
SAND90-0247
Unlimited Release
Printed May 1990

(Translation needs work)

SUPES Version 2.1
A Software Utility Package for the

Engineering Sciences

John R. Red-Horse
Applied Mechanics Division IV
Sandia National Laboratories

Albuquerque, New Mexico 87185

William C. Mills-Curran*

Dennis P. Flanagan†

Abstract

The Software Utilities Package for the Engineering Sciences (SUPES) is a col-
lection of subprograms which perform frequently used non-numerical services
for the engineering applications programmer. The three functional categories
of SUPES are: (1) input command parsing, (2) dynamic memory management,
and (3) system dependent utilities. The subprograms in categories one and two
are written in standard FORTRAN-77, while the subprograms in category three
are written to provide a standardized FORTRAN interface to several system
dependent features.

* Currently employed by Hibbitt, Karlsson & Sorenson, Inc., 100 Medway St., Providence, RI
† Currently employed by Hibbitt, Karlsson & Sorenson, Inc., 100 Medway St., Providence, RI

Distribution
Category UC-805

Intentionally Left Blank
2

7
7

8
8
9

1
12
13

6
7

9

21
22

6
26
Table of Contents

1 INTRODUCTION . 5

2 INSTALLATION PROCEDURE . 7
2.1 VAX/VMS Installation Procedure . 7

2.1.1 Building SUPES .
2.1.2 Building the Test Programs .
2.1.3 Installing SUPES On Your VMS System . 8

2.2 General UNIX Installation Procedure .
2.2.1 Building SUPES .
2.2.2 Building the Test Programs .
2.2.3 Installing SUPES On Your UNIX System . 9

3 FREE FIELD INPUT . 11
3.1 Keyword/Value Input System . 1
3.2 Syntax Rules .
3.3 Free Field Input Routines .

3.3.1 External Input Routine (FREFLD) . 13
3.3.2 Internal Input Routine (FFISTR) . 15
3.3.3 Basic Examples . 1

3.4 Utility Routines . 1
3.4.1 Get Literal Input Line (GETINP) . 17
3.4.2 Strip Leading/Trailing Blanks (STRIPB) . 18
3.4.3 Process Quoted String (QUOTED) . 1

4 MEMORY MANAGER . 21
4.1 Indexing System .
4.2 Basic Routines .

4.2.1 Initialize (MDINIT/MCINIT) . 22
4.2.2 Define Dynamic Array (MDRSRV/MCRSRV) 23
4.2.3 Delete Dynamic Array (MDDEL/MCDEL) 23
4.2.4 Reserve Memory Block (MDGET/MCGET) 23
4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE) 24
4.2.6 Obtain Statistics (MDSTAT/MCSTAT) . 24
4.2.7 Print Error Summary (MDEROR/MCEROR) 24
4.2.8 Enable data initialization (MDFILL/MCFILL) 25
4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF) 26
4.2.10 Basic Example . 2

4.3 Advanced Routines .
4.3.1 Rename Dynamic Array (MDNAME/MCNAME) 26
4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG) 27
4.3.3 Locate Dynamic Array (MDFIND/MCFIND) 27
4.3.4 Compress Storage (MDCOMP/MCCOMP) 27
4.3.5 Error Flag Query (MDERPT/MCERPT) . 28
4.3.6 Modify Error Count (MDEFIX/MCEFIX) 28
3

0

34

5

6
6

7
8

39
9
0
1
1

2
2

3
4
6
6

49
4.3.7 Report Last Error (MDLAST/MCLAST) . 28
4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT) 28
4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC) 29
4.3.10 Report storage information (MDMEMS/MCMEMS) 29

4.4 Development Aids . 3
4.4.1 List Storage Tables (MDLIST/MCLIST) . 30
4.4.2 Print Dynamic Array (MDPRNT/MCPRNT) 30
4.4.3 Debug Printing (MDDEBG/MCDEBG) . 30

5 EXTENSION LIBRARY . 33
5.1 User Interface Routines .

5.1.1 Get Today’s Date (EXDATE) . 34
5.1.2 Get Time of Day (EXTIME) . 35
5.1.3 Get Accumulated Processor Time (EXCPUS) 3
5.1.4 Get Operating Environment Parameters (EXPARM) 35
5.1.5 Get Unit File Name or Symbol Value (EXNAME) 36

5.2 Utility Support Routines . 3
5.2.1 Convert String to Uppercase (EXUPCS) . 3
5.2.2 Prompt/Read/Echo Input Record (EXREAD) 36
5.2.3 Evaluate Numeric Storage Location (IXLNUM) 37
5.2.4 Evaluate Character Storage Location (IXLCHR) 37
5.2.5 Get/Release Memory Block (EXMEMY) . 37

5.3 Skeleton Library . 3
5.3.1 Skeleton Routine Specifications . 3

6 SUPPORT PROGRAMMER’S GUIDE . 39
6.1 Free Field Input .

6.1.1 Implementation Notes on FREFLD . 3
6.1.2 Test Program for FREFLD . 4

6.2 Memory Manager . 4
6.2.1 Table Architecture and Maintenance . 4
6.2.2 Non-ANSI FORTRAN Assumptions . 42
6.2.3 Standard FORTRAN Implementation . 4
6.2.4 Test Program . 4

