SAND92-2137
Unlimited Release
Printed November 1995
Updated November 29, 2006 12:26 PM

EXODUS II: A Finite Element Data Model

Gregory D. Sjaardema (updated version)

Larry A. Schoof, Victor R. Yarberry
Computational Mechanics and Visualization Department
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

EXODUS II is a model developed to store and retrieve data for finite element
analyses. It is used for preprocessing (problem definition), postprocessing (results
visualization), as well as code to code data transfer. An EXODUS II data file is a
random access, machine independent, binary file that is written and read via C, C++,
or Fortran library routines which comprise the Application Programming Interface
(AP).

Distribution
Category UC-705

Table of Contents

1

2
3
4

J £518 g6 L0 To1 5 To) o D PRPPPRPRPPPUPR 6
1.1 AVALADIIILY L.eiiiiiieiiieee ettt ettt e sttt e st e s e eeeane 7
Changes Since First Printing........occ.oooiiiiiiiiiiiiiiieecccceeeeete ettt 8
Development of EXODUS IL......ccooiiiiiiiiiiiiice ettt 10
Description Of Data ODJECLS.....c..eeiiiiiiiiiiieiieie ettt e 11
4.1 GlODAl PATQmELerSccocvvvveeiieeeeeieiireeeee e eeeerre et e eeeeeeetbreeeeeeeesesnaasraeeeeeeeeennnnns 12
4.2 Quality ASSUranCe Datacooiiiiiiiiiiiiiiiieeeee e 12
4.3 INformation Data............cooviiiiriiiiiii e eeet b eeee et e e e 13
4.4 INOAAL COOTAINALESeevvveeeieeeiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeestssseesessssssssssnsesesesnsersnnrnnes 13
44.1 CoOrdinate NAINES.........coevvirrrreiieeeeeieiiitrrreeeeeeeeeeeiarsreeeeeeeeeeesesssrssssseeeensesrnreees 13
4.5 NOAE NUMDBET IMAP ..ottt ettt ettt ettt e et e s e s st e e snbeee e 13
4.6 Element NUMDBEr Mapcoooiiiiiiiiiiee ettt e e ee e s etaee e e 14
4.7 Optimized Element Order Map..........ccceeviiiiriiieiniiiiiiciiee e 14
4.8 EIEMENT BIOCKS ..vvvviiiiiiiieeeeeeeeee ettt ettt eeett e e e e s e et r e e e e e e 15
4.8.1 Element BloCK ParametersS............coovviiiiveiiiiieiiniiinreeeee e eeeeireeeee e eeeevvnneees 15
4.8.2 Element CONNECIVILY......coiiuiiiiiiiiiiieieieiee ittt 16
48.3 Element ATIIDULESoooeiiiiirieeeee et eee st eeeerrrr e e e e e e eeeaarnneees 18
4.9 INOAE SEES ..ottt st eeaeeeeaeeeesae s eeseeesessesasessssnsesssssssesesnnsnnnnnes 18
49.1 NOde Set Parameterscccuvviiiiiieeiieiiiiiiiitiee e e e eeeeerreeeee e e e e eeenernneees 19
4.9.2 JA\oTe (SN TS A Ao 6 (30 155 S s S PRURPPRRRURPRN 19
4.9.3 Node Set Distribution FaCtOrS.........uvvveieeiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeveeeveeeveveaeaeeas 19
4.10 Concatenated NOAE SELSccooeiuiiriiiiieeiiiiiiirreeeee e eeeeeecrree e e e e eeeerreeeeeeeeeeeseerrraeees 19
N I N 16 (N T £SO RO 20
4.11.1 Side Set ParameterS.........coooviuurreeeeeeiieiiieeeeeeeeeeeeeiirreeeeeeeeeeeenareeeeeeeeeeesensnneeees 22
4.11.2 Side Set EIEmMENt LLISt......coovmviiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeveeeeseeeaeeseneseeerenes 22
4.11.3 Side Set Side LSt ..uueeiiiiiiiieiiiiieiiee et eeeerrrre e e e e e eeeaareeees 22
4.11.4 Side Set INOAE LISt ..ooviiiiiiiiiiieeiiee ettt et e e e e eeaaaaeeees 22
4.11.5 Side Set Node Count LiSt.........cceeiieiiiiiiiireeeeieeeeiiiiirreeeeeeeeeenrreeeeeeeeeeeseanneeees 25
4.11.6 Side Set Distribution FACLOIScoovvvvviiiiiiiiiiiieieeeee e 25
4.12 Concatenated S1ide SELS.......ccoovviiurreiiiieeiiiiiiireeeeee e eeeeeecrre e e e eeeeearrr e e e e e eererrreeees 25
413 ODbBJECE INAIMESeeeiiiieiiieeiite ettt ettt e e st e st e e st e e sbbeesabteesabeeesaneeesabeeenns 26
4.14 ODbBJECt PrOPETTIES. ...coueiiiiiiiiiiiieieeceeee et 26
4.14.1 Property Parameterscoouiieriieeniieeiieeiee ettt 27
4.14.2 Property ValUeS.....cooceiiiiiiiiiiiiiiieeeeeeee ettt 27
415 ReSUIS ParamElerS.......cceeiiiiiiiiiiiiieeeee ettt eeeeetrre e e e eeeeaaree e e e e e e e eenerrreeees 28
4.15.1 ReESUILS NAIMES....oevveieiiieiiiieeieeieeeeeeeeeeee ettt eeeeeeeeeeeaeaeeeeesssesesssessssssessesssesenenes 28
416 ReESUIS DAta.....ccooiiiiiiiiiiiiec et eeeee e e e ee et e e e e e e e eenntraaeees 28
4.16.1 TIME VAIUECS c.coevveeeeeeeeeeeeeeeeeeeeeeeeeeee e aaeaeeeveessesaeesesesesnnenes 28
4.16.2 GloODaAl RESUILS.....uvvveeiiiieiiiiiieeeeee et eerere e e e ee et 28
4.16.3 NOAAI RESUILSoevvviiiiiiiiiiiiieeieeeeeeeeeeee ettt eaeeeaaesaesaeesseesesenenes 28
4.16.4 Element RESUILSoovviiiiiiiiiiiieiieeeeieeeeeeeeeeeeeeeeeeeeeeeeee v eeeeeeeeeeeesaesesesenesesenanes 29
4.16.5 INOAESEt RESULLS.....evviiiiiiiiiiiiiieiiee ettt eeeeerree e e e eeeetrrre e e e e e e eeeaaareeees 29
4.16.6 S1deSEt RESUILS ..covvviiiiiiiiiiiiieeeeeeeeee ettt aeesaesaeeseaeeesenenes 29

4.17 Element, Nodeset, Sideset Variable Truth Table.........coouvueeeeieiiiiiiiiiiiieeeeeeeeeeeennnn, 30

418 COOrdINAte fTAIMES ..vvvvvveiiiieiieieiiieeeeeee ettt e e e e e e bt e e e e e s essesaaareeeeeeeesesnasrranees 30
5 Application Programming Interface (API)ccccooviiiiiiiiiiiieeeeeeeee 32
5.1 | D F: 17 I 51 S U5 (OO 33
5.1.1 Create EXODUS ILFILEuvvviiiiiiieieiieeeeeee et 34
5.1.2 Open EXODUS ITFIE...c.uviiiiiiiiiieieeeeeete et 36
5.1.3 CloSe EXODUS ILFILEuuvvvviiiiiiieeeeeeteeeeeee ettt 39
5.14 Update EXODUS TL File......ccoviiiiiiiiiiiieeiiecieceeeeeeeeeee e 39
5.1.5 Write Initialization Parameterscooovvvvveiiiiiiiiiiiiieeieee it 40
5.1.6 Read Initialization Parametersooovvvveeeeeeeiiiiiiirreeeeeeeeeiisiinreeeeeeeeeeesevvnneees 42
5.1.7 Write QA RECOTAS....ooiiiiiiiieeieee et et e et eaae e e 44
5.1.8 Read QA RECOIAS ..vveiieiieeiiieeeiee ettt e e et e e eeeaaraneees 46
5.1.9 Write Information RECOTASooovviviiiiiiiiiiiiieeciiieeeee et 47
5.1.10 Read Information RECOIASccoomriiurrriiiiieiiiiiiiiieeeeee e eie e 49
5.1.11 Inquire EXODUS Parametersccccveervieeriureenieeenieeenreeeseveesnseesseeesneens 50
S5.1.12 ErrOr REPOTTINGeiiiiiiiiiiieeie ettt sttt 54
5.1.13 Set Error Reporting Level.........c.ooiiiiiiiiiiiiiiiiieciecceeeeeeeeee e 55
5.1.14 Determine if File is Large or Normal Format..............c.cccooceiiiiiiiniinnnnnnn, 56
5.2 MOdel DESCIIPHON ..cecuvviiiiiiieiieeeiteeeite ettt e stte et e et e st e et e e st e e sbeeesaneeesans 57
5.2.1 Write NOAal COOTAINALESuvvvvviiiiiiiieiiiieeeeee i eeeerre e e e s e e snaaaeeees 57
52.2 Read Nodal CoOrdinatescvvveeeeeeeeeieiiirreeeeeeeeiieiieirreeeeeeeeeeeirreeeeeeeeeeesensrneeess 59
523 Write Coordinate INAIMNES.vviiieiiiiiiiiiiiieeeeeeeeiirrrreeeeeeeeeeearrereeeseeseesnrreeees 60
524 Read Coordinate NAMESceeviieeieiiiiiiiiieieeeeeeeeeireeeeeeeeeeeerreeeeeeeeeeesnrrnneees 62
5.2.5 Write Node NUMDEr Mapccccvvieiiiiiiiiecciieeieeeee et 63
5.2.6 Read Node NUmMber Mapcoociiiiiiiiiiieeiieeiieeeeeeeeee et 64
5.2.7 Write Element Number Map........coccueevviiiiiiiiiiieiieeieeciee e 65
5.2.8 Read Element NUMDbEr Map.........ccccvveiiiieiiieeiiieciie e 66
5.2.9 Write Element Order Mapcooovieiiiiiiiiieiiieeiieeieeeee e 67
5.2.10 Read Element Order Mapccceeiiiiiiiiiiiiieieeeeee ettt 69
5.2.11 Write Element Block Parameters...........cccoooeeevveiiivveieeeeeiieiiinreeeeeeeeeeeevnneeen. 70
5.2.12 Read Element Block Parameters...........c.eeeviviiiiiiiieeieeeieieeiiieeeeeeee e 73
5.2.13 Write All Element Block Parameters.............ccoovvvvvveeeieeieeiniiireeeeeeeeeeeevnnenen. 75
5.2.14 Read Element BIOCKS ISuviiiiiiiiiiiiiiieiie ettt 76
5.2.15 Write Element Block COnnECtiVItycceevveerriieerniieniieeiiieeeieeesieeeeiee e 77
5.2.16 Read Element Block CONNECHIVILYccceevuteruirieniieiiniiniieieeicneeieeeesee e 78
5.2.17 Write Element BIOCK AttrIDULES......cccuvvvvviiiieiiiiiiiieeieeeee e 79
5.2.18 Read Element BIock AtriDULESccuvvvvveeiieieiiiiieeieeeee e 80
5.2.19 Write One Element BIOCK AttIIDULEcoovvviviiiiiiieiiiiieiiiieeeeeee e 82
5.2.20 Read One Element BIoCK AtribULEeeeeeeeeiiiiiiieriiieeeeeeiiireeeeeee e, 83
5221 Write AtrDULE NAIMNESevvvvveeiiiiieiiiiiieeeee ettt e e e ee e e e e e e e eeanaaaeeeas 83
5.2.22 Read Attribute NAMES......ccvvvviieiieiiiiiiireeeeee e eeeeirieee e e e eeeeetrreeeeeeeeeeeenarneeees 84
5.2.23 Write Node Set ParametersS.........cooovvvuvveeiiiieiiiiiiieeieeeee e 85
5.2.24 Read Node Set ParameterS..........ccoovvviureeeiieeeeiiiiiiieeeeeeeeeeeeecirreeeeeeeeeeernsnneeees 87
5.2.25 WIE NOGE SEl..uuviiiiiiiiiiiiiieeieee ettt e e e e e e e e e e e s e eaaaaeeeas 89
52.26 ReEAAINOGAE SCl.uuuvviiiiiiiiieiiieeeeee et eee e e e e e e e ertaneeees 90
5.2.27 Write Node Set Distribution Factors..............ccoovvvvuvviiiieiiiiiiiinreeeiee e, 91

-3

5.2.28 Read Node Set Distribution FACtOrsccoovvvvvvriiiieeiiiiiiirreeeeeeeeeeeevnneeen. 92
52.29 Read NOAE SetS IDS ...ccoooieieiieeieieieeeeeeeeeeeee e e e 93
5.2.30 Write Concatenated NOAE SELScccocvvreeieiieieiiiiiiieeeeee e eeeeeireeeees 95
5.2.31 Read Concatenated NOAE SEeLScooovvvvriiiiiiiiiiiiieeieee e 98
5.2.32 Write Side Set PArameterscooveviuvrreeeeeeeiieiiiireeeeeeeeeeeeerreeeeeeeeeeeeenrnnenes 101
5.2.33 Read Side Set Parametersccooeviirveeeeeeeeieiiiiireeeeeeeeeeeeireeeeeeeeeeeeeesvnneees 103
5.2.34 WIIE SIAE S .uuvveiiiiiiiiieiieeieee e e e e e e e e s e eeaaaaaeeas 105
5.2.35 ReEAA S1AE SOl .uuurreiiiiiiiiieiieeeeeee ettt e e e se e e e e eenrrrreees 106
5.2.36 Write Side Set Distribution FaCtOrscccovvvvviviiiiiiiiiiiiiiiieeee e 107
5.2.37 Read Side Set Distribution FacCtorS.............ccoovvvvivieeiiiiiiiiiiiiiieeeee e, 109
5.2.38 Read Side SetS IDS....ccooiouiieiiiiiiiieieeeeeee e 110
5.2.39 Get Side Set Node List Lengthcoocviiiiiiiniiiiniiiiiicceieeeeeeee 111
52.40 Read Side Set INOAE LISt ...uuvviiiiiiiiiiiiiieiiieieeeeeeiririee e eeeeereee e e s e e eearraeeeas 111
5.2.41 Write Concatenated Side SetS......ccccovurreeieiieiiiiiiiiereeeeeeeeeeeirreeeeeeeeeesinrreeees 113
5.2.42 Read Concatenated SIde SEtS.......coovvuurriiieiriiiiiiiiiiieeeeeeeeeeireeeee e e e e eeerraeeens 117
5.2.43 Convert Side Set NOdes t0 SIAES ...vvvvvvriiiiiiiiiiiiiieeeeee e 119
5.2.44 Write Coordinate FramesS...........ccoovviiiiviiiieeeeiieiiiiineeeeeeeeeeeeiirreeeeeeeeeeesevnnneees 122
5.2.45 Read Coordinate Frames.........cccccoovvviiviiiiieiiiiiiiiiiiieeeeeeeeeerieeee e e e 124
5.2.46 Write ObJECt NAMES...ccuviiiiiiieiiieiiie ettt 125
5.2.47 Read ODbJect NAMES.ccc.eeiuiiiiiiiiiiiieiie ettt ettt ettt 126
5.2.48 Write Individual Object Name..........ccocveeeriieiiiiiieiieeieeeeeeeeeeeeee e 127
5.249 Read Individual Object Name........cccccoeeiiimeeniinniiniinieicnieneeieeeeeeeeeeeene 128
5.2.50 Write Property Arrays NameS........ccceeeiiiiiiieeniieeiieeeieeeree et 130
5.2.51 Read Property Arrays NAmMES.......ccccueeriiiiiieiiiiiienie e 132
5.2.52 Write ObJeCt PrOPertyccccceieeiiiiiiiiieiieeiieeetee ettt 134
5.2.53 Read ObJect PrOPETLYccccveeeiiiiiiiiiiiieeiee ettt 136
5.2.54 Write Object Property AITay........ccoccceriiiiiieiieeiienieeiee et 137
5.2.55 Read Object Property ATTaY........cccccueeriieeriieiniieeniieeeiieeeiree s sieeeseee e 139
5.2.56 Get Number of Object PrOPErtiescoveeriiriienieiiienieeieesie e 141
5.2.57 Copy One Database to ANOhETcceeeriieeriieiniieeiteeiee e 141
53 L V1 B 7 R 142
5.3.1 Write Results Variables Parameters........cco.veeeeeeeeeiiiiinveeeeeee e eeeenns 142
53.2 Read Results Variables Parameterseevevevevveeeieeeeeeeeeieeeeeeeeeeveveeeeeeenenns 144
533 Write All Results Variables Parameterscooovvvvvveeeeieeeeeiiiiinneeeeeeeeeeeennns 145
534 Write Results Variables NAMESevvvvviiiiiiiiiiiiiieiieeeieeeeeeeeeeeeeeeeveeeveveeeaaaes 146
5.3.5 Read Results Variables NamEScoccvvvvieiiiiiiiiiiiieeieee e 148
5.3.6 Werite Individual Results Variable Name............coooeevvveeeieeieeiiiiinieeeeeeeeeeennns 150
5.3.7 Read Individual Results Variable Name.........cccoovvvvviiiiiiiiiiiiieeeeeeeeeeeeineeeen, 151
5.3.8 Write Time Value for a Time Stepcccueevviiiiiiiiiiniieiiieeieeeeeeee e 152
5.39 Read Time Value for a Time Stepcccceeviiiiiiiiiiiiiiiiiieeeeeecee 153
5.3.10 Read All TIME ValUES.......uvveiiiieiieeeeiiieeeeee ettt eeeerreee e e e e eeeranneees 154
5.3.11 Write Object Variable Truth Table............ccoceiiiiiiiiiiiice 156
5.3.12 Read Variable Truth Table...........ccooovivreiiiiiiiiiiiiieeeeeeeeeeeceeeee e 157
5.3.13 Write Element Variable Truth Tablecooovvvviiiiiiiiiiieieeeeeeeeeeen, 158
5.3.14 Read Element Variable Truth Tableccccoovvvvieiiiiiiiiiiieeeeee e, 160
5.3.15 Write Element Variable Values at a Time Step.......cccocveervveeniieeniieeniieennne. 162

4 -

5.3.16 Read Element Variable Values at a Time Step........cccocveevvveeriiieniieenieeennne. 164
5.3.17 Read Element Variable Values through Timeccocceeiiniiiiiinninnennn 166
5.3.18 Write Nodeset Variable Truth Table..........cccccoviiniiniiininiiiiiiccceee 168
5.3.19 Read Nodeset Variable Truth Tablecoceeiiiniiiiiiniiiieeeeee 170
5.3.20 Write Nodeset Variable Values at a Time Stepcccocvevvvieeviieeniieeniieenne. 171
5.3.21 Read Nodeset Variable Values at a Time Stepcccevveervveernieeniieeniieenne 173
5.3.22 Write Sideset Variable Truth Tableccocoiiiiiiiiiiiiice 174
5.3.23 Read Sideset Variable Truth Table..........ccccoceeviiniiniiiniiiiicceee 176
5.3.24 Write Sideset Variable Values at a Time Step.......ccceeveeevieeeiieeeceeenreeeene 177
5.3.25 Read sideset Variable Values at a Time Stepcccoevveeveiiieiiieeniieeneeene. 179
5.3.26 Write Global Variables Values at a Time Step......c.cccecveeevvvieerieeriieenreeeene 180
5.3.27 Read Global Variables Values at a Time Step.........ccevvveeriiveeriieeniieenineeennne 182
5.3.28 Read Global Variable Values through Time.........ccccocceeniiiiiiniiiiiiieniceene 183
5.3.29 Write Nodal Variable Values at a Time Step.....ccccceeevveerrieeniiiesiieeiieeenne 185
5.3.30 Read Nodal Variable Values at a Time Stepcccceeveeriieiienieniiinieeieee 187
5.3.31 Read Nodal Variable Values through Time..........cccccccocerviininiinininncnnne 189
6 RETEIENCES ..ot 192
Appendix A. Implementation of EXODUS II with netCDFcocccoiiiniiiniineen. 193
Appendix B. “Large Model” ModifiCations.........ccoceeeriiieeriiieeniieenieeeiee e siee e 202
Appendix C. EITOr MESSAZES. ...eeuvieiiiiieiteeiee ettt 206
Appendix D. SAMPIE COUCS....eeenerieiiiiiiiiee ettt ettt e et e st esare e s e e saeee e 210

1 Introduction

EXODUS II is the successor of the widely used finite element (FE) data file format EXODUS
[1] (henceforth referred to as EXODUS I) developed by Mills-Curran and Flanagan. It
continues the concept of a common database for multiple application codes (mesh generators,
analysis codes, visualization software, etc.) rather than code-specific utilities, affording
flexibility and robustness for both the application code developer and application code user.
By using the EXODUS II data model, a user inherits the flexibility of using a large array of
application codes (including vendor-supplied codes) which access this common data file

directly or via translators.

The uses of the EXODUS II data model include the following, as illustrated in Figure 1:

Problem definition -- mesh generation, specification of locations of boundary
conditions and load application, specification of material types.

Simulation -- model input and results output.

Visualization -- model verification, results postprocessing, data interrogation, and
analysis tracking.

PROBLEM DEFINITION

- define geometry
- discretize model
- define load locations

- define locations of boundary
conditions

- define material types

VISUALIZATION

- model verification
- results postprocessing

- data probing
- analysis tracking

EXODUS I
DATA OBJECTS

- coordinates
- connectivity
- locations of loads

- results variables

TRANSLATOR

SIMULATION
- stress analysis

- CFD analysis

- shock physiscs analysis

VENDOR
APPLICATION
CODES

- structural dynamics analysis

Figure 1. Uses of EXODUSII

1.1 Availability
The EXODUS II library is licensed under the BSD open source license.

Copyright (c¢) 2005 Sandia Corporation. Under the terms of Contract DE-AC04-94A1.85000
with Sandia Corporation, the U.S. Government retains certain rights in this software.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

e Neither the name of Sandia Corporation nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The ExoduslI library source code is available on Sourceforge at
http://sourceforge.net/projects/exodusii

For bug reports, documentation errors, and enhancement suggestions, contact:

Gregory D. Sjaardema
PHONE: (505) 844-2701
EMAIL: gdsjaar@sandia.gov

2 Changes Since First Printing

There have been several changes to the Exodusll API in the 12 years since the original
ExoduslI report was published. The main changes are:

e Addition of Coordinate Frames

e Addition of node set and side set results variables.

e Addition of element block, node set, side set, element map, and node map names.

e Addition of element block attribute names.

e Support for very large models.

e Efficient replication of the model definition “genesis” portion of the database.

e Multiple, optional named node and element maps which can be used for any
purpose.
e Support for “meshes” with no nodes or elements; or nodes, but no elements.

There have also been some functions added to make it easier to write an exodusll database
efficiently. These include:

e API function to write concatenated element block information, and
o API function to define all results data with one call.

The following API functions have been added:

E€X _COPY v v veneee el e oo eeedtneeneeeenaeeeennas Section 5.2.57
ex_get_coordinate framescuouieetnneeeenn. Section 5.2.45
ex_get_elem attr namesc.ii ittt tnnnennn Section 5.2.22
1S5 e 1= o o T= 1111 FR OO Section 5.2.49
1S5 e 1= ol o T= 1111 = Section 5.2.47
X _get _MNSEl _ VAT .+ i i ittt ittt e et et e Section 5.3.21
ex_get_nset_var _tab e e Section 5.3.19
eX gt NUMAPTODPS T 4 s e et e tenencnsnsnssnsnsnsnsnas Section 5.2.56
ex_get_side_set node_list_lenciiueee... Section 5.2.39
ex_get_one_elem attrttt it e e e e e Section 5.2.20
(S5 e 1<) SN =E =1 =Y ol (2= B N Section
ex_get_sset_var_tab e Section
X _gel_ VAT NAME & it ittt et ettt et ettt eeeeeeanns Section
ex_get var tab e e e e e e Section
ex_large_modelttt e e e e e e e Section
ex_put_all var Paral ... eeeeeeeeeneeeneeneenenns Section
ex_put_concat_elem block Section
ex_put_coordinate_framescuouuetttneeeenn. Section
ex_put_elem attr Namesuii it ittt nnnnnnnn Section
1S5 <15 § oA o =1 11T Section
1S5 o1 5 § oA o ¥=1 11T = Section
IS5 a0 o1 6§ ol o ¥ =1 =X ol 2> N Section
ex_put_nset_var tab e e Section
ex_put_one elem attrttt e e e e Section
EX PUL SSEE VAT & ittt it e e et e e e e e e Section

ex_put_sset_var tab e e Section
X PUL_ VAT NAME & ittt et e ettt et et e et aeeeeeeeeean Section
ex_ put_var _tab e e e Section

In addition, there have been many changes to the source code to improve robustness and
efficiency.

3 Development of EXODUS I

The evolution of the EXODUS data model has been steered by FE application code developers
who desire the advantages of a common data format. The EXODUS II model has been
designed to overcome deficiencies in the EXODUS I file format and meet the following
functional requirements as specified by these developers:

¢ Random read/write access.

* Application programming interface (API) -- provide routines callable from FORTRAN,
C, and C++ application codes.

* Extensible -- allow new data objects to be added without modifying the application
programs that use the file format.

* Machine independent -- data should be independent of the machine which generated it.

* Real-time access during analysis -- allow access to the data in a file while the file is
being created.

To address these requirements, the public domain database library netCDF [3] was selected to
handle the low-level data storage. The EXODUS I library functions provide the mapping
between FE data objects and netCDF dimensions, attributes, and variables. (These mappings
are documented in Appendix A.) Thus, the code developer interacts with the data model using
the vocabulary of an FE analyst (element connectivity, nodal coordinates, etc.) and is relieved
of the details of the data access mechanism. To provide machine independency, the netCDF
library stores data in eXternal Data Representation (XDR) [4] format.

Because an EXODUS 1I file is a netCDF file, an application program can access data via the
EXODUS 1II API or the netCDF API directly. This functionality is illustrated in Figure 2.
Although accessing the data directly via the netCDF API requires more in-depth understanding
of netCDF, this capability is a powerful feature that allows the development of auxiliary
libraries of special purpose functions not offered in the standard EXODUS II library. For
example, if an application required access to the coordinates of a single node (the standard
library function returns the coordinates for all of the nodes in the model), a simple function
could be written that calls netCDF routines directly to read the data of interest.

(APPLICATION CODE)

Y
CEXODUS II API)
A

(netCDF API

Figure 2 ExodusII Implementation

-10 -

4 Description of Data Objects

The data in EXODUS I files can be divided into three primary categories: initialization data,
model, and results.

Initialization data includes sizing parameters (number of nodes, number of elements, etc.),
optional quality assurance information (names of codes that have operated on the data), and
optional informational text.

The model is described by data which are static (do not change through time). This data
includes nodal coordinates, element connectivity (node lists for each element), element
attributes, and node sets and side sets (used to aid in applying loading conditions and boundary
constraints).

The results are optional and include five types of variables -- nodal, element, nodeset, sideset,
and global -- each of which is stored through time. Nodal results are output (at each time step)
for all the nodes in the model. An example of a nodal variable is displacement in the X
direction. Element, nodeset, and sideset results are output (at each time step) for all entities
(elements, nodes, sides) in one or more entity block. For example, stress may be an element
variable. Another use of element variables is to record element status (a binary flag indicating
whether each element is “alive” or “dead”) through time. Global results are output (at each
time step) for a single element or node, or for a single property. Linear momentum of a
structure and the acceleration at a particular point are both examples of global variables.
Although these examples correspond to typical FE applications, the data format is flexible
enough to accommodate a spectrum of uses.

A few conventions and limitations must be cited:

e There are no restrictions on the frequency of results output except that the time
value associated with each successive time step must increase monotonically.

e To output results at different frequencies (i.e., variable A at every simulation time
step, variable B at every other time step) multiple EXODUS 1I files must be used.

e There are no limits to the number of each type of results, but once declared, the
number cannot change.

e If the mesh geometry or topology changes in time (i.e., number of nodes increases,
connectivity changes), then the new geometry must be output to a new EXODUS II
file.

The following sections describe the data objects that can be stored in an EXODUS 1I file. API
functions that read / write the particular objects are included for reference. API routines for the
C binding are in lower case; functions for the Fortran binding are in upper case. Refer to
Application Programming Interface (API) for a detailed description of each API function.

-11 -

4.1 Global Parameters

API functions: ex_put_init, ex get_init; EXPINI, EXGINI

Every EXODUS II file is initialized with the following parameters:

Title -- data file title of length Mmax_1LINE_LENGTH (MxLNLN in Fortran). Refer to
discussion below for definition of MAX_ILINE_LENGTH.

Number of nodes -- the total number of nodes in the model.
Problem dimension -- the number of spatial coordinates per node (1, 2, or 3).
Number of elements -- the total number of elements of all types in the file.

Number of element blocks -- within the EXODUS data model, elements are
grouped together into blocks. Refer to Element Blocks for a description of element
blocks.

Number of node sets -- node sets are a convenient method for referring to groups of
nodes. Refer to Nod for a description of node sets.

Number of side sets -- side sets are used to identify elements (and their sides) for
specific purposes. Refer to Sid for a description of side sets.

Database version number -- the version of the data objects stored in the file.

API version number -- the version of the EXODUS library functions which stored
the data in the file. The API version can change without changing the database
version and vice versa.

I/0 word size -- indicates the precision of the floating point data stored in the file.
Currently, four- or eight-byte floating point numbers are supported. It is not
necessary that an application code be written to handle the same precision as the
data stored in the file. If required, the routines in the EXODUS II library perform
automatic conversion between four- and eight-byte numbers.

Length of character strings -- all character data stored in an EXODUS 1I file is
either of length Max STR LENGTH (MXSTLN in Fortran) or MAX LINE_LENGTH
(mxLNLN in Fortran). This allows Fortran application codes to declare the lengths of
character variables as predefined constants. These two constants are defined in the
file exodusll.h (exodusllinc for Fortran). Current values are 32 and 80,
respectively.

Length of character lines -- see description above for length of character strings.

4.2 Quality Assurance Data

API functions: ex_put_ga, ex_get_ga; EXPQA, EXGQA

Quality assurance (QA) data is optional information that can be included to indicate which
application codes have operated on the data in the file. Any number of QA records can be

-12-

included, with each record containing four character strings of length MAX STR_LENGTH
(mxsTLN in Fortran). The four character strings are the following (in order):

1. Code name -- indicates the application code that has operated on the EXODUS II file.

2. Code QA descriptor -- provides a location for a version identifier of the application

code.

3. Date -- the date on which the application code was executed; should be in the format
01/25/93 (MM/DD/YY) or the format 20051104 (CCYYMMDD).

4. Time -- the 24-hour time at which the application code was executed; should be in the

format hours:minutes:seconds, such as 16:30:15.

4.3 Information Data

API functions: ex_put_info, ex get_info; EXPINF, EXGINF

This is for storage of optional supplementary text. Each text record is of length
MAX_LINE_LENGTH (MXLNLN in Fortran); there is no limit to the number of text records.

4.4 Nodal Coordinates

API functions: ex_put_coord, ex_get_coord; EXPCOR, EXGCOR

The nodal coordinates are the floating point spatial coordinates of all the nodes in the model.
The number of nodes and the problem dimension define the length of this array. The node
index cycles faster than the dimension index, thus the X coordinates for all the nodes is written
before any Y coordinate data are written. Internal node numbers (beginning with 1) are implied
from a nodes’s place in the nodal coordinates record. See Node Number Map for a discussion
of internal node numbers.

4.41 Coordinate Names

API functions: ex_put_coord_names, ex_get_coord names; EXPCON, EXGCON

The coordinate names are character strings of length Mmax_STR_LENGTH (MxSTLN in Fortran)
which name the spatial coordinates. There is one string for each dimension in the model, thus
there are one to three strings.

4.5 Node Number Map

API functions: ex _put_node num map, ex get node num map, EXPNNM, EXGNNM

-13-

Within the data model, internal node IDs are indices into the nodal coordinate array and
internal element IDs are indices into the element connectivity array. Thus, internal node and
element numbers (IDs) are contiguous (i.e., 1...number_of_nodes and
l...number_of_elements, respectively). Optional node and element number maps can be
stored to relate user-defined node and element IDs to these internal node and element numbers.
The lengths of these maps are number of_nodes and number_of_elements, respectively. As
an example, suppose a database contains exactly one QUAD element with four nodes. The user
desires the element ID to be 100 and the node IDs to be 10, 20, 30, and 40 as shown in Figure 3.

Node IDs Node coordinates 40 30
10 0.0 0.0
20 1.0 0.0 100
30 1.0 1.0
40 0.0 1.0 10 20

Figure 3 User-defined Node and Element IDs
The internal data structures representing the above model would be the following:
* nodal coordinate array: (0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0)
e connectivity array:(l,2,3,4)
* node number map: (10, 20, 30, 40)
* element number map: (100)

Internal (contiguously numbered) node and element IDs must be used for all data structures
that contain node or element numbers (IDs), including node set node lists, side set element lists,
and element connectivity. Additionally, to inquire the value(s) of node or element results
variables, an application code must pass the internal node or element number for the node or
element of interest.

4.6 Element Number Map

API functions: ex put_elem num map, ex get elem num map, EXPENM, EXGENM

Refer to Node Number Map for a discussion of the optional element number map.

4.7 Optimized Element Order Map

API functions: ex_put_map, ex_get_map; EXPMAP, EXGMAP

-14 -

The optional element order map defines the element order in which a solver (e.g., a wavefront
solver) should process the elements. For example, the first entry is the number of the element
which should be processed first by the solver. The length of this map is the total number of
elements in the model.

4.8 Element Blocks

For efficient storage and to minimize I/O, elements are grouped into element blocks. Within an
element block, all elements are of the same type (basic geometry and number of nodes). This
definition does not preclude multiple element blocks containing the same element type (i.e.,
“QUAD” elements may be in more than one element block); only that each element block may
contain only one element type.

The internal number of an element is defined implicitly by the order in which it appears in the
file. Elements are numbered internally (beginning with 1) consecutively across all element
blocks. See Node Number Map for a discussion of internal element numbering.

4.8.1 Element Block Parameters

API functions: ex_put_elem block, ex_get_elem block,
ex_put_concat_elem block, ex get_elem _blk_ids; EXPELB,

EXGELB, EXPCLB, EXGEBI

The following parameters are defined for each element block:

* FElement block ID -- an arbitrary, unique, positive integer which identifies the particular
element block. This ID is used as a “handle” into the database that allows users to
specify a group of elements to the application code without having to know the order in
which element blocks are stored in the file.

* Element type -- a character string of length MAX_STR_LENGTH (MXSTLN in Fortran) to
distinguish element types. All elements within the element block are of this type. Refer
to Figure 4 for a list of names that are currently accepted. It should be noted that the
EXODUS 1I library routines do not verify element type names against a standard list;
the interpretation of the element type is left to the application codes which read or write
the data. In general, the first three characters uniquely identify the element type.
Application codes can append characters to the element type string (up to the maximum
length allowed) to further classify the element for specific purposes.

* Number of elements -- the number of elements in the element block.
* Nodes per element -- the number of nodes per element for the element block.

* Number of attributes -- the number of attributes per element in the element block. See
below for a discussion of element attributes.

- 15 -

4.8.2 Element Connectivity

API functions: ex _put_elem conn, ex get_elem conn; EXPELC, EXGELC

The element connectivity contains the list of nodes (internal node IDs; see Node Number Map
for a discussion of node IDs) which define each element in the element block. The length of
this list is the product of the number of elements and the number of nodes per element as
specified in the element block parameters. The node index cycles faster than the element index.
Node ordering follows the conventions illustrated in Figure 4, which includes ordering for
higher order elements. For lower order elements, simply omit the unused nodes. These node
ordering conventions follow the element topology used in PATRAN [5]. Thus, for higher order
elements than those illustrated, use the ordering prescribed in the PATRAN User Manual. For
elements of type CIRCLE or SPHERE, the topology is one node at the center of the circle or
sphere element.

- 16 -

Figure 4 Node Ordering for Standard Element Types

TRUSS; BEAM; SHELL(2D)

QUAD; SHELL(3D)

CIRCLE SPHERE
4 7 3
[] @ L J
[4 @ [J
1 3 7 S @ ® @
9
® @ L J
1 5 2

TRIANGLE

PYRAMID

WEDGE

Figure 4 Node Ordering for Standard Element Types

-17 -

4.8.3 Element Attributes

API functions: ex _put_elem attr,ex get_elem attr, ex put_one elem attr,
ex _get_one elem attr, ex put elem attr names,

ex _get_elem attr names; EXPEAT, EXGEAT

Element attributes are optional floating point numbers that can be assigned to each element.
Every element in an element block must have the same number of attributes (as specified in the
element block parameters) but the attributes may vary among elements within the block. The
length of the attributes array is thus the product of the number of attributes per element and the
number of elements in the element block.Table 1 lists the standard attributes for the given
element types.

Table 1 Element Types and Attributes

Attribute Descriptions

Element Type Attributes * A -- cross-sectional area.
CIRCLE R *V,--a Yector that, together With
the axis of the element defines
SPHERE R a plane for the beam element;
I; bending moment of inertia
TRUSS A affects displacements in this
BEAM 2D: A L) plane; I, bending moment of
3D: AL, L, T, Vy, V,, Vs inertia affects bending out of
this plane.
TRIANGLE
e J -- torsional (polar) moment of
QUAD inertia.
SHELL T * T -- thickness
TETRA * R -- radius
PYRAMID
WEDGE
HEX

4.9 Node Sets

Node sets provide a means to reference a group of nodes with a single ID. Node sets may be
used to specify load or boundary conditions, or to identify nodes for a special output request. A
particular node may appear in any number of node sets, but may be in a single node set only
once. (This restriction is not checked by EXODUS 1I routines.) Node sets may be accessed
individually (using node set parameters, node set node list, and node set distribution factors) or

- 18 -

in a concatenated format (described in 4.10). The node sets data are stored identically in the
data file regardless of which method (individual or concatenated) was used to output them.

4.9.1 Node Set Parameters

API functions: ex_put_node_set_param, ex_get_node_set_param,

ex_get_node_set_ids; EXPNP, EXGNP, EXGNSI
The following parameters define each node set:

e Node set ID -- a unique integer that identifies the node set.
e Number of nodes -- the number of nodes in the node set.

e Number of distribution factors -- this should be zero if there are no distribution
factors for the node set. If there are any distribution factors, this number must equal
the number of nodes in the node set since the factors are assigned at each node.
Refer to the discussion of distribution factors below.

e Optionally, each node set can have a name. See the functions ex put_name,
ex_put_names, ex get_name, ex_get_ names.

4.9.2 Node Set Node List

API functions: ex_put_node_set, ex_get_node_set; EXPNS, EXGNS

This is an integer list of all the nodes in the node set. Internal node IDs (see 4.5) must be used in
this list.

4.9.3 Node Set Distribution Factors

API functions: ex_put_node_set_dist_fact, ex_get_node_set_dist_fact;

EXPNSD, EXGNSD

This is an optional list of floating point factors associated with the nodes in a node set. These
data may be used as multipliers on applied loads. If distribution factors are stored, each entry in
this list is associated with the corresponding entry in the node set node list.

4.10 Concatenated Node Sets

API functions: ex_put_concat_node_sets, ex_get_concat_node_sets;

EXPCNS, EXGCNS

Concatenated node sets provide a means of writing/reading all node sets with one function call.
This is more efficient because it avoids some 1/O overhead, particularly when considering the
intricacies of the netCDF library. (Refer to Appendix A for a discussion of efficiency
concerns.) This is accomplished with the following lists:

-19-

e Node sets IDs -- list (of length number of node sets) of unique integer node set ID’s.
The ith entry in this list specifies the ID of the ith node set.

e Node sets node counts -- list (of length number of node sets) of counts of nodes for
each node set. Thus, the ith entry in this list specifies the number of nodes in the ith
node set.

e Node sets distribution factors counts -- list (of length number of node sets) of
counts of distribution factors for each node set. The ith entry in this list specifies the
number of distribution factors in the ith node set.

e Node sets node pointers -- list (of length number of node sets) of indices which are
pointers into the node sets node list locating the first node of each node set. The ith
entry in this list is an index in the node sets node list where the first node of the ith
node set can be located.

e Node sets distribution factors pointers -- list (of length number of node sets) of
indices which are pointers into the node sets distribution factors list locating the
first factor of each node set. The ith entry in this list is an index in the node sets
distribution factors list where the first factor of the ith node set can be located.

e Node sets node list -- concatenated integer list of the nodes in all the node sets.
Internal node IDs (see 4.5) must be used in this list. The node sets node pointers and
node sets node counts are used to find the first node and the number of nodes in a
particular node set.

e Node sets distribution factors list -- concatenated list of the (floating point)
distribution factors in all the node sets. The node sets distribution factors pointers
and node sets distribution factors counts are used to find the first factor and the
number of factors in a particular node set.

To clarify the use of these lists, refer to the coding examples in 5.2.30 and 5.2.31.

4.11 Side Sets

Side sets provide a second means of applying load and boundary conditions to a model. Unlike
node sets, side sets are related to specified sides of elements rather than simply a list of nodes.
For example, a pressure load must be associated with an element edge (in 2-d) or face (in 3-d)
in order to apply it properly. Each side in a side set is defined by an element number and a local
edge (for 2-d elements) or face (for 3-d elements) number. The local number of the edge or
face of interest must conform to the conventions as illustrated in Figure 5.

-20 -

Figure 5 Side Set Side Numbering

4 4
Py P ° o’
2]
(6]
1
® Py ® Ps
1 2 1 II 2

QUAD

SHELL (3D)

TRIANGLE

WEDGE

HEX

Figure 5 Sideset side Numbering

_21 -

In this figure, side set side numbers are enclosed in boxes; only the essential node numbers to
describe the element topology are shown. A side set may contain sides of differing types of
elements that are contained in different element blocks. For instance, a single side set may
contain faces of WEDGE elements, HEX elements, and TETRA elements.

4111 Side Set Parameters

API functions: ex_put_side_set param, ex get_side_set_ param,

ex_get_side set_ ids; EXPSP, EXGSP, EXGSSI
The following parameters define each side set:

e Side set ID -- a unique integer that identifies the side set.
o Number of sides -- the number of sides in the side set.

e Number of distribution factors -- this should be zero if there are no distribution
factors for the side set. If there are any distribution factors, they are assigned at the
nodes on the sides of the side set. Refer to the discussion of distribution factors
below.

e Optionally, each side set can have a name. See the functions ex_put_ name,

ex_put_names, ex get_name, ex get_names.

