(KINMem kin mem);

Purpose The routine lfree should free any linear solver memory allocated by the linit routine.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value This routine has no return value.

Notes This routine is called once a problem has been completed and the linear solver is no
longer needed.

Chapter 8

Generic Linear Solvers in
SUNDIALS

In this chapter, we describe two generic linear solver code modules that are included in sundials,
but which are of potential use as generic packages in themselves, either in conjunction with the use
of kinsol or separately. These modules are:

• The dense matrix package, which includes functions for small dense matrices treated as simple
array types.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

The functions for small dense matrices are fully described here because we expect that they will
be useful in the implementation of preconditioners used with the combination of kinsol and the
kinspgmr solver.

8.1 The DENSE module

8.1.1 Type DenseMat

The type DenseMat is defined to be a pointer to a structure with a size and a data field:

typedef struct {

long int size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a
dense matrix, while the data field is a two dimensional array used for component storage. The
elements of a dense matrix are stored columnwise (i.e columns are stored one on top of the other in
memory). If A is of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given
by the expression (A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros
below allow a user to efficiently access individual matrix elements without writing out explicit data
structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL macro. Users should use these macros
whenever possible.

8.1.2 Accessor Macros

The following two macros are defined by the dense module to provide access to data in the DenseMat
type:

64 Generic Linear Solvers in SUNDIALS

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N × N DenseMat A, 0 ≤ j ≤ N − 1. The type
of the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above,
col j may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is
referenced by col j[i].

8.1.3 Functions

The following functions for DenseMat matrices are available in the dense package. For full details,
see the header file dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;

• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

8.1.4 Small Dense Matrix Functions

The following functions for small dense matrices are available in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th
column of a. The location a[0] contains a pointer to n2 contiguous locations which contain
the elements of a.

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in
the array if successful. It returns NULL if the memory request could not be satisfied.

8.2 The SPGMR Module 65

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation
matrix, L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper
triangular matrix, then the upper triangular part of a (including its diagonal) contains U
and the strictly lower triangular part of a contains the multipliers, I − L.

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization. In this case it returns the column index (numbered from one) at which it
encountered the zero.

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU-
factored and the pivot array p has been set by a successful call to gefa(a,n,p). The solution
x is written into the b array.

• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally
appear on paper. It is intended as a debugging tool with small values of n. The elements are
printed using the %g option. A blank line is printed before and after the matrix.

8.2 The SPGMR Module

The spgmr package, in the files spgmr.h and spgmr.c, includes an implementation of the scaled
preconditioned GMRES method. A separate code module, iterative.h and iterative.c, contains
auxiliary functions that support spgmr, and also other Krylov solvers to be added later. For full
details, including usage instructions, see the files spgmr.h and iterative.h.

66 Generic Linear Solvers in SUNDIALS

Functions. The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package iterative.h and iterative.c:

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

Chapter 9

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

9.1 KINSOL input constants

kinsol main solver module

KIN ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN ETACONSTANT 3 Use constant value for η.
KIN INEXACT NEWTON 1 Use inexact Newton globalization.
KIN LINESEARCH 2 Use line search globalization.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC RIGHT 2 Preconditioning on the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

9.2 KINSOL output constants

kinsol main solver module

KIN SUCCESS 0 Successful function return.
KIN INITIAL GUESS OK 1 The initial user-supplied guess already satisfies the stopping

criterion.
KIN STEP LT STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN MEM NULL -1 The cvode mem argument was NULL.
KIN ILL INPUT -2 One of the function inputs is illegal.
KIN NO MALLOC -3 The kinsolmemory was not allocated by a call to KINMalloc.
KIN MEM FAIL -4 A memory allocation failed.
KIN LINESEARCH NONCONV -5 The line search algorithm was unable to find an iterate suffi-

ciently distinct from the current iterate.
KIN MAXITER REACHED -6 The maximum number of nonlinear iterations has been

reached.

68 KINSOL Constants

KIN MXNEWT 5X EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled
step length test.

KIN LINESEARCH BCFAIL -8 The line search algorithm was unable to satisfy the β-condition
for nbcfails iterations.

KIN LINSOLV NO RECOVERY -9 The user-supplied routine preconditioner slve function failed
recoverably, but the preconditioner is already current.

KIN LINIT FAIL -10 The linear solver’s initialization function failed.
KIN LSETUP FAIL -11 The linear solver’s setup function failed in an unrecoverable

manner.
KIN LSOLVE FAIL -12 The linear solver’s solve function failed in an unrecoverable

manner.
KIN PDATA NULL -13 The preconditioner module has not been initialized.

kinspgmr linear solver module

KINSPGMR SUCCESS 0 Successful function return.
KINSPGMR MEM NULL -1 The cvode mem argument was NULL.
KINSPGMR LMEM NULL -2 The kinspgmr linear solver has not been initialized.
KINSPGMR ILL INPUT -3 The kinspgmr solver is not compatible with the current

nvector module.
KINSPGMR MEM FAIL -4 A memory allocation request failed.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL -2 The Jacobian tims vector function failed.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.