6.3 Extension Library Implementation . 4
6.3.1 Implementation Notes for Modules . 4
6.3.2 Extension Library Test Program . 4

6.4 Installation Documentation Guidelines . 4

7 References .

8 SITE SUPPLEMENTS . 51
4

ion of
ering

 com-
s. The

viding
 variety
an be
nly one
and it
 part
ystem

r hard-

uring
f these
ids the

educe
 was
d. (1) It
r the

tage of
erating

tems
stems
1 INTRODUCTION

The Software Utilities Package for the Engineering Sciences (SUPES) is a collect
subprograms which perform frequently used non-numerical services for the engine
applications programmer. The three functional categories of SUPES are: (1) input
mand parsing, (2) dynamic memory management, and (3) system dependent utilitie
subprograms in categories one and two are written in standard FORTRAN-771., while the
subprograms in category three are written in the C programming language. Thus pro
a standardized FORTRAN interface to several system dependent features across a
of hardware configurations while using a single set of source files. This feature c
viewed as a maintenance aid from several perspectives. Among these are: there is o
set of source files to account for, it allows one to standardize the build procedure,
provides a clearer starting point for any future ports. In fact, a build procedure is now
of the standard SUPES distribution and is documented in Chapter 2 . Further, the s
dependent modules set an appropriate template for the porting of SUPES to othe
ware and/or software configurations.

Applications programmers face many similar user and system interface problems d
code development. Because ANSI standard FORTRAN does not address many o
problems, each programmer solves these problems for his/her own code. SUPES a
programmer by:

• Providing a library of useful subprograms.

• Defining a standard interface format for common utilities.

• Providing a single point for debugging of common utilities. That is, SUPES has
to be debugged only once and then is ready for use by any code.

Use of SUPES by the applications programmer can expand a code’s capability, r
errors, minimize support effort and reduce development time. Because SUPES
designed to be reliable and supportable, there are some features that are not include
is not extremely sophisticated, rather it is reliable and maintainable. (2) Except fo
extension library (Chapter 5), it is not system dependent. (3) It does not take advan
extended system capabilities since they may not be available on a wide range of op
systems. (4) It is not written to maximize cpu speed.

It is the intention of the authors to maintain SUPES on all scientific computer sys
commonly used by Engineering Sciences Directorate (1500) staff. Currently these sy
include:

1. Sun 3 and Sun 4 running SunOS operating system version 4.0.3 and later,

2. VAXen running VMS version 4.5 and later,

3. Cray X/MP and Y/MP running UNICOS version 5.0 and later, and

4. Alliant F/X 8 running Concentrix 5.0.0.
5

rating
nsion
code
build

to new
e need
ES will
nter.
A notable omission to the above list is the Cray running either CTSS or the COS ope
systems. These configurations still require the FORTRAN source code for the exte
library that was provided in previous implementations of SUPES [SUPES]. This
continues to be included in the current standard SUPES distribution, though a
procedure designed for these systems is not. Specific ports of the SUPES utilities
machines and/or operating systems will be added to the original source files as th
arises. Other Sandia personnel may obtain copies of SUPES from the authors. SUP
also be available to non-Sandia personnel through the National Energy Software Ce
6

distri-

 the
c-

ng

de in
ble

ule

s that

each of
d are
d

 in the
apter
2 INSTALLATION PROCEDURE

SUPES now contains a codified procedure for installing it as a part of the standard
bution.

2.1 VAX/VMS Installation Procedure

2.1.1 Building SUPES
Under normal conditions, the VMS version of the SUPES distribution will come in
form of a BACKUP saveset,SUPES2_1.BCK. The installer should set the default dire
tory to a suitable place and unbundle the saveset as follows:

$ BACKUP SUPES2_1.BCK/SAVESET []

Then, set default to[.SUPES2_1.BUILD] , and execute the build procedure by enteri
the command:
$ @BUILD_VMS

and wait for the build to be performed. You will be prompted for a message to inclu
an update file (UPDATE.QA). Do this by entering a message between a pair of dou
quotes (") followed by a carriage return,<CR>. The library will be built as
SUPES2_1.OLB in the [.BUILD] directory. IMPORTANT!!! Version 2.3 of VAX C
running v4.5 of VMS exhibits a strange bug: when compiling the mod
[.EXT_LIB.PORTABLE]EXDATE.C in the command procedureBUILD_VMS.COM it
doesn’t find one of the “header” modules and bombs with an error. The net result i
you will have to copy this one to the build directory yourself, compile it withCC, and add
it to the library. Here are the commands to do that:
$ COPY [-.EXT_LIB.PORTABLE]EXDATE.C [] ! from the build subdirectory
$ CC EXDATE
$ LIBRARY/REPLACE/LOG SUPES2_1 EXDATE

2.1.2 Building the Test Programs
Once you have done the installation, there is a set of test procedures that exercise
the SUPES capabilities separately. They are located in the top-level directory an
named:EXTTEST.F, MEMTEST.F, andFFRTEST.F . To build these, use the comman
procedure,BUILD_TESTS.COM , which is invoked with:

$ @BUILD_TESTS

Once you have done this step, each of the test procedures will be available for use
[.BUILD] subdirectory. To use any one of them refer to the proper section in Ch
[Ref: sec:support] as well as to a file titledOUTPUT.LIS located in the individual
subdirectories,[.EXT_LIB] , [.FRE_FLD] , or [.MEM_MGR]. Finally, you can refer to
the source files for the test procedures themselves.
7

g the
y

ctions
ions

 your
llow

done
ny

ve
w, the
ave

ple of
der of

ll be
ied

rom
stem

en

 the

e

2.1.3 Installing SUPES On Your VMS System
As a last step, install the SUPES library on your VMS system. This is done by runnin
command procedure,VMSINSTALL.COM . It should copy the the library to the director
of your choice, and set up the required logicals. Some things to note:

1. To perform the operations in theVMSINSTALL.COMcommand procedure, you will
be required to have SYSTEM privileges.

2. You may want to have your system manager look at this file and insert some se
of it in a system startup command procedure. Otherwise, the appropriate definit
will be lost when the system is rebooted.

3. If you don’t have the required privileges, you should editVMSINSTALL.COM to
remove any qualifier that requires them and invoke this newly created version in
LOGIN.COM. This will set up the logical names in your process name table and a
you to use SUPES as described in this manual.

2.2 General UNIX Installation Procedure

2.2.1 Building SUPES
The general build scheme for all of the UNIX derived operating systems will be
through themake utility. This procedure should help the maintainer deal with a
upgrades, bug fixes, etc. The distribution itself will generally be distributed as UNIXtar
file namedsupes2_1.tar . To install SUPES, go to the directory that you want to ha
as a parent of the SUPES tree and unbundle the distribution. In the example belo
directory/usr/local has been arbitrarily chosen as this parent—individual sites h
the option of choosing a different location, depending on their conventions. An exam
the required command sequence follows [Footnote: Here, and throughout the remain
this manual, the UN*X interaction will be documented as follows: the user prompt wi
\%, comments will be offset by<-- , and the text in between will denote the user suppl
commands.] :

% cd /usr/local <-- ‘‘/usr/local’’ will contain the distribution.
% tar xf supes2_1.tar <-- If you get your distribution via tape, man tar.
% cd supes2_1

You will now be in the top-level directory of the distribution; each directory reference f
this point onward will be made relative to this directory. If a makefile exists for your sy
named makefile.$(ARCH) in any of the source directories—./ext_lib/
portable , ./fre_fld , or ./mem_mgr then a machine specific makefile has be
written. For example, under UNICOS, the filemakefile.unico exists in ./
mem_mgr, so in order to do the build for that system one would need to perform
following command:
% make ARCH=.unico

from the supes2_1 directory and the build will proceed. At this point, you will b
prompted for a message to add to the update file (update.qa in the ./build
subdirectory). Conclude this message with a^D (i.e., input a “D” while holding down the
8

thing

s file

g

 In
r. More
hout
y

 of test
r [Ref:
:
e
g built
anu-
ilding

ort] as

To do
Control key simultaneously) at the beginning of a line. The sequence will look some
like this:
% Enter Message for Update File (./build/update.qa).
% End with a CNTL-D On A New Line.
% Initial UNICOS build. <---/ Lines input by user
% ^D <--/

The archived library, titledlibsupes.a , will be built in the “./build ” subdirectory.

There are a couple of things to note: the “.” in the abovemake statementIS significant!!!!
Further, the file name has a suffix “unico” due to the fact that Cray UNICOS restrict
names to be fewer than fifteen characters.

In the event that such a makefile doesNOT exist then one of two things is true. Either typin
the simple command:
% make

from thesupes2_1 directory will suffice, or an appropriate makefile does not exist.
the former case you are done, while in the latter, the consequences are much greate
to the point, it probably means that the code will not run on your machine wit
modification. If this is the case, you will need to port the C source files in the director./
ext_lib/portable . Use the existing source as a guide and reference the “README”
file in this directory.

2.2.2 Building the Test Programs
In most instances, once you have done the installation, you have also built the set
procedures that exercise each of the SUPES capabilities separately (cf. Chapte
sec:support]). They are located in the top-levelsupes2_1 directory and are named
exttest , memtest , andffrtest . Look for them in the current directory. If they’r
not there, then something has happened to prevent the test procedures from bein
after the actual build of the SUPES library and you will be required to build them m
ally. Doing this is a system dependent problem; here’s how you would go about bu
exttest on the Alliant:

% fortran -o exttest exttest.f build/libsupes.a

Or, on the Cray under UNICOS with thecft77 compiler it’s:
% cf77 -o exttest exttest.f build/libsupes.a

To use each of the programs, refer to the proper section in Chapter [Ref: sec:supp
well as to the individual subdirectories for a file titled,output.lis and finally, refer to
the source files for the test procedures themselves.

2.2.3 Installing SUPES On Your UNIX System
As a last step, install the SUPES library in a suitable place on your UNIX system.
this, just enter the command

% make install
9

ired
from thesupes2_1 directory. You should note that the proper permission will be requ
to place the library in its final resting place (the default is/usr/local/lib).
10

re was
g Sci-
e field
g code
ntax
parsing

 are as

odes.