4.11.2 Side Set Element List

API functions: ex_put_side_set, ex _get_side_set; EXPSS, EXGSS

This is an integer list of all the elements in the side set. Internal element IDs (see Node Number
Map) must be used in this list.

4113 Side Set Side List

API functions: ex_put_side_set, ex_get_side_set; EXPSS, EXGSS

This is an integer list of all the sides in the side set. This list contains the local edge (for 2-d
elements) or face (for 3-d elements) numbers following the conventions specified in Figure 5.

4114 Side Set Node List

API functions: ex_get_side_set_node_list, ex _get_side_set_node list_len;
EXGSSN

It is important to note that the nodes on a side set are not explicitly stored in the data file, but

can be extracted from the element numbers in the side set element list, local side numbers in

the side set side list, and the element connectivity array. The node IDs that are output are
internal node numbers (see 4.5). They are extracted according to the following conventions:

-2

1.

All nodes for the first side (defined by the first element in the side set element list and
the first side in the side set side list) are output before the nodes for the second side.
There is no attempt to consolidate nodes; if a node is attached to four different faces,
then the same node number will be output four times -- once each time the node is

encountered when progressing along the side list.

The nodes for a single face (or edge) are ordered to assist an application code in
determining an “outward” direction. Thus, the node list for a face of a 3-d element
proceeds around the face so that the outward normal follows the right-hand rule. The
node list for an edge of a 2-d element proceeds such that if the right hand is placed in
the plane of the element palm down, thumb extended with the index (and other fingers)
pointing from one node to the next in the list, the thumb points to the inside of the
element. This node ordering is detailed in Table 2.

The nodes required for a first-order element are output first, followed by the nodes of a
higher ordered element.

-23-

Table 2 Sideset Node Ordering

Table 2 Side Set Node Ordering

Element Type Side # Node Order
QUAD 1 1,2,5
2 2,3,6
3 3,4,7
4 4,1,8
SHELL 1 1,2,3,4,5,6,7,8,9
2 1,4,3,2,1, 8,7,6,5,9
3 1,2,5
4 2,3,6
5 3,4,7
6 4,1,8
TRIANGLE 1 1,2,4
2 2,3,5
3 3,1,6
TETRA 1 1,2,4,5,9,8
2 2,3,4,6,10,9
3 1,4,3,8,10,7
4 1,3,2,7,6,5
WEDGE 1 1,2,5,4,7,11, 13, 10
2 2,3,6,5,8,12, 14, 11
3 1,4,6,3,10,15,12,9
4 1,3,2,9,8,7
5 4,5,6,13,14, 15
HEX 1 1,2,6,5,9,14,17,13 ,26
2 2,3,7,6,10, 15,18, 14 ,25
3 3,4,8,7,11,16,19, 15 ,27
4 1,5,8,4,13,20, 16,12 ,24
5 1,4,3,2,12,11,10,9 , 22
6 5,6,7,8,17,18,19,20 ,23
PYRAMID 1 1,2,5,6,11, 10
2 2,3,5,7,12, 11
3 3,4,5,8,12,12
4 1,5,4,10,13,9
5 1,4,3,2,9,8,7,6

-4 -

4.11.5 Side Set Node Count List

API functions: ex_get_side_set _node_list; EXGSSN

The length of the side set node count list is the length of the side set element list. For each entry
in the side set element list, there is an entry in the side set side list, designating a local side
number. The corresponding entry in the side set node count list is the number of nodes which
define the particular side. In conjunction with the side set node list, this node count array
provides an unambiguous nodal description of the side set.

4.11.6 Side Set Distribution Factors

API functions: ex_put_side_set_dist fact, ex get_side_set dist_ fact;

EXPSSD, EXGSSD

This is an optional list of floating point factors associated with the nodes on a side set. These
data may be used for uneven application of load or boundary conditions. Because distribution
factors are assigned at the nodes, application codes that utilize these factors must read the side
set node list. The distribution factors must be stored/accessed in the same order as the nodes in
the side set node list; thus, the ordering conventions described above apply.

4.12 Concatenated Side Sets

API functions: ex_put_concat_side_sets, ex _get_concat_side_sets; EXPCSS,

EXGCSS

Concatenated side sets provide a means of writing / reading all side sets with one function call.
This is more efficient because it avoids some 1/O overhead, particularly when considering the
intricacies of the netCDF library. This is accomplished with the following lists:

e Side sets IDs -- list (of length number of side sets) of unique integer side set ID’s.
The ith entry in this list specifies the ID of the ith side set.

e Side sets side counts -- list (of length number of side sets) of counts of sides for
each side set. Thus, the ith entry in this list specifies the number of sides in the ith
node set. This also defines the number of elements in each side set.

e Side sets distribution factors counts -- list (of length number of side sets) of counts
of distribution factors for each side set. The ith entry in this list specifies the
number of distribution factors in the ith side set.

e Side sets side pointers -- list (of length number of side sets) of indices which are
pointers into the side sets element list (and side list) locating the first element (or
side) of each side set. The ith entry in this list is an index in the side sets element list
(and side list) where the first element (or side) of the ith side set can be located.

e Side sets distribution factors pointers -- list (of length number of side sets) of
indices which are pointers into the side sets distribution factors list locating the first

-05 -

factor of each side set. The ith entry in this list is an index in the side sets
distribution factors list where the first factor of the ith side set can be located.

e Side sets element list -- concatenated integer list of the elements in all the side sets.
Internal element IDs (see Node Number Map) must be used in this list. The side
sets side pointers and side sets side counts are used to find the first element and the
number of elements in a particular side set.

e Side sets side list -- concatenated integer list of the sides in all the side sets. The side
sets side pointers and side sets side counts are used to find the first side and the
number of sides in a particular side set.

e Side sets distribution factors list -- concatenated list of the (floating point)
distribution factors in all the side sets. The side sets distribution factors pointers and
side sets distribution factors counts are used to find the first factor and the number
of factors in a particular side set.

4.13 Object Names

API functions: ex_put_names, ex get names, ex put name, ex_get name

Certain EXODUS II objects (currently element blocks, node sets, side sets, node maps, and
element maps) can be given names. Each name is a unique label of length
MAX_STR_LENGTH (MXSTLN in Fortran). The names are not used internally by the

database, but can be used to provide a more meaningful name than the object ids.

4.14 Object Properties

Certain EXODUS II objects (currently element blocks, node sets, side sets, node maps, and
element maps) can be given integer properties, providing the following capabilities:

1. assign a specific integer value to a named property of an object.

2. tag objects as members of a group. For example element blocks 1 and 3 and side sets 1
and 2 could be put in a group named “TOP.”

This functionality is illustrated in Error! Reference source not found. which contains the
property values of a sample EXODUS 1I file with three element blocks, one node set, and two
side sets. Note that an application code can define properties to be valid for only specified
object types. In this example, “STEEL” and “COPPER” are valid for all element blocks but are
not defined for node sets and side sets.

Table 3 Example Property Table
Name EB1 EB 2 EB3 NS1 SS1 SS 2

-6 -

ID 10 20 30 100 200 201

TOP 1 0 1 0 1 1
LEFT 1 1 0 1 1 0
STEEL 0 0 1 NULL NULL NULL
COPPER 1 1 0 NULL NULL NULL

Interpretation of the integer values of the properties is left to the application codes, but in
general, a nonzero positive value means the object has the named property (or is in the named
group); a zero means the object does not have the named property (or is not in the named
group). Thus, element block 1 has an ID of 10 (1 is a counter internal to the data base; an
application code accesses the element block using the ID), node set 1 has an ID of 100, etc. The
group “TOP” includes element block 1, element block 3, and side sets 1 and 2.

4141 Property Parameters

API functions: ex_put_prop_names, ex_get_prop_names; EXPPN, EXGPN

The parameters include the number of properties and the names of length MaAX_STR_LENGTH
(mxsTLN in Fortran) for each property for each object type (i.e., element blocks, node sets, or
side sets). In the preceding example, there are five properties for element blocks (i.e., “ID”,
“TOP”, “LEFT”, “STEEL”, and “COPPER?”), three properties for node sets (i.e., “ID”, “TOP”,
and “LEFT”), and three properties for side sets (i.e., “ID”, “TOP”, and “LEFT”).

4.14.2 Property Values

API functions: ex_put_prop, ex_get_prop, ex_put_prop_array,

ex _get _prop_array, ex _get _num props, EXPP, EXGP, EXPPA, EXGPA

Valid values for the properties are positive integers and zero. Property values are stored in
arrays in the data file but can be written / read individually given an object type (i.e., element
block, node set, or side set), object ID, and property name or as an array given an object type
and property name. If accessed as an array, the order of the values in the array must correspond
to the order in which the element blocks, node sets, or side sets were introduced into the file.
For instance, if the parameters for element block with ID 20 were written to a file, and then
parameters for element block with ID 10, followed by the parameters for element block with
ID 30, the first, second, and third elements in the property array would correspond to element
block 20, element block 10, and element block 30, respectively. This order can be determined
with a call to ex_get_elem blk_ids (EXGEBI for Fortran) which returns an array of element
block IDs in the order that the corresponding element blocks were introduced to the data file.

=27 -

4.15 Results Parameters

API functions: ex_put_var_param, ex_get_var_param, EXPVP, EXGVP

The number of each type of results variables (element, nodal, nodeset, sideset, and global) is
specified only once, and cannot change through time.

4.15.1 Results Names

API functions: ex_put_var_names, ex_get_var_names, ex_put_var_name,

ex_get_var name; EXPVAN, EXGVAN

Associated with each results variable is a unique name of length MAX_STR LENGTH (MXSTLN in
Fortran).

4.16 Results Data

An integer output time step number (beginning with 1) is used as an index into the results
variables written to or read from an EXODUS II file. It is a counter of the number of “data
planes” that have been written to the file. The maximum time step number (i.e., the number of
time steps that have been written) is available via a call to the database inquire function
(Inquire EXODUS Parameters). For each output time step, the following information is stored.

4.16.1 Time Values
API functions: ex_put_time, ex_get_time, ex_get_all_times; EXPTIM, EXGTIM,

EXGATM

A floating point value must be stored for each time step to identify the “data plane.” Typically,
this is the analysis time but can be any floating point variable that distinguishes the time steps.
For instance, for a modal analysis, the natural frequency for each mode may be stored as a
“time value” to discriminate the different sets of eigenvectors. The only restriction on the time
values is that they must monotonically increase.

4.16.2 Global Results

API functions: ex_put_glob_vars, ex _get_glob_vars, ex_get_glob_var_time;

EXPGV, EXGGV, EXGGVT
This object contains the floating point global data for the time step. The length of the array is

the number of global variables, as specified in the results parameters.

4.16.3 Nodal Results

API functions: ex_put_nodal_var, ex_get_nodal_var, ex_get_nodal_var_time;

-08 -

EXPNV, EXGNV, EXGNVT

This object contains the floating point nodal data for the time step. The size of the array is the
number of nodes, as specified in the global parameters, times the number of nodal variables.

4.16.4 Element Results

API functions: ex_put_elem var, ex_get_elem var, ex_get_elem var_time;

EXPEV, EXGEV, EXGEVT

Element variables are output for a given element block and a given element variable. Thus, at
each time step, up to m element variable objects (where m is the product of the number of
element blocks and the number of element variables) may be stored. However, since not all
element variables must be output for all element blocks (see Ele below), m is the maximum
number of element variable objects. The actual number of objects stored is the number of
unique combinations of element variable index and element block ID passed to
ex_put_elem var (EXPEV for Fortran) or the number of non-zero entries in the element
variable truth table (if it is used). The length of each object is the number of elements in the
given element block.

4.16.5 Nodeset Results

API functions: ex_put_nset_var, ex_get_nset_var] EXPNSV, EXGNSV

Nodeset variables are output for a given nodeset and a given nodeset variable. Thus, at each
time step, up to m nodeset variable objects (where m is the product of the number of nodesets
and the number of nodeset variables) may be stored. However, since not all nodeset variables
must be output for all nodeset (see Ele below), m is the maximum number of nodeset variable
objects. The actual number of objects stored is the number of unique combinations of nodeset
variable index and nodeset ID passed to ex_put_nset_var (ExpNsVv for Fortran) or the number
of non-zero entries in the nodeset variable truth table (if it is used). The length of each object is
the number of nodes in the given nodeset.

4.16.6 Sideset Results

API functions: ex_put_sset_var, ex_get_sset_var; EXPSSV, EXGSSV

Sideset variables are output for a given sideset and a given sideset variable. Thus, at each time
step, up to m sideset variable objects (where m is the product of the number of sidesets and the
number of sideset variables) may be stored. However, since not all sideset variables must be
output for all sideset (see Ele below), m is the maximum number of sideset variable objects.
The actual number of objects stored is the number of unique combinations of sideset variable
index and sideset ID passed to ex_put_sset_var (Expssv for Fortran) or the number of
non-zero entries in the sideset variable truth table (if it is used). The length of each object is the
number of sides (faces or edges) in the given sideset.

-29

4.17 Element, Nodeset, Sideset Variable Truth Table

API functions: ex_put_elem var_tab, ex get_elem var_tab;
ex_put_nset_var tab, ex get_nset_var_ tab,
ex_put_sset_var tab, ex get_sset_var_ tab, ex put_var_ tab,
ex_get_var_tab, EXPVTT, EXGVTT, EXPNSTT, EXGNSTT, EXPSSTT,

EXGSST

Because some element, nodeset, or sideset variables are not applicable (and thus not computed
by a simulation code) for all types, the variable truth table is an optional mechanism for
specifying whether a particular variable result is output for the entities in a particular element
block, nodeset, or sideset. For example, hydrostatic stress may be an output result for the
elements in element block 3, but not those in element block 6; or the contact normal force may
be an output result for the faces in sideset 32, but not those in sideset 42.

It is helpful to describe the truth table as a two dimensional array, as shown in Error!
Reference source not found. Each row of the array is associated with an element variable;
each column of the array is associated with an element block. If a datum in the truth table is
zero (table(i,3j)=0), then no results are output for the ith element variable for the jth
element block. A nonzero entry indicates that the appropriate result will be output. In this
example, element variable 1 will be stored for all element blocks; element variable 2 will be
stored for element blocks 1 and 4; and element variable 3 will be stored for element blocks 3
and 4. The table is stored such that the variable index cycles faster than the block
index.

Table 4 Element Variable Truth Table

Elem Block #1 | Elem Block #2 | Elem Block #3 | Elem Block #4
Elem Var 1 1 1 1
#1
Elem Var 1 0 0 1
#2

The nodeset and sideset variable truth tables are similar.

4.18 Coordinate frames

API functions: ex_put_coordinate_frames

ex_get_coordinate_frames

Coordinate frames may be stored in the database for access by applications. Each coordinate
frame is tagged by an associated integer identifier, and is part of the geometry definition.
Coordinate systems are defined by an origin and two orientation vectors, and can be defined as
rectangular, cylindrical or spherical.

-30 -

While exodus provides a coordinate system definition, it does not explicitly use these systems.
For example, exodus cannot define nodal locations in terms of any but the default coordinate
system.

Original basic

z’-axis. pnt 2
coordinate frame

X’ axis

origin. pnt 1

x New coordinate

frame

Figure 6 Sample Coordinate Frame transformation.

-31 -

5 Application Programming Interface (API)

EXODUS II files can be written and read by application codes written in C, C++, or Fortran via
calls to functions in the application programming interface (API). Functions within the API are
categorized as data file utilities, model description functions, or results data functions.

In general, the following pattern is followed for writing data objects to a file:

1. create the file with ex_create (or ExcRE for Fortran);
2. write out global parameters to the file using ex_put_init (or EXPINT for Fortran);

3. write out specific data object parameters; for example, put out element block

parameters with ex_put_elem_block (or EXPELB for Fortran);

4. write out the data object; for example, put out the connectivity for an element block

with ex_put_elem conn (or EXPELC for Fortran);

5. close the file with ex_close (or Excros for Fortran).

Steps 3 and 4 are repeated within this pattern for each data object (i.e., nodal coordinates,
element blocks, node sets, side sets, results variables, etc.). For some data object types, steps 3
and 4 are combined in a single call. For instance, ex_put_ga (or ExpQa for Fortran) writes out
the parameters (number of QA records) as well as the data object itself (the QA records).
During the database writing process, there are a few order dependencies (e.g., an element block
must be written before element variables for that element block are written) which are
documented in the description of each library function.

The invocation of the EXODUS II API functions for reading data is order independent,
providing random read access. The following steps are typically used for reading data:

1. open the file with ex_open (or ExoPEN for Fortran);

2. read the global parameters for dimensioning purposes with ex_get_init (Or EXGINI

for Fortran);

3. read specific data object parameters; for example, read node set parameters with

ex_get_node_set_param (or EXGNSP for Fortran);

4. read the data object; for example, read the node set node list with ex_get_node_set

(or excNs for Fortran);

5. close the file with ex_close (or Excros for Fortran).

-32-

Again, steps 3 and 4 are repeated for each object. For some object parameters, step 3 may be
accomplished with a call to ex_inquire (or ExINQ for Fortran) to inquire the size of certain
objects.

In developing applications using the EXODUS II API, the following points may prove
beneficial:

e All functions that write objects to the database begin with ex put_ (Exp for
Fortran); functions that read objects from the database begin with ex_get_ (ExG for
Fortran).

e Function arguments are classified as readable (R), writable (W), or both (RW).
Readable arguments are not modified by the API routines; writable arguments are
modified; read-write arguments may be either depending on the value of the
argument.

e All application codes which use the EXODUS II API must include the file
‘exodusIl.h’ for C or ‘exodusll.inc’ for Fortran. These files define constants that
are used (1) as arguments to the API routines, (2) to set global parameters such as
maximum string length and database version, and (3) as error condition or function
return values.

e Throughout this section, sample code segments have been included to aid the
application developer in using the API routines. These segments are not complete
and there has been no attempt to include all calling sequence dependencies within
them. Additionally, most arrays in the Fortran coding examples are shown
dimensioned to some maximum value (i.e., MAXQA, MAXINF, MAXNOD, etc.). These
values are not predefined constants so the library routines cannot check actual
numbers of records against them. They are shown in this document simply to give
an indication of how to statically dimension the arrays if necessary.

e Because 2-dimensional arrays cannot be statically dimensioned, either dynamic
dimensioning or user indexing is required. Most of the sample code segments
utilize user indexing within 1-dimensional arrays even though the variables are
logically 2-dimensional.

e There are many netCDF utilities that prove useful. ncdump, which converts a binary
netCDF file to a readable ASCII file, is the most notable.

e Because netCDF buffers I/O, it is important to flush all buffers (with ex_update in
C or exuppa in Fortran) when debugging an application that produces an EXODUS
II file.

5.1 Data File Utilities

This section describes data file utility functions for creating / opening a file, initializing a file
with global parameters, reading / writing information text, inquiring on parameters stored in
the data file, and error reporting.

-33-

5.1.1 Create EXODUS Il File

The function ex_create or (ExcRE for Fortran) creates a new EXODUS II file and returns an
ID that can subsequently be used to refer to the file.

All floating point values in an EXODUS II file are stored as either 4-byte (“float” in C;
“REAL*4” in FORTRAN) or 8-byte (“double” in C; “REAL*8” or “DOUBLE PRECISION”
in FORTRAN) numbers; no mixing of 4- and 8-byte numbers in a single file is allowed. An
application code can compute either 4- or 8-byte values and can designate that the values be
stored in the EXODUS II file as either 4- or 8-byte numbers; conversion between the 4- and
8-byte values is performed automatically by the API routines. Thus, there are four possible
combinations of compute word size and storage (or 1/0) word size.

In case of an error, ex_create returns a negative number; EXCRE returns a nonzero error
number in IERR. Possible causes of errors include:
* Passing a file name that includes a directory that does not exist.
* Specifying a file name of a file that exists and also specifying a no clobber option.
* Attempting to create a file in a directory without permission to create files there.
* Passing an invalid file mode.

ex_create: C Interface

int ex_create (path, cmode, comp_ws, io_ws);

char* path (R)
The file name of the new EXODUS II file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current directory).

int cmode (R)
Mode. Use one of the following predefined constants:

*EX_NOCLOBBER *To create the new file only if the given file name does not refer
to a file that already exists.

*EX_CLOBBER *To create the new file, regardless of whether a file with the

same name already exists. If a file with the same name does

exist, its contents will be erased.

*EX_LARGE_MODEL °*To create a model that can store individual datasets larger than
2 gigabytes. This modifies the internal storage used by

exoduslI and also puts the underlying netcdf file into the

“64-bit offset” mode. See Appendix E for more details on this

mode. 1

*EX_NORMAL_MODEL *Create a standard model.

. EX_NETCDF4 To create a model using the HDF5-based

'A “large model” file will also be created if the environment variable “EXODUS_LARGE_MODEL” is
defined in the users environment. A message will be printed to standard output if this environment
variable is found.

-34 -

netcdf-4 output. (Future capability)2

. EX_NOSHARE Do not open the underlying netCDF file
in “share” mode. See the netCDF documentation for
more details.

int* comp_ws (RW)
The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default sizeof (£loat) will be used and returned in this
variable. WARNING: all EXODUS II functions requiring floats must be passed floats
declared with this passed in or returned compute word size (4 or 8).

int* io_ws (R)
The word size in bytes (4 or 8) of the floating point data as they are to be stored in the
EXODUS II file.

The following code segment creates an EXODUS 1I file called test . exo:

#include” exodusII.h”
int CPU _word size, IO word size, exoid;

CPU_word_size = sizeof (float) ; /* use float or double

Y/

IO_word_size = 8; /* store variables as

doubles */

/* create EXODUS II file */

exolid = ex _create (“test.exo”, /* filename path */
EX_CLOBBER, /* create mode */
&CPU_word_size, /* CPU float word size in bytes */
&IO_word_size) ; /* I/0 float word size in bytes */

EXCRE: Fortran Interface

INTEGER FUNCTION EXCRE (PATH, ICMODE, ICOMPWS, IOWS, IERR)

CHARACTER* (*) PATH (R)
The file name of the new EXODUS II file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current directory).

INTEGER ICMODE (R)
Clobber mode. Use one of the following predefined constants:
*EXNOCL *To create the new file only if the given file name does not refer to a file
that already exists.

*EXCLOB *To create the new file, regardless of whether a file with the same name
already exists. If a file with the same name does exist, its contents will be

NetCDF-4 is currently in alpha mode; however, it will be used for ExoduslII when available, so this
mode is being defined here for future completeness. An HDF5-based netcdf-4 file will also be created if
the environment variable “EXODUS_NETCDF4” is defined in the users environment. A message will
be printed to standard output if this environment variable is found.

-35-

erased.
*EXNORM *Create a normal (32-bit offset) model.

*EXLARG *To create a model which can store individual datasets larger than 2
gigabytes. This modifies the internal storage used by exoduslI and also puts
the underlying netcdf file into the “64-bit offset” mode. See Appendix E for

more details on this mode.3

*EXNET4 *To create a model using the HDF5-based netcdf-4 output. (Future

capability)4

*exNOSH *Do not open the underlying netCDF file in “share” mode. See the netCDF

documentation for more details.
INTEGER ICOMPWS (RW)
The word size in bytes (0, 4 or 8) of the floating point (REAL) variables used in the
application program. If 0 (zero) is passed, the default size of floating point values for the
machine will be used and returned in this variable. WARNING: all EXODUS 1I functions
requiring reals must be passed reals declared with this passed in or returned compute word
size (4 or 8).
INTEGER IOWS (R)
The word size in bytes (4 or 8) of the floating point (REAL) data as they are to be stored in
the EXODUS II file.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment creates an EXODUS II file called test.exo, specifying default
values for compute and I/O word sizes:

include ’‘exodusII.inc’
integer cpu_ws, io_ws
c create EXODUS II files;
¢ REAL variables are default reals; store in file as DOUBLE PRECISION
cpu_ws = 0
io_ws = 8
idexo = excre (‘test.exo’, EXCLOB, cpu_ws, io_ws, ierr)

5.1.2 Open EXODUS II File

The function ex_open or (ExoPEN for Fortran) opens an existing EXODUS 1I file and returns
an ID that can subsequently be used to refer to the file, the word size of the floating point
values stored in the file, and the version of the EXODUS II database (returned as a “float” in C
or “REAL” in Fortran, regardless of the compute or I/O word size). Multiple files may be
“open” simultaneously.

’A “large model” file will also be created if the environment variable “EXODUS_LARGE_MODEL” is
defined in the users environment. A message will be printed to standard output if this environment
variable is found.

“NetCDF-4 is currently in alpha mode; however, it will be used for ExoduslII when available, so this
mode is being defined here for future completeness. An HDF5-based netcdf-4 file will also be created if
the environment variable “EXODUS_NETCDF4” is defined in the users environment. A message will
be printed to standard output if this environment variable is found.

-36 -

In case of an error, ex_open returns a negative number; EXOPEN returns a nonzero error number
in IERR. Possible causes of errors include:

* The specified file does not exist.

* The mode specified is something other than the predefined constant EX_READ (EXREAD
for Fortran) or Ex_WRITE (EXwWRIT for Fortran).

e Database version is earlier than 2.0.

ex_open: C Interface

int ex open (path, mode, comp_ws, io_ws, version);

char* path (R)
The file name of the EXODUS 11 file. This can be given as either an absolute path name
(from the root of the file system) or a relative path name (from the current directory).

int mode (R)
Access mode. Use one of the following predefined constants:

. EX_READ To open the file just for reading.

. EX_WRITE To open the file for writing and reading.
int* comp_ws (RW)
The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default size of floating point values for the machine will
be used and returned in this variable. WARNING: all EXODUS II functions requiring reals
must be passed reals declared with this passed in or returned compute word size (4 or 8).

int* io_ws (RW)
The word size in bytes (0, 4 or 8) of the floating point data as they are stored in the
EXODUS II file. If the word size does not match the word size of data stored in the file, a
fatal error is returned. If this argument is 0, the word size of the floating point data already
stored in the file is returned.

float* version (W)
Returned EXODUS II database version number. The current version is 2.02

The following opens an EXODUS 1I file named test . exo for read only, using default settings
for compute and I/O word sizes:

#include “exodusII.h”

int CPU _word size,IO word size, exoid;

float version;

CPU_word_size = sizeof (float) ; /* float or double */
I0 _word size = 0; /* use what 1is stored
in file */

/* open EXODUS II files */

exold = ex open (“test.exo”, /* filename path */
EX_READ, /* access mode = READ */
&CPU_word size, /* CPU word size */
&IO _word size, /* IO word size */

-37 -

&version) ; /* ExodusII library version */

If the EXODUS II database was created in the “Large Model” format, it will automatically be
detected when opened with no user intervention required.

EXOPEN: Fortran Interface

INTEGER FUNCTION EXOPEN (PATH, IMODE, ICOMPWS, IOWS, VERS, IERR)

CHARACTER* (*) PATH (R)
The file name of the EXODUS II file. This can be given as either an absolute path name
(from the root of the file system) or a relative path name (from the current directory).

INTEGER IMODE (R)
Access mode. Use one of the following predefined constants:

. EXREAD To open the file just for reading.

. ExWRIT To open the file for writing and reading.
INTEGER ICOMPWS (RW)
The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default size of floating point values for the machine will
be used and returned in this variable. WARNING: all EXODUS II functions requiring reals
must be passed reals declared with this passed in or returned compute word size.

INTEGER IOWS (RW)
The word size in bytes (0, 4 or 8) of the floating point data as they are stored in the
EXODUS II file. If the word size does not match the word size of data stored in the file, a
fatal error is returned. If this argument is 0, the word size of the floating point data already
stored in the file is returned.

REAL VERS (W)
Returned EXODUS II version number. The current version is 2.02

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following opens an EXODUS 1I file named test . exo for read only, using default settings
for compute and I/O word sizes:

include ’‘exodusII.inc’
integer cpu_ws, io_ws
real vers
@
c open EXODUS II file
cpu_ws = 0
io_ws = 0
idexo = exopen (’‘test.exo’, EXREAD, cpu_ws, io_ws, vers, ierr)

If the EXODUS II database was created in the “Large Model” format, it will automatically be
detected when opened with no user intervention required.

-38 -

5.1.3 Close EXODUS Il File

The function ex_close or (ExcLos for Fortran) updates and then closes an open EXODUS II
file.

In case of an error, ex_close returns a negative number; a warning will return a positive
number. EXCLOS returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

ex_close: C Interface

int ex _close (exoid);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

The following code segment closes an open EXODUS II file:

int error,exoid;
error = ex_close (exoid) ;

EXCLOS: Fortran Interface

SUBROUTINE EXCLOS (IDEXO, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment closes an open EXODUS 11 file:

call exclos (idexo, ierr)

5.1.4 Update EXODUS Il File

The function ex_update or (ExupDa for Fortran) flushes all buffers to an EXODUS II file that
is open for writing. This routine insures that the EXODUS II file is current.

In case of an error, ex_update returns a negative number; a warning will return a positive
number. EXUPDA returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

-39

ex_update: C Interface

int ex_update (exoid) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

The following code segment flushes all buffers to an open EXODUS II file:

int error,exoid;
error = ex update (exoid) ;

EXUPDA: Fortran Interface

SUBROUTINE EXUPDA (IDEXO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment flushes all buffers to an open EXODUS II file:

©
c update the data file; this should be done at the end of every
c time step to ensure that no data is lost if the analysis dies
©

call exupda (idexo, ierr)
5.1.5 Write Initialization Parameters

The function ex_put_init (ExPINT in Fortran) writes the initialization parameters to the
EXODUS II file. This function must be called once (and only once) before writing any data to
the file.

In case of an error, ex_put_init returns a negative number; a warning will return a positive
number. EXPINT returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
» this routine has been called previously.

ex_put_init: C Interface

int ex_put_init (exoid, title, num _dim, num nodes, num_elem, num elem blk,
num_node_sets, num _side sets) ;

- 40 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
char* title (R)
Database title. Maximum length is MAX_LINE LENGTH.
int num dim (R)
The dimensionality of the database. This is the number of coordinates per node.
int num nodes (R)
The number of nodal points.
int num elem (R)
The number of elements.
int num elem blk (R)
The number of element blocks.
int num node_sets (R)
The number of node sets.
int num side sets (R)
The number of side sets.

The following code segment will initialize an open EXODUS II file with the specified
parameters:

int num dim, num nods, num el, num el blk, num ns, num ss, error, exoid;

/* initialize file with parameters */

num _dim = 3; num nods = 46; num el = 5; num el blk = 5;

num ns = 2; num ss = 5;

error = ex_put_init (exoid, “This is the title”, num_dim,
num_nods, num_el,num el blk, num ns, num_ss) ;

EXPINI: Fortran Interface

SUBROUTINE EXPINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK, NUMNPS, NUMESS,
IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXLNLN TITLE (R)
Database title.

INTEGER NDIM (R)
The dimensionality of the database. This is the number of coordinates per node.

INTEGER NUMNP (R)
The number of nodal points.

INTEGER NUMEL (R)
The number of elements.

INTEGER NELBLK (R)
The number of element blocks.

-41 -

INTEGER NUMNPS (R)
The number of node sets.

INTEGER NUMESS (R)
The number of side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will initialize an open EXODUS II file with the specified
parameters:
include ’‘exodusII.inc’
character* (MXLNLN) title
@
¢ initialize file with parameters
@
title = “This is the title”
num dim = 2
num _nodes = 8
num_elem = 2
num_elem blk = 2
num_node_sets = 2
num_side_sets = 2

call expini (idexo, title, num_dim, num nodes, num_elem,
1 num elem blk, num node_sets, num side_sets, ierr)

5.1.6 Read Initialization Parameters

The function ex_get_init (EXGINT in Fortran) reads the initialization parameters from an
opened EXODUS 1I file.

In case of an error, ex_get_init returns a negative number; a warning will return a positive
number. EXGINI returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

ex_get_init: C Interface

int ex_get_init (exoid, title, num _dim, num nodes, num_elem, num elem blk,
num_node_sets, num _side sets) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* title (W)
Returned database title. String length may be up to MAX_LINE_LENGTH bytes.

int* num_dim (W)
Returned dimensionality of the database. This is the number of coordinates per node.

-42 -

int* num nodes (W)
Returned number of nodal points.

int* num elem (W)

Returned number of elements.
int* num_elem blk (W)

Returned number of element blocks.
int* num_node_sets (W)

Returned number of node sets.

int* num_side sets (W)
Returned number of side sets.

The following code segment will read the initialization parameters from the open EXODUS II
file:

#include “exodusII.h”

int num dim, num nodes, num_elem, num_elem blk,
num node sets, num_side sets, error, exoid;
char title[MAX LINE LENGTH+1];

/* read database parameters */
error = ex _get_init (exoid, title, &num dim, &num nodes,
&num_elem, &num elem blk, &num node sets, &num_side_sets) ;

EXGINI: Fortran Interface

SUBROUTINE EXGINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK, NUMNPS, NUMESS,
IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXLNLN TITLE (W)
Returned database title.

INTEGER NDIM (W)
Returned dimensionality of the database. This is the number of coordinates per node.

INTEGER NUMNP (W)
Returned number of nodal points.

INTEGER NUMEL (W)
Returned number of elements.

INTEGER NELBLK (W)
Returned number of element blocks.

INTEGER NUMNPS (W)
Returned number of node sets.

INTEGER NUMESS (W)
Returned number of side sets.

-43 -

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read the initialization parameters from the open EXODUS II
file:
character* (MXLNLN) titl
&
c read database parameters
&
call exgini (idexo, titl, num_dim, num_nodes, num elem,
1 num elem blk, num node sets, num side_sets, 1lerr)

5.1.7 Write QA Records

The function ex_put_ga (or ExPQA for Fortran) writes the QA records to the database. Each
QA record contains four MAX_STR_LENGTH-byte character strings. The character strings are:
1) the analysis code name
2) the analysis code QA descriptor
3) the analysis date
4) the analysis time

In case of an error, ex_put_ga returns a negative number; a warning will return a positive
number. EXPQA returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* data file opened for read only.
* QA records already exist in file.

ex_put_qa: C Interface

int ex_put_ga (exoid, num_ga_records, ga_record[] [4]);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num ga_records (R)

The number of QA records.

char* ga_record (R)
Array containing the QA records.

The following code segment will write out two QA records:

int num _ga_rec, error, exoid;
char *ga_record[2] [4];

/* write QA records */
num _ga_rec = 2;

-44 -

ga_record
ga_record
ga_record
ga_record
ga_record
ga_record
ga_record
ga_record

o B B B W B B

0]
0]
0]
0]
1]
1]
1]
1]

error = ex_put_ga

“TESTWT1” ;
“testwtl”;
“20060214";
”15:41:33";
“FASTQ” ;

“fastqg”;

“20060215";
”16:41:33";

(exoid, num _ga_rec,

EXPQA: Fortran Interface

SUBROUTINE EXPQA

INTEGER IDEXO (R)

EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NQAREC (R)

The number of QA records.
CHARACTER*MXSTLN QAREC (4,*) (R)

Array containing the QA records.

INTEGER IERR (W)

ga_record) ;

(IDEXO, NQAREC, QAREC, IERR)

Returned error code. If no errors occurred, O is returned.

The following code segment will write out two QA records:

c NOTE:
@

include’exodusII.inc’

character* (MXSTLN)

@
c write QA records
@

num_dga_rec = 2

ga_record (1
ga_record (2
ga_record (3
ga_record (4,
ga_record (1
ga_record (2
ga_record (3
ga_record (4

call expga (idexo,

“TESTWT2”
“testwt2”
“07/07/93"
“15:41:33"
“FASTQ”
“fastqg”
“07/07/93"
“16:41:33"

ga_record (4, MAXQA)

num_ga_rec,

MAXQA is the maximum number of QA records

ga_record, ierr)

5.1.8 Read QA Records

The function ex_get_ga (or EXcoa for Fortran) reads the QA records from the database. Each
QA record contains four MAX_STR_LENGTH-byte character strings. The character strings are:

1) the analysis code name

2) the analysis code QA descriptor

3) the analysis date

4) the analysis time

Memory must be allocated for the QA records before this call is made. The number of QA
records can be determined by invoking ex_inguire (or EXINQ in Fortran). See Inquire
EXODUS Parameters.

In case of an error, ex_get_ga returns a negative number; a warning will return a positive
number. EXGQA returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no QA records were stored.

ex_get_qga: C Interface

int ex _get_ga (exoid, ga_recordl] [4]);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* ga_record (W)
Returned array containing the QA records.

The following will determine the number of QA records and read them from the open
EXODUS II file:

#include “exodusII.h”

int num ga_rec, error, exoid
char *ga_record[MAX_ QA_REC] [4];

/* read QA records */
ex_inquire (exoid, EX_INQ QA, &num ga_rec, &fdum, cdum) ;

for (i=0; i<num ga_rec; i++)
for (3=0; Jj<4; J++)
ga_record[i] [jJ] =
(char *) calloc ((MAX_STR_LENGTH+1), sizeof (char)) ;

error = ex_get_ga (exoid, ga_record) ;

- 46 -

EXGQA: Fortran Interface

SUBROUTINE EXGQA (IDEXO, QAREC, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXSTLN QAREC (4,*) (W)
Returned array containing the QA records.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following will determine the number of QA records and read them from the open
EXODUS II file:

C NOTE: MAXQA is the maximum number of QA
records

include ’‘exodusII.inc’
character* (MXSTLN) ga_record (4,MAXQA)

Q

read QA records
call exing (idexo, EXQA, num ga_rec, fdum, cdum, ierr)

call exgga (idexo, ga_record, ierr)
5.1.9 Write Information Records

The function ex_put_info (or ExPINF for Fortran) writes information records to the database.
The records are MAX_LINE_LENGTH-character strings.

In case of an error, ex_put_info returns a negative number; a warning will return a positive
number. EXPINF returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* information records already exist in file.

ex_put_info: C Interface

int ex_put_info (exoid, num_info, info);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

_47 -

int num _info (R)
The number of information records.

char** info (R)
Array containing the information records.

The following code will write out three information records to an open EXODUS II file:

int error, exoid, num_info;
char *info([3];

/* write information records */

num_info = 3;

info[0] = “This is the first information record.”;
info[l] = “This is the second information record.”;
info[2] = “This is the third information record.”;

error = ex_put_info (exoid, num_info, info) ;

EXPINF': Fortran Interface

SUBROUTINE EXPINF (IDEXO, NINFO, INFO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NINFO (R)
The number of information records.

CHARACTER*MXLNLN INFO(*) (R)
Array containing the information records.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code will write out three information records to an open EXODUS II file:

¢ NOTE: MAXINF is the maximum number of
information records

include ’‘exodusII.inc’

character* (MXLNLN) inform (MAXINF)
@
c write information records
@

num_info = 3

inform(l) = “This is the first information record.”

- 48 -

inform(2) = “This is the second information record.”
inform(3) = “This is the third information record.”

call expinf (idexo, num_info, inform, ierr)
5.1.10 Read Information Records

The function ex_get_info (or EXGINF for Fortran) reads information records from the
database. The records are MAX_LINE_LENGTH-character strings. Memory must be
allocated for the information records before this call is made. The number of records can be
determined by invoking ex_inguire (or EXINQ in Fortran). See Inquire EXODUS Parameters.

In case of an error, ex_get_info returns a negative number; a warning will return a positive
number. EXGINF returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

e awarning value is returned if no information records were stored.

ex_get_info: C Interface

int ex_get_info (exoid, info);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char** info (W)
Returned array containing the information records.

The following code segment will determine the number of information records and read them
from an open EXODUS II file:

#include “exodusII.h”

int error, exoid, num_info;
char *info [MAXINFO] ;

/* read information records */
error = ex_inquire (exoid,EX INQ INFO, &num info, &fdum, cdum) ;

for (i=0; i<num_info; i++)
info[i] = (char *) calloc ((MAX LINE_LENGTH+1), sizeof (char)) ;

error = ex _get _info (exoid, info) ;

-49 -

EXGINF: Fortran Interface

SUBROUTINE EXGINF (IDEXO, INFO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXLNLN INFO (*) (W)
Returned array containing the information records.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will determine the number of information records and read them
from an open EXODUS II file:

¢ NOTE: MAXINF is the maximum number of
information records

include ’‘exodusII.inc’
character* (MXLNLN) inform (MAXINF)

read information records

Q

call exing (idexo, EXINFO, num_info, fdum, cdum, ierr)

call exginf (idexo, inform, ierr)
5.1.11 Inquire EXODUS Parameters

The function ex_inguire (or EXINQ in Fortran) is used to inquire values of certain data entities
in an EXODUS II file. Memory must be allocated for the returned values before this function is
invoked.

In case of an error, ex_inguire returns a negative number; a warning will return a positive
number. EXINQ returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* requested information not stored in the file.
* invalid request flag.

ex_inquire: C Interface

int ex _inquire (exoid, reqg info, ret_int, ret_float, ret_char);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

-50 -

int reg_info (R)

A flag which designates what information is requested. It must be one of the following
constants (predefined in the file exodusII.h):

*EX_INQ API_VERS

*EX_INQ_ DB_VERS

*EX_INQ TITLE

*EX_INQ DIM

*EX_INQ_ NODES
*EX_INQ ELEM

*EX_INQ ELEM BLK
*EX_INQ NODE_SETS

*EX_INQ_ NS_NODE_LEN

*EX_INQ NS_DF_LEN

*EX_INQ SIDE_SETS

*EX_INQ_ SS_ELEM LEN

*EX_INQ_ SS_DF_LEN

*EX _INQ_ SS_NODE_LEN

*EX_INQ_EB_PROP

*EX_INQ_NS_PROP

*EX_INQ_SS_PROP

*EX_TINQ QA

The EXODUS II API version number is returned in ret_float.
The API version number reflects the release of the function
library (i.e., function names, argument list, etc.).

The EXODUS II database version number is returned in

ret_float. The database version number reflects the format of
the data in the EXODUS 1I file.

The title stored in the database is returned in ret_char.

The dimensionality, or number of coordinates per node (1, 2 or
3), of the database is returned in ret_int.

The number of nodal points is returned in ret_int.
The number of elements is returned in ret_int.

The number of element blocks in returned in ret_int.
The number of node sets is returned in ret_int.

The length of the concatenated node sets node list is returned in

ret_int.

The length of the concatenated node sets distribution list is
returned in ret_int.

The number of side sets is returned in ret_int.

The length of the concatenated side sets element list is returned
in ret_int.

The length of the concatenated side sets distribution factor list is
returned in ret_int.