Bibliography

[1] P. N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection
methods. SIAM J. Numer. Anal., 24(2):407–434, 1987.

[2] P. N. Brown and A. C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J.
Appl. Math. & Comp., 31:49–91, 1989.

[3] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM
J. Sci. Stat. Comput., 11:450–481, 1990.

[4] A. M. Collier and R. Serban. Example Programs for KINSOL v2.2.0. Technical Report UCRL-
SM-208114, LLNL, 2004.

[5] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer.

Anal., 19:400–408, 1982.

[6] J. E. Dennis and R. B. Schnabel. ”Numerical Methods for Unconstrained Optimization and

Nonlinear Equations”. SIAM, Philadelphia, 1996.

[7] S. C. Eisenstat and H. F. Walker. Choosing the Forcing Terms in an Inexact Newton Method.
SIAM J. Sci. Comput., 17:16–32, 1996.

[8] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia,
1995.

[9] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

Index

BIG REAL, 17, 55

denaddI, 65
denalloc, 64
denallocpiv, 64
dencopy, 65
denfree, 65
denfreepiv, 65
denprint, 65
denscale, 65
dense generic linear solver

functions
large matrix, 64
small matrix, 64–65

macros, 63–64
type DenseMat, 63

DENSE COL, 64
DENSE ELEM, 64
DenseMat, 63
denzero, 65

error message, 24

f data, 36, 39
FKFUN, 44
fkinbbd interface module

optional output, 49
usage, 48

FKINBBDFREE, 49
FKINBBDINIT, 48
FKINBBDOPT, 49
FKINBBDSPGMR, 48
FKINFREE, 47
FKINMALLOC, 46
FKINMALLOC, 45
FKINSOL, 47
fkinsol interface module

interface to the kinbbdpre module, 49
optional input and output, 44
usage, 47
user-callable functions, 43
user-supplied functions, 43

FKINSPGMR, 46
FKINSPGMRSETJAC, 48
FKINSPGMRSETPREC, 46
FKINSPGMRSETPSOL, 46

FKJTIMES, 46
FKPSET, 47
FKPSOL, 46
FNVFREEP, 47
FNVFREES, 47
FNVINITP, 45
FNVINITS, 45

gefa, 65
generic linear solvers

dense, 63
spgmr, 65
use in kinsol, 16

gesl, 65
GMRES method, 22, 65

half-bandwidths, 41
header files, 40

Inexact Newton iteration
definition, 11

IOPT, 44–46

Jacobian-vector product approximation
difference quotient, 30
use in fkinsol, 46
user-supplied, 31, 36

KIN ETACHOICE1, 27
KIN ETACHOICE2, 27
KIN ETACONSTANT, 27
KIN ILL INPUT, 21, 23, 25–30
KIN INEXACT NEWTON, 22
KIN INITIAL GUESS OK, 23
KIN LINESEARCH, 22
KIN LINESEARCH BCFAIL, 23
KIN LINESEARCH NONCONV, 23
KIN LINIT FAIL, 23
KIN LINSOLV NO RECOVERY, 23
KIN LSETUP FAIL, 23
KIN LSOLVE FAIL, 23
KIN MAXITER REACHED, 23
KIN MEM FAIL, 21
KIN MEM NULL, 21, 23, 25–30, 32, 33
KIN MXNEWT 5X EXCEEDED, 23
KIN NO MALLOC, 23

72 INDEX

KIN PDATA NULL, 41, 42
KIN STEP LT STPTOL, 23
KIN SUCCESS, 21, 23, 25–30, 32, 33, 42
kinbbdpre preconditioner

optional output, 42
usage, 40–41
user-callable functions, 41
user-supplied functions, 39–40