:

 field
 to
 only

lues

th the

ystem.
rom the
ata in

iented
 (or
llow

esults
S =
andard
3 FREE FIELD INPUT

This chapter describes the free field input system supported in SUPES. This softwa
developed because it was recognized that most codes written within the Engineerin
ences Directorate have very similar command input requirements. The SUPES fre
input system consolidates the development and maintenance of command parsin
into a single set of reliable software. This utility provides a uniform command sy
across application codes to the end user, and minimizes the burden of command
on the applications programmer.

The design requirements which are imposed on the SUPES free field input system
follows:

1. Input must follow a natural syntax which encourages readability.

2. The system must be applicable to both batch and interactive command input m

3. The software must be written in ANSI FORTRAN [ansi].

4. The interface to the applications program must be clear and flexible.

Version 2 of the SUPES free field reader differs from version 1 in the following areas

1. An interface has been provided to allow character strings to be input to the free
reader in addition to reading from files. This allows the applications programmer
perform more sophisticated string parsing than would be possible when reading
from a file.

2. Whole, real numbers (e.g., 12.3E3) will translate to both INTEGER and REAL va
if the absolute value of the number is not greater than 1.0E9.

3. Quoted strings are allowed. This makes the free field reader more compatible wi
standard FORTRAN free field input. No interpretation of characters (except for
internal quotes) is performed within a quoted string.

3.1 Keyword/Value Input System

This section describes the basic characteristics of the SUPES free field input s
SUPES addresses the first two phases of command processing; it obtains a record f
input stream, and parses the record into logical components. Interpretation of the d
the final phase of command processing is left to the applications program.

SUPES provides a keyword/value input structure which encourages a verb or
command language. The hallmark of this input style is the concept of “verbs”
“keywords”) which indicate how a command is to be interpreted. Since keywords a
each command to be self-contained, input lines need not follow a rigid order. This r
in highly readable input data. For example, the command “YOUNGS MODULU
30.E6” has a very clear meaning. The verb oriented style can be contrasted with st
11

at to

cords
null,

e each
ample,
 valid

lds, a
ws a
auses

d. A
 field.
plicitly
ser can

yntax
and the

 is
 non-

ion

aces

ment

n
” by

citly
ull

 All
FORTRAN list-directed I/O which requires the application code to know precisely wh
expect before reading a line of input.

The SUPES free field input system has a very simple, yet versatile syntax. Input re
are broken into “fields”. Each field is categorized according to its contents as:
character, real, or integer. Note that these four categories form a hierarchy wher
subsequent category is a more specific subset of the previous one. For ex
“5.2345E3” is a real field because it can be interpreted as a REAL value as well as a
CHARACTER string, but does not constitute a valid INTEGER format.

There are just four syntax markers in SUPES: field separators which delimit data fie
quote character which encloses literal strings, a comment indicator which allo
comment to be appended to command lines, and a continuation indicator which c
consecutive input records to be logically joined.

An application program need not use all of the information returned for each fiel
default value (blank or zero) is returned when a valid value is not specified for a given
On the other hand, the application code can easily detect that the user has not ex
specified a value so that a more meaningful default can be assumed, or so that the u
be prompted to supply more information.

3.2 Syntax Rules

The syntax rules for the SUPES free field input structure are listed below. This s
describes how input records/strings are parsed into data fields. Both the end user
applications programmer should clearly understand these few rules.

1. A data field is any sequence of data characters within an input line. A data field
broken by (does not include) any non-data character or the end of the input line. A
data character is a field separator, a space, a comment indicator, or a continuat
indicator. Any other character is a data character.

2. A field separator is a comma (,), an equal sign (=), or a series of one or more sp
not adjacent to another separator.

3. A dollar sign ($) indicates a comment. All characters after and including the com
indicator are ignored.

4. An asterisk (*) indicates that the next input record/string will be treated as a
continuation of the current line. All characters after and including the continuatio
indicator on the current line are ignored. Multple records/strings that are ”joined
continuation indicators are treated as a single logical record.

5. A null field does not contain any data characters. A null field can be defined expli
only by a field separator (spaces cannot act as a field separator for an explicit n
field). Fields which are not defined on the input line are implicitly null.

6. Lowercase letters not contained in a quoted string are converted to uppercase.
other non-printable ASCII characters are converted to spaces.
12

at.
es a

k
n end

are
ed,

nal to
al

a-

: FRE-
ence
put
 once

FLD
uation

 fur-
7. A numeric field is a data field which adheres to an ANSI FORTRAN numeric form
A numeric field cannot be longer than 32 characters. A numeric field always defin
REAL (floating point) value; it also defines an INTEGER (fixed point) value if it
adheres to a legal INTEGER format.

8. A quoted string is a data field in which the quote (’) character is the first nonblan
character. An internal quote is indicated with 2 consecutive quote characters. If a
quote character is not included, then the remainder of the record (excluding any
trailing blanks) is treated as part of the quoted string. Within a quoted string, no
character conversion to uppercase is performed. Delimiters (other than quotes)
treated as part of the string. Interpretation of data to numeric data will be perform
if possible.