The aggregate length of all of the side sets node lists is returned
in ret_int.

The number of integer properties stored for each element block

is returned in ret_int; this number includes the property
named “ID”.

The number of integer properties stored for each node set is

returned in ret_int; this number includes the property named
GGID’7.

The number of integer properties stored for each side set is

returned in ret_int; this number includes the property named
GGID’7.

The number of QA records is returned in ret_int.

-51 -

*EX_ INQ INFO The number of information records is returned in ret_int.

*EX_INQ TIME The number of time steps stored in the database is returned in

ret_int.

int* ret_int (W)
Returned integer, if an integer value is requested (according to req_info); otherwise,
supply a dummy argument.

float* ret_ _float (W)
Returned float, if a float value is requested (according to req_info); otherwise, supply a
dummy argument.

char* ret_char (W)
Returned single character, if a character value is requested (according to req_info);
otherwise, supply a dummy argument.

As an example, the following will return the number of element block properties stored in the
EXODUS II file:

#include “exodusII.h”

int error, exoid, num props;
float fdum;

char *cdum;

/* determine the number of element block properties */

error = ex_inquire (exoid, EX_INQ EB_PROP, &num props, &fdum, cdum) ;

EXINQ: Fortran Interface

SUBROUTINE EXINQ (IDEXO, INFREQ, INTRET, RELRET, CHRRET, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER INFREQ (R)

A flag which designates what information is requested. It must be one of the following
constants (predefined in the file exodusIT.inc):

EXAPVR *The EXODUS II API version number is returned in RELRET. The API
version number reflects the release of the function library (i.e., function
names, argument list, etc.).

*EXDBVR *The EXODUS II database version number is returned in RELRET. The
database version number reflects the format of the data in the EXODUS II

file.

*EXTITL *The title stored in the database is returned in CHRRET.
*EXDIM *The dimensionality, or number of coordinates per node (1, 2 or 3), of the

database is returned in INTRET.
*EXNODE *The number of nodal points is returned in INTRET.

-52-

*EXELEM *The number of elements is returned in INTRET.

*EXVERS *The number of element blocks in returned in INTRET.
*EXNODS *The number of node sets is returned in INTRET.
*EXNSNL *The length of the concatenated node sets node list is returned in INTRET.
*exNsDF *The length of the concatenated node sets distribution factors list is returned

in INTRET.
*EXSIDS *The number of side sets is returned in INTRET.

*exSSEL *The length of the concatenated side sets element list is returned in INTRET.

*exsspF *The length of the concatenated side sets distribution factors list is returned
in INTRET.

*ExSSNL *The aggregate length of all of the side sets node lists is returned in INTRET.

*exNEBP *The number of integer properties stored for each element block is returned
in INTRET; this number includes the property named “ID”.

*EXNNSP *The number of integer properties stored for each node set is returned in
INTRET; this number includes the property named “ID”.

*EXNSSP *The number of integer properties stored for each side set is returned in
INTRET; this number includes the property named “ID”.

*EXQA *The number of QA records is returned in INTRET.
*EXINFO *The number of information records is returned in INTRET.
*EXTIMS *The number of time steps stored in the database is returned in INTRET.

INTEGER INTRET (W)
Returned integer, if an integer value is requested (according to INFREQ); otherwise, supply
a dummy argument.

REAL RELRET (W)
Returned float, if a float value is requested (according to INFREQ); otherwise, supply a
dummy argument.

CHARACTER* (*) CHRRET (W)
Returned single character, if a character value is requested (according to INFREQ);
otherwise, supply a dummy argument.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following will return the number of element block properties stored in the
EXODUS II file:

include ’‘exodusII.inc’

real fdum

character*l cdum
€
¢ read element block properties
€

-53-

call exing (idexo, EXNEBP, num_props, fdum, cdum, ierr)
5.1.12 Error Reporting

The function ex_err or (EXERR for Fortran) logs an error to stderr. It is intended to provide
explanatory messages for error codes returned from other EXODUS II routines. This function
does not return an error code.

The passed in error codes and corresponding messages are listed in Appendix C. The
programmer may supplement the error message printed for standard errors by providing an
error message. If the error code is provided with no error message, the predefined message will
be used. The error code Ex_MsG 1s available to log application specific messages.

ex_err: C Interface

void ex_err (module_name, message, err_num) ;

char* module_name (R)
This is a string containing the name of the calling function.

char* message (R)
This is a string containing a message explaining the error or problem. If EX_VERBOSE (see
ex_opts) is true, this message will be printed to stderr. Otherwise, nothing will be
printed.

int err num (R)
This is an integer code identifying the error. EXODUS 1I C functions place an error code
value in exerrval, an external int. Negative values are considered fatal errors while
positive values are warnings. There is a set of predefined values defined in exodusII.h.
The predefined constant Ex PRTLASTMSG Will cause the last error message to be output,
regardless of the setting of the error reporting level (see ex_opts).

The following is an example of the use of this function:

#include “exodusII.h”

int exoid, CPU_word_size, IO _word_size, errval;
float version;

char errmsg[MAX_ERR_LENGTH] ;

CPU_word_size = sizeof (float) ;
IO_word _size = 0;

/* open EXODUS II file */

if (exoid = ex open (“test.exo”, EX READ, &CPU_word_size, &IO_word_size,
&version)

errval = 999;

sprintf (errmsg, “Error: cannot open file test.exo”);
ex_err (“prog_name”, errmsg, errval);

-54 -

EXERR: Fortran Interface

SUBROUTINE EXERR (MODNAM, MSG, ERRNUM)

CHARACTER*MXSTLN MODNAM (R)
This is a string containing the name of the calling function.
CHARACTER*MXLNLN MSG (R)
This is a string containing a message explaining the error or problem. If ExVRBS (see
EXOPTS) is true, this message will be printed to stderr. Otherwise, nothing will be printed.
INTEGER ERRNUM (R)
This is an integer code identifying the error. EXODUS II Fortran functions place an error
code value in ierr, a returned value. Negative values are considered fatal errors while
positive values are warnings. There is a set of predefined values defined in exodusII.inc.
The predefined constant prTMSG Wwill cause the last error message to be output, regardless
of the setting of the error reporting level (see ExopTS)

The following is an example of the use of this function:

include ’‘exodusII.inc’
integer cpu_ws

open EXODUS II files

Q

cpu_ws = 0
io.ws = 0

idexo = exopen (“test.exo”, EXREAD, cpu_ws, io_ws, vers, ierr)

if (ierr .1lt. 0) then

Q

error was fatal, so print it out; override setting of exopts

call exerr (“progname”, ““, PRTMSG)
endif

5.1.13 Set Error Reporting Level
The function ex_opts (or ExopTs for Fortran) is used to set message reporting options.

In case of an error, ex_opts returns a negative number; a warning will return a positive
number. EXOPTS returns a nonzero error (negative) or warning (positive) number in IERR.

ex_opts: C Interface

int ex_opts (option_val);

-55-

int option_val (R)
Integer option value. Current options are:

*EX_ABORT *Causes fatal errors to force program exit. (Default is false.)
*EX_DEBUG *Causes certain messages to print for debug use. (Default is false.)
*EX_VERBOSE *Causes all error messages to print when true, otherwise no error

messages will print. (Default is false.).
NOTE: Values may be OR’ed together to provide any combination of these capabilities.

For example, the following will cause all messages to print and will cause the program to exit
upon receipt of fatal error:

#include “exodusII.h”
ex_opts (EX_ABORT | EX_VERBOSE) ;

EXOPTS: Fortran Interface

SUBROUTINE EXOPTS (OPTVAL, IERR)

INTEGER OPTVAL (R)
Integer option value. Current options are:
*EXABRT *Causes fatal errors to force program exit. (Default is false.)
*EXDEBG *Causes certain messages to print for debug use. (Default is false.)

*exvRBS *Causes all error messages to print when true, otherwise no error messages
will print. (Default is false.)
INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

NOTE: Values may be OR’ed together to provide any combination of capabilities.

For example, the following will cause all messages to print:

include ’‘exodusII.inc’
call exopts (EXVRBS, IERR)

5.1.14 Determine if File is Large or Normal Format

The function ex_large model is used to determine whether the EXODUS II file is being
written in “large model” format or in the normal format. This information is not typically
needed if the user is using the API for all file accesses, but may be useful if the user is also
directly accessing the underlying data file using the netCDF API.

- 56 -

5.2 Model Description

The routines in this section read and write information which describe an EXODUS II finite
element model. This includes nodal coordinates, element order map, element connectivity
arrays, element attributes, node sets, side sets, coordinate frames, and object properties.

5.2.1 Write Nodal Coordinates

The function ex_put_coord (or ExpPcor for Fortran) writes the coordinates of the nodes in the
model. The function ex_put_init (ExPINI for Fortran) must be invoked before this call is
made.

Because the coordinates are floating point values, the application code must declare the arrays
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExXCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_coord returns a negative number; a warning will return a positive
number. EXPCOR returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

ex_put_coord: C Interface

int ex_put_coord (exoid, X_coor, y_COOr, z_COOor);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
void* x_coor (R)
The X coordinates of the nodes. If this is NULL, the X coordinates will not be written in
this call.
void* y_coor (R)
The Y coordinates of the nodes. These are stored only if num_dim > 1; otherwise, pass in
dummy address. If this is NULL, the Y coordinates will not be written in this call.
void* z_coor (R)
The Z coordinates of the nodes. These are stored only if num_dim > 2; otherwise, pass in
dummy address. If this is NULL, the Z coordinates will not be written in this call.

The following will write the nodal coordinates to an open EXODUS 1I file:

int error, exoid;

-57 -

/* 1f file opened with compute word size of sizeof (float) */
float x[8], yI[8], zI[8];

/* write nodal coordinates values to database */

x[0] = 0.0; y[0] = 0.0; z[0] = 0.0;
x[1] 0.0; yI[1] 0.0; z[1] 1.0;
x[2] 1.0; yI[2] 0.0; z[2] 1.0;
x[3] 1.0; yI[3] 0.0; zI[3] 0.0;
x[4] 0.0; yI[4] 1.0; z[4] 0.0;
x[5] 0.0; yI[5] 1.0; z[5] 1.0;
x[6] 1.0; ylel 1.0; z[6] 1.0;
x[7] = 1.0; y[7] = 1.0; z[7] = 0.0;

error = ex_put_coord (exoid, X, Yy, Z);

/* Do the same as the above in three separate calls... */
error = ex_put_coord (exoid, x, NULL, NULL) ;
error ex_put_coord (exoid, NULL, y, NULL) ;
error ex_put_coord (exoid, NULL, NULL, z);

EXPCOR: Fortran Interface

SUBROUTINE EXPCOR (IDEXO, XN, YN, ZN, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

REAL XN (*) (R)
The X coordinates of the nodes.

REAL YN(*) (R)
The Y coordinates of the nodes. These are stored only if NpDIM > 1; otherwise, pass in a
dummy address.

REAL ZN(*) (R)
The Z coordinates of the nodes. These are stored only if NDIM > 2; otherwise, pass in a
dummy address.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following will write the nodal coordinates to an open EXODUS 1I file:

real x(8), y(8), dummy (1)
€
¢ write nodal coordinates values for a 2-d model to the database
€

x(1) = 0.0
x(2) = 1.0
x(3) = 1.0
x(4) = 0.0

-58 -

TR EEE:
O ~J O Ul i W N EFE 03O0 b
P POORPRRPEPROOREFRLDNDDNDLPR
O O O O O O OO o o o o

call expcor (idexo, x, y, dummy, ierr)
5.2.2 Read Nodal Coordinates

The function ex_get_coord or (Exccor for Fortran) reads the coordinates of the nodes.
Memory must be allocated for the coordinate arrays (x_coor, y_coor, and z_coor) before this
call is made. The length of each of these arrays is the number of nodes in the mesh.

Because the coordinates are floating point values, the application code must declare the arrays
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_coord returns a negative number; a warning will return a positive
number. EXGCOR returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if nodal coordinates were not stored.

ex_get_coord: C Interface

int ex get_coord (exoid, X _coor, y_COOr, Z_COOr);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
void* x_coor (W)
Returned X coordinates of the nodes. These are returned only if x_coor is non-NULL.
void* y_coor (W)
Returned Y coordinates of the nodes. These are returned only if y_coor is non-NULL and
num_dim > 1; otherwise, pass in a dummy address.
void* z_coor (W)
Returned Z coordinates of the nodes. These are returned only if z_coor is non-NULL and
num_dim > 2; otherwise, pass in a dummy address.

-59 -

The following code segment will read the nodal coordinates from an open EXODUS II file:

int error, exoid;
float *x, *y, *z;

/* read nodal coordinates values from database */

x = (float *) calloc (num nodes, sizeof (float)) ;
y = (float *) calloc (num nodes, sizeof (float));
if (num dim >= 3)
z = (float *) calloc (num nodes, sizeof (float)) ;
else
z = 0;

error = ex_get_ coord (exoid, X, y, Z);
error = ex_get_coord (exoid, NULL, y, NULL); /* Read only Y coordinate */

EXGCOR: Fortran Interface

SUBROUTINE EXGCOR (IDEXO, XN, YN, ZN, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

REAL XN (*) (W)
Returned X coordinates of the nodes.

REAL YN (*) (W)
Returned Y coordinates of the nodes. These are returned only if NDIM > 1; otherwise, pass
in a dummy address.

REAL ZN(*) (W)
Returned Z coordinates of the nodes. These are returned only if NDIM > 2; otherwise, pass
in a dummy address.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read the nodal coordinates from an open EXODUS II file:

c NOTE: MAXNOD is the maximum number of nodes
@
real x(MAXNOD), y(MAXNOD), z (MAXNOD)
@
¢ read nodal coordinates values from database
@

call exgcor (idexo, x, y, z, ierr)
5.2.3 Write Coordinate Names
The function ex_put_coord_names or (ExPCON for Fortran) writes the names of the coordinate

arrays to the database. The function ex_put_init (ExpINI for Fortran) must be invoked
before this call is made.

- 60 -

In case of an error, ex_put_coord_names returns a negative number; a warning will return a
positive number. EXPCON returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

ex_put_coord_names: C Interface

int ex put_coord_names (exoid, coord _names) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char** coord names (R)
Array containing num_dim names (of length Max_sTR_LENGTH) of the nodal coordinate
arrays.

The following coding will write the coordinate names to an open EXODUS II file:

int error, exoid;
char *coord_names [3];

coord_names [0] = “xcoor”;
coord_names [1] = “ycoor”;
coord_names [2] = “zcoor”;

error = ex_put_coord_names (exoid, coord_names) ;

EXPCON: Fortran Interface

SUBROUTINE EXPCON (IDEXO, NAMECO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXSTLN NAMECO (*) (R)
Array containing NpDIM names for the nodal coordinate arrays.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following coding will write the coordinate names to an open EXODUS II file:

include ’‘exodusII.inc’
character* (MXSTLN) coord_names (3)

coord_names (1) = “xcoor”
coord_names (2) = “ycoor”
coord_names (3) = “zcoor”

-61 -

call expcon (idexo, coord_names, ierr)
5.2.4 Read Coordinate Names

The function ex_get_coord_names or (EXGCON for Fortran) reads the names
(MAX_STR_LENGTH-characters in length) of the coordinate arrays from the database. Memory
must be allocated for the character strings before this function is invoked.

In case of an error, ex_get_coord_names returns a negative number; a warning will return a
positive number. EXGCON returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if coordinate names were not stored.

ex_get_coord_names: C Interface

int ex _get_coord_names (exoid, coord_names) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char** coord_names (W)
Returned pointer to a vector containing num_dim names of the nodal coordinate arrays.

The following code segment will read the coordinate names from an open EXODUS 11 file:

int error, exoid;
char *coord_names [3];

for (i=0; i<num dim; i++)
coord_names[i] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof (char));

error = ex_get coord names (exoid, coord_names) ;

EXGCON: Fortran Interface

SUBROUTINE EXGCON (IDEXO, NAMECO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*MXSTLN NAMECO (*) (W)
Returned array containing NDIM names for the nodal coordinate arrays.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read the coordinate names from an open EXODUS 11 file:

-62 -

character* (MXSTLN) coord_names (3)

call exgcon (idexo, coord_names, ierr)
5.2.5 Write Node Number Map

The function ex_put_node_num_map (or ExPNNM for Fortran) writes out the optional node
number map to the database. The function ex_put_init (ExpPINI for Fortran) must be invoked
before this call is made.

In case of an error, ex_put_node_num_map returns a negative number; a warning will return a
positive number. EXPNNM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* anode number map already exists in the file.

ex_put_node_num_map: C Interface

int ex put_node num map (exoid, node map) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* node_map (R)
The node number map.

The following code generates a default node number map and outputs it to an open EXODUS
II file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

int *node map, error, exoid;
node_map = (int *) calloc(num nodes, sizeof (int)) ;

for (i=1; i<=num nodes; i++)
node map[i-1] = 1i;

error = ex_put _node num map (exoid, node_map) ;

EXPNNM: Fortran Interface

SUBROUTINE EXPNNM (IDEXO, MAPNOD, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

-63 -

INTEGER MAPNOD (*) (R)
The node number map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code generates a default node number map and outputs it to an open EXODUS
II file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

c NOTE: MAXNOD is the maximum number of nodes
integer node_map (MAXNOD)

c write node order map

do 10 i = 1, num nodes
node_map (i) = i
10 continue

call expnnm (idexo, node_map, ierr)
5.2.6 Read Node Number Map

The function ex_get_node_num_map (or ExGNNM for Fortran) reads the optional node number
map from the database. If a node number map is not stored in the data file, a default array
(1,2,3, . . . num_nodes) is returned. Memory must be allocated for the node number map array
(num_nodes in length) before this call is made.

In case of an error, ex_get_node_num map returns a negative number; a warning will return a
positive number. EXGNNM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* if a node number map is not stored, a default map and a warning value are returned.

ex_get_node_num_map: C Interface

int ex _get_node num map (exoid, node_map) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* node_map (W)
Returned node number map.

The following code will read a node number map from an open EXODUS 1I file:

int *node map, error, exoid;
/* read node number map */

node_map = (int *) calloc (num nodes, sizeof (int)) ;
error = ex_get node num map (exoid, node_map) ;

-64 -

EXGNNM: Fortran Interface

SUBROUTINE EXGNNM (IDEXO, MAPNOD, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER MAPNOD (*) (W)
Returned node number map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code will read a node number map from an open EXODUS 1I file:
integer node_map (MAXNODES)

call exgnnm (idexo, node_map, ierr)
5.2.7 Write Element Number Map

The function ex_put_elem num_ map (or ExPENM for Fortran) writes out the optional element
number map to the database. The function ex_put_init (ExpPINI for Fortran) must be invoked
before this call is made.

In case of an error, ex_put_elem num_map returns a negative number; a warning will return a
positive number. EXPENM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* an element number map already exists in the file.

ex_put_elem_num_map: C Interface

int ex put_elem num map (exoid, elem map) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* elem_map (R)
The element number map.

The following code generates a default element number map and outputs it to an open
EXODUS II file. This is a trivial case and included just for illustration. Since this map is
optional, it should be written out only if it contains something other than the default map.

int *elem map, error, exoid;

- 65 -

elem_map = (int *) calloc (num_elem, sizeof (int)) ;

for (i=1; i<=num elem; i++)
elem map[i-1] = 1i;

error = ex_put_elem num _map (exoid, elem _map) ;

EXPENM: Fortran Interface

SUBROUTINE EXPENM (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER MAPEL (*) (R)
The element number map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code generates a default element number map and outputs it to an open
EXODUS II file. This is a trivial case and included just for illustration. Since this map is
optional, it should be written out only if it contains something other than the default map.

¢ NOTE: MAXELEM is the maximum number of elements
@
integer elem_map (MAXELEM)
@
c write element number map
@

do 10 i = 1, num elem
elem _map (i) = i
10 continue

call expenm (idexo, elem _map, ierr)
5.2.8 Read Element Number Map

The function ex_get_elem num map (or ExGENM for Fortran) reads the optional element
number map from the database. If an element number map is not stored in the data file, a
default array (1,2,3, ... num_elem) is returned. Memory must be allocated for the element
number map array (num_elem in length) before this call is made.

In case of an error, ex_get_elem num map returns a negative number; a warning will return a
positive number. EXGENM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).
* if an element number map is not stored, a default map and a warning value are returned.

- 66 -

ex_get_elem_num_map: C Interface

int ex_get_elem num map (exoid, elem map) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* elem_map (W)
Returned element number map.

The following code will read an element number map from an open EXODUS 1I file:

int *elem map, error, exoid;

/* read element number map */
elem map = (int *) calloc(num_elem, sizeof (int)) ;
error = ex_get _elem num map (exoid, elem map) ;

EXGENM: Fortran Interface

SUBROUTINE EXGENM (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPEL (*) (W)
Returned element number map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code will read an element number map from an open EXODUS 11 file:

integer elem_map (MAXELEM)
@
c read element number map
call exgenm (idexo, elem _map, ierr)

5.2.9 Write Element Order Map

The function ex_put_map (or ExpPMAP for Fortran) writes out the optional element order map to
the database. The function ex_put_init (ExPINI for Fortran) must be invoked before this call
is made.

In case of an error, ex_put_map returns a negative number; a warning will return a positive
number. EXPMAP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

-67 -

* an element map already exists in the file.

ex_put_map: C Interface

int ex put_map (exoid, elem map) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* elem_map (R)
The element order map.

The following code generates a default element order map and outputs it to an open EXODUS
IT file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

int *elem map, error, exoid;
elem map = (int *) calloc(num_elem, sizeof (int)) ;

for (i=1; i<=num elem; i++)
elem map[i-1] = i;

error = ex_put _map (exoid, elem_map) ;

EXPMAP: Fortran Interface

SUBROUTINE EXPMAP (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER MAPEL(*) (R)
The element order map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code generates a default element order map and outputs it to an open EXODUS
IT file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

c NOTE: MAXELEM is the maximum number of elements
integer elem map (MAXELEM)

c write element order map
do 10 i = 1, num _elem
elem map (i) = i

10 continue

call expmap (idexo, elem map, ierr)

- 68 -

5.2.10 Read Element Order Map

The function ex_get_map (or ExaMaP for Fortran) reads the element order map from the
database. If an element order map is not stored in the data file, a default array (1,2,3, . ..
num_elem) is returned. Memory must be allocated for the element map array (num_elem in
length) before this call is made.

In case of an error, ex_get_map returns a negative number; a warning will return a positive
number. EXGMAP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* if an element order map is not stored, a default map and a warning value are returned.

ex_get_map: C Interface

int ex_get_map (exoid, elem _map) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* elem_map (W)
Returned element order map.

The following code will read an element order map from an open EXODUS 11 file:

int *elem map, error, exoid;

/* read element order map */
elem map = (int *) calloc(num_elem, sizeof (int)) ;
error = ex_get map (exoid, elem_map) ;

EXGMAP: Fortran Interface

SUBROUTINE EXGMAP (IDEXO, MAPEL, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER MAPEL (*) (W)
Returned element order map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code will read an element order map from an open EXODUS II file:

integer elem map (MAXELEM)
c read element order map
call exgmap (idexo, elem map, ierr)

-69 -

5.2.11 Write Element Block Parameters

The function ex_put_elem_block (or EXPELB for Fortran) writes the parameters used to
describe an element block.

In case of an error, ex_put_elem block returns a negative number; a warning will return a
positive number. EXPELB returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

* an element block with the same ID has already been specified.

* the number of element blocks specified in the call to ex_put_init (ExPINT for
Fortran) has been exceeded.

ex_put_elem_block: C Interface

int ex_put_elem block (exoid, elem blk_id, elem type, num elem this_blk,
num_nodes_per_elem, num attr) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk id (R)
The element block ID.

char* elem_type (R)
The type of elements in the element block. The maximum length of this string is
MAX_STR_LENGTH. For historical reasons, this string should be all upper case.
int num elem this blk (R)
The number of elements in the element block.
int num nodes_per_elem (R)
The number of nodes per element in the element block.
int num attr (R)
The number of attributes per element in the element block.

For example, the following code segment will initialize an element block with an ID of 10,
write out the connectivity array, and write out the element attributes array:
int id, error, exoid, num_elem in_blk, num nodes_per_elem,
*connect, num attr;
float *attrib;

/* write element block parameters */

id = 10;
num_elem _in blk = 2;

-70 -

num_nodes_per_elem = 4; /* elements are 4-node
shells */

num_attr = 1; /* one attribute per
element */

error = ex_put_elem block (exoid, id, *“SHEL”,
num _elem in_blk, num _nodes_per_elem, num_attr);

/* write element connectivity */

connect = (int *)
calloc (num_elem_in blk*num nodes_per_elem, sizeof (int));

/* £ill connect with node numbers; nodes for first element*/

connect [0] = 1; connect[l] = 2; connect[2] = 3; connect[3] = 4;
/* nodes for second element */
connect [4] = 5; connect[5] = 6; connect[6] = 7; connect[7] = 8;

error = ex_put_elem conn (exoid, id, connect) ;
/* write element block attributes */
attrib = (float *) calloc (num attr * num elem in blk, sizeof (float)) ;

for (i=0, cnt=0; i<num elem in blk; i++)
for (j=0; j<num attr; j++, cnt++)
attrib[cnt] = 1.0;

error = ex_put_elem attr (exoid, id, attrib) ;

EXPELB: Fortran Interface

SUBROUTINE EXPELB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK, NUMATR, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB (R)
The element block ID.

CHARACTER*MXSTLN NAMELB (R)
The type of elements in the element block. For historical reasons, this string should be all
upper case.

INTEGER NUMELB (R)
The number of elements in the element block.

INTEGER NUMLNK (R)
The number of nodes per element in the element block.

INTEGER NUMATR (R)
The number of attributes per element in the element block.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

=71 -

For example, the following code segment will initialize an element block with an ID of 10,
write out the connectivity array, and write out the element attributes array:

¢ NOTE: MAXLNK is the maximum number of nodes per element

@ MAXELB is the maximum number of elements per element block
@ MAXATR is the maximum number of attributes per element
€

include ’‘exodusII.inc’

integer ebid, connect (MAXLNK * MAXELB)
real attrib (MAXATR * MAXELB)
character* (MXSTLN) cname

€
c write element block parameters
€

ebid = 10

cname = “SHEL”

numelb = 2

numlnk = 4

numatr = 1

call expelb (idexo, ebid, cname, numelb, numlnk, numatr, ierr)
€
c fill element connectivity and write it out;
¢ nodes for first element

connect (1) =1

connect (2) = 2

connect (3) = 3

connect (4) = 4

c nodes for second element

connect (5) = 5
connect (6) = 6
connect (7) = 7
connect (8) = 8

call expelc (idexo, ebid, connect, ierr)

&
c write element block attributes
&
icnt = 0
do 20 i=1,numelb
do 10 j=1,numatr
icnt = icnt + 1
attrib(icnt) = 1.0
10 continue

20 continue

call expeat (idexo, ebid, attrib, ierr)

=72 -

5.2.12 Read Element Block Parameters

The function ex_get_elem_block (or EXGELB for Fortran) reads the parameters used to
describe an element block. IDs of all element blocks stored can be determined by calling
ex_get_elem blk_ids (ExGEBI for Fortran).

In case of an error, ex_get_elem block returns a negative number; a warning will return a
positive number. EXGELB returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* element block with specified ID is not stored in the data file.

ex_get_elem_block: C Interface

int ex get_elem block (exoid, elem blk_id, elem type, num elem this_blk,
num nodes_per_elem, num attr);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int elem blk id (R)
The element block ID.

char* elem_type (W)
Returned type of elements in the element block. The maximum length of this string is
MAX_STR_LENGTH.

int* num_elem this blk (W)
Returned number of elements in the element block.

int* num nodes_per_elem (W)
Returned number of nodes per element in the element block.

int* num attr (W)
Returned number of attributes per element in the element block.

As an example, the following code segment will read the parameters for the element block with
an ID of 10 and read the connectivity and element attributes arrays from an open EXODUS 11
file:

#include “exodusII.h”

int id, error, exoid, num_el_in_blk, num nod_per_el, num attr, *connect;

float *attrib;

char elem_type [MAX STR_LENGTH+1] ;

/* read element block parameters */
id = 10;
error = ex_get_elem block (exoid, id, elem type,

&num_el_in_blk, &num nod_per_ elem, &num_attr);

/* read element connectivity */

-73 -

connect = (int *) calloc (num_nod_per_el*num_el_in_blk, sizeof (int)) ;
error = ex_get_elem conn (exoid, id, connect) ;

/* read element block attributes */

attrib = (float *) calloc (num attr * num el in blk, sizeof (float)) ;
error = ex_get_elem attr (exoid, id, attrib) ;

EXGELB: Fortran Interface

SUBROUTINE EXGELB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK, NUMATR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB (R)
The element block ID.

CHARACTER*MXSTLN NAMELB (W)
The type of elements in the element block.

INTEGER NUMELB (W)
Returned number of elements in the element block.

INTEGER NUMLNK (W)
Returned number of nodes per element in the element block.

INTEGER NUMATR (W)
Returned number of attributes per element in the element block.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code segment will read the parameters for the element block with
an ID of 10 and the connectivity and element attributes arrays associated with that element
block:

c NOTE: MAXLNK is the maximum number of nodes per element

© MAXELB is the maximum number of elements per element block
© MAXATR is the maximum number of attributes per element

include ’‘exodusII.inc’
integer connect (MAXLNK * MAXELRB)

real attrib (MAXATR * MAXELB)
character* (MXSTLN) typ

Q

read element block parameters
id = 10
call exgelb (idexo, id, typ, numelb, numlnk, numatt, ierr)

read element connectivity
call exgelc (idexo, id, connect, ierr)

Q

©
¢ read element block attributes
call exgeat (idexo, id, attrib, ierr)

-74 -

5.2.13 Write All Element Block Parameters

If element blocks are written using ex_put_elem block (or EXPELB for Fortran), significant
inefficiencies can result, because the netcdf file is completely re-written after each call. For
large files with many element blocks this can be prohibitively slow. To avoid this problem, the
function ex_put_concat_elem block (or ExpcLB for Fortran) may be used to write the block
parameters for all element blocks in a single call.

In case of an error, ex_put_concat_elem block returns a negative number; a warning will
return a positive number. EXPCLB returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

ex_put_concat_elem_block: C Interface

int ex_put_concat_elem block (exoid, elem _blk id, elem_type,
num _elem this_blk, num nodes_per_elem, num attr,define_maps);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int elem blk ids (R)
An array of the element block IDs.
char* elem_typel] (R)
The type of elements in each of the element blocks. The maximum length of this string is
MAX_STR_LENGTH.
int* num elem this blk (R)
The number of elements in each of the element blocks.
int* num nodes_per_elem (R)
The number of nodes per element in each of the element blocks.
int define_maps (R)
Zero if node_number_map and element_number_map will not be written later; nonzero if
they will. This is just an optimization that will predefine the space for the maps now if they
will be written later.
int *num_attr (R)
The number of attributes per element in each of the element blocks.

See the section on ex_put_elem block for an example.

EXPCLB: Fortran Interface

SUBROUTINE EXPCLB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK, NUMATR, MKMAPS,
IERR)

=75 -

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB(*) (R)
The element block IDs for all element blocks.

CHARACTER*MXSTLN NAMELB (*) (R)
The type of elements for all element blocks.

INTEGER NUMELB (*) (R)
The number of elements in each element block.

INTEGER NUMLNK (R)
The number of nodes per element in each element block.

INTEGER NUMATR (R)
The number of attributes per element in each element block.

INTEGER MKMAPS (R)
Zero if node_number_map and element_number_map will not be written later; nonzero if
they will. This is just an optimization that will predefine the space for the maps now if they
will be written later.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.14 Read Element Blocks IDs

The function ex_get_elem_blk_ids (or EXGEBI for Fortran) reads the IDs of all of the
element blocks. Memory must be allocated for the returned array of (num_elem blk) IDs
before this function is invoked. The required size (num_elem b1lk) can be determined via a call
to ex_inquire (or EXINQ for Fortran).

In case of an error, ex_get_elem blk_ids returns a negative number; a warning will return a
positive number. EXGEBI returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

ex_get_elem_blk_ids: C Interface

int ex get_elem blk ids (exoid, elem blk_ids);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* elem blk ids (W)
Returned array of the element blocks IDs. The order of the IDs in this array reflects the
sequence that the element blocks were introduced into the file.

The following code segment reads all the element block IDs:

-76 -

int error, exoid, *idelbs, num elem blk;
idelbs = (int *) calloc (num _elem blk, sizeof (int)) ;

error = ex_get_elem blk_ids (exoid, idelbs) ;

EXGEBI: Fortran Interface

SUBROUTINE EXGEBI (IDEXO, IDELBS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELBS (*) (W)
Returned array of element blocks IDs. The order of the IDs in this array reflects the
sequence that the element blocks were introduced into the file.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment reads all the element block IDs:

¢ NOTE: MAXEBL is the maximum number of element blocks
@

integer idelbs (MAXEBL)

call exgebi (idexo, idelbs, ierr)

5.2.15 Write Element Block Connectivity

The function ex_put_elem conn (or ExpPELC for Fortran) writes the connectivity array for an
element block. The function ex_put_elem block (EXPELB for Fortran) must be invoked
before this call is made.

In case of an error, ex_put_elem conn returns a negative number; a warning will return a
positive number. EXPELC returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* ex put_elem block was not called previously.

ex_put_elem_conn: C Interface

int ex_put_elem conn (exoid, elem blk_id, connect) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int elem blk id (R)
The element block ID.

=77 -

int connect [num elem this_blk,num _nodes_per_elem] (R)
The connectivity array; a list of nodes (internal node IDs; see Node Number Map) that
define each element in the element block. The node index cycles faster than the element
index.

Refer to the description of ex_put_elem block (ExPELB for Fortran) for an example of a
code segment that writes out the connectivity array for an element block.

EXPELC: Fortran Interface

SUBROUTINE EXPELC (IDEXO, IDELB, LINK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.
INTEGER IDELB (R)
The element block ID.
INTEGER LINK (NUMLNK,NUMELB) (R)
The connectivity array; a list of nodes (internal node IDs; see Node Number Map) that
define each element. The node index cycles faster than the element index.
INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of ex_put_elem block (ExPELB for Fortran) for an example of a
code segment that writes out the connectivity array for an element block.

5.2.16 Read Element Block Connectivity

The function ex_get_elem_conn (or EXGELC for Fortran) reads the connectivity array for an
element block. Memory must be allocated for the connectivity array (num elem this blk *
num_nodes_per_elem in length) before this routine is called.

In case of an error, ex_get_elem conn returns a negative number; a warning will return a
positive number. EXGELC returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* an element block with the specified ID is not stored in the file.

ex_get_elem_conn: C Interface

int ex get_elem conn (exoid, elem blk_id, connect);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk id (R)
The element block ID.

-78 -

int connect [num elem this_blk,num nodes_per_elem] (W)
Returned connectivity array; a list of nodes (internal node IDs; see Node Number Map)
that define each element. The node index cycles faster than the element index.

For an example of a code segment that reads the connectivity for an element block, refer to the
description of ex_get_elem_block.

EXGELC: Fortran Interface

SUBROUTINE EXGELC (IDEXO, IDELB, LINK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB (R)
The element block ID.

INTEGER LINK (NUMLNK,NUMELB) (W)
Returned connectivity array; a list of nodes (internal node IDs; see Node Number Map)
that define each element. The node index cycles faster than the element index.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of a code segment that reads the connectivity for an element block, refer to the
description of EXGELB.

5.2.17 Write Element Block Attributes

The function ex_put_elem_attr (or EXPEAT for Fortran) writes the attributes for an element
block. Each element in the element block must have the same number of attributes, so there are
(num_attr * num_elem_this_blk) attributes for each element block. The function
ex_put_elem_block (ExPELB for Fortran) must be invoked before this call is made.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_put_elem attr returns a negative number; a warning will return a
positive number. EXPEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* ex put_elem block was not called previously for specified element block ID.

-79 -

* ex_put_elem block was called with O attributes specified.

ex_put_elem_attr: C Interface

int ex_put_elem attr (exoid, elem blk id, attrib);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create Or ex_open.
int elem blk id (R)

The element block ID.

void attrib[num elem this_blk,num attr]| (R)
The list of attributes for the element block. The num_attr index cycles faster.

Refer to the description of ex put_elem block for an example of a code segment that writes
out the attributes array for an element block.

EXPEAT: Fortran Interface

SUBROUTINE EXPEAT (IDEXO, IDELB, ATRIB, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB (R)
The element block ID.

REAL ATRIB(NUMATR,NUMELB) (R)
The list of attributes for the element block. The NUMATR index cycles faster.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of ExPELB for an example of a code segment that writes out the
attributes array for an element block.

5.2.18 Read Element Block Attributes

The function ex_get_elem attr (or EXGEAT for Fortran) reads the attributes for an element
block. Memory must be allocated for (num_attr * num_elem_ this_b1lk) attributes before this
routine is called.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

-80 -

In case of an error, ex_get_elem attr returns a negative number; a warning will return a
positive number. EXGEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid element block ID.
* awarning value is returned if no attributes are stored in the file.

ex_get_elem_attr: C Interface

int ex_get_elem attr (exoid, elem _blk id, attrib);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.
int elem blk id (R)

The element block ID.

void attrib[num_elem this_blk,num attr]| (W)
Returned list of (num_attr * num_elem this_blk) attributes for the element block, with
the num_attr index cycling faster.

For an example of a code segment that reads the element attributes for an element block, refer
to the description of ex_get_elem block.

EXGEAT: Fortran Interface

SUBROUTINE EXGEAT (IDEXO, IDELB, ATRIB, IERR)
INTEGER IDEXO (R)

EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.
INTEGER IDELB (R)

The element block ID.

REAL ATRIB(NUMATR,NUMELB) (W)
Returned list of (NUMATR*NUMELB) attributes for the element block, with the NUMATR index
cycling faster.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of a code segment that reads the element attributes for an element block, refer
to the description of EXGELB.

-81 -

5.2.19 Write One Element Block Attribute

The function ex_put_one_elem attr writes a single attribute for an element block. Each
element in the element block must have the same number of attributes, so there are (num_attr
* num_elem_this_blk) attributes for each element block. The function ex_put_elem block
(expELB for Fortran) must be invoked before this call is made.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_elem attr returns a negative number; a warning will return a
positive number. EXPEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* ex put_elem block was not called previously for specified element block ID.
* ex put_elem block was called with O attributes specified.

» the specified attribute index is larger than the number of attributes for this element
block.

ex_put_one_elem_attr: C Interface

int ex_put_one elem attr (exoid, elem blk id, attribute_index, attrib);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk id (R)
The element block ID.

int attribute_ index (R)
The index of the attribute to write (1..number of attributes).

void attrib[num elem this_blk] (R)
The values of the specified attribute for the element block.

Refer to the description of ex_put_elem block for an example of a code segment that writes
out the attributes array for an element block.

-82-

5.2.20 Read One Element Block Attribute

The function ex_get_one_elem attr reads a single specified attributes for an element block.
Memory must be allocated for (num_elem this_ b1lk) attribute values before this routine is
called.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_one_elem attr returns a negative number; a warning will return a
positive number. EXGEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid element block ID.

* a warning value is returned if no attributes are stored in the file.

* the attribute index is larger than the number of attributes for this element block.

ex_get_elem_attr: C Interface

int ex_get_one elem attr (exoid, elem blk id, attribute_index, attrib);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk id (R)
The element block ID.

int attribute_index (R)
The index of the attribute to read (1..number of attributes).

void attrib[num_elem this_blk] (W)
Returned list of (num_elem this_blk) attribute values for the specified attribute for the
element block.

For an example of a code segment that reads the element attributes for an element block, refer
to the description of ex_get_elem block.

5.2.21 Write Attribute Names

The function ex_put_elem attr_names or (EXPEAN for Fortran) writes the names of the
attributes for a specified element block to the database. The element blocks must be defined via
a call to ex_put_elem block before this call is made.

-83-

In case of an error, ex_put_elem attr_names returns a negative number; a warning will
return a positive number. EXPEAN returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* ex put_elem block was not called previously for specified element block ID.

* The specified element block has zero attributes specified.

* No element blocks with the specfied ID are present on the database.

ex_put_elem_attr_names: C Interface

int ex put_elem attr names (exoid, elem_block_id, attr_names) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int elem block_id (r)

The element block ID.

char** attr_names (R)
Array containing num_attr names (of length MAx_sTR LENGTH) of the attributes for the
element block with id elem block_id.

EXPEAN: Fortran Interface

SUBROUTINE EXPEAN (IDEXO, IDELB, NAMEAT, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELB (R)
The element block ID.

CHARACTER*MXSTLN NAMEAT (*) (R)
Array containing NUMATR names of the attributes for the element block with ID 1DELB.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.22 Read Attribute Names

The function ex_get_elem attr_names or (EXGEAN for Fortran) reads the names
(Max_STR_LENGTH-characters in length) of the attribute arrays from the database for the
specified element block. Memory must be allocated for the character strings before this
function is invoked.

-84 -

In case of an error, ex_get_attr_names returns a negative number; a warning will return a
positive number. EXGCON returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid element block ID
* awarning value is returned if attribute names were not stored.

ex_get_elem_attr_names: C Interface

int ex_get_elem attr names (exoid, elem_block_id, attr_names) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem block_id

The element block ID.

char** attr names (W)
Returned pointer to a vector containing num_attr names of the element attributes for the
element block with ID elem block_id.

EXGEAN: Fortran Interface

SUBROUTINE EXGEAN (IDEXO, IDELB, NAMEAT, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDELB
The element block ID.

CHARACTER*MXSTLN NAMEAT (*) (W)
Returned array containing NUMATR names for the element attributes for the element block
with ID IDELB.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.23 Write Node Set Parameters

The function ex_put_node_set_param (or EXPNP for Fortran) writes the node set ID, the
number of nodes which describe a single node set, and the number of distribution factors for
the node set.

In case of an error, ex_put_node_set_param returns a negative number; a warning will return

a positive number. EXPNP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

-85 -

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

e the number of node sets specified in the call to ex_put_init (ExpPINT for Fortran)
was zero or has been exceeded.

* anode set with the same ID has already been stored.

* the specified number of distribution factors is not zero and is not equal to the number of
nodes.

ex_put_node_set_param: C Interface

int ex put_node set_param (exoid, node_set_id, num nodes_in_set,
num_dist _in set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int node_set_id (R)

The node set ID.

int num nodes_in set (R)
The number of nodes in the node set.

int num _dist_in_set (R)
The number of distribution factors in the node set. This should be either O (zero) for no
factors, or should equal num_nodes_in_set.