KINBBDPrecAlloc, 41
KINBBDPrecFree, 42
KINBBDPrecGetNumGfnEvals, 42
KINBBDPrecGetWorkSpace, 42
KINBBDSpgmr, 40, 41
KINCreate, 21
KINFree, 21
KINGetFuncNorm, 33
KINGetNumBacktrackOps, 33
KINGetNumBetaCondFails, 33
KINGetNumFuncEvals, 32
KINGetNumNonlinSolvIters, 32
KINGetStepLength, 33
KINGetWorkSpace, 31
KINMalloc, 21
KINSetConstraints, 29
KINSetErrFile, 24
KINSetEtaConstValue, 27
KINSetEtaForm, 27
KINSetEtaParams, 27
KINSetFdata, 26
KINSetFuncNormTol, 29
KINSetInfoFile, 25
KINSetMaxNewtonStep, 28
KINSetMaxPrecCalls, 26
KINSetNoMinEps, 28
KINSetNoPrecInit, 26
KINSetNumMaxIters, 26
KINSetPrintLevel, 25
KINSetRelErrFunc, 28
KINSetScaledStepTol, 29
KINSetSysFunc, 30
kinsol

brief description of, 1
motivation for writing in C, 1
package structure, 13
relationship to NKSOL, 1

kinsol linear solvers
built on generic solvers, 22
header files, 18
implementation details, 13–16
kinspgmr, 22
list of, 13

KINSol, 22
kinsol.h, 18
KINSOLkinsol linear solvers

selecting, 22
kinspgmr linear solver

Jacobian approximation used by, 30
optional input, 30
optional output, 34–36
preconditioner setup function, 30, 38
preconditioner solve function, 30, 37

kinspgmr linear solver
memory requirements, 34
selection of, 22

KINSpgmr, 22, 22
kinspgmr.h, 18
KINSPGMR ILL INPUT, 22, 30, 41
KINSPGMR LMEM NULL, 30, 31, 34–36
KINSPGMR MEM FAIL, 22, 41
KINSPGMR MEM NULL, 22, 30, 31, 34–36, 41
KINSPGMR SUCCESS, 22, 30, 31, 34–36, 41
KINSpgmrDQJtimes, 30
KINSpgmrGetLastFlag, 36
KINSpgmrGetNumConvFails, 34
KINSpgmrGetNumJtimesEvals, 35
KINSpgmrGetNumLinIters, 34
KINSpgmrGetNumPrecEvals, 35
KINSpgmrGetNumPrecSolves, 35
KINSpgmrGetNumRhsEvals, 35
KINSpgmrGetWorkSpace, 34
KINSpgmrJacTimesVecFn, 36
KINSpgmrPrecSetupFn, 38
KINSpgmrPrecSolveFn, 37
KINSpgmrSetJacTimesVecFn, 31
KINSpgmrSetMaxRestarts, 30
KINSpgmrSetPreconditioner, 31
KINSysFn, 21, 36

linit, 61

maxl, 41
memory requirements

kinbbdpre preconditioner, 42
kinsol solver, 32
kinspgmr linear solver, 34

MPI, 2

N VCloneEmpty Parallel, 59
N VCloneEmpty Serial, 56
N VCloneVectorArray, 52
N VDestroyVectorArray, 52
N VDestroyVectorArray Parallel, 59
N VDestroyVectorArray Serial, 57
N Vector, 18, 51, 51
N VMake Parallel, 59
N VMake Serial, 56
N VNew Parallel, 58
N VNew Serial, 56
N VNewEmpty Parallel, 58

INDEX 73

N VNewEmpty Serial, 56
N VNewVectorArray Parallel, 59
N VNewVectorArray Serial, 56
N VNewVectorArrayEmpty Parallel, 59
N VNewVectorArrayEmpty Serial, 56
N VPrint Parallel, 59
N VPrint Serial, 57
nonlinear system

definition, 11
NV COMM P, 58
NV CONTENT P, 57
NV CONTENT S, 55
NV DATA P, 58
NV DATA S, 56
NV GLOBLENGTH P, 58
NV Ith P, 58
NV Ith S, 56
NV LENGTH S, 56
NV LOCLENGTH P, 58
NV OWN DATA P, 58
NV OWN DATA S, 56
NVECTOR module, 51
nvector.h, 18
nvector parallel.h, 18
nvector serial.h, 18

optional input
fkinsol, 44
iterative linear solver, 30
solver, 24

optional output
band-block-diagonal preconditioner, 42
fkinbbd, 49
fkinsol, 44
iterative linear solver, 34–36
solver, 31

portability, 17
Fortran, 43

preconditioning
setup and solve phases, 13
user-supplied, 30–31, 37, 38

problem-defining function, 36

RCONST, 17
realtype, 17
ROPT, 44–46

SMALL REAL, 17
spgmr generic linear solver

description of, 65
functions, 66
support functions, 66

SUNDIALS CASE LOWER, 43
SUNDIALS CASE UPPER, 43

SUNDIALS UNDERSCORE NONE, 43
SUNDIALS UNDERSCORE ONE, 43
SUNDIALS UNDERSCORE TWO, 43
sundialstypes.h, 17, 18

UNIT ROUNDOFF, 17
User main program

fcvbbd usage, 48
fkinsol usage, 44
kinbbdpre usage, 40
kinsol usage, 18