9. A data field which does not begin with the quote character, but has a quote inter
the field (e.g., MOM’S) is not considered a quoted string. In this case, the intern
quote is not a special character.

10. The maximum length of an input record (FREFLD only) is 132 characters. Input
strings to FFISTR may be any length.

Some important points which are not obvious from the above rules are noted below.

• Spaces have no significance except when they act a field separator.

• Only the first occurrence of a comment or continuation character is significant;
subsequent characters are considered part of the comment.

• A blank line has no data fields.

• If no data characters appear after the last field separator, the field after that sep
rator will not be counted.

3.3 Free Field Input Routines

The user interface to the SUPES free field input system consists of two subroutines
FLD and FFISTR. Both routines perform parsing functions of strings. The main differ
is that FFREFLD gets its input from a FORTRAN I/O unit while FFISTR gets its in
from a character string. In fact, FREFLD uses FFISTR to perform parsing functions
FREFLD has read a record.

3.3.1 External Input Routine (FREFLD)
Input is prompted for, read, and echoed via FREFLD using specified I/O units. FRE
returns the parsed data field values defined on the next input record and any contin
records. All I/O is accomplished via the utility routine GETINP, which is documented
ther in section [Ref: sec:getinp] , while the parsing is performed by FFISTR.

The arguments to FREFLD are prescribed below.
 CALL FREFLD(KIN, KOUT, PROMPT, MFIELD, IOSTAT, NFIELD, KVALUE,
 * CVALUE, IVALUE, RVALUE)
13

ard
inal or

n to
ible for

d to
nput
he
ill be

The
qual to

his
 this

 of

d

lds.
ay is
The
KININTEGERRead Only Unit from which to read input. If zero, read from the stand
input device (terminal or batch deck) and echo to the standard output device (term
batch log). If non-zero, the caller is responsible for opening/closing this unit.

KOUTINTEGERRead Only Unit to which to echo input. If zero, do not echo other tha
the standard output device as described above. If non-zero, the caller is respons
opening/closing this unit.

PROMPTCHARACTER\last (\last)Read Only Prompt string. This string will be use
prompt for data from an interactive terminal and/or will be written as a prefix to the i
line for echo. If the string ‘AUTO’ is specified, a prompt of the form ‘ n: ’, where “n” is t
current input line number (only lines read under the AUTO feature are counted), w
generated.

MFIELDINTEGERRead Only Maximum number of data fields to be returned.
dimensions of each of the output arrays described below must be greater than of e
this number.

IOSTATINTEGERWrite Only ANSI FORTRAN I/O status:
IOSTAT < 0 End of File

IOSTAT = 0 Normal

IOSTAT > 0 Error

NFIELDINTEGERWrite Only Number of data fields found on this logical record. If t
value is less than MFIELD, the excess fields are implicitly defined as null fields. If
value is greater than MFIELD, the extra data fields are ignored.

KVALUEINTEGER ArrayWrite Only Translation states of the data fields. The value
each element of this array is interpreted as follows:
KVALUE Meaning

-1 This is a null field.

0 This is a non-numeric field; only CVALUE contains a specified value.

1 This is a REAL numeric field; CVALUE and RVALUE contain specified values.

2 This is an INTEGER numeric field; CVALUE, RVALUE, and IVALUE contain specifie
values.

The dimension of this array must be at least MFIELD.

CVALUECHARACTER\last (\last) ArrayWrite Only Character values of the data fie
The data will be left-justified and either blank-filled or truncated. The value in this arr
set blank for a null field. The dimension of this array must be at least MFIELD.
character element size may be any value set by the caller.
14

his
st be

his
be at

s sup-
efined
to the
. The

ta to

The
qual to

put,
e, the
.

his
 this

 of

d

lds.
ay is
IVALUEINTEGER ArrayWrite Only Integer values of the data fields. The value in t
array is set to zero for a null or non-INTEGER field. The dimension of this array mu
at least MFIELD.

RVALUEREAL ArrayWrite Only Floating-point values of the data fields. The value in t
array is set to zero for a null or non-REAL field. The dimension of this array must
least MFIELD.

3.3.2 Internal Input Routine (FFISTR)
Internal input (i.e., a character string) is parsed via FFISTR using character string
plied through FFISTR’s argument list. FFISTR returns the parsed data field values d
in the input string. If a string contains a continuation character, a flag is returned
user indicating that another string should be supplied to complete the logical record
arguments to FFISTR are prescribed below.

 CALL FFISTR(LINE, MFIELD, IDCONT, NFIELD, KVALUE,
 * CVALUE, IVALUE, RVALUE)

LINECHARACTER\last (\last)Read Only Input string. This argument contains the da
be parsed.

MFIELDINTEGERRead Only Maximum number of data fields to be returned.
dimensions of each of the output arrays described below must be greater than of e
this number.

IDCONTINTEGERRead and Write Continuation flag. 0 means no continuation. On in
this flag indicates if the previous string contained a continuation indicator. In this cas
current string will be treated as part of the same logical record as the previous string

NFIELDINTEGERWrite Only Number of data fields found on this logical record. If t
value is less than MFIELD, the excess fields are implicitly defined as null fields. If
value is greater than MFIELD, the extra data fields are ignored.