The following code segment will write out a node set to an open EXODUS 1I file:

int id, num nodes_ in set, num dist in set, error, exoid, *node_list;
float *dist_fact;

/* write node set parameters */
id = 20; num nodes_in set = 5; num dist in set = 5;

error = ex_put_node_ set_param (exoid, id, num _nodes_in_set,
num _dist in set) ;

/* write node set node list */

node list = (int *) calloc (num nodes_in_ set, sizeof (int)) ;
node 1ist[0] = 100; node_list[1l] = 101; node list[2] = 102;
node 1list[3] = 103; node_list[4] = 104;

error = exXx_put_node set (exoid, id, node_ list) ;
/* write node set distribution factors */

dist_fact = (float *) calloc (num dist_in set, sizeof (float)) ;
dist_fact[0] = 1.0; dist fact[l] = 2.0; dist_ fact[2] = 3.0;

- 86 -

dist_fact[3] = 4.0; dist fact[4] = 5.0;
error = ex_put_node set_dist fact (exoid, id, dist_fact);

EXPNP: Fortran Interface

SUBROUTINE EXPNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER NNNPS (R)
The number of nodes in the node set.

INTEGER NDNPS (R)
The number of distribution factors in the node set. This should be either O (zero) for no
factors, or should equal NNNPS.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will write out a node set to an open EXODUS 11 file:

integer node_list (5)
real dist_fact(5)
©
c write a single node set
©
call expnp (idexo, 20, 4, 4, ierr)

node_list (1) = 100
node_list(2) = 101
node_list(3) = 102
node_list(4) = 103
dist_fact(l) = 1.0
dist_fact(2) 2.0
dist_fact(3) 3.0
dist_fact(4) = 4.0

call expns (idexo, 20, node list, ierr)
call expnsd (idexo, 20, dist fact, ierr)

5.2.24 Read Node Set Parameters

The function ex_get_node_set_param (or EXGNP for Fortran) reads the number of nodes
which describe a single node set and the number of distribution factors for the node set.

In case of an error, ex_get_node_set_param returns a negative number; a warning will return

a positive number. EXGNP returns a nonzero error (negative) or warning (positive) number in
1ERR. Possible causes of errors include:

-87 -

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no node sets are stored in the file.
* incorrect node set ID.

ex_get_node_set_param: C Interface

int ex_get_node_set_param (exoid, node_set_id, num nodes_in_set,
num_dist_in_ set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int node_set_id (R)

The node set ID.

int* num nodes_in_set (W)
Returned number of nodes in the node set.

int* num dist _in set (W)
Returned number of distribution factors in the node set.

The following code segment will read a node set from an open EXODUS 11 file:

int error, exoid, id, num nodes_in_set, num _df_in_ set, *node_list;
float *dist_fact;

/* read node set parameters */

id = 100;

error = ex_get node set_param (exoid, id, &num nodes_in_set,
&num_df_in_set) ;

/* read node set node list */

node_list = (int *) calloc(num nodes_in_set, sizeof (int)) ;
error = ex _get _node set (exoid, id, node 1list) ;

/* read node set distribution factors */
if (num _df in set > 0) {
dist_fact (float *) calloc (num_nodes_in_set,

sizeof (float)) ;
error = ex _get node set_dist fact (exoid, id, dist_fact); }

EXGNP: Fortran Interface

SUBROUTINE EXGNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

- 88 -

INTEGER IDNPS (R)
The node set ID.

INTEGER NNNPS (W)
Returned number of nodes in the node set.

INTEGER NDNPS (W)
Returned number of distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read all node sets from an open EXODUS II file:

c NOTE: MAXNS is the maximum number of node sets
@ MAXNOD is the maximum number of nodes in a node set
&

integer ids (MAXNS), node_list (MAXNOD)

real dist fact (MAXNOD)

read individual node sets

Q

if (num_node_sets .gt. 0) then
call exgnsi (idexo, ids, ierr)
endif

do 100 1 = 1, num node_sets
call exgnp (idexo, 1ds (i), nnnps, numdf, ierr)
call exgns (idexo, ids (i), node_list, ierr)
call exgnsd (idexo, ids (i), dist_fact, ierr)
100 continue

5.2.25 Write Node Set

The function ex_put_node_set (or ExpNs for Fortran) writes the node list for a single node set.
The function ex_put_node_set_param (or ExPNP for Fortran) must be called before this

routine is invoked.

In case of an error, ex_put_node_set returns a negative number; a warning will return a
positive number. EXPNS returns a nonzero error (negative) or warning (positive) number in

TERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for

Fortran).
» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpPINI for Fortran).

* ex put_node_set_param (or ExpNP for Fortran) not called previously.
ex_put_node_set: C Interface

int ex put_node set (exoid, node_set id, node_set _node_list);

-89 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int node_set_id (R)

The node set ID.

int* node_set node list (R)
Array containing the node list for the node set. Internal node IDs are used in this list (see
Node Number Map).

Refer to the description of ex_put_node_set_param for a sample code segment to write out a
node set.

EXPNS: Fortran Interface

SUBROUTINE EXPNS (IDEXO, IDNPS, LTNNPS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER LTNNPS (*) (R)
Array containing the node list for the node set. Internal node IDs are used in this list (see
Node Number Map).

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of Expnp for a sample code segment to write out a node set.

5.2.26 Read Node Set

The function ex_get_node_set (or EXGNs for Fortran) reads the node list for a single node set.
Memory must be allocated for the node list (num_nodes_in_set in length) before this function
is invoked.

In case of an error, ex_get_node_set returns a negative number; a warning will return a
positive number. EXGNS returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if no node sets are stored in the file.
* incorrect node set ID.

ex_get_node_set: C Interface

int ex_get_node_set (exoid, node_set_id, node_set_node_list) ;

-90 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int node_set_id (R)

The node set ID.

int* node_set node list (W)
Returned array containing the node list for the node set. Internal node IDs are used in this
list (see Node Number Map).

Refer to the description of ex_get_node_set_param for a sample code segment to read a node
set.

EXGNS: Fortran Interface

SUBROUTINE EXGNS (IDEXO, IDNPS, LTNNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER LTNNPS (*) (W)
Returned array containing the node list for the node set. Internal node IDs are used in this
list (see Node Number Map).

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of Excnp for a sample code segment to read a node set.

5.2.27 Write Node Set Distribution Factors

The function ex_put_node_set_dist_fact (or ExPNSD for Fortran) writes distribution
factors for a single node set. The function ex_put_node_set_param (or ExPNP for Fortran)
must be called before this routine is invoked.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_node_set_dist_fact returns a negative number; a warning will
return a positive number. EXPNSD returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file opened for read only.

-91 -

e data file not initialized properly with call to ex_put_init (ExpPINI for Fortran).
® ex put_node_set_param (or ExpNP for Fortran) not called previously.

e a call to ex put_node _set_param (or ExPNP for Fortran) specified zero
distribution factors.

ex_put_node_set_dist_fact: C Interface

int ex_put_node_set_dist_fact (exoid, node_set_id, node_set_dist fact);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int node_set_id (R)

The node set ID.

void* node_set_dist_fact (R)
Array containing the distribution factors in the node set.

Refer to the description of ex_put_node_set_param for a sample code segment to write out
the distribution factors for a node set.

EXPNSD: Fortran Interface

SUBROUTINE EXPNSD (IDEXO, IDNPS, FACNPS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

REAL FACNPS (*) (R)
Array containing the distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of Expnp for a sample code segment to write out the distribution
factors for a node set.

5.2.28 Read Node Set Distribution Factors
The function ex_get_node_set_dist_fact (or EXGNSD for Fortran) returns the distribution
factors for a single node set. Memory must be allocated for the list of distribution factors

(num_dist_in_set in length) before this function is invoked.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in

92

Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_node_set_dist_ fact returns a negative number; a warning will
return a positive number. EXGNSD returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* awarning value is returned if no distribution factors were stored.

ex_get_node_set_dist_fact: C Interface

int ex_get_node_set_dist_fact (exoid, node_set_id, node_set_dist fact);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)

The node set ID.

void* node_set_dist_fact (W)
Returned array containing the distribution factors in the node set.

Refer to the description of ex_get_node_set_param for a sample code segment to read a node
set’s distribution factors.

EXGNSD: Fortran Interface

SUBROUTINE EXGNSD (IDEXO, IDNPS, FACNPS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

REAL FACNPS (*) (W)
Returned array containing the distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

Refer to the description of Excnp for a sample code segment to read a node set’s distribution
factors.

5.2.29 Read Node Sets IDs

The function ex_get_node_set_ids (or EXGNSI for Fortran) reads the IDs of all of the node
sets. Memory must be allocated for the returned array of (num_node_sets) IDs before this
function is invoked.

93

In case of an error, ex_get_node_set_ids returns a negative number; a warning will return a
positive number. EXGNST returns a nonzero error (negative) or warning (positive) number in
1ERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).
* awarning value is returned if no node sets are stored in the file.

ex_get_node_set_ids: C Interface

int ex_get_node_set_ids (exoid, node_set_ids);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* node set_ids (W)
Returned array of the node sets IDs. The order of the IDs in this array reflects the sequence
the node sets were introduced into the file.

As an example, the following code will read all of the node set IDs from an open data file:

int *ids, num node_ sets, error, exoid;

/* read node sets IDs */

ids = (int *) calloc (num _node sets, sizeof (int)) ;
error = ex_get _node_ set_ids (exoid, ids) ;

EXGNSI: Fortran Interface

SUBROUTINE EXGNSI (IDEXO, IDNPSS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDNPSS (*) (W)
Returned array of node sets IDs. The order of the IDs in this array reflects the sequence the
node sets were introduced into the file.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code will read all of the node set IDs from an open EXODUS II
file:
integer ids (MAXNS)
if (num_node_sets .gt. 0) then
call exgnsi (idexo, ids, ierr)
endif

-94 -

5.2.30 Write Concatenated Node Sets

The function ex_put_concat_node_sets (or ExPcNS for Fortran) writes the node set ID’s,
node sets node count array, node sets distribution factor count array, node sets node list
pointers array, node sets distribution factor pointer, node set node list, and node set distribution
factors for all of the node sets. “Concatenated node sets” refers to the arrays required to define
all of the node sets (ID array, counts arrays, pointers arrays, node list array, and distribution
factors array) as described in Con. Writing concatenated node sets is more efficient than
writing individual node sets. See Appendix A for a discussion of efficiency issues.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

It is possible to use this call to only define the node sets on the database and to write the node
set data using other API functions. This usage is also more efficient than defining individual
node sets, but is sometimes easier than defining and writing all node set data at one time. To
only define the node sets on the database, pass a NULL for the node_sets_node_index,
node_sets_dist_index, node_sets_node_ list, and node_sets_dist_fact arguments.

In case of an error, ex_put_concat_node_sets returns a negative number; a warning will
return a positive number. EXPCNS returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE O EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

e the number of node sets specified in a call to ex_put_init (ExPINI for Fortran)
was zero or has been exceeded.

e anode set with the same ID has already been stored.

e the number of distribution factors specified for one of the node sets is not zero and
is not equal to the number of nodes in the same node set.

ex_put_concat_node_sets: C Interface

int ex put_concat_node sets (exoid, node_set ids, num_nodes_per_ set,
num _dist_per_set, node_sets_node_index, node_sets_dist_index,
node_sets_node_list, node sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

-95 -

int* node_set ids (R)
Array containing the node set ID for each set.

int* num nodes_per_set (R)
Array containing the number of nodes for each set.

int* num dist_per_set (R)
Array containing the number of distribution factors for each set.

int* node_sets_node_index (R)
Array containing the indices into the node_set_node_1ist which are the locations of the
first node for each set. These indices are 0-based. Pass NULL if only defining node sets
with this call.

int* node_sets_dist index (R)
Array containing the indices into the node_set_dist_1list which are the locations of the
first distribution factor for each set. These indices are 0-based. Pass NULL if only defining
node sets with this call.

int* node_sets node list (R)
Array containing the nodes for all sets. Internal node IDs are used in this list (see Node
Number Map). Pass NULL if only defining node sets with this call.

void* node_sets_dist_ fact (R)
Array containing the distribution factors for all sets. Pass NULL if only defining node sets
with this call.

For example, the following code will write out two node sets in a concatenated format:

int ids[2], num nodes_per_set[2], node_ind[2], node_list[8],
num df_per set[2], df_ind[2], error, exoid;
float dist_fact[8];

ids [0] = 20; ids[1] = 21;

num nodes_per_set[0] = 5; num nodes_per_set[1l] = 3;
node_ind[0] = 0; node_ind[1l] = 5;

node_list[0] = 100; node list[1l] = 101; node 1list[2] = 102;
node_list[3] = 103; node list[4] = 104;

node_list[5] = 200; node list[6] = 201; node 1list[7] = 202;
num df_per _set[0] = 5; num df per set[l] = 3;

df_ind[0] = 0; df_ind[1] = 5;

dist_fact[0] = 1.0; dist _fact[l] = 2.0; dist_fact[2] = 3.0;
dist_fact[3] = 4.0; dist_fact[4] = 5.0;
dist_fact[5] = 1.1; dist_fact[6] = 2.1; dist_factl[7] = 3.1;

error = ex_put_concat_node sets (exoid, ids, num nodes_per_set,
num df_per set, node_ind, df_ind, node 1list, dist_fact) ;

- 96 -

EXPCNS: Fortran Interface

SUBROUTINE EXPCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS, IXDNPS, LTNNPS,
FACNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER IDNPSS(*) (R)
Array containing the node set ID for each set.

INTEGER NNNPS (*) (R)
Array containing the number of nodes for each set.

INTEGER NDNPS (*) (R)
Array containing the number of distribution factors for each set.

INTEGER IXNNPS(*) (R)
Array containing the indices into the LTNNPs array which are the locations of the first node
for each set. These indices are 1-based.

INTEGER IXDNPS (*) (R)
Array containing the indices into the Facnps array which are the locations of the first
distribution factor for each set. These indices are 1-based.

INTEGER LTNNPS (*) (R)
Array containing the nodes for all sets. Internal node IDs are used in this list (see Node

Number Map).

REAL FACNPS (*) (R)
Array containing the distribution factors for all sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For example, the following code writes out two node sets in a concatenated format:

integer ids(2), nnnps(2), ndnps(2), nodeind(2), factind(2)
integer nodelist(8), distfact(8)

ids (1) = 20
ids (2) = 21

nnnps (1) = 5
nnnps (2) = 3

ndnps (1) = 5
ndnps (2) = 3

nodeind (1) = 1
nodeind (2)

Il
(o))

Il
'_\

factind (1)
factind(2)

Il
(o))

-97 -

nodelist (1) = 100
nodelist(2) = 101
nodelist(3) = 102
nodelist(4) = 103
nodelist(5) = 104
nodelist(6) = 200
nodelist(7) = 201
nodelist(8) = 202
distfact(l) = 1.0
distfact(2) = 2.0
distfact(3) = 3.0
distfact(4) = 4.0
distfact(5) = 5.0
distfact(6) = 1.1
distfact(7) = 2.1
distfact(8) = 3.1

call expcns (idexo, ids, nnnps, ndnps, nodeind, factind, nodelist,
1 distfact, ierr)

5.2.31 Read Concatenated Node Sets

The function ex_get_concat_node_sets (or ExccNs for Fortran) reads the node set ID’s,
node set node count array, node set distribution factors count array, node set node pointers
array, node set distribution factors pointer array, node set node list, and node set distribution
factors for all of the node sets. “Concatenated node sets” refers to the arrays required to define
all of the node sets (ID array, counts arrays, pointers arrays, node list array, and distribution
factors array) as described in Con.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

The length of each of the returned arrays can be determined by invoking ex_inquire (or
ExINQ for Fortran). See Inquire EXODUS Parameters.

In case of an error, ex_get_concat_node_sets returns a negative number; a warning will
return a positive number. EXGCNS returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no node sets are stored in the file.

- 98 -

ex_get_concat_node_sets: C Interface

int ex_get_concat_node_sets (exoid, node_set_ ids, num_nodes_per_set,
num dist_per_set, node_sets_node_index, node sets_dist_index,
node_sets _node list, node_sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* node_set ids (W)
Returned array containing the node set ID for each set.

int* num nodes_per_set (W)
Returned array containing the number of nodes for each set.

int* num dist_per_set (W)
Returned array containing the number of distribution factors for each set.

int* node_sets_node index (W)
Returned array containing the indices into the node_set_node 1ist which are the
locations of the first node for each set. These indices are 0-based.

int* node_sets_dist_index (W)
Returned array containing the indices into the node_set_dist_ fact which are the
locations of the first distribution factor for each set. These indices are 0-based.

int* node_sets node list (W)
Returned array containing the nodes for all sets. Internal node IDs are used in this list (see
Node Number Map).

void* node_sets_dist_ fact (W)
Returned array containing the distribution factors for all sets.

As an example, the following code segment will read concatenated node sets:

#include “exodusII.h”

int error, exoid, num node_sets, list len, *ids, *num_nodes_per_set,
*num_df_per_ set, *node_ind, *df_ind, *node_list;
float *dist_ fact

/* read concatenated node sets */

error = ex_inquire (exoid, EX_INQ NODE_SETS, &num node_sets, &fdum,
cdum) ;

ids = (int *) calloc (num node sets, sizeof (int)) ;

num _nodes_per_set = (int *) calloc (num node_sets, sizeof (int)) ;
num df_per_set = (int *) calloc (num_node_sets, sizeof (int));
node_ind = (int *) calloc (num node sets, sizeof (int)) ;

df_ind = (int *) calloc (num node sets, sizeof (int)) ;

error = ex_inquire (exoid, EX_INQ NS_NODE_LEN, &list_len, &fdum, cdum) ;
node list = (int *) calloc(list_len, sizeof (int)) ;

-90 .

error = ex_inquire (exoid, EX_INQ NS_DF LEN, &list_len, &fdum, cdum) ;
dist_fact = (float *) calloc(list _len, sizeof (float)) ;

error = exX_get_concat_node_ sets (exoid, ids, num nodes_per_set,
num _df_per_ set, node_ind, df_ind, node_list, dist_fact) ;

EXGCNS: Fortran Interface

SUBROUTINE EXGCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS, IXDNPS, LTNNPS,
FACNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPSS (*) (W)
Returned array containing the node set ID for each set.

INTEGER NNNPS (*) (W)
Returned array containing the number of nodes for each set.

INTEGER NDNPS (*) (W)
Returned array containing the number of distribution factors for each set.

INTEGER IXNNPS (*) (W)
Returned array containing the indices into the LTNNPS array which are the locations of the
first node for each set. These indices are 1-based.

INTEGER IXDNPS (*) (W)
Returned array containing the indices into the Facnps array which are the locations of the
first distribution factor for each set. These indices are 1-based.

INTEGER LTNNPS (*) (W)
Returned array containing the nodes for all sets. Internal node IDs are used in this list (see
Node Number Map).

REAL FACNPS (*) (W)
Returned array containing the distribution factors for all sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code segment will read concatenated node sets:

¢ NOTE: MAXNS is the maximum number of node sets
@ MAXNOD is the maximum number of nodes in a node set
&
integer ids (MAXNS), numnodes (MAXNS), num_df (MAXNS), node_ind (MAXNS) ,
1 df_ind (MAXNS), node_ list (MAXNOD*MAXNS), dist_fact (MAXNOD*MAXNS)

read concatenated node sets

Q

call exing (idexo, EXNODS, num_node_sets, fdum, cdum, ierr)

- 100 -

if (num_node_sets .gt. 0) then
@
¢ use the next calls if you can dynamically allocate arrays
@
call exing (idexo, EXNSNL, list_len, fdum, cdum, ierr)
call exing (idexo, EXNSDF, list_len, fdum, cdum, ierr)

call exgcns (idexo, ids, numnodes, num_df,
1 node _ind, df _ind, node list, dist_fact, ierr)
endif

5.2.32 Write Side Set Parameters

The function ex_put_side_set_param (or Expsp for Fortran) writes the side set ID and the
number of sides (faces on 3-d element types; edges on 2-d element types) which describe a
single side set, and the number of distribution factors on the side set. Because each side of a
side set is completely defined by an element and a local side number, the number of sides is
equal to the number of elements in a side set.

In case of an error, ex_put_side_set_ param returns a negative number; a warning will return
a positive number. EXPSP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Of EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

e the number of side sets specified in the call to ex_put_init (ExpINT for Fortran)
was zero or has been exceeded.

e aside set with the same ID has already been stored.

ex_put_side_set_param: C Interface

int ex put_side set_param (exoid, side_set_id, num side_in_set,
num _dist fact_in_ set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int side set_id (R)
The side set ID.

int num_side_in_set (R)
The number of sides (faces or edges) in the side set.

int num _dist_ fact_in _set (R)
The number of distribution factors on the side set.

- 101 -

The following code segment will write a side set to an open EXODUS 1I file:

int error, exoid, id, num sides, num df, elem list[2], side_list[2];
float dist fact[4];

/* write side set parameters */

id = 30;
num_sides = 2;
num _df = 4;

error = exXx_put_side set_param (exoid, id, num_sides, num_df) ;

/* write side set element and side lists */
elem 1list[0] = 1; elem list[1l] = 2;
side 1ist[0] = 1; side 1list([1l] = 1;

error = ex_put_side set (exoid, id, elem list, side_list);
/* write side set distribution factors */

dist_fact[0] = 30.0; dist_fact[1l] = 30.1;
dist_fact[2] = 30.2; dist_fact[3] = 30.3;

error = ex_put_side set_dist fact (exoid, id, dist_fact);

EXPSP: Fortran Interface

SUBROUTINE EXPSP (IDEXO, IDESS, NSESS, NDESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER NSESS (R)
The number of sides (faces or edges) in the side set.

INTEGER NDESS (R)
The number of distribution factors on the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will write a side set to an open EXODUS 11 file:

integer elem list(2), side_list(2)
real dist_fact(4)

id = 31

numsid = 2
numdf = 4

- 102 -

elem list(1l) = 13

elem list(2) = 14
side 1list (1) = 3
side 1list(2) = 4
dist_fact(l) = 31.0
dist_fact(2) = 31.1
dist_fact(3) = 31.2
dist_fact(4) = 31.3

call expsp (idexo, id, numsid, numdf, ierr)
call expss (idexo, id, elem list, side_list, ierr)
call expssd (idexo, id, dist_fact, ierr)

5.2.33

Read Side Set Parameters

The function ex_get_side_set_param (or Exasp for Fortran) reads the number of sides
(faces on 3-d element types; edges on 2-d element types) which describe a single side set, and
the number of distribution factors on the side set.

In case of an error, ex_get_side_set_ paramreturns a negative number; a warning will return
a positive number. EXGSP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

a warning value is returned if no side sets are stored in the file.

incorrect side set ID.

ex_get_side_set_param: C Interface

int ex get_side set_param (exoid, side_set_id, num side_in_set,

num _dist_fact_in set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int side_set_id (R)
The side set ID.
int* num side in set (W)
Returned number of sides (faces or edges) in the side set.

int* num dist fact_in set (W)
Returned number of distribution factors on the side set.

The following coding will read all of the side sets from an open EXODUS 1I file:

int num side sets, error, exoid, num sides in set, num df in set,

- 103 -

num_elem in set, *ids, *elem list, *side_list, *ctr list, *node list;
float *dist_fact;

error = ex_ing (exoid, EX_ INQ SIDE SETS, &num_side_sets, &fdum, cdum) ;

ids = (int *) calloc (num _side sets, sizeof (int)) ;
error = ex_get side set_ids (exoid, ids) ;

for (i=0; i<num_ side sets; i++)
{
error = ex_get side set_param (exoid, ids[i], &num_sides_in set,
&num_df in set) ;

num_elem in set = num sides_1in_set;
elem list = (int *) calloc (num elem in set, sizeof (int)) ;
side list = (int *) calloc (num _sides_in set, sizeof (int)) ;

error = ex _get_side_set (exoid, ids[i], elem list, side_list);
if (num _df_in_set > 0)
{
/* get side set node list to correlate to dist factors */
ctr _list = (int *) calloc(num elem in set, sizeof (int)) ;
node list = (int *) calloc (num df in set, sizeof (int)) ;
dist_fact = (float *) calloc(num df in set, sizeof (float)) ;

error = ex_get side set_node_list (exoid, ids([i], ctr_list,
node list) ;
error = ex_get side set_dist fact (exoid, ids[i], dist_fact);

EXGSP: Fortran Interface

SUBROUTINE EXGSP (IDEXO, IDESS, NSESS, NDESS, IERR)

INTEGER IDEXO (R)

EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)

The side set ID.

INTEGER NSESS (W)

Returned number of sides (faces or edges) in the side set.

INTEGER NDESS (W)

Returned number of distribution factors on the side set.

INTEGER IERR (W)

Returned error code. If no errors occurred, O is returned.

The following coding will read all of the side sets from an open EXODUS 1I file:

c NOTE: MAXSS 1is the maximum number of side sets

MAXSID is the maximum number of sides in a side set
MAXNOD is the maximum number of nodes on a side set

- 104 -

integer ids (MAXSS), numsid, numdf, elemlst (MAXSID), sidelst (MAXSID),
1 incnt (MAXSID), nodelst (MAXNOD)
real distfact (MAXNOD)

if (num_side_sets .gt. 0) then
call exgssi (idexo, ids, ierr)
endif

do 10 i = 1, num side sets
call exgsp (idexo, ids (i)
call exgss (idexo, ids (i)
call exgssn (idexo, ids (i
call exgssd (idexo, ids (i
10 continue

, numsid, numdf, ierr)

, elemlst, sidelst, ierr)
), incnt, nodelst, ierr)
), distfact, ierr)

i
i

5.2.34 Write Side Set

The function ex_put_side_set (or EXPss for Fortran) writes the side set element list and side
set side (face on 3-d element types; edge on 2-d element types) list for a single side set. The
routine ex_put_side_set_param (ExPsP for Fortran) must be called before this function is
invoked.

In case of an error, ex_put_side_ set returns a negative number; a warning will return a
positive number. EXPSS returns a nonzero error (negative) or warning (positive) number in
1ERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for

Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* ex put_side set_param (or ExpsP for Fortran) not called previously.

ex_put_side_set: C Interface

int ex put_side set (exoid, side_set id, side_set elem list,
side_set side 1list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

int* side_set_elem list (R)
Array containing the elements in the side set. Internal element IDs are used in this list (see

Node Number Map).

int* side_set _side 1list (R)
Array containing the sides (faces or edges) in the side set.

- 105 -

For an example of a code segment to write a side set, refer to the description for

ex_put_side_set_param.

EXPSS: Fortran Interface

SUBROUTINE EXPSS (IDEXO, IDESS, LTEESS, LTSESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER LTEESS (*) (R)
Array containing the elements in the side set. Internal element IDs are used in this list (see
Node Number Map).

INTEGER LTSESS (*) (R)
Array containing the sides (faces or edges) in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of a code segment to write a side set, refer to the description for ExpsP.

5.2.35 Read Side Set

The function ex_get_side_set (or Excss for Fortran) reads the side set element list and side
set side (face for 3-d element types; edge for 2-d element types) list for a single side set.
Memory must be allocated for the element list and side list (both are num_side in set in
length) before this function is invoked.

In case of an error, ex_get_side_set returns a negative number; a warning will return a
positive number. EXGSS returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no side sets are stored in the file.
* incorrect side set ID.

ex_get_side_set: C Interface

int ex_get_side _set (exoid, side_set_id, side_set_elem list,
side _set _side 1list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

- 106 -

int side_set_id (R)
The side set ID.
int* side _set _elem list (W)
Returned array containing the elements in the side set. Internal element IDs are used in this
list (see Node Number Map).
int* side_set_side list (W)
Returned array containing the sides (faces or edges) in the side set.

For an example of code to read a side set from an EXODUS II file, refer to the description for

ex_get_side set_param.

EXGSS: Fortran Interface

SUBROUTINE EXGSS (IDEXO, IDESS, LTEESS, LTSESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER LTEESS(*) (W)
Returned array containing the elements in the side set. Internal element IDs are used in this
list (see Node Number Map).

INTEGER LTSESS (*) (W)
Returned array containing the faces (or edges) in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of code to read a side set from an EXODUS II file, refer to the description for
EXGSP.

5.2.36 Write Side Set Distribution Factors

The function ex_put_side_set_dist_fact (or ExPssD for Fortran) writes distribution
factors for a single side set. The routine ex_put_side_set_ param (or Expsp for Fortran) must
be called before this function is invoked.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_put_side set_dist fact returns a negative number; a warning will

return a positive number. EXPSSD returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

- 107 -

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
® ex put_side set_param (or ExpsP for Fortran) not called previously.

e a call to ex put_side _set_param (or Expsp for Fortran) specified zero
distribution factors.

ex_put_side_set_dist_fact: C Interface

int ex put_side set_dist_fact (exoid, side set_id, side_set_dist fact);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

void* side_set_dist_fact (R)
Array containing the distribution factors in the side set.

For an example of a code segment to write side set distribution factors, refer to the description
for ex put_side set param.

EXPSSD: Fortran Interface

SUBROUTINE EXPSSD (IDEXO, IDESS, FACESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)
The side set ID.

REAL FACESS(*) (R)
Array containing the distribution factors in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of a code segment to write side set distribution factors, refer to the description
for EXPSP.

- 108 -

5.2.37 Read Side Set Distribution Factors

The function ex_get_side_set_dist_fact (or EXGssD for Fortran) returns the distribution
factors for a single side set. Memory must be allocated for the list of distribution factors
(num_dist_fact_in_set in length) before this function is invoked.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_side set_dist_ fact returns a negative number; a warning will
return a positive number. EXGSSD returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* awarning value is returned if no distribution factors were stored.

ex_get_side_set_dist_fact: C Interface

int ex get_side set_dist_fact (exoid, side _set_id, side_set_dist fact);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

void* side_set_dist_fact (W)
Returned array containing the distribution factors in the side set.

For an example of code to read side set distribution factors from an EXODUS II file, refer to
the description for ex_get_side_set_param.

EXGSSD: Fortran Interface

SUBROUTINE EXGSSD (IDEXO, IDESS, FACESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESS (R)
The side set ID.
REAL FACESS (*) (W)
Returned array containing the distribution factors in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

- 109 -

For an example of code to read side set distribution factors from an EXODUS II file, refer to
the description for EXGSP.

5.2.38 Read Side Sets IDs

The function ex_get_side_set_ids (or EXGssI for Fortran) reads the IDs of all of the side
sets. Memory must be allocated for the returned array of (num_side_sets) IDs before this
function is invoked.

In case of an error, ex_get_side set_ids returns a negative number; a warning will return a
positive number. EXGSSTI returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no side sets are stored in the file.

ex_get_side_set_ids: C Interface

int ex get_side set_ids (exoid, side set_ids);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* side_set _ids (W)
Returned array of the side sets IDs. The order of the IDs in this array reflects the sequence
the side sets were introduced into the file.

For an example of code to read side set IDs from an EXODUS 11 file, refer to the description
for ex _get_side set param.

EXGSSI: Fortran Interface

SUBROUTINE EXGSSI (IDEXO, IDESSS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESSS(*) (W)
Returned array of side sets IDs. The order of the IDs in this array reflects the sequence the
side sets were introduced into the file.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of code to read side set IDs from an EXODUS 1I file, refer to the description
for EXGSP.

- 110 -

5.2.39 Get Side Set Node List Length

The function ex_get_side set node 1list_ len returns the size of the side set node list
which is returned from a call to ex_get_side set node 1list. R for more information.

In case of an error, ex_get_side set_node list len returns a negative number; a warning
will return a positive number. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if no side sets are stored in the file.
* incorrect side set ID.

ex_get_side_set_node_list_len: C Interface

int ex_get_side _set_node_list _len (exoid, side_set_id, *node_list_len) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int side_set_id (R)
The side set ID.

int* node_list_len (W)
Returned count of the number of nodes that make up the sides in the side set.

5.2.40 Read Side Set Node List

The function ex_get_side_set_node_list (or EXGSSN for Fortran) returns a node count
array and a list of nodes on a single side set. With the 2.0 and later versions of the database, this
node list isn’t stored directly but can be derived from the element number in the side set
element list, local side number in the side set side list, and the element connectivity array. The
application program must allocate memory for the node count array and node list.

The length of the node list can be determined by calling ex_get_side_set_node_list_len.
(Get Side Set Node List Length). There is a one-to-one mapping (i.e., same order -- as shown
in Error! Reference source not found. -- and same number) between the nodes in the side set
node list and the side set distribution factors. Thus, if distribution factors are stored for the side
set of interest, the required size for the node list is the number of distribution factors returned
by ex_get_side set_param (or EXGSP for Fortran).

The length of the node count array is the length of the side set element list. For each entry in the
side set element list, there is an entry in the side set side list, designating a local side number.
The corresponding entry in the node count array is the number of nodes which define the
particular side. In conjunction with the side set node list, this node count array gives an
unambiguous nodal description of the side set.

- 111 -

In case of an error, ex_get_side set_node list returns a negative number; a warning will
return a positive number. EXGSSN returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if no side sets are stored in the file.

* incorrect side set ID.

ex_get_side_set_node_list: C Interface

int ex_get_side_set _node_list (exoid, side_set_id, side_set _node_cnt_list,
side_set_node_list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int side_set_id (R)
The side set ID.
int* side_set_node_cnt_list (W)
Returned array containing the number of nodes for each side (face in 3-d, edge in 2-d) in
the side set.
int* side_set _node list (W)

Returned array containing a list of nodes on the side set. Internal node IDs are used in this
list (see Node Number Map).

For an example of code to read a side set node list from an EXODUS II file, refer to the
description for ex_get_side_set_param.

EXGSSN: Fortran Interface

SUBROUTINE EXGSSN (IDEXO, IDESS, INCNT, LTNESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER IDESS (R)
The side set ID.

INCNT (*) (W)
Returned array containing the number of nodes for each side (face in 3-d, edge in 2-d) in
the side set.

INTEGER LTNESS (*) (W)

Returned array containing a list of nodes on the side set. Internal node IDs are used in this
list (see Node Number Map).

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

-112 -

For an example of code to read a side set node list from an EXODUS II file, refer to the
description for EXGsSP.

5.2.41 Write Concatenated Side Sets

The function ex_put_concat_side_sets (or EXpcss for Fortran) writes the side set IDs, side
set element count array, side set distribution factor count array, side set element pointers array,
side set distribution factors pointers array, side set element list, side set side list, and side set
distribution factors. “Concatenated side sets” refers to the arrays needed to define all of the
side sets (ID array, side counts array, node counts array, element pointer array, node pointer
array, element list, node list, and distribution factors array) as described in Con. Writing
concatenated side sets is more efficient than writing individual side sets. See Appendix A for a
discussion of efficiency issues.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

It is possible to use this call to only define the side sets on the database and to write the side set
data using other API functions. This usage is also more efficient than defining individual side
sets, but is sometimes easier than defining and writing all side set data at one time. To only
define the side sets on the database, pass a NULL for the side_sets_elem index,
side_sets_dist_index, side_sets_elem list, side_sets_side list, and
side_sets_dist_fact arguments.

In case of an error, ex_put_concat_side sets returns a negative number; a warning will
return a positive number. EXPCSS returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

e the number of side sets specified in a call to ex_put_init (ExPINT for Fortran) was
zero or has been exceeded.

e aside set with the same ID has already been stored.

ex_put_concat_side_sets: C Interface

int ex put_concat_side sets (exoid, side_sets_ids, num_side_per_ set,
num _dist_per_set, side_sets_elem index, side sets_dist_index,
side_sets_elem list, side_sets_sgside 1list, side_sets_dist_fact);

-113 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* side_sets_ids (R)
Array containing the side set ID for each set.

int* num side_per_set (R)
Array containing the number of sides for each set.

int* num dist_per_set (R)
Array containing the number of distribution factors for each set.

int* side_sets_elem index (R)
Array containing the indices into the side_sets_elem 1ist which are the locations of the
first element for each set. These indices are 0-based. Pass NULL if only defining side sets
with this call.

int* side _sets_dist index (R)
Array containing the indices into the side_sets_dist_fact which are the locations of the
first distribution factor for each set. These indices are 0-based. Pass NULL if only defining
side sets with this call.

int* side_sets_elem list (R)
Array containing the elements for all side sets. Internal element IDs are used in this list (see
Node Number Map). Pass NULL if only defining side sets with this call.

int* side _sets_side 1list (R)
Array containing the sides for all side sets. Pass NULL if only defining side sets with this
call.

void* side_sets_dist_ fact (R)
Array containing the distribution factors for all side sets. Pass NULL if only defining side
sets with this call.

The following coding will write out two side sets in a concatenated format:

int error, exoid, ids[2], num side per_set[2], elem ind[2],
num df_per set[2], df_ind[2], elem 1list[4], side 1list[4];
float dist_fact[8];

/* write concatenated side sets */
ids [0] = 30;
ids[1] = 31;

num_side per_set[0] = 2;
num_side per_set[1l] = 2;

elem ind[0] = O0;
elem ind[1] = 2;

num_df_per_set [0] = 4;
num_df_per_set[1l] = 4;

df_ind[0] = 0;
df_ind[1] = 4;

114 -

/* side set #1 */

elem 1list[0] = 2; elem list[1l] = 2;

side 1ist[0] = 2; side 1list([1l] = 1;
dist_fact[0] = 30.0; dist_fact[1l] = 30.1;
dist_fact[2] = 30.2; dist_fact[3] = 30.3;
/* side set #2 */

elem list[2] = 1; elem 1list([3] = 2;

side 1ist[2] = 4; side 1list([3] = 3;
dist_fact[4] = 31.0; dist_fact[5] = 31.1;
dist_fact[6] = 31.2; dist_fact[7] = 31.3;

error = exXx_put_concat_side sets (exoid, ids, num side_per_set,
num df_per_set, elem _ind, df_ind, elem list, side_list, dist_fact);

EXPCSS: Fortran Interface

SUBROUTINE EXPCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS, IXDESS, LTEESS,
LTSESS, FACESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IDESSS (*) (R)
Array containing the side set ID for each set.
INTEGER NSESS(*) (R)
Array containing the number of sides for each set.
INTEGER NDESS (*) (R)
Array containing the number of distribution factors for each set.

INTEGER IXEESS(*) (R)
Array containing the indices into the LTEESS array which are the locations of the first
element for each set. These indices are 1-based.

INTEGER IXDESS(*) (R)
Array containing the indices into the FACESs array which are the locations of the first
distribution factor for each set. These indices are 1-based.

INTEGER LTEESS (*) (R)
Array containing the elements for all side sets. Internal element IDs are used in this list (see
Node Number Map).

INTEGER LTSESS(*) (R)
Array containing the sides for all side sets.

REAL FACESS(*) (R)
Array containing the distribution factors for all side sets.

INTEGER IERR (R)
Returned error code. If no errors occurred, O is returned.

The following coding will write out two side sets in a concatenated format:

- 115 -

integer i1ds(2), num_side_per_set(2), num_df_per_set(2),
1 elem ind(2), df_ind(2), elem 1list(4), side 1list (4)
real dist fact (8)

@
c write concatenated side sets
@
ids (1) = 30
ids (2) = 31
num_side per_set(l) = 2
num_side per_set(2) = 2
num_df_per set(l) = 4
num_df_per set(2) = 4
elem ind (1) = 1
elem _ind(2) = 3
df_ind(1l) =1
df_ind(2) = 5
@
c side set #1 (ID of 30)
@
elem list(1l) = 11
elem list(2) = 12
side 1list(1l) = 1
side 1list(2) = 2
dist_fact(l) = 30.0
dist_fact(2) = 30.1
dist_fact(3) = 30.2
dist_fact(4) = 30.3
@
c side set #2 (ID of 31)
@
elem list(3) = 13
elem list(4) = 14
side 1ist(3) = 3
side l1list(4) = 4
dist_fact(5) = 31.0
dist_fact(6) = 31.1
dist_fact(7) = 31.2
dist_fact(8) = 31.3

call expcss (idexo, ids, num_side per_set, num df_per_ set,
1 elem ind, df _ind, elem 1list, side list, dist_fact, ierr)

-116 -

5.2.42 Read Concatenated Side Sets

The function ex_get_concat_side_sets (or Exacss for Fortran) reads the side set IDs, side
set element count array, side set distribution factors count array, side set element pointers array,
side set distribution factors pointers array, side set element list, side set side list, and side set
distribution factors. “Concatenated side sets” refers to the arrays needed to define all of the
side sets (ID array, side counts array, node counts array, element pointer array, node pointer
array, element list, node list, and distribution factors array) as described in Con.

Because the distribution factors are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

The length of each of the returned arrays can be determined by invoking ex_inquire (or
ExINQ for Fortran). See Inquire EXODUS Parameters.

In case of an error, ex_get_concat_side sets returns a negative number; a warning will
return a positive number. EXGCSS returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* a warning value is returned if no side sets are stored in the file.

ex_get_concat_side_sets: C Interface

int ex_get_concat_side sets (exoid, side_set_ids, num_side_per_set,
num dist_per_set, side sets_elem index, side sets_dist_index,
side _sets_elem list, side _sets _side 1list, side_sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int* side _set _ids (W)
Returned array containing the side set ID for each set.
int* num side_per_set (W)
Returned array containing the number of sides for each set.
int* num dist_per_set (W)
Returned array containing the number of distribution factors for each set.
int* side_sets_elem index (W)
Returned array containing the indices into the side_sets_elem 1ist which are the
locations of the first element for each set. These indices are 0-based.
int* side_sets_dist_index (W)
Returned array containing the indices into the side_sets_dist_fact array which are the
locations of the first distribution factor for each set. These indices are O-based.

- 117 -

int* side _sets_elem list (W)
Returned array containing the elements for all side sets. Internal element IDs are used in
this list (see Node Number Map).

int* side_sets_side list (W)
Returned array containing the sides for all side sets.

void* side_sets_dist_ fact (W)
Returned array containing the distribution factors for all side sets.

The following code segment will return in concatenated format all the side sets stored in an
EXODUS II file:

#include “exodusII.h”

int error, exoid, num ss, elem list _len, df_list_len, *ids, *side list,
*num_side per_set, *num df_per set, *elem ind, *df_ind, *elem_ list;

float *dist_fact;

error = ex_inquire (exoid, EX_INQ SIDE_SETS, &num ss, &fdum, cdum) ;
if (num_ss > 0) {
error = ex_ inquire(exoid, EX INQ SS ELEM LEN, &elem_ list len, &fdum,
cdum) ;

error = ex_inqgquire(exoid, EX _INQ SS DF LEN, &df_list_len, &fdum,
cdum) ;

/* read concatenated side sets */

ids = (int *) calloc(num_ss, sizeof (int)) ;

num side per_set = (int *) calloc(num ss, sizeof (int)) ;
num_df_ per_set = (int *) calloc(num ss, sizeof (int)) ;
elem _ind = (int *) calloc(num_ss, sizeof (int)) ;

df_ind = (int *) calloc (num_ss, sizeof (int)) ;

elem list = (int *) calloc(elem list_len, sizeof (int)) ;
side_list = (int *) calloc(elem list_len, sizeof (int)) ;
dist_fact = (float *) calloc(df_list_len, sizeof (float)):;

error = ex_get concat_side sets (exoid, ids, num side_ per_set,
num df_per set, elem ind, df_ind, elem list, side list,dist_fact);

EXGCSS: Fortran Interface

SUBROUTINE EXGCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS, IXDESS, LTEESS,
LTSESS, FACESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER IDESSS (*) (W)
Returned array containing the side set ID for each set.

INTEGER NSESS (*) (W)
Returned array containing the number of sides for each set.

- 118 -

INTEGER NDESS (*) (W)
Returned array containing the number of distribution factors for each set.

INTEGER IXEESS(*) (W)
Returned array containing the indices into the LTEESS array which are the locations of the
first element for each set. These indices are 1-based.

INTEGER IXDESS (*) (W)
Returned array containing the indices into the FACESS array which are the locations of the
first distribution factor for each set. These indices are 1-based.

INTEGER LTEESS(*) (W)
Returned array containing the elements for all side sets. Internal element IDs are used in
this list (see Node Number Map).

INTEGER LTSESS (*) (W)
Returned array containing the sides for all side sets.

REAL FACESS (*) (W)
Returned array containing the distribution factors for all side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will return in concatenated format all the side sets stored in an
EXODUS II file:

c NOTE: MAXSS 1is the maximum number of side sets
Gl MAXSID is the maximum number of sides in a side set
Gl MAXDF 1is the max number of distribution factors in a side set

integer elemlen, nodelen, dflen, ids (MAXSS), num side (MAXSS),
1 num_df (MAXSS), elem_ind (MAXSS), df_ind(MAXSS),
2 elem list (MAXSID*MAXSS), side_list (MAXSID*MAXSS)

real dist_ fact (MAXDF*MAXSS)

call exing (idexo, EXSIDS, num_side sets, fdum, cdum, ierr)
if (num_side_sets .gt. 0) then
use the following inquiries if dynamic allocation is available
call exing (idexo, EXSSEL, elemlen, fdum, cdum, ierr)

call exing (idexo, EXSSNL, nodelen, fdum, cdum, ierr)
call exing (idexo, EXSSDF, dflen, fdum, cdum, ierr)

Q

read concatenated side sets
call exgcss (idexo, ids, num side, num _df, elem ind, df_ind,
elem list, side_list, dist_fact, ierr)
endif

Q

5.2.43 Convert Side Set Nodes to Sides

The function ex_cvt_nodes_to_sides (or EXcN2s for Fortran) is used to convert a side set
node list to a side set side list. This routine is provided for application programs that utilize side
sets defined by nodes (as was done previous to release 2.0) rather than local faces or edges. The

-119 -

application program must allocate memory for the returned array of sides. The length of this
array is the same as the length of the concatenated side sets element list, which can be
determined with a call to ex_inquire (or ExINQ for Fortran).

In case of an error, ex_cvt_nodes_to_sides returns a negative number; a warning will return
a positive number. EXCN2§S returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e a warning value is returned if no side sets are stored in the file.

e Dbecause the faces of a wedge require a different number of nodes to describe them
(quadrilateral vs. triangular faces), the function will abort with a fatal return code if
a wedge is encountered in the side set element list.

ex_cvt_nodes_to_sides: C Interface

int ex_cvt_nodes_to_sides (exoid, num_side per_set, num nodes_per_set,
side_sets_elem_index, side _sets_node_ index, side_sets_elem list,
side _sets _node list, side sets _side 1list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int* num side per_set (R)
Array containing the number of sides for each set. The number of sides is equal to the
number of elements for each set.

int* num nodes_per_set (R)
Array containing the number of nodes for each set.

int* side_sets_elem index (R)
Array containing indices into the side sets_elem 1list which are the locations of the
first element for each set. These indices are 0-based.

int* side_sets_node index (R)
Array containing indices into the side sets_node_1list which are the locations of the
first node for each set. These indices are 0-based.

int* side _sets_elem list (R)
Array containing the elements for all side sets. Internal element IDs are used in this list (see
Node Number Map).

int* side_sets_node_list (R)
Array containing the nodes for all side sets. Internal node IDs are used in this list (see Node
Number Map).

int* side _sets_side list (W)
Returned array containing the sides for all side sets.

The following code segment will convert side sets described by nodes to side sets described by
local side numbers:

int error, exoid, ids[2], num side_per_set[2], num nodes_per_set[2],
elem ind[2], node_ind[2], elem 1list[4], node 1ist[8], el 1st len,

- 120 -

*side list;

ids[0] = 30; ids[1l] = 31;

num_side per_set[0] = 2; num_side_per_set[l] = 2;

num_nodes_per_set[0] = 4; num nodes_per_set[1l] = 4;

elem ind[0] = 0; elem ind[1l] = 2;

node _ind[0] = 0; node_ind[1l] = 4;

/* side set #1 */

elem 1list[0] = 2; elem list[1l] = 2;

node 1ist[0] = 8; node 1list[1l] = 5; node_list[2] = 6; node 1list([3] = 7;
/* side set #2 */

elem list[2] = 1; elem l1list([3] = 2;

node list[4] = 2; node 1list[5] = 3; node_list[6] = 7; node list[7] = 8;

error = ex_inquire (exoid, EX_INQ SS ELEM LEN, &el lst_len, &fdum,cdum) ;

/* side set element list is same length as side list */
side list = (int *) calloc (el_1lst_len, sizeof (int)) ;

ex_cvt_nodes_to_sides (exoid, num_side_per_ set, num_nodes_per_set,
elem ind, node _ind, elem list, node_list, side 1list) ;

EXCN2S: Fortran Interface

SUBROUTINE EXCN2S (IDEXO, NSESS, NDESS, IXEESS, IXNESS, LTEESS, LTNESS,
LTSESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NSESS(*) (R)
Array containing the number of sides for each set. The number of sides is equal to the
number of elements for each set.

INTEGER NDESS (*) (R)
Array containing the number of nodes for each set.

INTEGER IXEESS(*) (R)
Array containing indices into the LTEESS array which are the locations of the first element
for each set. These indices are 1-based.

INTEGER IXNESS(*) (R)
Array containing indices into the LTNESS array which are the locations of the first node for
each set. These indices are 1-based.

INTEGER LTEESS (*) (R)
Array containing the elements for all side sets. Internal element IDs are used in this list (see
Node Number Map).

INTEGER LTNESS (*) (R)
Array containing the nodes for all side sets. Internal node IDs are used in this list (see Node

- 121 -

Number Map).

INTEGER LTSESS (*) (W)
Returned array containing the sides for all side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will convert side sets described by nodes to side sets described by
local side numbers:
INCLUDE ‘exodusII.inc’
integer ids(2), num_side_per set(2), num nodes_per set (2),
1 elem ind(2), node_ind(2), node_1list(8), elem list(4),
2 side 1list(4)

ids (1) = 30
ids (2) = 31
num _side per_set(l) = 2
num _side per_set(2) = 2
num nodes_per_set(l) = 4
num _nodes_per_set(2) = 4

elem ind(1l) = 1
elem _ind(2) 3
node_ind (1) = 1
node_ind (2) 5

side set #1
node_list
node_list
node_list
node_list
elem list
elem list

Q

NN J o Ul o

side set #2
node_list (
node_list (

node_list (

(
(

Q

node_list
elem list =
elem list(= 2

call excn2s (idexo, num_side per_ set, num nodes_per_set, elem ind,
1 node ind, elem list, node list, side_list, ierr)

= oo J WwWN

5.2.44 Write Coordinate Frames

Coordinate frames are stored in the database as a series of three points (defined in the basic
cartesian coordinate system). The first of these points describes the origin of the new system.
The second point lies on the 3 axis (or Z axis) of the frame. The third point is in the 1-3 (xz)
plane. Each coordinate frame is identified by a unique, integer coordinate ID, and by a
character tag indicating whether the frame is rectangular cartesian “R”, cylindrical “C”, or
spherical “S”.

- 122 -

Because the coordinates are floating point values, the application code must declare the arrays
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

The function ex_put_coordinate frames () writes out the optional coordinate frames to the
database. The function ex_put_init must be invoked before this call is made.

In case of an error, a negative number is returned. Possible causes of error include:
e data file not properly opened with call to ex_create
e data file opened for read only
e data file not properly initialized with call to ex_put_init

e coordinate frames have already been defined in this file.

€e_9% ¢¢ 9 [IP%4)

e (Coordinate tags are unrecognized, i.e. they are not “r”, “c” or “s”.

ex_put_coordinate_frames: C Interface

int ex_put_coordinate_frames (exoid, nframes, cf_ids, pt_coordinates, tags);

int exoid
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int nframes
The number of coordinate frames to write

const int cf_ids/[]
The (nframes) coordinate frame Ids. Integers greater than 0.

const void* pt_coordinates
The (9*nframes) coordinates of the three points defining each coordinate axis. The first
three values are the origin of the first frame. The next three values are the coordinates of a
point on the 3" axis of the first frame. The next three values are the coordinates of a point in
the plane of the 1-3 axis. The pattern is repeated for each frame.

const char* tags
The (nframes) character tags associated with each coordinate frame.

The following sample code generates two coordinate frames and stores them in the database.
The first frame (1d=20), is a rectangular system with an origin at (1,0,0) and 1s parallel to the
basic coordinate system. The second frame is a cylindrical system with an origin at (0,0,0), a
cylindrical axis in the <1,0,0> direction and with the “1” axis in the <0,1,0> direction

int c¢f _ids[2]1={20, 13};

double pt_coords[9*2]={1, 0, 0, 1,0,1, 2,0,0,

o, 0, 0, 1,0,0, 0,1,0 }
char tags[2]={‘r’, ‘c’'};
ex_put_coordinate_frames (exoid,2, cf_ids,pt_coords, tags) ;

- 123 -

5.2.45 Read Coordinate Frames

Coordinate frames are stored in the database as a series of three points (defined in the basic
cartesian coordinate system). The first of these points describes the origin of the new system.
The second point lies on the 3 axis (or Z axis) of the frame. The third point is in the 1-3 (xz)
plane. Each coordinate frame is identified by a unique, integer coordinate ID, and by a
character tag indicating whether the frame is rectangular cartesian “R”, cylindrical “C”, or
spherical “S”.

Because the coordinates are floating point values, the application code must declare the arrays
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

The function ex_get_coordinate frames () reads the optional coordinate frames from the
database.

In case of an error, a negative number is returned. Possible causes of error include:

e data file not properly opened with call to ex_create or ex_open.

e coordinate frames are undefined in this file (returns +1)

ex_get_coordinate_frames: C Interface

int ex _get_ coordinate frames (exoid, nframes, cf_ids, pt_coordinates, tags);

int exoid
EXODUS file ID returned from a previous call to ex_create or ex_open.

int &nframes
The number of coordinate frames to read

const int cf_ids/[]
The (nframes) coordinate frame Ids. If cf_ids is NULL, no data will be returned in this or
any other array. Only nframes will be modified. Otherwise, space must be allocated to store
“nframes” integers before making this call.

const void* pt_coordinates
The (9*nframes) coordinates of the three points defining each coordinate axis. The first
three values are the origin of the first frame. The next three values are the coordinates of a
point on the 3™ axis of the first frame. The next three values are the coordinates of a point in
the plane of the 1-3 axis. The pattern is repeated for each frame. If “cf_ids” is null, no data
will be returned in this array. Otherwise, space must be allocated for 9*nframes floating
point values. The size of the allocation depends upon the compute word size.

const char* tags
The (nframes) character tags associated with each coordinate frame. If “cf_ids” is null,
no data will be returned in this array. Otherwise, space must be allocated for “nframes”

124 -

characters.
The following sample code reads coordinate frames from the database.

int nframes, err, *cf_ids;

double *pt_coords;

char *tags;

err = ex_get_coordinate_frames (exoid, &nframes, 0,0,0) ;

cf _ids=malloc (nframes*sizeof (int)) ;
pt_coords=malloc (9*nframes*sizeof (double)) ;
tags=malloc (nframes) ;

err = ex_get_coordinate_frames (exoid, &nframes,
cf_ids,pt_coords, tags) ;

5.2.46 Write Object Names

The function ex_put_names or (ExpNaMs for Fortran) writes the names of the specified object
types to the database. The function ex_put_init (EXPINI for Fortran) must be invoked before
this call is made.

In case of an error, ex_put_names returns a negative number; a warning will return a positive
number. EXPNAMS returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

ex_put_names: C Interface

int ex put_names (exoid, obj_type, names) ;

int exoid (R)

EXODUS file ID returned from a previous call to ex_create Or ex_open.
int obj_typ (R)

Type of object; use one of the following options:

*EX_ELEM BLOCK *To designate an element block.
*EX_NODE_SET *To designate a node set.
*EX_SIDE_SET *To designate a side set.
*EX_ELEM MAP *To designate an element map.
*EX_NODE_MAP *To designate a node map.

char** names (R)
Array containing the names (of length Max_sTrR_LENGTH) of the specified object types. The

- 125 -

length of the array will equal the number of that type of entity on the database.

EXPNAMS: Fortran Interface

SUBROUTINE EXPNAMS (IDEXO, ITYPE, NAME, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.
INTEGER ITYPE (R)
Type of object; use one of the following options:
*ExEBLK *To designate an element block.
*exNSET *To designate a node set.
*ExsSET *To designate a side set.
*exNMAP *To designate a node map.
*ExEMAP *To designate an element map.

CHARACTER*MXSTLN NAME (*) (R)
Array containing the names for the specified object type.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.47 Read Object Names

The function ex_get_names or (EXxeNaMs for Fortran) reads the names
(Max_sTR_LENGTH-characters in length) of the specified object arrays from the database.
Memory must be allocated for the character strings before this function is invoked.

In case of an error, ex_get_names returns a negative number; a warning will return a positive
number. EXGNAMS returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if coordinate names were not stored.

ex_get_names: C Interface

int ex _get_names (exoid, obj_type, coord_names) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_typ (R)
Type of object; use one of the following options:

- 126 -

*Ex_ELEM BLOCK *To designate an element block.
*Ex_NODE_SET *To designate a node set.
*ex_sIDE_SET *To designate a side set.
*ex_ELEM MAP *To designate an element map.
*ex_NODE_MAP *To designate a node map.

char** names (W)
Returned pointer to a vector containing the names of the specified objects.

EXGNAMS: Fortran Interface

SUBROUTINE EXGNAMS (IDEXO, ITYPE, NAMES, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:
*exEBLK *To designate an element block.
*exNSET *To designate a node set.
*exssSET *To designate a side set.
*ExNMAP *To designate a node map.
*exEMAP *To designate an element map

CHARACTER*MXSTLN NAMES (*) (W)
Returned array containing the names for the specified object type.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.48 Write Individual Object Name

The function ex_put_name or (ExpNaM for Fortran) writes the name of the object with the
specified id of the specified type to the database. The function ex_put_init (EXPINTI for
Fortran) must be invoked before this call is made.

In case of an error, ex_put_name returns a negative number; a warning will return a positive
number. EXPNAM returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

- 127 -

ex_put_name: C Interface

int ex_put_name (exoid, obj_type, id, name) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int obj_typ (R)
Type of object; use one of the following options:
*Ex_ELEM BLOCK *To designate an element block.
*Ex_NODE_SET *To designate a node set.
*ex_SIDE_SET *To designate a side set.
*ex_ELEM MAP *To designate an element map.
*Ex_NODE_MAP *To designate a node map.
int id
The object (element block, nodeset, or sideset) id.

char* name (R)
The name (of length max_sTr_LENGTH) of the specified object.

EXPNAM: Fortran Interface

SUBROUTINE EXPNAM (IDEXO, ITYPE, ID, NAME, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.
INTEGER ITYPE (R)
Type of object; use one of the following options:
*ExEBLK *To designate an element block.
*exNSET *To designate a node set.
*ExssET *To designate a side set.
*exNMAP *To designate a node map.
*ExEMAP *To designate an element map.

INTEGER ID
The object (element block, nodeset, or sideset) id.

CHARACTER*MXSTLN NAME (R)
The name for the specified object.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.49 Read Individual Object Name

The function ex_get_name or (EXxGNAM for Fortran) reads the name
(MAX_sTR_LENGTH-characters in length) of the object of the specified type with the specified id

- 128 -

from the database. Memory must be allocated for the character string before this function is
invoked.

In case of an error, ex_get_name returns a negative number; a warning will return a positive
number. EXGNAM returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* awarning value is returned if coordinate names were not stored.

ex_get_name: C Interface

int ex_get_name (exoid, obj_type, id, name) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_typ (R)
Type of object; use one of the following options:

*EX_ELEM BLOCK *To designate an element block.

*EX_NODE_SET *To designate a node set.
*EX_SIDE_SET *To designate a side set.
*EX_ELEM_MAP *To designate an element map.
*EX_NODE_MAP *To designate a node map.

int id

The object (element block, nodeset, sideset, node map, or element map) id.

char* name (W)
Returned pointer to the name of the specified objects.

EXGNAM: Fortran Interface

SUBROUTINE EXGNAM (IDEXO, ITYPE, ID, NAME, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

- 129 -

INTEGER ID
The object (element block, nodeset, sideset) id

CHARACTER*MXSTLN NAME (W)
Returned name for the specified object.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.2.50 Write Property Arrays Names

The function ex_put_prop_names (or ExpPPN for Fortran) writes property names and allocates
space for property arrays used to assign integer properties to element blocks, node sets, or side
sets. The property arrays are initialized to zero (0). Although this function is optional, since
ex_put_prop will allocate space within the data file if it hasn’t been previously allocated, it is
more efficient to use ex_put_prop_names if there is more than one property to store. See
Appendix A for a discussion of efficiency issues.

In case of an error, ex_put_prop_names returns a negative number; a warning will return a
positive number. EXPPN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* invalid object type specified.

* no object of the specified type is stored in the file.

ex_put_prop_names: C Interface

int ex put_prop names (exoid, obj_type, num props, Prop_names) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int obj_typ (R)
Type of object; use one of the following options:
EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE _SET To designate a side set.
EX_ELEM MAP To designate an element map.
EX_NODE_MAP To designate a node map.

int num props (R)
The number of integer properties to be assigned to all of the objects of the type specified

- 130 -

(element blocks, node sets, or side sets).

char** prop_names (R)
Array containing num_props names (of maximum length of MAX_STR_LENGTH) of
properties to be stored.

For instance, suppose a user wanted to assign the 1st, 3rd, and 5th element blocks (those
element blocks stored 1st, 3rd, and Sth, regardless of their ID) to a group (property) called
“TOP”, and the 2nd, 3rd, and 4th element blocks to a group called “LSIDE”. This could be
accomplished with the following code:

#include “exodusII.h”;
char* prop_names [2] ;

int top_part[] = {1,0,1,0,1};
int lside part[] = {0,1,1,1,0};
int id[] = {10, 20, 30, 40, 50};
prop_names [0] = “TOP”;
prop_names [1] = “LSIDE”;

/* This call to ex_put_prop_names 1is optional, but more efficient */
ex_put_prop_names (exoid, EX_ELEM BLOCK, 2, prop_names) ;

/* The property values can be output individually thus */

for (i=0; 1i<5; 1i++) {
ex_put_prop (exoid, EX_ELEM BLOCK, id[i], prop_names[0], top_part[i]) ;
ex_put_prop (exoid, EX_ELEM BLOCK, id[i], prop_names[1],

lside part[il); }

/* Alternatively, the values can be output as an array thus*/
ex_put_prop_array (exoid, EX_ELEM BLOCK, prop_names[0], top_part);
ex_put_prop_array (exoid, EX_ELEM BLOCK, prop_names[l], lside part) ;

EXPPN: Fortran Interface

SUBROUTINE EXPPN (IDEXO, ITYPE, NPROPS, NAMEPR, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

INTEGER NPROPS (R)
The number of integer properties to be assigned to all of the objects of the type specified
(element blocks, node sets, or side sets).

CHARACTER*MXSTLN NAMEPR (*) (R)
Array containing NPROPS names of properties to be stored.

-131-

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following example assigns a property “STEEL” to the first and third element blocks with
ID’s 10 and 30, respectively.

include ‘exodusII.inc’

integer ival (3)

data ival/1,0,1/
C This call to EXPPN in optional, but more efficient

call exppn (idexo, exeblk, 1, “STEEL”, ierr)

C The property values can be written individually thus
call expp (idexo, EXEBLK, 10, “STEEL”, 1, ierr)
call expp (idexo, EXEBLK, 30, “STEEL”, 1, ierr)

¢ Alternatively, the values can be written as an array thus
call exppa (idexo, EXEBLK, “STEEL”, ival, ierr)

5.2.51 Read Property Arrays Names

The function ex_get_prop_names (or EXGPN for Fortran) returns names of integer properties
stored for an element block, node set, or side set. The number of properties (needed to allocate
space for the property names) can be obtained via a call to ex_get_num_props Or ex_inquire
(ex1NQ for Fortran). See Inquire EXODUS Parameters.

In case of an error, ex_get_prop_names returns a negative number; a warning will return a
positive number. EXGPN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid object type specified.

ex_get_prop_names: C Interface

int ex get_prop names (exoid, obj_type, prop_names) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_type (R)
Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM MAP To designate an element map.
EX_NODE_MAP To designate a node map.

- 132 -

char** prop_names (W)
Returned array containing num_props (obtained from call to ex_inguire or
ex_get_num props) hames (of maximum length Mmax_STR_LENGTH) of properties to be
stored. “ID”, a reserved property name, will be the first name in the array.

As an example, the following code segment reads in properties assigned to node sets:

#include “exodusII.h”;
int error, exoid, num props, *prop_values;
char *prop_names [MAX_ PROPS] ;

/* read node set properties */
error = ex_inquire (exoid, EX_INQ NS_PROP, &num props, &fdum, cdum) ;

for (i=0; i<num props; i++) {
prop_names [i] = (char *) malloc ((MAX_ STR_LENGTH+1), sizeof (char));}
prop_values = (int *) malloc (num_node_sets, sizeof (int)) ;

error = ex_get_ prop_names (exoid, EX NODE_SET, prop_names) ;
for (i=0; i<num props; i++) {

error = ex_get_prop_array(exoid, EX_NODE_SET, prop_names/[i],
prop_values) ;

EXGPN: Fortran Interface

SUBROUTINE EXGPN (IDEXO, ITYPE, NAMEPR, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

CHARACTER*MXSTLN NAMEPR (*) (W)
Returned array containing NPROPS (obtained from call to ExINQ) names of properties to be
stored. “ID”, a reserved property name, will be the first name in the array.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following will read the side set property values from an EXODUS II file:

c NOTE: MAXSS is the maximum number of side
sets

- 133 -

€ MXSSPR is the maximum number of side set properties

include ‘exodusII.inc’
integer ids (MAXSS), ivals (MAXSS, MXSSPR)
character* (MXSTLN) prop_names (MXSSPR)

¢ determine number of side sets and side set properties
call exing (idexo, EXSIDS, num_side_ sets, fdum, cdum, ierr)
call exing (idexo, EXNSSP, num_props, fdum, cdum, ierr)

¢ get the side set property names
call exgpn (idexo, EXSSET, prop_names, ierr)

¢ get the side set ids
call exgssi (idexo, ids, ierr)

¢ get the side set property values individually
do 20 i = 1, num _props
do 10 j = 1, num_side_sets
call exgp (idexo, EXSSET,ids(j),prop_names (i) ,ivals(j,1),ierr)
10 continue
20 continue

¢ alternatively, the property values can be read in together as follows
do 30 i = 1, num _props
call exgpa (idexo, EXSSET, prop_names (i), ivals(1l,1), ierr)
30 continue

5.2.52 Write Object Property

The function ex_put_prop (or EXpp for Fortran) stores an integer property value to a single
element block, node set, or side set. Although it is not necessary to invoke
ex_put_prop_names (ExPPN for Fortran), since ex_put_prop will allocate space within the
data file if it hasn’t been previously allocated, it is more efficient to use ex_put_prop_names if
there is more than one property to store. See Appendix A for a discussion of efficiency issues.

It should be noted that the interpretation of the values of the integers stored as properties is left
to the application code. In general, a zero (0) means the object does not have the specified
property (or is not in the specified group); a nonzero value means the object does have the
specified property. When space is allocated for the properties using ex_put_prop_names or
ex_put_prop, the properties are initialized to zero (0).

Because the ID of an element block, node set, or side set is just another property (named “ID”),
this routine can be used to change the value of an ID. This feature must be used with caution,
though, because changing the ID of an object to the ID of another object of the same type
(element block, node set, or side set) would cause two objects to have the same ID, and thus
only the first would be accessible. Therefore, ex_put_prop issues a warning if a user attempts
to give two objects the same ID.

134 -

In case of an error, ex_put_prop returns a negative number; a warning will return a positive
number. EXPP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* invalid object type specified.

* awarning is issued if a user attempts to change the ID of an object to the ID of an
existing object of the same type.

ex_put_prop: C Interface

int ex put_prop (exoid, obj_type, obj_id, prop_name, value);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_type (R)
Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM MAP To designate an element map.
EX_NODE_MAP To designate a node map.

int obj_id (R)
The element block, node set, or side set ID.

char* prop_name (R)
The name of the property for which the value will be stored. Maximum length of this string
1S MAX_STR LENGTH.

int value (R)
The value of the property.

For an example of code to write out an object property, refer to the description for

ex_put_prop_names.

EXPP: Fortran Interface

SUBROUTINE EXPP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

- 135 -

EXEBLK To designate an element block.

EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

INTEGER ID (R)
The element block, node set, or side set ID.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which a value will be stored.

INTEGER IVAL (R)
The value of the property.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of code to write out an object property, refer to the description for ExppN.

5.2.53 Read Object Property

The function ex_get_prop (or ExcP for Fortran) reads an integer property value stored for a
single element block, node set, or side set.

In case of an error, ex_get_prop returns a negative number; a warning will return a positive
number. EXGP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid object type specified.
* a warning value is returned if a property with the specified name is not found.

ex_get_prop: C Interface

int ex get_prop (exoid, obj_type, obj_id, prop_name, value);

int exoid (R)

EXODUS file ID returned from a previous call to ex_create Or ex_open.
int obj_type (R)

Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM MAP To designate an element map.
EX_NODE_MAP To designate a node map.

- 136 -

int obj_id (R)
The element block, node set, or side set ID.

char* prop_name (R)
The name of the property (maximum length is Max_sTR_LENGTH) for which the value is
desired.

int* value (W)
Returned value of the property.

For an example of code to read an object property, refer to the description for

ex_get_prop_names.

EXGP: Fortran Interface

SUBROUTINE EXGP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

INTEGER ID (R)
The element block, node set, or side set ID.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the value is desired.

INTEGER IVAL (W)
Returned value of the property.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of code to read an object property, refer to the description for EXGPN.

5.2.54 Write Object Property Array

The function ex_put_prop_array (or ExpPA for Fortran) stores an array of (num_elem blk,
num_node_sets, Of num_side_sets) integer property values for all element blocks, node sets,
or side sets. The order of the values in the array must correspond to the order in which the
element blocks, node sets, or side sets were introduced into the file. For instance, if the
parameters for element block with ID 20 were written to a file (via ex_put_elem block; or

- 137 -

eExPELB for Fortran), and then parameters for element block with ID 10, followed by the
parameters for element block with ID 30, the first, second, and third elements in the property
array would correspond to element block 20, element block 10, and element block 30,
respectively.

One should note that this same functionality (writing properties to multiple objects) can be
accomplished with multiple calls to ex_put_prop (or ExpP in Fortran).

Although it is not necessary to invoke ex_put_prop_names (ExpPN for Fortran), since
ex_put_prop_array Will allocate space within the data file if it hasn’t been previously
allocated, it is more efficient to use ex_put_prop_names if there is more than one property to
store. See Appendix A for a discussion of efficiency issues.

In case of an error, ex_put_prop_array returns a negative number; a warning will return a
positive number. EXPPA returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* invalid object type specified.

ex_put_prop_array: C Interface

int ex_put_prop_array (exoid, obj_type, prop_name, values);

int exoid (R)

EXODUS file ID returned from a previous call to ex_create Or ex_open.
int obj_type (R)

Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM MAP To designate an element map.
EX_NODE_MAP To designate a node map.

char* prop_name (R)

The name of the property for which the values will be stored. Maximum length of this
string 1S MAX_STR_LENGTH.

int* values (R)
An array of property values.

For an example of code to write an array of object properties, refer to the description for
ex_put_prop_names.

- 138 -

EXPPA: Fortran Interface

SUBROUTINE EXPPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the values will be stored.

INTEGER IVAL(*) (R)
An array of property values.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of code to write an array of object properties, refer to the description for ExppN.

5.2.55 Read Object Property Array

The function ex_get_prop_array (or EXGPA for Fortran) reads an array of integer property
values for all element blocks, node sets, or side sets. The order of the values in the array
correspond to the order in which the element blocks, node sets, or side sets were introduced
into the file. Before this function is invoked, memory must be allocated for the returned array
of (num_elem blk, num node_sets, Or num_side_sets) integer values.

This function can be used in place of ex_get_elem blk_ids (EXGEBI for Fortran),
ex_get_node_set_ids (ExeNsI for Fortran), and ex_get_side_set_ids (ExcssI for
Fortran) to get element block, node set, and side set IDs, respectively, by requesting the
property name “ID.” One should also note that this same function can be accomplished with
multiple calls to ex_get_prop (or EXGP in Fortran).

In case of an error, ex_get_prop_array returns a negative number; a warning will return a
positive number. EXGPA returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid object type specified.

* a warning value is returned if a property with the specified name is not found.

- 139 -

ex_get_prop_array: C Interface

int ex_get_prop_array (exoid, obj_type, prop_name, values);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_type
Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM_MAP To designate an element map.
EX_NODE_MAP To designate a node map.

char* prop_name (R)

The name of the property (maximum length of Max_sTr_rENGTH) for which the values are
desired.

int* values (W)
Returned array of property values.

For an example of code to read an array of object properties, refer to the description for
ex_get_prop_names.

EXGPA: Fortran Interface

SUBROUTINE EXGPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

EXEBLK To designate an element block.
EXNSET To designate a node set.
EXSSET To designate a side set.
EXNMAP To designate a node map.
EXEMAP To designate an element map.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the values are desired.

INTEGER IVAL(*) (W)
Returned array of property values.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

- 140 -

For an example of code to read an array of object properties, refer to the description for EXGPN.

5.2.56 Get Number of Object Properties

The function ex_get_num props returns the number of properties of the specified type that are
defined on the database. This function can be used in place of ex_inquire

The function will return O if there are no objects of the specfied type or if there is an error.

ex_get_num_props: C Interface

int ex_get_num props (exoid, obj_type);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int obj_type
Type of object; use one of the following options:

EX_ELEM BLOCK To designate an element block.
EX_NODE_SET To designate a node set.
EX_SIDE_SET To designate a side set.
EX_ELEM_MAP To designate an element map.
EX_NODE_MAP To designate a node map.

5.2.57 Copy One Database to Another

The function ex_copy can be used to efficiently copy the “Model Description” portion of one
EXODUS II database to another EXODUS II database. The function will copy all data defined
in the input database to the output database except:

e Results data (see Results Data) which includes all results variables (global,
elemental, nodeset, sideset, and nodal); variable truth tables (element, nodeset, and
sideset), and simulation times.

o QA Records (see Write Q).
e Information Records (see Write Information Records).

e Any variable which has been defined in the output file prior to calling ex_copy.
This gives you the ability to modify the model definition slightly prior to copying;
however, unrestrained use of this capability can result in a corrupt model definition
in the output database. If you are going to modify the output model, it is probably
safer to not use ex_copy and instead use the normal API for model output.

The ex_copy function will only return an error if the Ex_LARGE MODEL setting of the input and
output databases does not match.

- 141 -

ex_copy: C Interface

int ex_copy (in_exoid, out_exoid) ;

int in _exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open. This is the file
ID of the file which will be copied from.

int out_exoid
EXODUS file ID returned from a previous call to ex_create or ex_open. This is the file
ID of the file which will be written.

EXCOPY: Fortran Interface

SUBROUTINE EXCOPY (IN_IDEXO, OUT_IDEXO)

INTEGER IN_IDEXO (R)
EXODUS file ID returned from a previous call to ExcRE or ExOPEN. This is the file ID of
the file which will be copied from

INTEGER OUT_IDEXO (R)
EXODUS file ID returned from a previous call to ExcRE or ExOPEN. This is the file ID of
the file which will be written

5.3 Results Data

This section describes functions which read and write analysis results data and related entities.
These include results variables (global, elemental, nodeset, sideset, and nodal); variable truth
tables (element, nodeset, and sideset), and simulation times.

5.3.1 Write Results Variables Parameters

The function ex_put_var_param (or Expvp for Fortran) writes the number of global, nodal,
nodeset, sideset, or element variables that will be written to the database.

In case of an error, ex_put_var_param returns a negative number; a warning will return a
positive number. EXPVP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* invalid variable type specified (must be one of “gGnNeEmMsS”).

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

 this routine has already been called with the same variable type; redefining the number

- 142 -

of variables is not allowed.
* awarning value is returned if the number of variables is specified as zero.

ex_put_var_param: C Interface

int ex_put_var_ param (exoid, var_type, num vars) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
char* var_type (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S™) For sideset variables.

int num vars (R)
The number of var type variables that will be written to the database.

For example, the following code segment initializes the data file to store global variables:

int num glo_vars, error, exoid;
/* write results variables parameters */

num_glo_vars = 3;
error = ex_put _var param (exoid, “g”, num glo_vars) ;

EXPVP: Fortran Interface

SUBROUTINE EXPVP (IDEXO, VARTYP, NVAR, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

- 143 -

INTEGER NVAR (R)
The number of varTYP variables that will be written to the database.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For example, the following code segment initializes the data file to store global variables:

num _glo_vars = 1
call expvp (idexo, “g”, num_glo_vars, ierr)

5.3.2 Read Results Variables Parameters

The function ex_get_var_param (or ExGvP for Fortran) reads the number of global, nodal,
nodeset, sideset, or element variables stored in the database.

In case of an error, ex_get_var_param returns a negative number; a warning will return a
positive number. EXGVP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).
* invalid variable type specified (must be one of “gGnNeEmMSsS”).

ex_get_var_param: C Interface

int ex_get_var_ param (exoid, var_type, num vars) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* var_type (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

int* num vars (W)
Returned number of var_ type variables that are stored in the database.

As an example, the following coding will determine the number of global variables stored in
the data file:

int num glo_vars, error, exoid;

/* read global variables parameters */

- 144 -

error = ex_get_var param (exoid, “g”, &num glo_vars) ;

EXGVP: Fortran Interface

SUBROUTINE EXGVP (IDEXO, VARTYP, NVAR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

INTEGER NVAR (W)
Returned number of vaArRTYP variables that are stored in the database.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following coding will determine the number of global variables stored in
the data file:

call exgvp (idexo, “g”, num glo_vars, ierr)
5.3.3 Write All Results Variables Parameters

The function ex_put_all var param defines in one call the number of global, nodal, nodeset,
sideset, and element variables that will be written to the database. Using this function is more
efficient than calling ex_put_var_param for global, nodal, element, nodeset, and sideset result
variables followed by a call to put the element, nodeset, and sideset variable truth tables. See
Appendix A for a more in-depth description of exoduslI efficiency concerns.

In case of an error, ex_put_all var_ paramreturns a negative number; a warning will return a
positive number. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init.

» this routine has already been called; redefining the number of variables is not allowed.

* awarning value is returned if the number of variables is specified as zero.

- 145 -

ex_put_all_var_param: C Interface

int ex_put_all var_param (exoid,num g, num n, num e, elem var_tab, num m,
nset_var_tab, num_ s, sset_var_ tab),
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int num g (R)
The number of global variables that will be written to the database.
int num n (R)
The number of nodal variables that will be written to the database.
int num e (R)
The number of element variables that will be written to the database.
int elem_var_ tab[num_elem blk,num_elem var] (R)
A 2-dimensional array (with the num_elem_ var index cycling faster) containing the
element variable truth table.
int num m (R)
The number of nodeset variables that will be written to the database.
int nset_var tab[num nset,num nset_var] (R)
A 2-dimensional array (with the num_nset_var index cycling faster) containing the
nodeset variable truth table.
int num s (R)
The number of sideset variables that will be written to the database.
int sset_var_ tab[num_sset,num sset_var] (R)
A 2-dimensional array (with the num_sset var index cycling faster) containing the sideset
variable truth table.

5.3.4 Write Results Variables Names

The function ex_put_var_names or (ExPVAN for Fortran) writes the names of the results
variables to the database. The names are MmaX_STR_LENGTH-characters in length. The function
ex_put_var_param (ExpvP for Fortran) must be called before this function is invoked.

In case of an error, ex_put_var_names returns a negative number; a warning will return a
positive number. EXPVAN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* invalid variable type specified (must be one of “gGnNeEmMsS”).
* ex put_var_ param (EXPVP for Fortran) was not called previously or was called with

- 146 -

zero variables of the specified type.
* ex put_var_names or (ExPVAN for Fortran) has been called previously for the
specified variable type.

ex_put_var_names: C Interface

int ex_put_var names (exoid, var_type, num _vars, var_names/[]);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* var_type (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S™) For sideset variables.

int num vars (R)
The number of var_type variables that will be written to the database.

char** var_names (R)
Array of pointers to num_vars variable names.

The following coding will write out the names associated with the nodal variables:

int num nod_vars, error, exoid;
char *var_names|[2];

/* write results variables parameters and names */

num_nod_vars = 2;
var_names [0] = “disx”;
var_names [1] = “disy”;

error = ex_put_var param (exoid, “n”, num nod_vars) ;
error = ex_ put_var names (exoid, “n”, num nod_vars, var_names) ;

EXPVAN: Fortran Interface

SUBROUTINE EXPVAN (IDEXO, VARTYP, NVAR, NAMES, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following

- 147 -

options:

“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

INTEGER NVAR (R)
The number of varRTYP variables that will be written to the database.

CHARACTER*MXSTLN NAMES (*)
Array containing NVAR variable names.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following coding will write out the names associated with the nodal variables:

include ’‘exodusII.inc’
character* (MXSTLN) var_names (1)

var_names (1) = “glo_vars”
call expvan (idexo, “g”, num _glo_vars, var_names, ierr)

5.3.5 Read Results Variables Names

The function ex_get_var_names or (EXGVAN for Fortran) reads the names of the results
variables from the database. Memory must be allocated for the name array before this function
is invoked. The names are MAX_STR_LENGTH-characters in length.

In case of an error, ex_get_var_ names returns a negative number; a warning will return a
positive number. EXGVAN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid variable type specified (must be one of “gGnNeEmMsS”).
* awarning value is returned if no variables of the specified type are stored in the file.

ex_get_var_names: C Interface

int ex_get_var names (exoid, var_type, num _vars, var_names/[]);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* var_type
Character indicating the type of variable which is described. Use one of the following
options:

- 148 -

“g” (or “G”) For global variables.

“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

int num vars (R)
The number of var_ type variables that will be read from the database.

char** var_names (W)
Returned array of pointers to num_vars variable names.

As an example, the following code segment will read the names of the nodal variables stored in
the data file:

#include “exodusII.h”
int error, exoid, num_nod_vars;
char *var_names[10];

/* read nodal variables parameters and names */
error = ex_get var param (exoid, “n”, &num nod_vars) ;
for (i=0; i<num nod vars; i++)

var_names [i] = (char *) calloc ((MAX STR_LENGTH+1), sizeof (char));
error = ex_get_var names (exoid, “n”, num nod_vars, var_names) ;

EXGVAN: Fortran Interface

SUBROUTINE EXGVAN (IDEXO, VARTYP, NVAR, NAMES, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

INTEGER NVAR (R)
The number of varRTYP variables that will be read from the database.

CHARACTER*MXSTLN NAMES (*) (W)
Returned array containing NvaR (returned from a call to ExGvp) variable names.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

- 149 -

As an example, the following code segment will read the names of the global variables stored
in the data file:

c NOTE: MAXVARS is the maximum number of global
variables

include ’‘exodusII.inc’
character* (MXSTLN) var_names (MAXVARS)

Q

read global variables parameters and names
call exgvp (idexo, ”g”, num glo_vars, ierr)

call exgvan (idexo, ”g”, num _glo_vars, var_names, ierr)
5.3.6 Write Individual Results Variable Name

The function ex_put_var_name writes the name of the specified results variable to the
database. The name is MAx_STR_LENGTH-characters in length. The function
ex_put_var_param (ExPVP for Fortran) must be called before this function is invoked.

In case of an error, ex_put_var_name returns a negative number; a warning will return a
positive number. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Of EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* invalid variable type specified (must be one of “gGnNeEmMSsS”).

* ex put_var_param (ExpVP for Fortran) was not called previously or was called with
zero variables of the specified type.

* ex put_var_ name Or (ExPVAN for Fortran) has been called previously for the specified
variable.

ex_put_var_name: C Interface

int ex _put_var name (exoid, var_type, index, var_name) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
char* var_type (R)
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.

- 150 -

“s” (or “S”) For sideset variables.
int index (R)
The index of the var_ type variable name that will be written to the database. Valid values
are 1 up to the number of variables on the database.

char* var_name (R)
Pointer to variable name.

5.3.7 Read Individual Results Variable Name

The function ex_get_var_name reads the name of the specified results variable from the
database. Memory must be allocated for the name before this function is invoked. The name is
MAX_STR_LENGTH-characters in length.

In case of an error, ex_get_var_name returns a negative number; a warning will return a
positive number. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* invalid variable type specified (must be one of “gGnNeEmMsS”).

* variable index is out of valid range which is 1 up to number of variables of the specified

type.
* awarning value is returned if no variables of the specified type are stored in the file.

ex_get_var_name: C Interface

int ex get_var name (exoid, var_type, index, var_name) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* var_type
Character indicating the type of variable which is described. Use one of the following

options:
“g” (or “G”) For global variables.
“n” (or “N”) For nodal variables.
“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.

int index(R)
The index of the variable whose name is to be read. Valid range is 1 up to number of
var_type variables on the database.

char* var_name (W)
Returned pointer to variable name.