KVALUEINTEGER ArrayWrite Only Translation states of the data fields. The value
each element of this array is interpreted as follows:
KVALUE Meaning

-1 This is a null field.

0 This is a non-numeric field; only CVALUE contains a specified value.

1 This is a REAL numeric field; CVALUE and RVALUE contain specified values.

2 This is an INTEGER numeric field; CVALUE, RVALUE, and IVALUE contain specifie
values.

The dimension of this array must be at least MFIELD.

CVALUECHARACTER\last (\last) ArrayWrite Only Character values of the data fie
The data will be left-justified and either blank-filled or truncated. The value in this arr
15

The

his
st be

his
be at

.

set blank for a null field. The dimension of this array must be at least MFIELD.
character element size may be any value set by the caller.

IVALUEINTEGER ArrayWrite Only Integer values of the data fields. The value in t
array is set to zero for a null or non-INTEGER field. The dimension of this array mu
at least MFIELD.

RVALUEREAL ArrayWrite Only Floating-point values of the data fields. The value in t
array is set to zero for a null or non-REAL field. The dimension of this array must
least MFIELD.

3.3.3 Basic Examples
The following examples illustrate the operation of the SUPES free field input system

INPUT RECORDS:

verb, 1 2. * continue on next line
key=5

Results returned from FREFLD: NFIELD = 5
I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)

1 0 VERB____________ 0.000E+00 0

2 2 1_______________ 1.00 1

3 2 2.______________ 2.00 2

4 0 KEY_____________ 0.000E+00 0

5 2 5_______________ 5.00 5

INPUT RECORD:
$ this is a comment line

Results returned from FREFLD: NFIELD = 0
I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)

1 -1 ________________ 0.000E+00 0

2 -1 ________________ 0.000E+00 0

3 -1 ________________ 0.000E+00 0

4 -1 ________________ 0.000E+00 0

5 -1 ________________ 0.000E+00 0

INPUT RECORD:
10,,

Results returned from FREFLD: NFIELD = 2
I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
16

ibrary
STR.
ese

pa-
 as a
yntax

e I/O
able,
1 2 10______________ 10.0 10

2 -1 ________________ 0.000E+00 0

3 -1 ________________ 0.000E+00 0

4 -1 ________________ 0.000E+00 0

5 -1 ________________ 0.000E+00 0

INPUT RECORD:
’Quoted strings’, ’5 ’, ’$*,=’’"’ $ rest is comment

Results returned from FREFLD: NFIELD = 3
I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)

1 0 Quoted_strings__ 0.000E+00 0

2 2 5_______________ 50.0 50

3 0 $*,=’"__________ 0.000E+00 0

4 -1 ________________ 0.000E+00 0

5 -1 ________________ 0.000E+00 0

INPUT RECORD:
quotes’s

Results returned from FREFLD: NFIELD = 1
I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)

1 0 QUOTES’S________ 0.000E+00 0

2 -1 ________________ 0.000E+00 0

3 -1 ________________ 0.000E+00 0

4 -1 ________________ 0.000E+00 0

5 -1 ________________ 0.000E+00 0

3.4 Utility Routines

The three routines described in this section, together with the FORTRAN extension l
routines EXREAD and EXUPCS, are the only externals called by FREFLD and FFI
Application programs built on top of FREFLD and FFISTR may find further use for th
routines.

3.4.1 Get Literal Input Line (GETINP)
All I/O for FREFLD is done through this subroutine. This routine was intentionally se
rated from FREFLD so that the caller can obtain an unmodified line of input (such
problem title) via the same I/O stream. Applications which require a more complex s
than SUPES provides (e.g., algebraic operations) may find GETINP advantageous.

There are four modes of operation of GETINP depending upon the specification of th
units KIN and KOUT. Each of these modes, which are summarized in the following t
may be useful to various applications.
17

ard
inal or

n to
ible for

d to
nput
the
ill be

d
xceed

ful to
tring,
ing is
, if the
uld
KIN KOUT Source Echo

0 0 Standard Input Standard Output

0 M Standard Input Standard Output and File (M)

N M File (N) File (M)

N 0 File (N) none

The arguments to GETINP are prescribed below.

CALL GETINP(KIN, KOUT, PROMPT, LINE, IOSTAT)

KININTEGERRead Only Unit from which to read input. If zero, read from the stand
input device (terminal or batch deck) and echo to the standard output device (term
batch log). non-zero, the caller is responsible for opening/closing this unit.

KOUTINTEGERRead Only Unit to which to echo input. If zero, do not echo other tha
the standard output device as described above. If non-zero, the caller is respons
opening/closing this unit.

PROMPTCHARACTER\last (\last)Read Only Prompt string. This string will be use
prompt for data from an interactive terminal and/or will be written as a prefix to the i
line for echo. If the string ‘AUTO’ is specified, a prompt of the form ‘ n: ’, where "n" is
current input line number (only lines read under the AUTO feature are counted), w
generated.