- 151 -

5.3.8 Write Time Value for a Time Step

The function ex_put_time (or ExpT1M for Fortran) writes the time value for a specified time
step.

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExXCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_time returns a negative number; a warning will return a positive
number. EXPTIM returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

ex_put_time: C Interface

int ex put_time (exoid, time step, time_value);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step number. This is essentially a counter that is incremented only when results
variables are output to the data file. The first time step is 1.

void* time value (R)
The time at the specified time step.

The following code segment will write out the simulation time value at simulation time step n:

int error, exoid, n;
float time_value;

/* write time value */

error = ex_put time (exoid, n, &time value) ;

EXPTIM: Fortran Interface

SUBROUTINE EXPTIM (IDEXO, NSTEP, TIME, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

- 152 -

INTEGER NSTEP (R)
The time step number. This essentially a counter that is incremented only when results
variables are output to the data file. The first time step is 1.

REAL TIME (R)
The time at the specified time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will write out the simulation time value at simulation time step n:

©
c write time value to file
©

call exptim (idexo, n, time value, ierr)
5.3.9 Read Time Value for a Time Step

The function ex_get_time (or ExaTIM for Fortran) reads the time value for a specified time
step.

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_time returns a negative number; a warning will return a positive
number. EXGTIM returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* no time steps have been stored in the file.

ex_get_time: C Interface

int ex_get_time (exoid, time step, time_value) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step number. This is essentially an index (in the time dimension) into the global,
nodal, and element variables arrays stored in the database. The first time step is 1.

void* time value (W)
Returned time at the specified time step.

- 153 -

As an example, the following coding will read the time value stored in the data file for time
step n:

int n, error, exoid;
float time value;

/* read time value at time step 3 */

n = 3;
error = ex_get_ time (exoid, n, &time value) ;

EXGTIM: Fortran Interface

SUBROUTINE EXGTIM (IDEXO, NSTEP, TIME, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NSTEP (R)
The time step number. This is essentially an index (in the time dimension) into the global,
nodal, and element variables arrays stored in the database. The first time step is 1.

REAL TIME (W)
Returned time at the specified time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following coding will read the time value stored in the data file for time
step n:
©
¢ read time value at time step 3
©
n =3
call exgtim (idexo, n, time value, ierr)

5.3.10 Read All Time Values

The function ex_get_all_times (or EXGATM for Fortran) reads the time values for all time
steps. Memory must be allocated for the time values array before this function is invoked. The
storage requirements (equal to the number of time steps) can be determined by using the
ex_inguire (or EXINQ in Fortran) routine. See Inquire EXODUS Parameters.

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

- 154 -

In case of an error, ex_get_all_times returns a negative number; a warning will return a
positive number. EXGATM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

* no time steps have been stored in the file.

ex_get_all_times: C Interface

int ex _get_all_ times (exoid, time_values) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

void* time values (W)
Returned array of times. These are the time values at all time steps.

The following code segment will read the time values for all time steps stored in the data file:

#include “exodusII.h”

int error, exoid, num time_ steps;
float *time_values;

/* determine how many time steps are stored */

error = ex_inquire (exoid, EX_INQ TIME, &num_time_ steps,
&fdum, cdum) ;

/* read time values at all time steps */
time_values = (float *) calloc (num time steps, sizeof (float)) ;

error = ex_get _all times (exoid, time_values) ;

EXGATM: Fortran Interface

SUBROUTINE EXGATM (IDEXO, TIME, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

REAL TIME (*) (W)
Returned array of times. These are the time values at all time steps.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read the time values for all time steps stored in the data file:

- 155 -

NOTE: MAXTIM is the maximum number of time steps

Q

include ’‘exodusII.inc’
real time values (MAXTIM)

determine how many time steps are stored; this can be used if dynamic
memory allocation is available

QQ QQ

call exing (idexo, EXTIMS, num_time_ steps, fdum, cdum, ierr)

Q

read time values at all time steps

Q

call exgatm (idexo, time_values, ierr)
5.3.11 Write Object Variable Truth Table

The function ex_put_var_tab (or ExpvTT for Fortran) writes the EXODUS II variable truth
table for the specified object type (element block, nodeset, or sideset) to the database. The
variable truth table indicates whether a particular object result is written for the objects in a
particular entity block. A 0 (zero) entry indicates that no results will be output for that variable
for that block. A non-zero entry indicates that the appropriate results will be output.

Although writing the variable truth tables is optional, it is encouraged because it creates at one
time all the necessary netCDF variables in which to hold the EXODUS variable values of the
specified type. This results in significant time savings. See Appendix A for a discussion of
efficiency issues.

The function ex_put_var_param (or ExpvP for Fortran) must be called before this routine in
order to define the number of variables for the specified object type.

In case of an error, ex_put_var_tab returns a negative number; a warning will return a
positive number. EXPVTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

e the specified number of objects is different than the number specified in a call to
ex_put_init (ExPINT for Fortran).

® eox put_elem block, ex put_nset, or ex put_sset not called K)Specﬁy
element block parameters.

® ex put_var_param (or Expvp for Fortran) not called previously to specify the
number of variables or was called but with a different number of variables.

- 156 -

* ex put_elem var previously called.

ex_put_var_tab: C Interface

int ex_put_var_tab (exoid, var_type, num _blk, num var, var_tab);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* var_type (R)
Character indicating the type of truth table which is being written. Use one of the following
options:

“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.
int num blk (R)
The number of blocks.

int num var (R)
The number of variables.

int var_tab[num blk,num var] (R)
A 2-dimensional array (with the num_var index cycling faster) containing the variable
truth table.

5.3.12 Read Variable Truth Table

The function ex_get_var_tab reads the EXODUS II variable truth table from the database.
For a description of the truth table, see the usage of the function ex_put_var tab. Memory
must be allocated for the truth table (num b1k * num var in length) before this function is
invoked. If the truth table is not stored in the file, it will be created based on information in the
file and then returned.

In case of an error, ex_get_elem var_tab returns a negative number; a warning will return a
positive number. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpPINI for Fortran).

e the specified number of blocks is different than the number specified in a call to
ex_put_init (ExPINT for Fortran).

e there are no variables stored in the file or the specified number of variables doesn’t
match the number specified in a call to ex_put_var_ param.

- 157 -

ex_get_var_tab: C Interface

int ex_get_var_tab (exoid, var_type, num_elem blk, num_elem var,
elem_var_tab) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

char* var_type (R)
Character indicating the type of truth table which is being written. Use one of the following
options:

“e” (or “E”) For element variables.
“m” (or “M”) For nodeset variables.
“s” (or “S”) For sideset variables.
int num blk (R)
The number of blocks.

int num var (R)
The number of variables.

int var_tab[num blk,num var] (W)
Returned 2-dimensional array (with the num _var index cycling faster) containing the
variable truth table.

5.3.13 Write Element Variable Truth Table

The function ex_put_elem_var_tab (or EXpvTT for Fortran) writes the EXODUS II element
variable truth table to the database. The element variable truth table indicates whether a
particular element result is written for the elements in a particular element block. A 0 (zero)
entry indicates that no results will be output for that element variable for that element block. A
non-zero entry indicates that the appropriate results will be output.

Although writing the element variable truth table is optional, it is encouraged because it creates
at one time all the necessary netCDF variables in which to hold the EXODUS element variable
values. This results in significant time savings. See Appendix A for a discussion of efficiency
issues. Calling the function ex_put_var_tab with an object type of “E” results in the same
behavior as calling this function.

The function ex_put_var_param (or ExPvP for Fortran) must be called before this routine in
order to define the number of element variables.

In case of an error, ex_put_elem var_tab returns a negative number; a warning will return a
positive number. EXPVTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

- 158 -

e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

e the specified number of element blocks is different than the number specified in a
call to ex_put_init (ExPINT for Fortran).

* ex put_elem block (or EXPELB for Fortran) not called previously to specify element
block parameters.

* ex put_var_param (or EXPVP for Fortran) not called previously to specify the number
of element variables or was called but with a different number of element variables.

* ex put_elem var previously called.

ex_put_elem_var_tab: C Interface

int ex put_elem var_ tab (exoid, num_elem blk, num elem var, elem var_tab) ;
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num elem blk (R)
The number of element blocks.
int num elem var (R)

The number of element variables.

int elem_var_ tab[num_elem blk,num_elem var] (R)
A 2-dimensional array (with the num_elem var index cycling faster) containing the
element variable truth table.

The following coding will create, populate, and write an element variable truth table to an
opened EXODUS 1I file (NOTE: all element variables are valid for all element blocks in this
example.):

int *truth tab, num elem blk, num ele vars, error, exoid;

/* write element variable truth table */
truth_tab = (int *) calloc ((num elem blk*num ele vars), sizeof (int)) ;

for (i=0, k=0; i<num elem blk; 1i++)
for (j=0; j<num ele_vars; Jj++)

truth tab[k++] = 1;

error = ex_put_elem var_tab (exoid, num _elem blk, num ele_vars,
truth_tab) ;

EXPVTT: Fortran Interface

SUBROUTINE EXPVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

- 159 -

INTEGER NELBLK (R)
The number of element blocks.

INTEGER NVAREL (R)
The number of element variables.

INTEGER ISEVOK (NVAREL,NELBLK) (R)
A 2-dimensional array (with the NvAREL index cycling faster) containing the element
variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following coding will create, populate, and write an element variable truth table to an
opened EXODUS 1I file. (NOTE: all element variables are valid for all element blocks in this
example.):

integer truth_tab (num ele_vars,num _elem_blk)

@
c write element variable truth table

icnt = 0
do 30 i = 1,num elem blk
do 20 j = 1,num _ele vars
truth_tab(j,1) =1
20 continue
30 continue

call expvtt (idexo, num_elem blk, num_ele vars, truth_tab, ierr)
5.3.14 Read Element Variable Truth Table

The function ex_get_elem var_tab (or EXGVTT for Fortran) reads the EXODUS II element
variable truth table from the database. For a description of the truth table, see the usage of the
function ex_put_elem var_ tab. Memory must be allocated for the truth table

(num_elem blk * num elem var in length) before this function is invoked. If the truth table is
not stored in the file, it will be created based on information in the file and then returned.
Calling the function ex_get_var tab with an object type of “E” results in the same behavior
as calling this function

In case of an error, ex_get_elem var_tab returns a negative number; a warning will return a
positive number. EXGVTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpPINI for Fortran).

e the specified number of element blocks is different than the number specified in a
call to ex_put_init (ExPINT for Fortran).

e there are no element variables stored in the file or the specified number of element
variables doesn’t match the number specified in a call to ex_put_var_param (or
ExpvP for Fortran).

- 160 -

ex_get_elem_var_tab: C Interface

int ex_get_elem var_ tab (exoid, num_elem blk, num_elem var, elem var_tab) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num elem blk (R)
The number of element blocks.

int num elem var (R)
The number of element variables.

int elem var tab[num elem blk,num elem var] (W)
Returned 2-dimensional array (with the num elem var index cycling faster) containing the
element variable truth table.

As an example, the following coding will read the element variable truth table from an opened
EXODUS II file:

int *truth tab, num elem blk, num ele vars, error, exoid;
truth_tab = (int *) calloc ((num _elem blk*num ele_vars), sizeof (int)) ;

error = ex _get _elem var_tab (exoid, num elem blk, num ele_vars,
truth_tab) ;

EXGVTT: Fortran Interface

SUBROUTINE EXGVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NELBLK (R)
The number of element blocks.

INTEGER NVAREL (R)
The number of element variables.

INTEGER ISEVOK (NVAREL, NELBLK) (W)
Returned 2-dimensional array (with the NVvAREL index cycling faster) containing the
element variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following coding will read the element variable truth table from an opened
EXODUS II file:

integer truth_tab (num ele_vars,num _elem_blk)
@
c read element variable truth table
@
call exgvtt (idexo, num_elem blk, num_ele vars, truth_tab, ierr)

- 161 -

5.3.15 Write Element Variable Values at a Time Step

The function ex_put_elem var (or ExpEV for Fortran) writes the values of a single element
variable for one element block at one time step. It is recommended, but not required, to write
the element variable truth table (with ex_put_elem_var_tab for C; ExpvTT for Fortran)
before this function is invoked for better efficiency. See Appendix A for a discussion of
efficiency issues.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_put_elem var returns a negative number; a warning will return a
positive number. EXPEV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* invalid element block ID.

* ex put_elem block (or EXPELB for Fortran) not called previously to specify
parameters for this element block.

* ex put_var_param (or ExPvP for Fortran) not called previously specifying the number
of element variables.

* an element variable truth table was stored in the file but contains a zero (indicating no
valid element variable) for the specified element block and element variable.

ex_put_elem_var: C Interface

int ex_put_elem var (exoid, time_step, elem var_ index, elem_blk id,
num_elem this blk, elem var_vals);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter that
is incremented only when results variables are output. The first time step is 1.
int elem var_ index (R)
The index of the element variable. The first variable has an index of 1.
int elem blk id (R)
The element block ID.
int num elem this_blk (R)
The number of elements in the given element block.

- 162 -

void* elem var_vals (R)
Array of num _elem this_blk values of the elem var_indexth element variable for the
element block with ID of elem b1k_id at the time_stepth time step.

The following coding will write out all of the element variables for a single time step n to an
open EXODUS II file:

int num ele_vars, num_elem blk, *num elem in block,error, exoid, n,
*ebids;
float *elem var vals;

/* write element variables */

for (k=1; k<=num ele vars; k++)
{
for (j=0; j<num _elem blk; j++)

{

elem _var vals = (float *)
calloc (num_elem in block[j], sizeof (float)) ;
for (m=0; m<num _elem in block[j]; m++)

{
/* simulation code fills this in */
elem var_vals[m] = 10.0;

}

error = ex _put_elem var (exoid, n, k, ebids[j],
num_elem_in block[j], elem var vals) ;

free (elem_var_ vals) ;

EXPEV: Fortran Interface

SUBROUTINE EXPEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELB, VALEV, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under Expr1M. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.
INTEGER IXELEV (R)
The index of the element variable. The first variable has an index of 1.
INTEGER IDELB (R)
The element block ID.
INTEGER NUMELB (R)
The number of elements in the given element block.
REAL VALEV (*) (R)
Array of NUMELB values of the 1xELEVth element variable for the element block with ID of

- 163 -

IDELB at the IsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following coding will write out all of the element variables for a single time step n to an
open EXODUS II file:

NOTE: MAXEBK is maximum number of element blocks
MAXELB is maximum number of elements per block

Q Q

integer num_elem in_block (MAXEBK)
real elem var_ vals (MAXELB)

c write element variables

do 100 k = 1, num _ele vars
do 90 j = 1, num _elem blk
do 80 m = 1, num _elem_in block (3)
¢ analysis code fills this array
elem var vals(m) = 10.0
80 continue

call expev (idexo, n, k, num elem in block(Jj),
1 elem var vals, ilerr)
90 continue
100 continue

5.3.16 Read Element Variable Values at a Time Step

The function ex_get_elem var (or EXGEV for Fortran) reads the values of a single element
variable for one element block at one time step. Memory must be allocated for the element
variable values array before this function is invoked.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_elem var returns a negative number; a warning will return a
positive number. EXGEV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* variable does not exist for the desired element block.

* invalid element block.

- 164 -

ex_get_elem_var: C Interface

int ex_get_elem var (exoid, time_step, elem var_ index, elem_blk id,
num_elem this blk, elem var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int time_step (R)
The time step number, as described under ex_put_time, at which the element variable
values are desired. This is essentially an index (in the time dimension) into the element
variable values array stored in the database. The first time step is 1.

int elem_var_ index (R)
The index of the desired element variable. The first variable has an index of 1.

int elem blk id (R)
The desired element block ID.

int num elem this blk (R)
The number of elements in this element block.

void* elem var _vals (W)
Returned array of num_elem this_blk values of the elem var_indexth element variable
for the element block with ID of elem bilk_id at the time_stepth time step.

As an example, the following code segment will read the var_indexth element variable at one
time step stored in an EXODUS II file:

int *ids, num_elem blk, error, exoid, *num elem in block, step, var_ind;
float *var_vals;

ids = (int *) calloc (num _elem blk, sizeof (int)) ;
error = ex_get_elem blk_ids (exoid, ids) ;

step = 1; /* read at the first time step */
for (1i=0; i<num elem blk; i++) {
var_vals = (float *) calloc (num elem in block[i], sizeof (float)) ;
error = ex_get_elem var (exoid, step, var_ind, ids[i],
num_elem in block[i1], var_vals);
free (var_values); }

EXGEYV: Fortran Interface

SUBROUTINE EXGEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELB, VALEV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpT1M, at which the element variable is desired.
This is essentially an index (in the time dimension) into the element variable values array
stored in the database. The first time step is 1.

- 165 -

INTEGER IXELEV (R)
The index of the desired element variable. The first variable has an index of 1.

INTEGER IDELB (R)
The desired element block ID.

INTEGER NUMELB (R)
The number of elements in this element block.

REAL VALEV (*) (W)
Returned array of NUMELB values of the 1xELEVth element variable for the element block
with ID of 1pELB at the 1sTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code segment will read the var_indexth element variable at one
time step stored in an EXODUS 11 file:

¢ NOTE: MAXEBK is maximum number of element blocks

© MAXELB is maximum number of elements per block
integer ids (MAXEBK), var_index, num elem in block (MAXEBK)
real var_values (MAXELB)

call exgebi (idexo, ids, ierr)

do 10 i = 1, num elem blk
call exgev (idexo, istep, var_index, ids (i),
1 num elem in_block (i), var_values, ierr)
10 continue

5.3.17 Read Element Variable Values through Time

The function ex_get_elem var time (or EXGEVT for Fortran) reads the values of an element
variable for a single element through a specified number of time steps. Memory must be
allocated for the element variable values array before this function is invoked.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_get_elem var_time returns a negative number; a warning will return a
positive number. EXGEVT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

® ex put_elem block (or ExPELB for Fortran) not called previously to specify
parameters for all element blocks.

- 166 -

e variable does not exist for the desired element or results haven’t been written.

ex_get_elem_var_time: C Interface

int ex _get_elem var_time (exoid, int elem var_index, int elem number, int
beg_time step, int end _time step, elem var_ vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem_var_ index (R)
The index of the desired element variable. The first variable has an index of 1.

int elem_number (R)

The internal ID (see Node Number Map) of the desired element. The first element is 1.

int beg_time step (R)
The beginning time step for which an element variable value is desired. This is not a time

value but rather a time step number, as described under ex_put_time. The first time step is
1.

int end_time_step (R)
The last time step for which an element variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

void* elem var_vals (W)
Returned array of (end _time step - beg_time_step + 1) values of the elem numberth
element for the elem_var_indexth element variable.

For example, the following coding will read the values of the var_indexth element variable
for element number 2 from the first time step to the last time step:

#include “exodusII.h”
int error, exoid, num time_ steps, var_index, elem num, beg time,
end_time;

float *var_values;

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ TIME, &num_time_steps, &fdum, cdum) ;

/* read an element variable through time */

var_values = (float *) calloc (num_time_steps, sizeof (float)) ;
var_index = 2;

elem num = 2;

beg_time = 1;

end_time = -1;

error = ex _get _elem var_time (exoid, var_index, elem_ num,

beg_time, end time, var_values) ;

- 167 -

EXGEVT: Fortran Interface

SUBROUTINE EXGEVT (IDEXO, IXELEV, IELNUM, ISTPB, ISTPE, VALEV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IXELEV (R)
The index of the desired element variable. The first variable has an index of 1.

INTEGER IELNUM (R)
The internal ID (see Node Number Map) of the desired element. The first element is 1.

INTEGER ISTPB (R)
The beginning time step for which an element variable value is desired. This is not a time
value but rather a time step number, as described under ExpT1M. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which an element variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

REAL VALEV (*) (W)
Returned array of (1sTPE - 1sTPB + 1) values of the TELNUMth element for the IxELEVth
element variable.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For example, the following coding will read the values of the var_indexth element variable
for element number 2 from the first time step to the last time step:

c NOTE: MAXVAL is the maximum number of values to be read
@

integer var_index, elem num, beg_time, end_time

real var_values (MAXVAL)

read an element variable through time

Q

var_index = 2
elem num = 2
beg_time = 1
end time = -1

call exgevt (idexo, var_index, elem num, beg_time, end_time,
1 wvar_values, 1lerr)

5.3.18 Write Nodeset Variable Truth Table
The function ex_put_nset_var_tab (or EXPvTT for Fortran) writes the EXODUS II nodeset

variable truth table to the database. The nodeset variable truth table indicates whether a
particular nodeset result is written for the nodes in a particular nodeset. A 0 (zero) entry

- 168 -

indicates that no results will be output for that nodeset variable for that nodeset. A non-zero
entry indicates that the appropriate results will be output.

Although writing the nodeset variable truth table is optional, it is encouraged because it creates
at one time all the necessary netCDF variables in which to hold the EXODUS nodeset variable
values. This results in significant time savings. See Appendix A for a discussion of efficiency
issues. Calling the function ex_put_var_tab with an object type of “M” results in the same
behavior as calling this function

The function ex_put_var_param (or ExpvP for Fortran) must be called before this routine in
order to define the number of nodeset variables.

In case of an error, ex_put_nset_var_tab returns a negative number; a warning will return a
positive number. EXPVTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpPINI for Fortran).

e the specified number of nodesets is different than the number specified in a call to
ex_put_init (ExPINT for Fortran).

e ex put_node_set (or ExpPNS for Fortran) not called previously to specify nodeset
parameters.

® ex put_var_param (or Expvp for Fortran) not called previously to specify the
number of nodeset variables or was called but with a different number of nodeset
variables.

® ex put_nset_var previously called.

ex_put_nset_var_tab: C Interface

int ex put_nset var_ tab (exoid, num nsets, num_nset_ var, nset_var_tab);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int num nset (R)
The number of nodesets.

int num nset_var (R)
The number of nodeset variables.

int nset_var_ tab[num nset,num nset_var] (R)
A 2-dimensional array (with the num_nset_var index cycling faster) containing the
nodeset variable truth table.

- 169 -

EXPNSTT: Fortran Interface

SUBROUTINE EXPNSTT (IDEXO, NUMNS NVARNS, ISNSVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NUMNS (R)
The number of nodesets.

INTEGER NVARNS (R)
The number of nodeset variables.

INTEGER ISNSVOK (NVARNS, NUMNs) (R)
A 2-dimensional array (with the NvaARNS index cycling faster) containing the nodeset
variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.19 Read Nodeset Variable Truth Table

The function ex_get_nset_var_tab (or EXGNSTT for Fortran) reads the EXODUS II nodeset
variable truth table from the database. For a description of the truth table, see the usage of the
function ex_put_nset_var_ tab. Memory must be allocated for the truth table
(num_sidesets * num nset_var in length) before this function is invoked. If the truth table is
not stored in the file, it will be created based on information in the file and then returned.
Calling the function ex_put_var_tab with an object type of “M” results in the same behavior
as calling this function

In case of an error, ex_get_nset_var_tab returns a negative number; a warning will return a
positive number. EXGNSTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

e the specified number of nodesets is different than the number specified in a call to
ex_put_init (ExPINTI for Fortran).

e there are no nodeset variables stored in the file or the specified number of nodeset
variables doesn’t match the number specified in a call to ex_put_var_param (or
ExpvP for Fortran).

ex_get_nset_var_tab: C Interface

int ex get_nset_var_tab (exoid, num nsets, num_nset_var, nset_var_tab);

- 170 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num nsets (R)
The number of nodesets.

int num nset_var (R)
The number of nodeset variables.

int nset_var_tab[num nsets,num nset_var] (W)
Returned 2-dimensional array (with the num nset_var index cycling faster) containing the
nodeset variable truth table.

EXGNSTT: Fortran Interface

SUBROUTINE EXGNSTT (IDEXO, NNSETS, NVARNS, ISNSVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NNSETS (R)
The number of nodesets.

INTEGER NVARNS (R)
The number of nodeset variables.

INTEGER ISNSVOK (NVARNS, NNSETS) (W)
Returned 2-dimensional array (with the NvaARNS index cycling faster) containing the
nodeset variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.20 Write Nodeset Variable Values at a Time Step

The function ex_put_nset_var (or ExpNsV for Fortran) writes the values of a single nodeset
variable for one nodeset at one time step. It is recommended, but not required, to write the
nodeset variable truth table (with ex_put_nset_var_tab for C; ExpNsTT for Fortran) before
this function is invoked for better efficiency. See Appendix A for a discussion of efficiency
issues.

Because nodeset variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_nset_var returns a negative number; a warning will return a
positive number. EXPNSV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for

-171 -

Fortran).
» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).
* invalid nodeset ID.

* ex put_node_set (or ExPNs for Fortran) not called previously to specify parameters
for this nodeset.

* ex put_var_param (or ExpvP for Fortran) not called previously specifying the number
of nodeset variables.

* anodeset variable truth table was stored in the file but contains a zero (indicating no
valid nodeset variable) for the specified nodeset and nodeset variable.

ex_put_nset_var: C Interface

int ex_put_nset_var (exoid, time_step, nset_var_index, nset_id,
num_nodes_this blk, nset_var_vals);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter that
is incremented only when results variables are output. The first time step 1s 1.
int nset_var index (R)
The index of the nodeset variable. The first variable has an index of 1.
int nset_id (R)
The nodeset ID.
int num nodes_this blk (R)
The number of nodes in the given nodeset.
void* nset_var_vals (R)
Array of num nodes_this_blk values of the nset_var_indexth nodeset variable for the
nodeset with ID of nset_id at the time_stepth time step.

EXPNSYV: Fortran Interface

SUBROUTINE EXPNSV (IDEXO, ISTEP, IXNSV, IDNS, NUMNOD, VALNSV, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under expr1M. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.

INTEGER IXNSV (R)
The index of the nodeset variable. The first variable has an index of 1.

-172 -

INTEGER IDNS (R)
The nodeset ID.

INTEGER NUMNOD (R)
The number of nodes in the given nodeset.

REAL VALNSV(*) (R)
Array of nuMnoD values of the Txnsvth nodeset variable for the nodeset with ID of 1pns at
the 1sTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.21 Read Nodeset Variable Values at a Time Step

The function ex_get_nset_var (or EXGNSV for Fortran) reads the values of a single nodeset
variable for one nodeset at one time step. Memory must be allocated for the nodeset variable
values array before this function is invoked.

Because nodeset variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_nset_var returns a negative number; a warning will return a
positive number. EXGNSV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).
e variable does not exist for the desired nodeset.
e invalid nodeset.

ex_get_nset_var: C Interface

int ex _get_nset var (exoid, time_step, nset_var_ index, nset_id,
num _nodes_this blk, nset_var vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int time step (R)
The time step number, as described under ex_put_time, at which the nodeset variable

values are desired. This is essentially an index (in the time dimension) into the nodeset
variable values array stored in the database. The first time step is 1.

int nset_var index (R)
The index of the desired nodeset variable. The first variable has an index of 1.

-173 -

int nset_blk id (R)
The desired nodeset ID.
int num nodes_this blk (R)
The number of nodes in this nodeset.

void* nset_var_vals (W)
Returned array of num_nodes_this_blk values of the nset_var indexth nodeset
variable for the nodeset with ID of nset_id at the time_stepth time step.

EXGNSV: Fortran Interface

SUBROUTINE EXGNSV (IDEXO, ISTEP, IXNSV, IDNS, NUMNOD, VALNSV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpTIM, at which the nodeset variable is desired.
This is essentially an index (in the time dimension) into the nodeset variable values array
stored in the database. The first time step is 1.

INTEGER IXNSV (R)
The index of the desired nodeset variable. The first variable has an index of 1.

INTEGER IDNS (R)
The desired nodeset ID.

INTEGER NUMNOD (R)
The number of nodes in this nodeset.

REAL VALNSV (*) (W)
Returned array of NumnoD values of the Txnsvth nodeset variable for the nodeset with ID of
IDNs at the 1sTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.22 Write Sideset Variable Truth Table

The function ex_put_sset_var_tab (or ExpvTT for Fortran) writes the EXODUS 11 sideset
variable truth table to the database. The sideset variable truth table indicates whether a
particular sideset result is written for the nodes in a particular sideset. A O (zero) entry indicates
that no results will be output for that sideset variable for that sideset. A non-zero entry
indicates that the appropriate results will be output.

Although writing the sideset variable truth table is optional, it is encouraged because it creates
at one time all the necessary netCDF variables in which to hold the EXODUS sideset variable
values. This results in significant time savings. See Appendix A for a discussion of efficiency
issues. Calling the function ex_put_var_tab with an object type of “S” results in the same
behavior as calling this function.

174 -

The function ex_put_var_param (or ExPvP for Fortran) must be called before this routine in
order to define the number of sideset variables.

In case of an error, ex_put_sset_var_tab returns a negative number; a warning will return a
positive number. EXPVTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE O EXOPEN
for Fortran).

e data file opened for read only.
e data file not initialized properly with call to ex_put_init (ExpPINT for Fortran).

e the specified number of sidesets is different than the number specified in a call to
ex_put_init (ExPINI for Fortran).

® ex put_node_set (or EXpNS for Fortran) not called previously to specify sideset
parameters.

® ex put_var param (or ExpvP for Fortran) not called previously to specify the
number of sideset variables or was called but with a different number of sideset
variables.

® ex put_sset_var previously called.

ex_put_sset_var_tab: C Interface

int ex put_sset var tab (exoid, num ssets, num_sset var, sset_var_tab);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num sset (R)
The number of sidesets.

int num_ sset_var (R)
The number of sideset variables.

int sset_var_ tab[num_sset,num_sset_var] (R)
A 2-dimensional array (with the num_sset_var index cycling faster) containing the sideset
variable truth table.

EXPSSTT: Fortran Interface

SUBROUTINE EXPSSTT (IDEXO, NUMSS NVARSS, ISSSVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NUMSS (R)
The number of sidesets.

- 175 -

INTEGER NVARSS (R)
The number of sideset variables.

INTEGER ISSSVOK (NVARSS,NUMSS) (R)
A 2-dimensional array (with the Nvarss index cycling faster) containing the sideset
variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.23 Read Sideset Variable Truth Table

The function ex_get_sset_var_tab (or EXGssTT for Fortran) reads the EXODUS II sideset
variable truth table from the database. For a description of the truth table, see the usage of the
function ex_put_sset_var_tab. Memory must be allocated for the truth table
(num_sidesets * num_sset_var in length) before this function is invoked. If the truth table is
not stored in the file, it will be created based on information in the file and then returned.
Calling the function ex_get_var_tab with an object type of “S” results in the same behavior
as calling this function.

In case of an error, ex_get_sset_var_tab returns a negative number; a warning will return a
positive number. EXGSSTT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

e data file not properly opened with call to ex_create Or ex_open (EXCRE Of EXOPEN
for Fortran).

e data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

e the specified number of sidesets is different than the number specified in a call to
ex_put_init (ExPINI for Fortran).

e there are no sideset variables stored in the file or the specified number of sideset
variables doesn’t match the number specified in a call to ex_put_var_param (or
EXpvP for Fortran).

ex_get_sset_var_tab: C Interface

int ex get_ _sset var_ tab (exoid, num ssets, num_sset var, sset_var_tab);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int num ssets (R)
The number of sidesets.

int num sset_var (R)
The number of sideset variables.

int sset_var_tab[num_ssets,num _sset_var] (W)
Returned 2-dimensional array (with the num _sset_var index cycling faster) containing the

- 176 -

sideset variable truth table.

EXGSSTT: Fortran Interface

SUBROUTINE EXGSSTT (IDEXO, NSSETS, NVARSS, ISSSVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER NSSETS (R)
The number of sidesets.

INTEGER NVARSS (R)
The number of sideset variables.

INTEGER ISSSVOK (NVARSS, NSSETS) (W)
Returned 2-dimensional array (with the Nvarss index cycling faster) containing the sideset
variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.24 Write Sideset Variable Values at a Time Step

The function ex_put_sset_var (or Expssv for Fortran) writes the values of a single sideset
variable for one sideset at one time step. It is recommended, but not required, to write the
sideset variable truth table (with ex_put_sset_var_ tab for C; ExpssTT for Fortran) before
this function is invoked for better efficiency. See Appendix A for a discussion of efficiency
issues.

Because sideset variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_sset_var returns a negative number; a warning will return a
positive number. EXPSSV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* data file not initialized properly with call to ex_put_init (ExpINI for Fortran).

* invalid sideset ID.

* ex put_side set (or Expss for Fortran) not called previously to specify parameters
for this sideset.

* ex_put_var_param (or EXpvP for Fortran) not called previously specifying the number
of sideset variables.

- 177 -

* asideset variable truth table was stored in the file but contains a zero (indicating no
valid sideset variable) for the specified sideset and sideset variable.

ex_put_sset_var: C Interface

int ex put_sset var (exoid, time_step, sset_var_index, sset_id,
num sides_this_blk, sset_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int time step (R)
The time step number, as described under ex_put_time. This is essentially a counter that
is incremented only when results variables are output. The first time step is 1.
int sset_var_index (R)
The index of the sideset variable. The first variable has an index of 1.
int sset_id (R)
The sideset ID.
int num sides_this blk (R)
The number of sides in the given sideset.
void* gset_var _vals (R)
Array of num sides_this blk values of the sset_var indexth sideset variable for the
sideset with ID of sset_id at the time_stepth time step.

EXPSSV: Fortran Interface

SUBROUTINE EXPSSV (IDEXO, ISTEP, IXSSV, IDSS, NUMSID, VALSSV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpT1M. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.

INTEGER IXSSV (R)
The index of the sideset variable. The first variable has an index of 1.
INTEGER IDSS (R)
The sideset ID.
INTEGER NUMSID (R)
The number of sides in the given sideset.
REAL VALSSV(*) (R)
Array of NuMs1D values of the 1xssvth sideset variable for the sideset with ID of 1Dss at
the 1sTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

- 178 -

5.3.25 Read sideset Variable Values at a Time Step

The function ex_get_sset_var (or ExGssv for Fortran) reads the values of a single sideset
variable for one sideset at one time step. Memory must be allocated for the sideset variable
values array before this function is invoked.

Because sideset variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_sset_var returns a negative number; a warning will return a
positive number. EXGSSV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

e variable does not exist for the desired sideset.
e invalid sideset.

ex_get_sset_var: C Interface

int ex get_sset var (exoid, time_step, sset_var_ index, sset_id,
num_sides_this blk, sset_var vals);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int time_step (R)
The time step number, as described under ex_put_time, at which the sideset variable
values are desired. This is essentially an index (in the time dimension) into the sideset
variable values array stored in the database. The first time step is 1.
int sset_var_ index (R)
The index of the desired sideset variable. The first variable has an index of 1.
int sset _blk id (R)
The desired sideset ID.
int num sides_this blk (R)
The number of sides in this sideset.
void* gset_var _vals (W)
Returned array of num_sides_this_blk values of the sset_var_indexth sideset
variable for the sideset with ID of sset_id at the time_stepth time step.

EXGSSV: Fortran Interface

SUBROUTINE EXGSSV (IDEXO, ISTEP, IXSSV, IDSS, NUMSID, VALSSV, IERR)

-179 -

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpT1M, at which the sideset variable is desired.
This is essentially an index (in the time dimension) into the sideset variable values array
stored in the database. The first time step is 1.

INTEGER IXSSV (R)
The index of the desired sideset variable. The first variable has an index of 1.

INTEGER IDSS (R)
The desired sideset ID.

INTEGER NUMSID (R)
The number of sides in this sideset.

REAL VALSSV(*) (W)
Returned array of numsID values of the rxssvth sideset variable for the sideset with ID of
1DSs at the TsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

5.3.26 Write Global Variables Values at a Time Step

The function ex_put_glob_vars (or ExpGV for Fortran) writes the values of all the global
variables for a single time step. The function ex put_var_param (Expvp for Fortran) must be
invoked before this call is made.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_put_glob_vars returns a negative number; a warning will return a
positive number. EXPGV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.

* ex put_var_param (or ExpvP for Fortran) not called previously specifying the number
of global variables.

ex_put_glob_vars: C Interface

int ex_put_glob_vars (exoid, time_step, num glob_vars, glob_var_vals) ;

- 180 -

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter that
is incremented when results variables are output. The first time step is 1.

int num glob_vars (R)
The number of global variables to be written to the database.

void* glob_var vals (R)
Array of num_glob_vars global variable values for the time_stepth time step.

As an example, the following coding will write the values of all the global variables at one time
step to an open EXODUS I file:

int num glo_vars, error, exoid, time_ step;
float *glob_var_ vals

/* write global variables */

for (j=0; j<num glo_vars; Jj++)
/* application code fills this array */
glob_var_vals[j] = 10.0;

error = ex_put_glob_vars (exoid, time_step, num glo_vars,
glob_var_vals) ;

EXPGYV: Fortran Interface

SUBROUTINE EXPGV (IDEXO, ISTEP, NVARGL, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under Expr1M. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.

INTEGER NVARGL (R)
The number of global variables to be written to the database.

REAL VALGV (*) (R)
Array of NvarcL global variable values for the TsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following coding will write the values of all the global variables at one time
step to an open EXODUS I file:

¢ NOTE: MAXGVAR is the maximum number of global variables
@

integer num_glo_vars

real glob_var_vals (MAXGVAR)

- 181 -

¢ write all global variables for time step istep
&

do 50 j = 1, num_glo_vars
&
¢ application code fills in this array
&
glob_var_vals(j) = 10.0
50 continue

call expgv (idexo, istep, num_glo_vars, glob_var_vals, ierr)
5.3.27 Read Global Variables Values at a Time Step

The function ex_get_glob_vars (or EXGGV for Fortran) reads the values of all the global
variables for a single time step. Memory must be allocated for the global variables values array
before this function is invoked.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_glob_vars returns a negative number; a warning will return a
positive number. EXGGV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

* o global variables stored in the file.
* a warning value is returned if no global variables are stored in the file.

ex_get_glob_vars: C Interface

int ex get_glob_vars (exoid, time_step, num glob_vars, glob_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step, as described under ex_put_time, at which the global variable values are
desired. This is essentially an index (in the time dimension) into the global variable values
array stored in the database. The first time step is 1.

int num glob_vars (R)
The number of global variables stored in the database.

void* glob_var vals (W)
Returned array of num_glob_vars global variable values for the time_stepth time step.

- 182 -

The following is an example code segment that reads all the global variables at one time step:

int num glo_vars, error, time step;
float *var_values;

error = ex_get_var param (idexo, “g”, &num glo_vars) ;
var_values = (float *) calloc (num_glo vars, sizeof (float));
error = ex_get_glob_vars (idexo, time_step, num glo_vars, var_values);

EXGGYV: Fortran Interface

SUBROUTINE EXGGV (IDEXO, ISTEP, NVARGL, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpT1M, at which global variables are desired.
This is essentially an index (in the time dimension) into the global variable values array
stored in the database. The first time step is 1.

INTEGER NVARGL (R)
The number of global variables stored in the database.

REAL VALGV (*) (W)
Returned array of NvaARGL global variable values for the TsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following is an example code segment that reads all the global variables at one time step:

c NOTE: MAXGVAR is the maximum number of global variables
real var_values (MAXGVAR)

€

c read all global variables at one time step

€
call exggv (idexo, istep, num _glo_vars, var_values, ierr)

5.3.28 Read Global Variable Values through Time

The function ex_get_glob_var_time (or EXGGVT for Fortran) reads the values of a single
global variable through a specified number of time steps. Memory must be allocated for the
global variable values array before this function is invoked.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

- 183 -

In case of an error, ex_get_glob_var_time returns a negative number; a warning will return a
positive number. EXGGVT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create Or ex_open (EXCRE Or EXOPEN for
Fortran).

» specified global variable does not exist.
* awarning value is returned if no global variables are stored in the file.

ex_get_glob_var_time: C Interface

int ex_get_glob_var_ time (exoid, glob_var_ index, beg_time step,
end_time_step, glob_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int glob_var_index (R)
The index of the desired global variable. The first variable has an index of 1.

int beg_time step (R)
The beginning time step for which a global variable value is desired. This is not a time
value but rather a time step number, as described under ex_put_time. The first time step is
1.

int end _time_step (R)
The last time step for which a global variable value is desired. If negative, the last time step
in the database will be used. The first time step is 1.

void* glob_var_ vals (W)
Returned array of (end_time_step - beg_time_step + 1) values for the
glob_var_indexth global variable.

The following is an example of using this function:

#include “exodusII.h”
int error, exoid, num time_ steps, var_index, beg time, end time;
float *var_values;

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ TIME, &num_time_steps, &fdum, cdum) ;
/* read the first global variable for all time steps */

var_index = 1;
beg_time = 1;
end_time = -1;
var_values = (float *) calloc (num_time_steps, sizeof (float)) ;

error = ex_get _glob_var_time (exoid, var_index, beg_time, end time,
var_values) ;

- 184 -

EXGGVT: Fortran Interface

SUBROUTINE EXGGVT (IDEXO, IXGLOV, ISTPB, ISTPE, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER IXGLOV (R)
The index of the desired global variable. The first variable has an index of 1.

INTEGER ISTPB (R)
The beginning time step for which a global variable value is desired. This is not a time
value but rather a time step number, as described under ExpT1M. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which a global variable value is desired. If negative, the last time step
in the database will be used. The first time step is 1.

REAL VALGV (*) (W)
Returned array of (ISTPE - 1sTPB + 1) values for the 1xcLovth global variable.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following is an example of using this function:

c NOTE: MAXVAL is the maximum number of values to be read
€
integer var_index, beg_time, end time
real var_values (MAXVAL)
€
c read a single global variable for all time steps
€

var_index = 1
beg_time = 1
end_time = -1

call exggvt (idexo, var_index, beg time, end_time, var_values, ierr)
5.3.29 Write Nodal Variable Values at a Time Step

The function ex_put_nodal_var (or ExpNV for Fortran) writes the values of a single nodal
variable for a single time step. The function ex_put_var_param (Expvp for Fortran) must be
invoked before this call is made.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_put_nodal_var returns a negative number; a warning will return a

positive number. EXPNV returns a nonzero error (negative) or warning (positive) number in
1ERR. Possible causes of errors include:

- 185 -

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» data file opened for read only.
* data file not initialized properly with call to ex_put_init (ExpINT for Fortran).

* ex _put_var_param (or EXpvP for Fortran) not called previously specifying the number
of nodal variables.

ex_put_nodal_var: C Interface

int ex_put_nodal_var (exoid, time_ step, nodal_var_index, num_nodes,
nodal_var_vals) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.
int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter that
is incremented when results variables are output. The first time step is 1.
int nodal_var_index (R)
The index of the nodal variable. The first variable has an index of 1.
int num nodes (R)
The number of nodal points.

void* nodal_var_vals (R)
Array of num _nodes values of the nodal_var_indexth nodal variable for the time stepth
time step.

As an example, the following code segment writes all the nodal variables for a single time step:

int num nod_vars, num nodes, error, exoid, time_step;
float *nodal_var vals;

/* write nodal variables */
nodal_var vals = (float *) calloc (num nodes, sizeof (float));

for (k=1; k<=num nod_vars; k++) {
for (j=0; j<num nodes; j++)
/* application code fills in this array */

nodal_var_vals[j] = 10.0;

error = ex_put _nodal_var (exoid, time_step, k, num_nodes,
nodal_var_vals) ;

EXPNYV: Fortran Interface

SUBROUTINE EXPNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)

- 186 -

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under Expr1M. This is essentially a counter that is
incremented when results variables are output. The first time step is 1.

INTEGER IXNODV (R)
The index of the nodal variable. The first variable has an index of 1.
INTEGER NUMNP (R)
The number of nodal points.
REAL VALNV (*) (R)
Array of nuMnp values of the 1xnopvth nodal variable for the rsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code segment writes all the nodal variables for a single time step:
real nodal_var vals (MAXNOD)

do 70 k = 1, num _nod_vars
do 60 j = 1, num_nodes
@ simulation code fills in this array
nodal_var_vals(j) = 10.0
60 continue

call expnv (idexo, istep, k, num _nodes, nodal_var_vals, ierr)
70 continue

5.3.30 Read Nodal Variable Values at a Time Step

The function ex_get_nodal_ var (or ExcNV for Fortran) reads the values of a single nodal
variable for a single time step. Memory must be allocated for the nodal variable values array
before this function is invoked.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or ExoPEN for Fortran).

In case of an error, ex_get_nodal_var returns a negative number; a warning will return a
positive number. EXGNV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE Or EXOPEN for
Fortran).

» specified nodal variable does not exist.

* awarning value is returned if no nodal variables are stored in the file.

- 187 -

ex_get_nodal_var: C Interface

int ex_get_nodal_var (exoid, int time_ step, nodal_var_index, num nodes,
nodal_var_vals) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int time_step (R)
The time step, as described under ex_put_time, at which the nodal variable values are
desired. This is essentially an index (in the time dimension) into the nodal variable values
array stored in the database. The first time step is 1.

int nodal_var_index (R)
The index of the desired nodal variable. The first variable has an index of 1.

int num_nodes (R)
The number of nodal points.

void* nodal_var_vals (W)
Returned array of num nodes values of the nodal_var_indexth nodal variable for the
time_stepth time step.

For example, the following demonstrates how this function would be used:

int num nodes, time_step, var_index;
float *var_ values;

/* read the second nodal variable at the first time step */
time_step = 1;
var_index 2;

var_values = (float *) calloc (num _nodes, sizeof (float)) ;

error = ex_get nodal_var (exoid, time_step, var_index, num_nodes,
var_values) ;

EXGNYV: Fortran Interface

SUBROUTINE EXGNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under ExpT1M, at which the nodal variable is desired.
This is essentially an index (in the time dimension) into the nodal variable values array
stored in the database. The first time step is 1.

INTEGER IXNODV (R)
The index of the desired nodal variable. The first variable has an index of 1.

- 188 -

INTEGER NUMNP (R)
The number of nodal points.

REAL VALNV (*) (W)
Returned array of numnp values of the 1xnopvth nodal variable for the TsTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For example, the following demonstrates how this function would be used:

c NOTE: MAXNOD is the maximum number of nodes for the model
@

integer var_index

real var_values (MAXNOD)

read a nodal variable at one time step

Q

istep = 10
var_index = 2
num_nodes = 1000

call exgnv (idexo, istep, var_index, num nodes, var_values, ilerr)
5.3.31 Read Nodal Variable Values through Time

The function ex_get_nodal_var_time (or EXeNVT for Fortran) reads the values of a nodal
variable for a single node through a specified number of time steps. Memory must be allocated
for the nodal variable values array before this function is invoked.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or ExCRE for Fortran) or
ex_open (or ExOPEN for Fortran).

In case of an error, ex_get_nodal_var_time returns a negative number; a warning will return
a positive number. EXGNVT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» specified nodal variable does not exist.
* awarning value is returned if no nodal variables are stored in the file.

ex_get_nodal_var_time: C Interface

int ex get_nodal_var_ time (exoid, nodal_var_ index, node_number,
beg_time step, end_time_step, nodal_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create Or ex_open.

int nodal var_ index (R)
The index of the desired nodal variable. The first variable has an index of 1.

- 189 -

int node_number (R)

The internal ID (see Node Number Map) of the desired node. The first node is 1.

int beg_time_step (R)
The beginning time step for which a nodal variable value is desired. This is not a time value
but rather a time step number, as described under ex_put_time. The first time step is 1.

int end_time step (R)
The last time step for which a nodal variable value is desired. If negative, the last time step
in the database will be used. The first time step is 1.

void* nodal_var_vals (W)
Returned array of (end_time_step - beg_time_step + 1) values of the node_numberth
node for the nodal_var_indexth nodal variable.

For example, the following code segment will read the values of the first nodal variable for
node number one for all time steps stored in the data file:

#include “exodusII.h”

int num time_steps, var_index, node num, beg_time, end_time, error,
exoid;

float *var_values;

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ TIME, &num_time_steps, &fdum, cdum) ;

/* read a nodal variable through time */
var_values = (float *) calloc (num_time_steps, sizeof (float)) ;

var_index = 1; node_num = 1; beg_time = 1; end_time = -1;
error = ex_get_nodal_var_ time (exoid, var_index, node_num, beg_time,
end time, var_values) ;

EXGNVT: Fortran Interface

SUBROUTINE EXGNVT (IDEXO, IXNODV, NODNUM, ISTPB, ISTPE, VALNV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE Oor EXOPEN.

INTEGER IXNODV (R)
The index of the desired nodal variable. The first variable has an index of 1.

INTEGER NODNUM (R)
The internal ID (see Node Number Map) of the desired node. The first node is 1.

INTEGER ISTPB (R)
The beginning time step for which a nodal variable value is desired. This is not a time value
but rather a time step number, as described under expT1M. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which a nodal variable value is desired. If negative, the last time step
in the database will be used. The first time step is 1.

- 190 -

REAL VALNV (*) (W)

Returned array of (1sTPE - 1sTPB + 1) values of the nobnumth node for the Txnopvth nodal
variable.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For example, the following code segment will read the values of the first nodal variable for
node number one for all time steps stored in the data file:
integer var_ind, btime, etime
real var_vals (MAXVAL)
c
¢ read a nodal variable through time
c
var_ind = 1
node_num = 1
btime = 1
etime = -1
call exgnvt (idexo, var_ind, node num, btime, etime, var_vals, ierr)

- 191 -

6 References

(1]

(2]

[3]

(4]

(5]

W. C. Mills-Curran, A. P. Gilkey, and D. P. Flanagan, “EXODUS: A Finite Element
File Format for Pre- and Post-processing,” Technical Report SAND87-2977, Sandia
National Laboratories, Albuquerque, New Mexico, September 1988.

G. D. Sjaardema, “Overview of the Sandia National Laboratories Engineering Analysis
Code Access System,” Technical Report SAND92-2292, Sandia National Laboratories,
Albuquerque, New Mexico, January 1993.

R. K. Rew, G. P. Davis, and S. Emmerson, “NetCDF User’s Guide: An Interface for
Data Access,” Version 2.3, University Corporation for Atmospheric Research, Boulder,
Colorado, April 1993.

Sun Microsystems, “External Data Representation Standard: Protocol Specification,”
RFC 1014; Information Sciences Institute, May 1988.

PDA Engineering, “PATRAN Plus User Manual,” Publication No. 2191024, Costa
Mesa, California, January 1990.

-192 -

Appendix A. Implementation of EXODUS Il with netCDF

Description

The netCDF software is an I/O library, callable from C or Fortran, which stores and retrieves
scientific data structures in self-describing, machine-independent files. ““Self-describing”
means that a file includes information defining the data it contains. ‘“Machine-independent”
means that a file is represented in a form that can be accessed by computers with different ways
of storing integers, characters, and floating-point numbers. It is available via anonymous FTP
from unidata.ucar.edu in the file pub/netcdf/netcdf.tar.Z.

For the EXODUS II implementation, the standard netCDF distribution is used except that the
following defined constants in the include file netcdf .h are modified to the values shown:

#define NC_MAX DIMS 65536
#define NC_MAX VARS 524288

#define NC_MAX VAR DIMS 8

Efficiency Issues

There are some efficiency concerns with using netCDF as the low level data handler. The
main one is that whenever a new object is introduced, the file is put into “define” mode, the
new object is defined, and then the file is taken out of “define” mode. A result of going in and
out of “define” mode is that all of the data that was output previous to the introduction of the
new object is copied to a new file. Obviously, this copying of data to a new file is very
inefficient. We have attempted to minimize the number of times the data file is put into
“define” mode by accumulating objects within a single EXODUS II API function. Thus using
optional features such as the element variable truth table, concatenated node and side sets, and
writing all property array names with ex_put_prop_names (ExPPN for Fortran) will increase
efficiency significantly.

netCDF Data Objects

This section describes how EXODUS Il data are mapped to netCDF entities. This information
is needed only for those individuals who desire to access an EXODUS II database via netCDF
calls directly or desire to modify the routines that comprise the Application Programming
Interface (API).

The following is a list of the names of the data entities found in an EXODUS II file and a
description of each entity. The names are constants predefined in the include file
exodusII_int.h for C or exodusII_int.inc for Fortran. They are grouped into three
netCDF categories: attributes, dimensions, and variables.

- 193 -

Attributes
An attribute is used to describe data entities. It can be global (describe entire file) or attached
to a dimension or variable.

title the database title; character global attribute

version the EXODUS II file version number; float global
attribute

api_version the EXODUS II API version number; float global
attribute

floating_point_word_size word size of floating point numbers in the file; int

global attribute

file size the database format. If it is missing or if equal to
zero, then it is the “normal format”. If equal to 1,
it is “large model format™.

elem_type element type names for each element block;
character variable attribute attached to connect
variable

name name of element block, node set, or side set

property; character variable attribute attached to
specific property

Dimensions
A dimension is an integer scalar value that is used to define the size of variables.

num_nodes number of nodes

num_dim number of dimensions of the finite element model; 1-, 2-, or 3-d
num_elem number of elements

num_el blk number of element blocks

num_el_in_blk# number of elements in element block #

- 194 -

num_nod_per_el#

num _att_in blk#

num_side_sets

num_side ss#

num_df_ss#

num_node_sets

num_nod_ns#

num_df_ns#

num_ga_rec

num_info

num_glo_var

num_nod_var

num_elem var

num_ns_var

num_ss_var

time_step

len_string

len line

number of nodes per element in element block #

number of attributes per element in element block #

number of side sets

number of sides (also the number of elements) in side set #

number of distribution factors in side set #

number of node sets

number of nodes in node set #

number of distribution factors in node set #

number of QA records

number of information records

number of global variables

number of nodal variables

number of element variables

number of nodeset variables

number of sideset variables

unlimited (expandable) dimension for time steps

length of a string; currently set to allow 32 characters (plus
NULL character for C interface)

length of a line; currently set to allow 80 characters (plus NULL
character for C interface)

- 195 -

four number of strings in a single QA record

Variables

A variable is an entity that contains data. Its size and shape are specified by dimensions. Note
that the order of the dimensions is “row order” as implemented in the C language, so the last
dimension specified varies fastest, the first dimension varies slowest. For multi-dimension
variables, illustrations are included in the descriptions below for ease of understanding. For
variables that are dimensioned through time, ellipses (. . .) are used to show that the variable
can expand in that dimension.

For file_size=0: coord (num dim, num nodes)
nodal coordinates; float or double

num_dim
num_nodes
For file_size=1: coordx (num nodes), coordy (num nodes), coordz (num nodes) (If
num_dim==3)

nodal coordinates; float or double

num_ nodes

coor_names (num dim, len_string)
names of coordinates; character

num_ dim

len_string

- 196 -

connect# (num el_in blk#, num_nod_per_el#)
element connectivity for element block #; integer

num el in blk#

num _nod_per_el#

attrib# (num_el_in blk#, num_att_in_blk#)
list of attributes for element block #; float or double

num el in blk#

num att _in blk#

eb_prop# (num el_blk)
list of the #th property for all element blocks; integer

elem _map (num elem)
element order map; integer

- 197 -

dist_fact_ss# (num df_gss#)
distribution factors for each node in side set #; float or double

elem _ss# (num _side ss#)
list of elements in side set #; integer

side_ss# (num_side_ss#)
list of sides in side set #; integer

ss_prop# (num_side_sets)
list of the #th property for all side sets; integer

node_ns# (num_nod_ns#)
list of nodes in node set #; integer

dist_fact_ns# (num nod_ns#)
list of distribution factors in node set #; float or double

ns_prop# (num_node_sets)
list of the #th property for all node sets; integer

ga_records (num_ga_rec, 4, len_string)
QA records; character

4 records

| num_ga_rec

len_string

info records (num_info, len_line)
information records; character

num_info

len line

- 198 -

time_whole (time_step)
simulation times for time steps; float or double

elem var_tab (num_el blk, num_elem var)
element variable truth table; integer

num el blk

num elem var

name_glo_var (num _glo_var, len_string)
names of global variables; character

num_glo_var

len_string

vals_glo_var (time_step, num glo_var)
values of global variables; float or double

time_step

num_glo_var

- 199 -

name_nod_var (num _nod_var, len_string)
names of nodal variables; character

num_nod_var

len_string

if file size=0: vals_nod_var (time_step, num_nod_var, num nodes)
values of nodal variables; float or double

num _node_var

Tt ime_step

num_ nodes

if file size=1: vals_nod_var#l (time_ step, num_nodes)
values of element variable #1; there is one of these for each nodal variable; float
or double

time_step

. num_nodes

name_elem var (num_elem var, len_string)
names of element variables; character

- 200 -

num_elem_ var

len_string

vals_elem var#fleb#2 (time _step, num el_in_ blk#2)
values of element variable #1 in element block #2; for each element block, there
is one of these for each element variable that is valid for that element block; float or double.

time_ step

num_elem in blk#2

- 201 -

Appendix B. “Large Model” Modifications

The changes are to support the storage of larger models. There are two pieces of this. The first
is the setting of the type of netcdf file that will be created; either one with 32-bit offsets or one
with 64-bit offsets. This can be specified in a couple ways:

1. Pass the Ex_LARGE_MODEL flag in the mode argument to ex_create.

2. Set the environment variable EXOoDUS LARGE_MODEL.

If either of these are set, then the library will pass the Nc_64B1T_OFFSET flag to the netcdf
library. See the netcdf library documentation for more details.

The other change is to reduce the size of some of the datasets in an exoduslI library. Even with
the netcdf changes, the maximum dataset size is still 2GB. To reduce the size of the datasets,
the nodal coordinates and the nodal variables have been split to store by component.

* The old behavior stored all x, y, and z coordinates in a single dataset; in the new behavior,
each component is stored separately -- there is a coordx, coordy, and coordz dataset.

* The nodal variables used to be stored in a single blob of dimension
(#times,#nodes,#variables). This has now been split into #variable datasets of size
(#times,#nodes).

These two changes should increase the maximum model sizes significantly. Prior to the change,
the maximum number of nodes that could be stored in the coordinate dataset was about 90
Million nodes; the new storage permits 270 Million nodes in double precision. The old model
was more restrictive if there were multiple nodal variables, but the new storage should not
depend on the number of nodal variables.

These changes were made such that the new library would create old-style files by default and
would read either old or new style files.

An additional attribute is now written to the file. It is called "file_size" or ATT FILESIZE. If
it is 0 or not present, then the old format is assumed; if it is 1, then the new format is assumed.

There is also a new internal function called ex_large model (int exoid) which will return 1
if new version; 0 if old version.

If the function is passed a negative exoid, then it will check the environment variable
"ExoDUS_LARGE_MODEL" and return 1 if it is defined. It also currently prints a warning message
saying that the large model size was selected via the environment variable.

If you are using the exoduslII api, then the only change to the client application is the passing of
the EX_LARGE_MODEL flag to ex_create or the setting of the EXODUS_LARGE_MODEL environment
variable. If your client application is reading the database, no changes are needed.

-202 -

Internal Changes to support larger models

If your client application bypasses some or all of the exodusIl API and makes direct netcdf
calls, you will need to modify the calls. The changes that were made are shown below along
with the name of the exodusIl API function in which the changes were made.

ex_create:

* Check whether the Ex_1.ARGE_MODEL mode was set. If so, then the mode passed to
nccreate must have the NC_64BIT_OFFSET bit set. For example, "mode |=
NC_64BIT OFFSET;"
» Write the exodus file size "aTT_rILESIZE" attribute (1=large, O=normal):
filesiz = (nclong)(((cmode & EX_LLARGE_MODEL) !=0) Il (ex_large_model(-1) == 1));
if (ncattput (exoid, NC_GLOBAL, ATT_FILESIZE, NC_LONG, 1, &filesiz) ==-1)
... handle errors...

ex_put_init:

If writing a "large model" capable database, then the coordinates are defined as components
instead of an array. The variables are vAR_COORD_x, VAR_COORD_Y (if 2D or 3D),
vAR_coORD_z (if 3D). If not, define the vAR_COORD variable as is currently done.

if (ex_large_model(exoid) == 1) {
/* node coordinate arrays -- separate storage... */
dim[0] = numnoddim;
if (ncvardef (exoid, VAR_COORD_X, nc_flt_code(exoid), 1, dim) == -1)
{ ... handle error }

if (num_dim > 1) {
if (ncvardef (exoid, VAR_COORD_Y, nc_flt_code(exoid), 1, dim) ==-1)
{ ... handle error }

}

if (num_dim > 2) {
if (ncvardef (exoid, VAR_COORD_Z, nc_flt_code(exoid), 1, dim) ==-1)
{ ... handle error }
}
} else {
/* node coordinate arrays: -- all stored together (old method) */
.... define the old way...

}

- 203 -

ex_put_coord:

If writing a "large model" capable database, then the coordinates
are written a component at a time, otherwise write the old way as a single blob.

if (ex_large_model(exoid) == 0) {
... write coordinates old way...
} else {
if ((coordidx = ncvarid (exoid, VAR_COORD_X)) ==-1)
{ ... handle error }

if (num_dim > 1) {
if ((coordidy = ncvarid (exoid, VAR_COORD_Y)) ==-1)
{ ... handle error }
} else {
coordidy = 0;
}
if (num_dim > 2) {
if ((coordidz = ncvarid (exoid, VAR_COORD_Z)) ==-1)
{ ... handle error }
} else {
coordidz = 0;
}
/* write out the coordinates */
for (i=0; i<= num_vars; i++) {
dims[0] = time_dim;
dims[1] = num_nod_dim;
if ((ncvardef (exoid, VAR_NOD_VAR_NEW(),
nc_flt_code(exoid), 2, dims)) == -1)
{ ...handle error... }

ex_put_nodal_var:

If the large model method, write the nodal variable data to the correct variable; if the old
method, determine the location within the blob

if (ex_large_model(exoid) == 0) {
/* write values of the nodal variable */
if ((varid = ncvarid (exoid, VAR_NOD_VAR)) ==-1) {
... handle error...
}
start[0] = --time_step;
start[1] = --nodal_var_index;

- 204 -

start[2] = 0;

count[0] = 1;
count[1] =1;
count[2] = num_nodes;
} else {
/* nodal variables stored separately, find variable for this variable
index */

if ((varid = ncvarid (exoid, VAR_NOD_VAR_NEW (nodal_var_index))) ==-1) {
... handle error ...

}

start[0] = --time_step;
start[1] = O;

count[0] =1;

count[1] = num_nodes;

}

if (ncvarput (exoid, varid, start, count,

ex_conv_array(exoid, WRITE_CONVERT,nodal_var_vals,num_nodes)) ==-1) {
...handle error ...

}

There are similar modifications to the reading of the nodal coordinates and the reading of nodal
variables.

- 205 -

Appendix C. Error Messages

This appendix contains descriptions of error codes that are returned by the EXODUS 11 library
routines.

The following are return codes that are specific to EXODUS II routines. The error names are
defined constants (in exodusII.h for C and exodusII.inc for Fortran) currently assigned the
specified values. A 0 (zero) means no error; a positive number is a warning; a negative
number is a fatal error.

Error Name (C) Eg%itljjge Value Description
EX FATAL EXFATL -1 fatal error flag
EX OK EXOK 0 no error flag
EX_WARN EXWARN 1 warning flag
EX_MEMFAIL EXMEMF -100 memory allocation failure flag
EX_BADFILEMODE EXBFMD -101 bad file mode
EX_BADFILEID EXBFID -102 bad file id; usually an

unopened file

EX_WRONGFILETYPE -103 wrong file type for function
EX_LOOKUPFAIL EXBTID -104 property table lookup failed
EX_BADPARAM EXBPRM -105 bad parameter passed
EX MSG EXPMSG 100 user-defined message
EX_PRTLASTMSG EXLMSG 101 print last error message msg

code

- 206 -

The following are codes returned by netCDF functions. The error names are defined constants
(in netcdf .h) currently set to the specified values.

Error Name Value Description

NC_NOERR 0 No error

NC_EBADID -33 Not a netcdf id

NC_ENFILE -34 Too many netcdfs open

NC_EEXIST -35 netcdf file exists && NC_NOCLOBBER

NC_EINVAL -36 Invalid argument

NC_EPERM -37 Write to read only file

NC_ENOTINDEFINE -38 Operation not allowed in data mode

NC_EINDEFINE -39 Operation not allowed in define mode

NC_EINVALCOORDS -40 Coordinates out of domain

NC_EMAXDIMS -41 MAX_NC_DIMS (defined in netcdf.h)
exceeded

NC_ENAMEINUSE -42 String match to name in use

NC_ENOTATT -43 Attribute not found

NC_EMAXATTS -44 MAX_NC_ATTRS (defined in netcdf.h)
exceeded

NC_EBADTYPE -45 Not a netcdf data type

NC_EBADDIM -46 Invalid dimension id

NC_EUNLIMPOS -47 NC_UNLIMITED in the wrong index

NC_EMAXVARS -48 MAX_NC_VARS (defined in netcdf.h)
exceeded

NC_ENOTVAR -49 Variable not found

- 207 -

NC_EGLOBAL
NC_ENOTNC
NC_ESTS

NC_EMAXNAME

NC_EUNLIMIT
NC_ENORECVARS
NC_ECHAR
NC_EEDGE
NC_ESTRIDE

NC_EBADNAME

NC_ERANGE
NC_ENOMEM

NC_EVARSIZE

NC_EDIMSIZE

-55

-56

-57

Action prohibited on NC_GLOBAL varid
Not a netcdf file
In Fortran, string too short

MAX_NC_NAME (defined in netcdf.h)
exceeded

NC_UNLIMITED size already in use
nc_rec op when there are no record vars
Attempt to convert between text & numbers
Edge+Start exceeds dimension bound
Illegal stride

Attribute or variable name contains illegal
characters

Math result not representable
Memory allocation (malloc) failure

One or more variable sizes violate format
constraints

Invalid dimension size

- 208 -

Appendix D. Sample Codes

This appendix contains examples of C and Fortran programs that use the EXODUS II API.

C Write Example Code

The following is a C program that creates and populates an EXODUS II file:

#include <stdio.h>
#include “netcdf.h”
#include “exodusII.h”

main ()
{
int exoid, num _dim, num nodes, num elem, num elem blk;
int num_elem in_block([10], num nodes_per_elem[10];
int num_node_ sets, num sides, num side_sets, error;
int i, j, k, m, *elem _map, *connect;
int node 1ist[100],elem 1ist[100],side_1ist[100];
int ebids[10], ids[10];
int num_sides_per_set[10], num _nodes_per set[10], num elem per_set[10];
int num_df_per set[10];
int df_ind[10], node_ind[10], elem ind[10], side ind[10];
int num_ga_rec, num_info;
int num_glo_vars, num nod_vars, num ele_ vars;
int *truth_tab;
int whole_time step, num_time_ steps;
int ndims, nvars, ngatts, recdim;
int CPU_word_size,IO word size;
int prop_array([2];

float *glob_var_wvals, *nodal_var_vals, *elem var_vals;

float time_value;

float x[100], y[100], z[100], *dummy;

float attrib[1l], dist_fact([100];

char *coord_names[3], *ga_record([2] [4], *infol[3], *var_names[3];
char tmpstr[80];

char *prop_names[2];

dummy = 0; /* assign this so the Cray compiler doesn’t complain */
/* Specify compute and i/o word size */

CPU_word_size = 0; /* float or double */
I0_word_size = 0; /* use system default (4 bytes) */

/* create EXODUS II file */

exoid = ex_create (“test.exo”, /* filename path */

EX_CLOBBER, /* create mode */
&CPU_word_size, /* CPU float word size in bytes */
&IO_word_size) ; /* I/0 float word size in bytes */

-210-

/* ncopts = NC_VERBOSE; */

/* initialize file with parameters */

num_dim = 3;
num_nodes = 26;
num _elem = 5;
num_elem blk = 5
num_node_sets

Il
Ul N e

num_side_ sets

error = ex_put_init (exoid, “This is a test”, num_dim, num nodes, num elem,
num_elem blk, num _node_ sets, num _side_sets);

/* write nodal coordinates values and names to database */

/* Quad #1 */
x[0] = 0.0; y[0] = 0.0; z[0] = 0.0;
x[1] = 1.0; y[1] = 0.0; z[1l] = 0.0;
x[2] = 1.0; y[2] = 1.0; z[2] = 0.0;
x[3] = 0.0; y[3] = 1.0; z[3] = 0.0;
/* Quad #2 */
x[4] = 1.0; y[4] = 0.0; z[4] = 10.0;
x[5] = 2.0; vIb5] = 0.0; zI[5] = 0.0;
x[6] = 2.0; y[6] = 1.0; z[6] = 0.0;
x[7] = 1.0; vI[7] = 1.0; zI[7] = 0.0;
/* Hex #1 */
x[8] = 0.0; y[8] = 0.0; z[8] = 0.0;
x[9] = 10.0; y[9] = 0.0; z[9] = 0.0;
x[10] = 10.0; y[10] = 0.0; z[10] =-10.0;
x[11] = 1.0; yl[11] 0.0 2z[111=-10.0;
x[12] = 1.0; y[12] = 10.0; z[12] = 0.0;
x[13] = 10.0; y[13] = 10.0; z[13] = 0.0;
x[14] = 10.0; y[14] = 10.0; z[14] =-10.0;
x[15] = 1.0; yI[15] = 10.0; z[15] =-10.0;
/* Tetra #1 */
x[16] = 0.0; y[1l6] = 0.0; z[l6] = 0.0;
x[17] = 1.0; yI[17] = 0.0; z[17] = 5.0;
x[18] = 10.0; y[18] = 0.0; z[18] = 2.0;
x[19] = 7.0; yI[19] = 5.0; zI[19] = 3.0;
/* Wedge #1 */
x[20] = 3.0; y[20] = 0.0; z[20] = 6.0;
x[21] = 6.0; y[21] = 0.0; z[21] = 0.0;
x[22] = 0.0; y[22] = 0.0; z[22] = 0.0;
x[23] = 3.0; yI[23] = 2.0; zI[23] = 6.0;
x[24] = 6.0; y[24] = 2.0; z[24] = 2.0;
x[25] = 0.0; yI[25] = 2.0; z[25] = 0.0;

-211-

error (exoid, x, vy,

ex_put_coord

coord_names [0] = “xcoor”;
coord_names [1l] = “ycoor”;
coord_names [2] = “zcoor”;

error (exoid,

ex_put_coord_names

/* write element order map */

z);

coord_names) ;

elem map = (int *) calloc(num elem, sizeof (int));
for (i=1; i<=num elem; 1i++)
{
elem map[i-1] = i;
}
error = ex_put_map (exoid, elem map) ;

free (elem map) ;

/* write element block parameters */

num_elem in block[0] = 1;

num_elem in block[1l] = 1;

num_elem in block[2] = 1;

num_elem in block[3] = 1;

num_elem in block[4] = 1;

num_nodes_per_elem[0] = 4; /* elements in block #1 are 4-node quads */

num_nodes_per_elem[1l] = 4; /* elements in block #2 are 4-node quads */

num_nodes_per_elem[2] = 8; /* elements in block #3 are 8-node hexes */

num_nodes_per_elem[3] = 4; /* elements in block #3 are 4-node tetras */

num_nodes_per_elem[4] = 6; /* elements in block #3 are 6-node wedges */

ebids [0] = 10;

ebids[1] = 11;

ebids [2] = 12;

ebids [3] = 13;

ebids [4] = 14;

error = ex_put_elem block (exoid, ebids[0], “QUAD”, num elem in_block[0],

num _nodes_per_elem[0], 1);

error = ex_put_elem block (exoid, ebids[1], “QUAD”, num elem in_block[1],
num _nodes_per_elem[1], 1);

error = ex_put_elem block (exoid, ebids[2], “HEX”, num_elem in_block[2],
num _nodes_per_elem[2], 1);

error = ex_put_elem block (exoid, ebids[3], “TETRA”, num elem in_block[3],
num _nodes_per_elem[3], 1);

-212 -

error = ex_put_elem block (exoid, ebids[4], “WEDGE”, num elem in_block[4],
num _nodes_per_elem[4], 1);

/* write element block properties */
prop_names [0] = “TOP”;

prop_names [1] = “RIGHT”;
error = exX_put_prop_names (exoid, EX_ELEM_BLOCK, 2, prop_names) ;

error = ex_put_prop (exoid, EX_ELEM BLOCK, ebids[0], #“TOP”, 1);
error = ex_put_prop (exoid, EX_ELEM BLOCK, ebids[1l], #“TOP”, 1);
error = ex_put_prop (exoid, EX_ ELEM BLOCK, ebids[2], “RIGHT”, 1);
error = ex_put_prop (exoid, EX_ELEM BLOCK, ebids[3], “RIGHT”, 1);
error = ex_put_prop (exoid, EX_ ELEM BLOCK, ebids[4], “RIGHT”, 1);
/* write element connectivity */
connect = (int *) calloc (8, sizeof (int));
connect [0] = 1; connect[l] = 2; connect[2] = 3; connect[3] = 4;
error = ex_put_elem conn (exoid, ebids[0], connect) ;
connect [0] = 5; connect[l] = 6; connect[2] = 7; connect[3] = 8;
error = ex_put_elem conn (exoid, ebids[1l], connect) ;
connect [0] = 9; connect[l] = 10; connect[2] = 11; connect[3] = 12;
connect[4] = 13; connect[5] = 14; connect[6] = 15; connect[7] = 16;
error = ex_put_elem conn (exoid, ebids[2], connect) ;
connect [0] = 17; connect[l] = 18; connect[2] = 19; connect[3] = 20;
error = ex_put_elem conn (exoid, ebids[3], connect) ;
connect [0] = 21; connect[l] = 22; connect[2] = 23;
connect [3] = 24; connect[4] = 25; connect[5] = 26;
error = ex_put_elem conn (exoid, ebids[4], connect) ;
free (connect);
/* write element block attributes */
attrib[0] = 3.14159;
error = ex_put_elem attr (exoid, ebids[0], attrib);
attrib[0] = 6.14159;
error = ex_put_elem attr (exoid, ebids[1l], attrib);
error = ex_put_elem attr (exoid, ebids[2], attrib);
error = ex_put_elem attr (exoid, ebids[3], attrib);

-213-

error = ex_put_elem attr (exoid, ebids[4], attrib);

/* write individual node sets */

error = exX_put_node_ set_param (exoid, 20, 5, 5);

node_1ist[0] = 100; node_1list[1l] = 101; node_1list[2] = 102;
node _1ist[3] = 103; node_list[4] = 104;
dist_fact[0] = 1.0; dist_fact[l] = 2.0; dist_fact[2] = 3.0;
dist_fact[3] = 4.0; dist_fact[4] = 5.0;

error = ex_put_node_ set (exoid, 20, node_1list);
error = ex_put_node set_dist_fact (exoid, 20, dist_fact);

error = ex_put_node_ set_param (exoid, 21, 3, 3);

node_1list[0] = 200; node_1list[1l] = 201; node_1list[2] = 202;

dist_fact[0] = 1.1; dist_fact[l] = 2.1; dist_fact[2] = 3.1;

error = ex_put_node set (exoid, 21, node_list);
error = ex_put_node set_dist_fact (exoid, 21, dist_fact);

error = ex_put_prop (exoid, EX_ NODE_SET, 20, “FACE”, 4);
error = ex_put_prop (exoid, EX_ NODE_SET, 21, “FACE”, 5);

prop_array[0] = 1000;
2000;

prop_array[1]
error = ex_put_prop_array(exoid, EX NODE_SET, *“VELOCITY”, prop_array);
/* write concatenated node sets; this produces the same information as
* the above code which writes individual node sets
*/

/* THIS SECTION IS COMMENTED OUT

ids [0] = 20; ids[1] = 21;

num_nodes_per_set[0] = 5; num_nodes_per_set[1l] = 3;
node_ind[0] = 0; node_ind[1l] = 5;

node_1ist[0] = 100; node_1list[1l] = 101; node_1list[2] = 102;
node_1list[3] = 103; node_list[4] = 104;

node_1list[5] = 200; node_1list[6] = 201; node_list[7] = 202;
num_df_per set[0] = 5; num df_per set[l] = 3;

df_ind[0] = 0; df_ind[1] = 5;

214 -

dist_fact [0]
dist_fact[3]
dist_fact[5]

; ; dist_fact[2] = 3.0;

1.0; dist_fact[1]
4.0; dist_fact[4]
1.1; dist_fact[6]

Il
N U N

; dist_fact([7] = 3.1;
error = ex_put_concat_node_sets (exoid, ids, num_nodes_per_ set,
num_df_per_set, node_ind,
df_ind, node_ list, dist_fact);
error = ex_put_prop (exoid, EX_ NODE_SET, 20, “FACE”, 4);
error = ex_put_prop (exoid, EX_ NODE_SET, 21, “FACE”, 5);
prop_array[0] = 1000;
prop_array[1l] = 2000;

error = ex_put_prop_array(exoid, EX_NODE_SET, “VELOCITY”, prop_array) ;

END COMMENTED OUT SECTION */

/* write individual side sets */
/* side set #1 - quad */

error = ex_put_side set_param (exoid, 30, 2, 4);

elem 1ist[0] = 2; elem 1list[1l] = 2;
side_1ist[0] = 4; side_list[1l] = 2;
dist_fact[0] = 30.0; dist_fact[1l] = 30.1; dist_fact[2] = 30.2;

dist_fact[3] 30.3;
error = ex_put_side set (exoid, 30, elem_ list, side_list);
error = ex_put_side set_dist_fact (exoid, 30, dist_fact);

/* side set #2 - quad, spanning 2 elements */

error = ex_put_side set_param (exoid, 31, 2, 4);

elem 1ist[0] = 1; elem list[1l] = 2;
side_1ist[0] = 2; side_list[1l] = 3;
dist_fact[0] = 31.0; dist_fact[1l] = 31.1; dist_fact[2] = 31.2;

dist_fact[3] 31.3;
error = ex_put_side set (exoid, 31, elem_list, side_list);
error = ex_put_side set_dist_fact (exoid, 31, dist_fact);

/* side set #3 - hex */

error = ex_put_side set_param (exoid, 32, 7, 0);

-215-

/*

*/

elem 1list[0] =
2] =
4] =
elem list[6] =

[
elem list][
elem list][
[
side_1ist[0] =
2] =
side_1list[4] =
side_list[6] =

side 1list

[
[
[
[

error =
/* side set #4

error =

elem list[0]
elem list([2]

side_1list[0]
side_list[2]

error =

/* side set #5

error =

elem 1list[0] =
elem list[2] =

elem list[4] = 5

side _1list[0] =
side list[2] =
side_1list[4] =

error =

elem list[1]
elem list[3]
elem list[5]

Ne Ne N

w W w w

~e

side_list[1]
side_list[3]
side_list[5]

N x W Ul
Ne Ne N

~e

ex_put_side_set (exoid,

- tetras */

4; elem list[1]
4; elem_ list[3]

1; side 1ist[1]
3; side_list[3]

ex_put_side_set (exoid,

- wedges */

5; elem list[1]
5; elem _list[3]

1; side 1ist[1]
3; side_list[3]

ex_put_side_set (exoid,

write concatenated side sets;

were described in EXODUS 1I)
this produces the same information as the above code which

written out;

writes individual side sets

/* THIS SECTION IS COMMENTED OUT

ids[0] = 30;
ids[1] = 31;
ids[2] = 32;
ids[3] = 33;
ids[4] = 34;

32,

ex_put_side_set param (exoid,

33,

ex_put_side_set param (exoid,

34,

side set node lists

elem list, side _1list);

33, 4, 0);

elem list, side list);

34, 5, 0);

elem list, side list);

(which is how side sets

are converted to side set side lists and then

-216 -

node_1list [0]
node_list [2]

node_list [4]
node_list[6]

node_list [8]
node _1ist[10]

node _1list[12]
node_1list[14]

node _1ist[16]
node _1ist[18]

node_1ist[20]
node_1list[22]

node_1list[24]
node_1ist[26]

node_1ist[28]
node_1ist[30]

node_1list[32]
node_1list [34]

node _1ist[36]
node_1ist [38]

node_1ist[39]
node _1list[41]

node_1list[42]
node_1list[44]

node_1list[45]
node_1list[47]

node_1list[48]
node_1list [50]

node_1list [52]
node_1list [54]

node_1ist [56]
node_1ist [58]

node _1ist[60]
node_1list[62]

node_1list[63]
node_1list[65]

_9;

11;

11;
16;

16;
11;

10;
15;

13;
12;

14;

16;

14;

17;
20;

18;
20;

20;
17;

19;
17;

25;
21;

26;
22;

26;
21;

23;
21;

24 ;
26;

node_list[1] =
node_1list[3] = 7

node_list[5] =
node_list[7] =

node_list[9] =

node _1list[11]

node_1ist[13]
node_1list[15]

node _1ist[17]
node _1ist[19]

node_1list[21]
node_1list[23]

node_1list[25]
node_1list[27]

node_1ist[29]
node_1ist[31]

node_1ist [33]
node_1list [35]

node_1ist[37]

node_1ist[40]

node _1ist[43]

node 1ist[46]

node_1ist[49]
node_1list[51]

node_1list [53]
node_1list [55]

node_1ist [57]
node_1ist [59]

node_1list[61]

node _1list[64]

12;
15;

15;
12;

11;
14;

13;
10;

13;
15;

18;

19;

19;

18;

24 ;

22;

25;
23;

23;
24 ;

22;

25;

-217 -

node_ind[0] = 0;
node_ind[1] = 4;
node_ind[2] = 8;
node_ind[3] = 36;
node_ind[4] = 47;

num_elem per_set[0] = 2;

num_elem per_set[1l] = 2;

num_elem per_set[2] = 7;

num_elem per_set[3] = 4;
num_elem per_ set[4] = 5;
num_nodes_per_set[0] = 4;
num_nodes_per_set[1] = 4;
num_nodes_per_set[2] = 28;
num_nodes_per_set[3] = 12;
num_nodes_per_set[4] = 18;

elem _ind[0] = 0;

elem_ind[1] = 2;

elem_ind([2] = 4;

elem ind[3] = 11;

elem ind[4] = 15;

elem 1ist[0] = 2; elem 1list[1l] = 2;
elem list[2] = 1; elem 1list[3] = 2;
elem list[4] = 3; elem 1list[5] = 3;
elem list[6] = 3; elem list[7] = 3;
elem 1ist[8] = 3; elem list[9] = 3;
elem 1ist[10] = 3; elem list[1l1l] = 4;
elem 1ist[12] = 4; elem list[13] = 4;
elem list[14] = 4; elem list[15] = 5;
elem list[16] = 5; elem list[17] = 5;
elem 1ist[18] = 5; elem 1list[19] = 5;

error

num_df_per set [0
num_df_per_set[1

1
1
num_df_per_ set[2]
num_df_per_ set[3]

1

num_df_per_set[4

df_ind[0] 0;
df_ind[1] 4;

ex_cvt_nodes_to_sides (exoid,

num_elem per_ set, num nodes_per_ set,

elem _ind, node_ind,

elem list, node list, side list);

O O O B

dist_fact[0] = 30
dist_fact[2] = 30.
dist_fact[4] = 31

.0; dist_fact[1l] = 30.1;
2; dist_fact[3] = 30.3;
.0; dist_fact([5] = 31.1;

-218 -

dist_fact[6] = 31.2; dist_fact[7] = 31.3;
error = ex_put_concat_side_sets (exoid, ids, num_elem_ per_set,
num_df_per_set, elem_ind, df_ind,

elem list, side_list, dist_fact);

END COMMENTED OUT SECTION */

error = ex_put_prop (exoid, EX_SIDE_SET, 30, “COLOR”, 100);
error = ex_put_prop (exoid, EX_ SIDE_SET, 31, “COLOR”, 101);

/* write QA records */

num ga_rec = 2;
ga_record[0] [0] = “TESTWT”;
ga_record[0] [1] = “testwt”;
ga_record[0] [2] = “07/07/93";
ga_record[0] [3] = #15:41:33";
ga_record[1] [0] = “FASTQ”;
ga_record[1] [1] = “fastqg”;
ga_record[1] [2] = “07/07/93";
ga_record[1] [3] = “16:41:33";

error = ex_put_ga (exoid, num ga_rec, dga_record);

/* write information records */

num_info = 3;

info[0] = “This i1s the first information record.”;
info[l] = “This is the second information record.”;
info[2] = “This i1s the third information record.”;

error = ex_put_info (exoid, num info, info);

/* write results variables parameters and names */

num glo_vars 1;

var_names [0] “glo_vars”;

error = exX_put_var_ param (exoid, “g”, num glo_vars);
error = exX_put_var names (exoid, *“g”, num _glo_vars, var_names) ;

num_nod_vars = 2;
var_names [0] = “nod_var0”;
var_names[1l] = “nod_varl”;

error = ex_put_var param (exoid, “n”, num nod_vars) ;
error = ex_put_var names (exoid, “n”, num nod_vars, var_names) ;