LINECHARACTER\last (\last)Write Only Line of input. This string will be blank-fille
or truncated, if necessary. The length of the string is set by the caller, but should not e
132.

IOSTATINTEGERWrite Only ANSI FORTRAN I/O status:
IOSTAT < 0 End of File

IOSTAT = 0 Normal

IOSTAT > 0 Error

3.4.2 Strip Leading/Trailing Blanks (STRIPB)
This routine is called by FREFLD and FFISTR from several locations. It may be use
other applications as well. Note that STRIPB does not modify nor copy the input s
but simply returns the location of the first and last non- blank characters. If a substr
passed, these locations are relative to the beginning of the substring. For example
substring STRING(N:) is passed to STRIPB, STRING(ILEFT+N-1:IRIGHT+N-1) wo
represent the result.

The arguments to STRIPB are prescribed below.

CALL STRIPB(STRING, ILEFT, IRIGHT)
18

G.

G.

ng. It
r indi-

, the
 single
ding

 is

 =
STRINGCHARACTER\last (\last)Read Only Any character string.

ILEFTINTEGERWrite Only Relative index of the first non-blank character in STRIN
ILEFT = LEN(STRING) + 1 if STRING = ‘ ’.

IRIGHTINTEGERWrite Only Relative index of the last non-blank character in STRIN
IRIGHT = 0 if STRING = ‘ ’.

3.4.3 Process Quoted String (QUOTED)
This routine is called by FFISTR to remove the delimiting quotes from a quoted stri
also converts any repeated quotes into single quotes. (This is a common method fo
cating internal quotes.)

The arguments to QUOTED are prescribed below.

CALL QUOTED (STRING, ILEFT, IRIGHT)

STRINGCHARACTER\last (\last)Read and Write Any character string. On output
first and last quotes are removed, and internal (repeated) quotes are converted to
quotes. If the trailing quote is omitted, then the remainder of the input record (exclu
trailing blanks) is considered part of the quoted string.

ILEFTINTEGERWrite Only Relative index of the first character in the string. This
always the location of the first character inside the leading quote.

IRIGHTINTEGERWrite Only Relative index of the last character in STRING. IRIGHT
0 if the quoted string is null.
19

Intentionally Left Blank
20

er to
age-

emory
s not

t the
ry. In

ke the

 and
mory

 library

.

can be
are not
 space
static
here

 In
re for
tines are

C”
s.

nced
 [Ref:

cept of
 of this
 by
dresses
nce to

y man-
4 MEMORY MANAGER

The purpose of the memory manager utilities is to allow an applications programm
write standard, readable FORTRAN-77 code while employing dynamic memory man
ment for REAL, INTEGER, LOGICAL and CHARACTER type arrays.

Because the array sizes in most programs are problem dependent, a program’s m
requirements are not known until the program is running. Since FORTRAN-77 doe
provide for dynamic memory allocation, the programmer has to either predic
maximum memory requirement or use machine dependent requests for memo
addition, dynamic memory allocation is an error prone exercise which tends to ma
source code difficult to read and maintain.

In SUPES, the memory manager utilities are written in standard FORTRAN-77
provide an interface which encourages readable coding and efficient use of me
resources. Machine dependencies are isolated through the use of the extension
(Chapter [Ref: sec:extlib]). All memory requests are in terms ofnumeric storage units for
numeric data (integer, real, or logical) andcharacter storage units for character data [ansi]

An important design feature of the memory manager is that the memory manager
supported even when the system-dependent dynamic memory request routines
implemented on a system. In this case, the memory manager will operate, allocating
from a user-supplied work array. This mode is described as dynamic allocation of
memory. Thus, modification of a user’s application program is minimal on systems w
dynamic memory is not implemented.

All user entry points to memory manager routines begin with either “MD” or “MC.”
most cases, the “MD” routines are used for numeric data, while the “MC” routines a
character data. In some cases, however, the routines are interchangeable. These rou
documented as synonyms.

In this document, the term “Mx” is used to refer simultaneously to both “MD” and “M
routines. Thus, MxRSRV is a reference to both MDRSRV and MCRSRV subroutine

The memory manager utility is divided into three categories; basic routines, adva
routines, and development aids. These categories will be discussed in sections
sec:mbas] through [Ref: sec:mdev] .

4.1 Indexing System

In order to use the memory manager properly, the user must first understand the con
using a base array with indices for accessing memory address locations. At the core
concept is FORTRAN’s convention of passing SUBROUTINE array references
address. The memory manager references all memory addresses relative to the ad
of user-supplied base arrays—one each for numeric and character data. A refere
memory is made in terms of a pointer to these base arrays. Specifically, the memor
21

priate
 com-

at the

r-

rogram.

to pass
a base
:

rams
s in the

 require

y
 loca-
 first,
INIT

itly)

y

as a
ager determines an indexing parameter by first determining the offset of the appro
memory location relative to the address of the correct base array. The index is then
puted in terms of the proper storage units (either character or numeric). Note th
resulting indexes may take on a wide range of values, including negative numbers.

The base arrays must comply with the following rules:

1. Numeric base arraysmust be of type INTEGER, REAL, or LOGICAL. Modified word length storage a
rays such as INTEGER\last 2 or REAL\last 8 will result in invalid indexes with no error message.