-219 -

num_ele vars = 3;

var_names [0] = “ele_var0”;
var_names[1l] = “ele_varl”;
var_names [2] = “ele_var2”;

error = ex_put_var param (exoid, “e”, num ele vars);
error = ex_put_var names (exoid, “e”, num _ele vars, var_names) ;

/* write element variable truth table */
truth_tab = (int *) calloc ((num_elem blk*num ele vars), sizeof (int));

k = 0;
for (i=0; i<num_elem blk; 1i++) {
for (j=0; j<num_ele vars; j++) {
truth_tab [k++] = 1;

}

error = ex_put_elem var_tab (exoid, num_elem blk, num ele vars, truth_ tab);
free (truth_tab);

/* for each time step, write the analysis results;
* the code below fills the arrays glob_var_vals,
* nodal_var_vals, and elem var_vals with values for debugging purposes;
* obviously the analysis code will populate these arrays

*/
whole time_step = 1;
num_time steps = 10;
glob_var_vals = (float *) calloc (num _glo_vars, CPU_word_size);
nodal_var_vals = (float *) calloc (num _nodes, CPU_word_size);
elem var vals = (float *) calloc (4, CPU_word_size);

for (i=0; i<num time_steps; i++) {
time_value = (float) (i+1)/100.;

/* write time value */
error = ex_put_time (exoid, whole time_step, &time_value) ;

/* write global variables */
for (j=0; j<num glo_vars; j++) {
glob_var_vals[j] = (float) (j+2) * time value;

error = ex_put_glob_vars (exoid, whole_time step, num glo_vars,
glob_var_vals) ;

/* write nodal variables */
for (k=1; k<=num nod vars; k++) {
for (j=0; j<num_nodes; j++) {
nodal_var_vals[j] = (float)k + ((float) (j+1) * time value);

- 220 -

error = ex_put_nodal_var (exoid, whole_time step, k, num nodes,
nodal_var_vals) ;

/* write element variables */

for (k=1; k<=num ele vars; k++) {
for (j=0; j<num_elem blk; j++) {
for (m=0; m<num_elem in_block[j]; m++) {
elem _var_vals[m] = (float) (k+1) + (float) (3j+2) +
((float) (m+1) *time value) ;
}
error = ex_put_elem var (exoid, whole_time_step, k, ebids[j],
num_elem_in_block[j], elem var_ vals);

}

whole time_step++;

/* update the data file; this should be done at the end of every time step
* to ensure that no data is lost if the analysis dies
*/
error = ex_update (exoid);
}
free(glob_var_vals) ;
free(nodal_var_vals) ;
free(elem var_ vals);

/* close the EXODUS file */
error = ex_close (exoid);

-221-

C Read Example Code

The following C program reads data from an EXODUS II file:

#include <stdio.h>
#include “netcdf.h”
#include “exodusII.h”

main ()
{
int exoid, num dim, num nodes, num _elem, num elem blk, num node_ sets;
int num side_ sets, error;
int i, j, k, m, node_ctr;
int *elem map, *connect, *node_list, *node_ctr_list, *elem list,
*gide_list;
int *ids;
int *num sides_per_set, *num nodes_per_set, *num _elem_per set;
int *num df_per_ set;
int *node_ind, *elem_ind, *df_ind, *side_ind, num _ga_rec, num_info;
int num glo_vars, num nod_vars, num ele_vars;
int *truth_tab;
int whole time step, num_time steps;
int id, *num_elem_in_block, *num nodes_per elem, *num_attr;
int num nodes_in set, num elem in_ set;
int num sides_in set, num df in set;
int list_len, elem list len, node list len, side list_len, df 1list_ 1len;
int node _num, time_step, var_index, beg_time, end _time, elem num;
int CPU_word_size,IO_word_size;
int prop_arrayl[2], num props, prop_value, *prop_values;

float *glob_var_vals, *nodal_var_vals, *elem var_vals;
float time value, *time values, *var_values;

float *x, *y, *z, *dummy;

float attrib([l], *dist_fact;

float version, fdum;

char *coord_names[3], *ga_record[2] [4], *info[3], *var_names|[3];
char title[MAX LINE_LENGTH+1], elem_ type[MAX_STR_LENGTH+1] ;

char *cdum;

char *prop_names [3];

dummy = 0; /* assign this so the Cray compiler doesn’t complain */

cdum = 0;
CPU_word_size = 0; /* float or double */
I0_word _size = 0; /* use what is stored in file */

/* open EXODUS II files */

-222 -

/*

/*

/*

exold = ex _open (“test.exo”, /* filename path */

EX_READ, /* access mode = READ */
&CPU_word_size, /* CPU word size */
&I0_word_size, /* IO word size */

&version) ; /* ExodusII library version */

if (exoid < 0) exit(1l);

ncopts = NC_VERBOSE; */

read database parameters */

error = ex_get_init (exoid, title, &num _dim, &num_nodes,

&num_elem,

&num_elem blk, &num _node_sets, &num side_sets);

read nodal coordinates values and names from database */

x = (float *) calloc (num _nodes, sizeof (float)) ;
y = (float *) calloc(num nodes, sizeof (float));
if (num_dim >= 3)

z = (float *) calloc(num_nodes, sizeof (float)) ;
else

z = 0;

error = ex_get_coord (exoid, X, Yy, Z);

free (x);

free (y);

if (num_dim >= 3)
free (z);

for (i=0; i<num dim; 1i++) {
coord _names [i] = (char *) calloc ((MAX_STR_LENGTH+1),
error = ex_get coord_names (exoid, coord_names) ;

for (i=0; i<num dim; 1i++)
free (coord names[i]) ;

/* read element order map */

elem_map = (int *) calloc (num_elem, sizeof (int));
error = ex_get_map (exoid, elem_map) ;

free (elem _map) ;

/* read element block parameters */

sizeof (char)) ;

ids = (int *) calloc(num_elem blk, sizeof (int));
num_elem in block = (int *) calloc (num _elem blk, sizeof (int));
num_nodes_per_elem = (int *) calloc (num_elem blk, sizeof (int)) ;

-223 -

num_attr = (int *) calloc (num _elem blk, sizeof (int)) ;
error = ex_get_elem blk_ids (exoid, ids);

for (i=0; i<num elem blk; i++) {
error = ex_get_elem block (exoid, ids[i], elem_ type,
& (num_elem in block[i]),
& (num_nodes_per_elem[i]), &(num_attr([i]));

/* read element block properties */
error = ex_inquire (exoid, EX_INQ EB_PROP, &num props, &fdum, cdum) ;
for (i=0; i<num props; i++) {
prop_names [i] = (char *) calloc ((MAX_VAR_NAME_LENGTH+1), sizeof (char)) ;
error = ex_get prop_names (exoid, EX_ELEM BLOCK, prop_names) ;
for (i=0; i<num props; i++) {
for (j=0; j<num _elem blk; j++) {

error = ex_get prop(exoid, EX_ELEM BLOCK, ids[j], prop_names|[i],
&prop_value) ;

for (i=0; i<num props; i++)
free(prop_names[i]) ;

read element connectivity */
for (i=0; i<num elem blk; i++) {
connect = (int *) calloc((num nodes_per_elem[i] * num_elem in_block[i]),
sizeof (int)) ;
error = ex_get_elem conn (exoid, ids[i], connect) ;
free (connect);
read element block attributes */
for (1i=0; i<num elem blk; i++) {

error = ex_get_elem attr (exoid, ids[i], attrib);

free (ids);
free (num_nodes_per_elem) ;
free (num_attr);

- 224 -

/* read individual node sets */

ids = (int *) calloc (num _node sets, sizeof (int));
error = ex_get _node set_ids (exoid, ids);
for (i=0; i<num node_sets; 1i++) {

error = exX_get _node_ set_param (exoid, ids/[i]

&num_nodes_in set,

(int *) calloc (num_nodes_in_set,
(float *)

node_list
dist_fact

error = ex_get_node_set (exoid, ids[i],

calloc (num_nodes_in_set,

7

&num_df_in_set) ;

sizeof (int)) ;
sizeof (float)) ;

node_1list) ;

if (num_df_in_set > 0) {
error = ex_get_node set_dist_fact (exoid, ids[i], dist_fact);

}

free (node_list);

free (dist_fact);
}
free(ids) ;
/* read node set properties */
error = ex_inquire (exoid, EX_INQ NS_PROP, &num props, &fdum, cdum) ;
for (i=0; i<num props; i++) {

prop_names [i] = (char *) calloc ((MAX_VAR_NAME_LENGTH+1), sizeof (char)) ;
}
prop_values = (int *) calloc (num_node_sets, sizeof (int));

prop_names [i],

error = ex_get_prop_names (exoid, EX _NODE_SET, prop_names) ;
for (i=0; i<num props; i++) {
error = ex_get prop_array(exoid, EX NODE_SET,
prop_values) ;
}
for (i=0; i<num props; i++)

free(prop names[i]) ;
free(prop values) ;

/* read concatenated node sets; this produces the
* the above code which reads individual node sets
*/

error

ids (int *) calloc (num_node sets, sizeof (int)
num_nodes_per_set (int *) calloc (num_node_ set

num_df_per_ set (int *) calloc (num _node_ sets,

-225 -

same information as

ex_inquire (exoid, EX_INQ NODE_SETS, &num node_sets, &fdum, cdum) ;

) ;
S
sizeof (int)) ;

sizeof (int)) ;

node_ind = (int *) calloc (num node_ sets, sizeof (int)) ;
df_ind = (int *) calloc (num node_sets, sizeof (int)) ;

error = ex_inquire (exoid, EX_INQ NS_NODE LEN, &list_len, &fdum, cdum);
node_list = (int *) calloc(list_len, sizeof (int)) ;

error = ex_inquire (exoid, EX_INQ NS_DF LEN, &list_len, &fdum, cdum) ;
dist_fact = (float *) calloc(list_len, sizeof (float)) ;

error = ex_get_concat_node sets (exoid,ids,num nodes_per_set,
num_df_per set,
node_ind, df_ind, node list, dist_fact) ;

free (ids);
free (num_nodes_per_set);
free (df_ind);

(
(
(
free (node_ind);
(
(
(

free (num_df_per set);
free (node_list);
free (dist_fact);

/* read individual side sets */
ids = (int *) calloc(num_side sets, sizeof (int));

error = ex_get side set_ids (exoid, ids);
for (i=0; i<num _side_sets; i++) {

error = ex_get_side set_param (exoid, ids[i], &num_sides_in_set,
gnum_df_in set);

/* Note: The # of elements is same as # of sides! */
num_elem in_ set = num sides_1in_set;

elem_list = (int *) calloc(num elem_ in_set, sizeof (int));
side list = (int *) calloc(num_sides_in_ set, sizeof (int));
node_ctr_list = (int *) calloc(num_elem in_set, sizeof (int));
node_list = (int *) calloc(num elem in set*21, sizeof (int));
dist_fact = (float *) calloc(num df_ in_ set, sizeof (float));

error = ex _get _side set (exoid, ids[i], elem_list, side 1list);

error = ex_get _side set_node_list (exoid, ids[i], node_ctr_list,
node_list) ;

if (num df _in set > 0) {
error = ex_get_side set_dist_fact (exoid, ids[i], dist_fact);

free (elem_list);
free (side_list);

- 226 -

free (node ctr_list);
free (node_list);
free (dist_fact);

/* read side set properties */
error = ex_inquire (exoid, EX_INQ SS_PROP, &num props, &fdum, cdum) ;

for (i=0; i<num props; i++) {
prop_names [i] = (char *) calloc ((MAX_VAR_NAME_LENGTH+1), sizeof (char)) ;

error = ex_get_prop_names (exoid,EX_SIDE_SET, prop_names) ;

for (i=0; i<num props; i++) {
for (j=0; j<num_side_sets; j++) {
error = ex_get_prop(exoid, EX_SIDE_SET, ids[j], prop_names[i],
&prop_value) ;

}

for (i=0; i<num props; i++)
free(prop_names[i]) ;

free (ids);

error = exXx_inquire (exoid, EX_INQ SIDE_SETS, &num side_sets, &fdum, cdum) ;

if (num_side_sets > 0) {
error = ex_ingquire(exoid, EX_INQ SS ELEM LEN, &elem_ list_len,
&fdum, cdum) ;

error = ex_inquire (exoid, EX_INQ SS NODE_ LEN, &node_list_len,
&fdum, cdum) ;

error = ex_inquire(exoid, EX_INQ_ SS_DF LEN, &df_list len, &fdum, cdum) ;

/* read concatenated side sets; this produces the same information as
* the above code which reads individual side sets

*/

/* concatenated side set read */

ids = (int *) calloc(num _side sets, sizeof (int));

num_elem per_set = (int *) calloc(num side_sets, sizeof (int)) ;
num _df_per_set = (int *) calloc(num_side_sets, sizeof (int));
elem _ind = (int *) calloc(num_side sets, sizeof (int));

df_ind = (int *) calloc(num_side sets, sizeof (int));

elem list = (int *) calloc(elem list_len, sizeof (int)) ;

side _list = (int *) calloc(elem list_ len, sizeof (int));

-227 -

/*

dist_fact = (float *) calloc(df_list len, sizeof (float));

error = ex_get concat_side sets (exoid, ids, num elem per_set,
num_df_per_set, elem ind, df_ind,
elem list, side_list, dist_fact);

free (ids);

free (num_elem per_set);
free (num df_per set);
free (df_ind);

free (elem_ind);

free (elem list);

free (side_list);

free (dist_fact);

end of concatenated side set read */

/* read QA records */
ex_inquire (exoid, EX_INQ QA, &num ga_rec, &fdum, cdum);

for (i=0; i<num ga_rec; i++) {
for (3=0; j<4; Jj++) {

ga_record[i] [j] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof (char)) ;

error = ex_get_ga (exoid, ga_record);

/* read information records */
error = ex_ingquire (exoid, EX_INQ INFO, &num_info, &fdum, cdum);

for (i=0; i<num info; 1i++) {
info[i] = (char *) calloc ((MAX_LINE LENGTH+1), sizeof (char));
}
error = ex_get _info (exoid, info);
for (i=0; i<num info; 1i++) {
free(info[i]) ;

/* read global variables parameters and names */
error = ex_get_var_ param (exoid, “g”, &num glo_vars) ;

for (i=0; i<num glo_vars; i++) {

var_names [i] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof (char));

error = ex_get_var names (exoid, “g”, num glo_vars, var_names) ;
for (i=0; i<num glo_vars; i++) {
free(var_names[i]) ;

- 228 -

/* read nodal variables parameters and names */
error = ex_get_var_ param (exoid, “n”, &num nod_vars) ;

for (i=0; i<num nod vars; i++) {
var_names [i] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof (char));

error = ex_get_var names (exoid, “n”, num nod_vars, var_names) ;

for (i=0; i<num nod vars; i++) {
free(var_names[i]) ;

/* read element variables parameters and names */
error = ex_get_ var_ param (exoid, “e”, &num ele_vars) ;

for (1i=0; i<num ele vars; i++) {
var_names [i] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof (char));

error = ex_get_var names (exoid, “e”, num ele_vars, var_names);
for (1i=0; i<num ele vars; i++) {
free(var_names[i]) ;

/* read element variable truth table */

truth_tab = (int *) calloc ((num _elem blk*num ele_vars), sizeof (int));
error = ex_get_elem var_tab (exoid, num_elem blk, num ele_vars, truth_tab) ;
free (truth_tab) ;

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ TIME, &num_time_steps, &fdum, cdum);

/* read time value at one time step */
time_step = 3;

error = ex_get_ time (exoid, time_step, &time_value) ;

/* read time values at all time steps */
time_values = (float *) calloc (num time steps, sizeof (float));

error = ex_get_all times (exoid, time_values) ;
free (time values) ;

/* read all global variables at one time step */
var_values = (float *) calloc (num_glo vars, sizeof (float));

error = ex_get_glob_vars (exoid, time_step, num glo_vars, var_values);

-229 -

free (var_values) ;

/* read a single global variable through time */
var_index = 1;
beg_time = 1;
end time = -1;

var_values = (float *) calloc (num_time_steps, sizeof (float)) ;
error = ex_get _glob_var_time (exoid, var_index, beg_time, end_time,
var_values) ;

free (var_values);

/* read a nodal variable at one time step */
var_values = (float *) calloc (num_nodes, sizeof (float));

error = ex_get_nodal_var (exoid, time_step, var_index, num_nodes,
var_values) ;

free (var_values);

/* read a nodal variable through time */
var_values = (float *) calloc (num_time_steps, sizeof (float));

node_num = 1;
error = ex_get_nodal_var_ time (exoid, var_index, node_num, beg_time,
end time, var_values) ;

free (var_values) ;

/* read an element variable at one time step */
ids = (int *) calloc (num _elem blk, sizeof (int)) ;

error = ex get elem blk _ids (exoid, ids);

for (i=0; i<num _elem blk; i++) {

var_values = (float *) calloc (num _elem in block[i], sizeof (float));

error = ex_get_elem var (exoid, time_step, var_index, idsI[i],
num_elem_in_block[i], var_values) ;

free (var_values);
}
free (num _elem in block) ;

free(ids) ;

/* read an element variable through time */
var_values = (float *) calloc (num_time_steps, sizeof (float));

var_index = 2;

-230 -

elem _num = 2;
error = ex_get_elem var_time (exoid, var_index, elem num, beg_ time,
end_time, var_values) ;

free (var_values) ;
error = ex_close (exoid);

-231-

FORTRAN Write Example Code

The following Fortran program creates an EXODUS II file and populates it. Although this
sample code does not conform entirely to the ANSI Fortran-77 standard (i.e., lengths of
variable names, included files, etc.), it has successfully compiled and executed on all UNIX
workstations we have attempted and is included only as an example.

program testwt

This is a test program for the Fortran binding of the EXODUS II
database write routines.

Q Q Q Q

include ‘exodusII.inc’

integer iin, iout

integer exoid, num_dim, num nodes, num_elem, num elem blk

integer num elem in block(2), num node_sets

integer num_side sets

integer i, j, k, m, elem map(2), connect (4)

integer node list(10), elem list(10), side_1list(10)

integer ebids(2),ids(2), num _nodes_per set(2), num elem per_set (2)
integer num df_per_set (2)

integer df_ind(2), node_ind(2), elem ind(2), num ga rec, num_info
integer num glo_vars, num nod_vars, num ele vars

integer truth_tab(3,2)

integer whole time_step, num_time_ steps

integer cpu word size, io_word_size

integer prop_array(2)

real glob_var vals(10), nodal_ var_vals(8)
real time value, elem var vals(20)

real x(8), y(8), dummy (1)

real attrib(1l), dist_fact(8)

MXSTLN
MXSTLN
MXSTLN
MXSTLN
MXLNLN
MXSTLN

character* coord_names (3)

character* cname
characterx* var_names (3)
characterx* ga_record(4,2)

character* inform(3)

()
()
()
()
()
()

character* prop_names (2)

data iin /5/, iout /6/

cpu_word_size = 0
io_word_size = 0

¢ create EXODUS II files

exoid = excre (“test.exo”,
1 EXCLOB, cpu_word_size, io_word_size, ierr)

-232 -

¢ 1initialize file with parameters

num_dim = 2
num_nodes = 8
num_elem = 2
num_elem blk = 2
num_node_sets =
num_side_sets =

call expini (exoid, “This is a test”, num dim, num_nodes,
num_elem, num elem blk, num node_ sets,
num_side sets, ierr)

¢ write nodal coordinates values and names to database

x (1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
y(1l) =
y(2)
vy (3)
y (4)
y (5)
y (6)
y (7)
v (8)

Il
H P OORRFROORNNIEROLRLHPRERO
O 0O 00O 0000000 OO0 O O O

call expcor (exoid, x, y, dummy, ierr)

coord_names (1) = “xcoor”
coord_names (2) = “ycoor”

call expcon (exoid, coord_names, ierr)

c
c write element order map

c
do 10 i = 1, num elem
elem map (i) = i
10 continue

-233 -

call expmap (exoid, elem _map, ierr)

c
c write element block parameters
c

Il
=

num_elem in block (1)

Il
=

num_elem in block(2)

ebids (1) = 10
ebids (2) = 11
cname = “QUAD”

call expelb (exoid,ebids(1),cname,num_elem in block(1l),4,1,ierr)

call expelb (exoid,ebids(2),cname,num_elem in_block(2),4,1,ierr)

c write element block properties

prop_names (1) = “TOP”
prop_names (2) = “RIGHT”
call exppn(exoid,EXEBLK, 2,prop_names, ierr)

call expp(exoid, EXEBLK, ebids (1), “TOP”, 1, ierr)
call expp(exoid, EXEBLK, ebids(2), “RIGHT”, 1, ierr)
c
¢ write element connectivity

c
connect (1) =1
connect (2) = 2
connect (3) = 3
connect (4) = 4
call expelc (exoid, ebids (1), connect, ierr)
connect (1) = 5
connect (2) = 6
connect (3) = 7
connect (4) = 8
call expelc (exoid, ebids(2), connect, ierr)
c

c write element block attributes
c

attrib(1l) = 3.14159

call expeat (exoid, ebids (1), attrib, ierr)
attrib(1l) = 6.14159
call expeat (exoid, ebids(2), attrib, ierr)

- 234 -

c
¢ write individual node sets

c

node_list (1) = 100

node_list(2) = 101

node_list(3) = 102

node_list(4) = 103

node_list(5) = 104

dist_fact(l) = 1.0

dist_fact(2) = 2.0

dist_fact(3) = 3.0

dist_fact(4) = 4.0

dist_fact(5) = 5.0

call expnp (exoid, 20, 5, 5, ilerr)

call expns (exoid, 20, node_list, ierr)

call expnsd (exoid, 20, dist_fact, ierr)

node_list (1) = 200

node_list(2) = 201

node_1list(3) = 202

dist_fact(l) = 1.1

dist_fact(2) = 2.1

dist_fact(3) = 3.1

call expnp (exoid, 21, 3, 3, ilerr)

call expns (exoid, 21, node_list, ierr)

call expnsd (exoid, 21, dist_fact, ierr)
c
c write concatenated node sets; this produces the same information as
c the above code which writes individual node sets
c

ids (1) = 20

ids(2) = 21
num_nodes_per_set(l) = 5
num_nodes_per_set(2) = 3
num_df_per_set(l) = 5
num_df_per_set(2) = 3

node_ind (1) =1
node_ind(2) = 6

df_ind (1) =1
df_ind(2) = 6
node_list (1) = 100

-235-

node_list(2) = 101
node_list(3) = 102
node_list(4) = 103

)

)

)
node_list(5) = 104
node_list(6) = 200
node_list(7) = 201
node_list(8)
dist_fact (1)
dist_fact(2)
dist_fact (3)
dist_fact(4) =
dist_fact(5)
dist_fact (6)
dist_fact(7)
dist_fact(8)

|
W N PO W N
B P P O OO o o

c commented out because individual node sets already written

c call expcns (exoid, ids, num_nodes_per_set, num df_per_set,
c 1 node_ind, df_ind, node_list, dist_fact, ierr)
c write node set properties

prop_names (1) = “FACE”

call expp(exoid, EXNSET, 20, prop_names (1), 4, ierr)

call expp(exoid, EXNSET, 21, prop_names(1l), 5, ierr)

prop_array (1) = 1000
2000

prop_array (2)

prop_names (1) = “FRONT”

call exppa(exoid, EXNSET, prop_names(l), prop_array, ilerr)
c
c write individual side sets

c
elem list(1l) = 11
elem list(2) = 12
side 1list (1) =
side_list(2) =
dist_fact (1) = 30.0
dist_fact(2) = 30.1
dist_fact(3) = 30.2
dist_fact(4) = 30.3

call expsp (exoid, 30, 2, 4, ierr)
call expss (exoid, 30, elem list, side_1list, ierr)
call expssd (exoid, 30, dist_fact, ierr)

13
14

elem 1list (1)
elem list(2)

- 236 -

c write concatenated side sets;

side_list (1)
side_list(2)

dist_fact (1l
dist_fact (2
dist_fact (3

)
)
)
dist_fact(4)

31.0
31.1
31.2
31.3

call expsp (exoid, 31, 2, 4, ierr)

call expss (exoid, 31, elem list,

call expssd

(exoid, 31, dist_fact, ierr)

side 1list, ierr)

c the above code which writes individual side sets

C

¢ commented out because individual side sets already written

C
C
C

ids (1) = 30
ids (2) = 31
num_elem per_set(l) = 2
num_elem per_set(2) = 2

num_df_per_set(l) = 4

num_df_per_set (2)

elem _ind (1)
elem _ind(2)

df_ind (1)
df_ind(2)

elem_list (1)
elem list(2)
elem_list(3)
elem_list(4)
side_1list (1)
side 1list (2)
side_list (3)
side_list (4)
dist_ fact (1)
dist fact(2)
dist_fact(3)
dist_fact(4)
dist_fact(5)
dist_fact(6)
dist_fact(7)
dist_fact(8)

call expcss
1
2

Il
Iy

= 11
= 12
= 13

I OURN R

= 30.
= 30.
= 30.
= 30.
= 31.
= 31.
= 31.
= 31.

W NP O WN PP O

(exoid, ids, num_elem_ per_set,

elem _ind, df_ind,
ierr)

elem list,

-237 -

this produces the same information as

num_df_per set,

side_list,

dist_fact,

prop_names (1) = “COLOR”
call expp(exoid, EXSSET, 30, prop_names(1l), 100, ierr)
call expp(exoid, EXSSET, 31, prop_names(1l), 101, ierr)
c
c write QA records
c
num _ga_rec = 2
ga_record(1l,1) = “TESTWT fortran version”
ga_record(2,1) = “testwt”
ga_record(3,1) = “07/07/93"
ga_record(4,1) = “15:41:33"
ga_record(1l,2) = “FASTQ”
ga_record(2,2) = “fastqg”
ga_record(3,2) = “07/07/93"
ga_record(4,2) = “16:41:33"
call expga (exoid, num_ga_rec, ga_record, ierr)
c

c write information records

c
num_info = 3
inform(1l) =
inform(2) =
inform(3) =
call expinf

c

“This is the first information record.”
“This is the second information record.”
“This is the third information record.”
ierr)

(exoid, num_info, inform,

c write results variables parameters and names

c
num_glo_vars

var_names (1)

call expvp (exoid,

call expvan

num_nod_vars

var_names (1)
var_names (2)

call expvp (exoid,

call expvan
num_ele vars
var_names (1)

var_names (2)
var_names (3)

=1
= "glo_vars”
“g”, num_glo_vars, ierr)
(exoid, "g”, num_glo_vars, var_names, ierr)
=2
= “nod_var0”
= “nod_varl”
“n”, num _nod_vars, ilerr)
(exoid, “n”, num _nod_vars, var_names, 1lerr)
=3
= “ele_var0”
= “ele_varl”
= “ele_var2”

-238 -

call expvp (exoid, “e”, num ele vars, ierr)

call expvan (exoid, “e”, num ele vars, var_names, ierr)
c
c write element variable truth table

c

k=0

do 30 i = 1,num elem blk

do 20 j = 1,num ele_vars
truth_tab(j,i) = 1

20 continue
30 continue

call expvtt (exoid, num_elem blk, num_ele vars, truth tab,ierr)
c for each time step, write the analysis results;
c the code below fills the arrays glob_var_ vals,
¢ nodal_var_vals, and elem var vals with values for debugging purposes;
c obviously the analysis code will populate these arrays

whole time_step = 1
num_time_ steps = 10
do 110 1 = 1, num time steps

time_value = real(i)/100.

c write time value

call exptim (exoid, whole_time step, time value, ierr)

c write global variables

do 50 j = 1, num_glo vars
glob_var_vals(j) = real(j+1) * time value
50 continue

call expgv (exoid, whole_ time_step, num_glo_vars,
1 glob_var_vals, ierr)

c write nodal variables

do 70 k = 1, num nod_vars
do 60 j = 1, num _nodes
nodal_var_vals(j) = real(k) + (real(j) * time_value)
60 continue
call expnv (exoid, whole_time step, k, num nodes,
1 nodal_var_vals, lerr)
70 continue

c write element variables
do 100 k = 1, num ele vars

do 90 j = 1, num elem blk

-239 -

do 80 m = 1, num elem _in block(j)
elem_var_vals(m) = real(k+1l) + real(j+1) +
1 (real (m) *time_value)
80 continue
call expev (exoid, whole_time step, k, ebids(3j),
1 num_elem_in_block(j), elem_var vals, ierr)
90 continue
100 continue

whole time_step = whole_time step + 1

c update the data file; this should be done at the end of every time
c step to ensure that no data is lost if the analysis dies

call exupda (exoid, ierr)
110 continue

c close the EXODUS files
call exclos (exoid, ierr)

stop
end

- 240 -

FORTRAN Read Example Code

The following Fortran program reads data from an EXODUS II file:

program testrd

¢ This is a test program for the Fortran binding of the EXODUS II
c database read routines

implicit none
include ‘exodusII.inc’

integer iin, iout, ierr

integer exoid, num_dim, num nodes, num elem, num elem blk
integer num node_sets

integer num side_sets

integer i, j, elem map(2), connect(4), node_list (10)
integer elem 1list(10), side_1list(10), ids(5)

integer num elem per_set (2), num_nodes_per_set (2)

integer num df_per_set (2)

integer num df_in_ set, num_sides_in set

integer df_ind(2), node_ind(2), elem ind(2), num ga rec, num _info
integer num glo_vars, num nod_vars, num ele vars

integer truth_tab(3,2)

integer num time_steps

integer num elem in_block (2), num nodes_per_elem(2)
integer num attr(2)

integer num nodes_in_set, num_elem in_set

integer df_list_len, list _len, elem_ list_len

integer node_num, time step, var_index, beg_time, end_time
integer elem num

integer cpu_ws,i10_ws

integer num props, prop_value

real time value, time values(10), var_values(10)

real x(8), y(8), dummy (1)

real attrib(1l), dist_fact(8)

real vers, fdum

character* (MXSTLN) coord_names (3), ga_record(4,2), var_names(3)
character* (MXLNLN) inform(3), titl

character typ* (MXSTLN), cdum*1

character* (MXSTLN) prop_names (3)

data iin /5/, iout /6/

c open EXODUS II files

cpu_ws = 0
io.ws =0

- 241 -

exold = exopen (“test.exo”, EXREAD, cpu_ws, io_ws, vers, ierr)

¢ read database parameters

call exgini (exoid, titl, num dim, num_ nodes, num_elem,
1 num_elem blk, num node_sets, num side_sets, ilerr)

¢ read nodal coordinates values and names from database

call exgcor (exoid, x, y, dummy, ierr)
call exgcon (exoid, coord_names, ierr)

c read element order map

call exgmap (exoid, elem _map, ierr)

c read element block parameters
call exgebi (exoid, ids, ierr)

do 40 i = 1, num elem blk

call exgelb (exoid, ids (i), typ, num_elem in block (i),
1 num_nodes_per_elem (i), num attr(i), ierr)
40 continue
c read element block properties */

call exing (exoid, EXNEBP, num props, fdum, cdum, ierr)
call exgpn(exoid, EXEBLK, prop_names, ierr)

do 47 1 = 1, num_props
do 45 j = 1, num _elem blk
call exgp(exoid, EXEBLK,ids(j),prop_names (i),prop_value,ierr)
45 continue
47 continue

c read element connectivity

do 60 1 = 1, num elem blk
call exgelc (exoid, ids (i), connect, ierr)
60 continue

c read element block attributes

do 70 i = 1, num _elem blk
call exgeat (exoid, ids (i), attrib, ierr)
70 continue

¢ read individual node sets
if (num_node_sets .gt. 0) then
call exgnsi (exoid, ids, ierr)
endif

do 100 1 = 1, num node_sets
call exgnp (exoid, ids (i), num nodes_in_set,

242 -

1 num_df_ in set, ierr)
call exgns (exoid, ids (i), node list, ierr)

call exgnsd (exoid, ids (i), dist_fact, ierr)
100 continue
c read node set properties

call exing (exoid, EXNNSP, num props, fdum, cdum, ierr)
call exgpn(exoid, EXNSET, prop_names, ierr)

do 107 1 = 1, num_props
do 105 j = 1, num_node_sets
call exgp(exoid,EXNSET,ids (j),prop_names (i) ,prop_value,ierr)
105 continue
107 continue

¢ read concatenated node sets; this produces the same information as
c the above code which reads individual node sets

call exing (exoid, EXNODS, num node_sets, fdum, cdum, ierr)
if (num_node_sets .gt. 0) then

call exing (exoid, EXNSNL, list_len, fdum, cdum, ierr)

call exing (exoid, EXNSDF, list_len, fdum, cdum, ierr)

call exgcns (exoid, ids, num _nodes_per_set, num df_per_set,
1 node_ind, df_ind, node_1list, dist_fact, ierr)

endif

¢ read individual side sets
if (num_side sets .gt. 0) then
call exgssi (exoid, ids, ierr)
endif

do 190 i = 1, num _side_ sets
call exgsp (exoid, ids (i), num sides_in_set, num _df_in_set,

1 ierr)
call exgss (exoid, ids (i), elem list, side_list, ierr)
call exgssd (exoid, ids(i), dist_fact, ierr)

num _elem_in_set = num sides_in_set
190 continue

c read side set properties
call exing (exoid, EXNSSP, num props, fdum, cdum, ierr)
call exgpn(exoid, EXSSET, prop_names, ierr)

do 197 1 = 1, num_props
do 195 j = 1, num_side_ sets
call exgp(exoid, EXSSET,ids(j),prop_names (i),prop_value,ierr)
195 continue
197 continue

call exing (exoid, EXSIDS, num side_sets, fdum, cdum, ierr)

- 243 -

if (num_side sets .gt. 0) then
call exing (exoid, EXSSEL, elem list_len, fdum, cdum, ierr)
call exing (exoid, EXSSDF, df_list_len, fdum, cdum, ierr)

c read concatenated side sets; this produces the same information as
c the above code which reads individual side sets

call exgcss (exoid, ids, num_elem per_set, num df_per_set,
elem _ind, df_ind, elem list, side_1list, dist_fact,
ierr)
endif

c read QA records

call exing (exoid, EXQA, num ga_rec, fdum, cdum, ierr)
call exgga (exoid, ga_record, ierr)

¢ read information records

call exing (exoid, EXINFO, num info, fdum, cdum, ierr
call exginf (exoid, inform, ierr)

c read global variables parameters and names

call exgvp (exoid, “g”, num glo_vars, ierr)
call exgvan (exoid, “g”, num glo_vars, var_names, ierr)

¢ read nodal variables parameters and names
call exgvp (exoid, “n”, num nod_vars, ierr)
call exgvan (exoid, “n”, num nod_vars, var_names, ierr)

c read element variables parameters and names
call exgvp (exoid, “e”, num ele vars, ierr)
call exgvan (exoid, “e”, num ele vars, var_names, ierr)

c read element variable truth table
call exgvtt (exoid, num_elem blk, num_ele vars, truth_tab, ierr)

c determine how many time steps are stored
call exing (exoid, EXTIMS, num_time steps, fdum, cdum, ierr)

c read time value at one time step
time_step = 3

call exgtim (exoid, time_step, time_value, ierr)

c read time values at all time steps
call exgatm (exoid, time_values, ierr)

var_index = 1
beg _time = 1

end _time = -1

c read all global variables at one time step

- 244 -

call exggv (exoid, time_step, num _glo_vars, var_values, ierr)

c read a single global variable through time
call exggvt (exoid, var_index, beg_time, end_ time, var_values,
1 ierr)

¢ read a nodal variable at one time step
call exgnv (exoid, time_step, var_index, num nodes, var_values,
1 ierr)

¢ read a nodal variable through time
node_num = 1
call exgnvt (exoid, var_index, node_num, beg time, end time,
1 var_values, 1lerr)

c read an element variable at one time step
call exgebi (exoid, ids, ierr)

do 450 1 = 1, num _elem blk
call exgev (exoid, time_step, var_index, ids (i),
1 num_elem in block (i), var_values, ilerr)
450 continue

c read an element variable through time
var_index = 2

elem num = 2

call exgevt (exoid, var_index, elem _num, beg time, end time,
1 var_values, 1lerr)

call exclos (exoid, ierr)

stop
end

- 245 -

	1 Introduction
	1.1 Availability

	2 Changes Since First Printing
	3 Development of EXODUS II
	4 Description of Data Objects
	4.1 Global Parameters
	4.2 Quality Assurance Data
	4.3 Information Data
	4.4 Nodal Coordinates
	4.4.1 Coordinate Names

	4.5 Node Number Map
	4.6 Element Number Map
	4.7 Optimized Element Order Map
	4.8 Element Blocks
	4.8.1 Element Block Parameters
	4.8.2 Element Connectivity
	4.8.3 Element Attributes

	4.9 Node Sets
	4.9.1 Node Set Parameters
	4.9.2 Node Set Node List
	4.9.3 Node Set Distribution Factors

	4.10 Concatenated Node Sets
	4.11 Side Sets
	4.11.1 Side Set Parameters
	4.11.2 Side Set Element List
	4.11.3 Side Set Side List
	4.11.4 Side Set Node List
	4.11.5 Side Set Node Count List
	4.11.6 Side Set Distribution Factors

	4.12 Concatenated Side Sets
	4.13 Object Names
	4.14 Object Properties
	4.14.1 Property Parameters
	4.14.2 Property Values

	4.15 Results Parameters
	4.15.1 Results Names

	4.16 Results Data
	4.16.1 Time Values
	4.16.2 Global Results
	4.16.3 Nodal Results
	4.16.4 Element Results
	4.16.5 Nodeset Results
	4.16.6 Sideset Results

	4.17 Element, Nodeset, Sideset Variable Truth Table
	4.18 Coordinate frames

	5 Application Programming Interface (API)
	5.1 Data File Utilities
	5.1.1 Create EXODUS II File
	5.1.2 Open EXODUS II File
	5.1.3 Close EXODUS II File
	5.1.4 Update EXODUS II File
	5.1.5 Write Initialization Parameters
	5.1.6 Read Initialization Parameters
	5.1.7 Write QA Records
	5.1.8 Read QA Records
	5.1.9 Write Information Records
	5.1.10 Read Information Records
	5.1.11 Inquire EXODUS Parameters
	5.1.12 Error Reporting
	5.1.13 Set Error Reporting Level
	5.1.14 Determine if File is Large or Normal Format

	5.2 Model Description
	5.2.1 Write Nodal Coordinates
	5.2.2 Read Nodal Coordinates
	5.2.3 Write Coordinate Names
	5.2.4 Read Coordinate Names
	5.2.5 Write Node Number Map
	5.2.6 Read Node Number Map
	5.2.7 Write Element Number Map
	5.2.8 Read Element Number Map
	5.2.9 Write Element Order Map
	5.2.10 Read Element Order Map
	5.2.11 Write Element Block Parameters
	5.2.12 Read Element Block Parameters
	5.2.13 Write All Element Block Parameters
	5.2.14 Read Element Blocks IDs
	5.2.15 Write Element Block Connectivity
	5.2.16 Read Element Block Connectivity
	5.2.17 Write Element Block Attributes
	5.2.18 Read Element Block Attributes
	5.2.19 Write One Element Block Attribute
	5.2.20 Read One Element Block Attribute
	5.2.21 Write Attribute Names
	5.2.22 Read Attribute Names
	5.2.23 Write Node Set Parameters
	5.2.24 Read Node Set Parameters
	5.2.25 Write Node Set
	5.2.26 Read Node Set
	5.2.27 Write Node Set Distribution Factors
	5.2.28 Read Node Set Distribution Factors
	5.2.29 Read Node Sets IDs
	5.2.30 Write Concatenated Node Sets
	5.2.31 Read Concatenated Node Sets
	5.2.32 Write Side Set Parameters
	5.2.33 Read Side Set Parameters
	5.2.34 Write Side Set
	5.2.35 Read Side Set
	5.2.36 Write Side Set Distribution Factors
	5.2.37 Read Side Set Distribution Factors
	5.2.38 Read Side Sets IDs
	5.2.39 Get Side Set Node List Length
	5.2.40 Read Side Set Node List
	5.2.41 Write Concatenated Side Sets
	5.2.42 Read Concatenated Side Sets
	5.2.43 Convert Side Set Nodes to Sides
	5.2.44 Write Coordinate Frames
	5.2.45 Read Coordinate Frames
	5.2.46 Write Object Names
	5.2.47 Read Object Names
	5.2.48 Write Individual Object Name
	5.2.49 Read Individual Object Name
	5.2.50 Write Property Arrays Names
	5.2.51 Read Property Arrays Names
	5.2.52 Write Object Property
	5.2.53 Read Object Property
	5.2.54 Write Object Property Array
	5.2.55 Read Object Property Array
	5.2.56 Get Number of Object Properties
	5.2.57 Copy One Database to Another

	5.3 Results Data
	5.3.1 Write Results Variables Parameters
	5.3.2 Read Results Variables Parameters
	5.3.3 Write All Results Variables Parameters
	5.3.4 Write Results Variables Names
	5.3.5 Read Results Variables Names
	5.3.6 Write Individual Results Variable Name
	5.3.7 Read Individual Results Variable Name
	5.3.8 Write Time Value for a Time Step
	5.3.9 Read Time Value for a Time Step
	5.3.10 Read All Time Values
	5.3.11 Write Object Variable Truth Table
	5.3.12 Read Variable Truth Table
	5.3.13 Write Element Variable Truth Table
	5.3.14 Read Element Variable Truth Table
	5.3.15 Write Element Variable Values at a Time Step
	5.3.16 Read Element Variable Values at a Time Step
	5.3.17 Read Element Variable Values through Time
	5.3.18 Write Nodeset Variable Truth Table
	5.3.19 Read Nodeset Variable Truth Table
	5.3.20 Write Nodeset Variable Values at a Time Step
	5.3.21 Read Nodeset Variable Values at a Time Step
	5.3.22 Write Sideset Variable Truth Table
	5.3.23 Read Sideset Variable Truth Table
	5.3.24 Write Sideset Variable Values at a Time Step
	5.3.25 Read sideset Variable Values at a Time Step
	5.3.26 Write Global Variables Values at a Time Step
	5.3.27 Read Global Variables Values at a Time Step
	5.3.28 Read Global Variable Values through Time
	5.3.29 Write Nodal Variable Values at a Time Step
	5.3.30 Read Nodal Variable Values at a Time Step
	5.3.31 Read Nodal Variable Values through Time

	6 References
	Appendix A Implementation of EXODUS II with netCDF
	Appendix B "Large Model" Modifications
	Appendix C Error Messages
	Appendix D Sample Codes