2. Character base arraysmust be declared CHARACTER\last 1.

The following FORTRAN statements define valid base arrays:
DIMENSION NUMBAS(1)
CHARACTER*1 CHRBAS(1)

Only one base array from each category (numeric and character) may be used in a p

In order to use memory allocated by the memory manager, the user merely needs
the base array with the correct offsetting index to a subprogram. For example, for
arrays NUMBAS and CHRBAS and indexes IP1 and IP2, a subroutine call would be

CALL SUBBIE (NUMBAS(IP1), CHRBAS(IP2))

Although the programmer is not restricted to using the allocated memory in subprog
only, the recommended usage for the memory manager is to allocate dynamic array
main program and then pass them to subroutines.

4.2 Basic Routines

The basic memory manager routines are those which are most commonly used and
little understanding of the internal workings of the utility.

4.2.1 Initialize (MDINIT/MCINIT)
The memory managermust be initialized with a calls to MDINIT and MCINIT before an
memory can be allocated. The main purpose of the initialization is to determine the
tion of the numeric and character base arrays in memory. MDINIT must be called
and MCINIT second. In the case where character dynamic memory is not used, MC
need not be called. When calling MxINIT, the user must pass (explicitly or implic
subscript 1 of the base array.

CALL MDINIT (NUMBAS(1))
CALL MCINIT (CHRBAS(1))

NUMBASINTEGER, LOGICAL or REAL Array or Array ElementRead Only This arra
is used as a base reference to all dynamically allocated numeric memory.

CHRBASCHARACTER\last 1 Array or Array ElementRead Only This array is used
base reference to all dynamically allocated character memory.
22

and an
torage

ray.
ave a

arison.

rray
 array
lied to

 Any
llocated
orage

eric

hich
d be of
cters

nsitive

 the
ls to
ssion

eric
4.2.2 Define Dynamic Array (MDRSRV/MCRSRV)
MxRSRV declares new dynamic arrays. The user specifies the space required,
index to the new space is returned. Note that, by default, the contents of the new s
are not initialized to any specific value. MxFILL may be used for data initialization.

CALL MDRSRV (NAME, NEWIDX, NEWLEN)
CALL MCRSRV (NAME, NEWIDX, NEWLEN)

NAMECHARACTER\last (\last)Read Only This is the name of the new dynamic ar
The memory manager will add this name to its internal dictionary; each array must h
unique name. The first eight characters beginning with a nonblank are used for comp
This comparison is case-insensitive and embedded blanks are significant.

NEWIDXINTEGERWrite Only This is the index to storage allocated to this dynamic a
relative to the base array. The index for numeric data is to be used with the numeric
supplied to MDINIT, and character data is to be used with the character array supp
MCINIT.

NEWLENINTEGERRead Only This is the length to be reserved for the new array.
nonnegative number is acceptable. A zero length does not cause any storage to be a
and returns an index equal to one. The value of NEWLEN is in terms of numeric st
units for numeric data and character storage units for character data.

4.2.3 Delete Dynamic Array (MDDEL/MCDEL)
MDDEL and MCDEL release the memory that is allocated to a dynamic array for num
and character storage, respectively.

CALL MDDEL (NAME)
CALL MCDEL (NAME)

NAMECHARACTER\last (\last)Read Only This is the name of the dynamic array w
is to be deleted. The array name must match an existing name in the dictionary an
the correct type (numeric or character) for the operation. The first eight chara
beginning with a nonblank are used for comparison. This comparison is case-inse
and embedded blanks are significant.

4.2.4 Reserve Memory Block (MDGET/MCGET)
MDGET and MCGET reserve a contiguous block of memory without associating
block of memory with an array. MxGET should be called prior to a series of cal
MxRSRV to improve efficiency and to reduce memory fragmentation. Further discu
of the operation of MxGET is found in section [Ref: sec:table] .

CALL MDGET (MNGET)
CALL MCGET (MNGET)

MNGETINTEGERRead only This specifies the desired contiguous block size in num
storage units for MDGET or character storage units for MCGET.
23

tem, if

eck-
o errors

ory

ntly
orage
torage
anager
.

rn sta-
called
ROR

sed to
cords
r the
d to
4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE)
MxGIVE causes the memory manager to return unused storage to the operating sys
possible. MDGIVE and MCGIVE are synonyms.

CALL MDGIVE ()
CALL MCGIVE ()

4.2.6 Obtain Statistics (MDSTAT/MCSTAT)
MxSTAT returns memory manager statistics. MxSTAT provides a method for error ch
ing, and thus should be used after other calls to the memory manager to assure n
have occurred. MDSTAT and MCSTAT are synonyms.

CALL MDSTAT (MNERRS, MNUSED)
CALL MCSTAT (MNERRS, MNUSED)

MNERRSINTEGERWrite Only This is the total number of errors detected by the mem
manager during the current execution.

MNUSEDINTEGERWrite Only This is the total number of storage units that are curre
allocated to dynamic arrays. MDSTAT returns the numeric storage in numeric st
units, and MCSTAT returns the character storage in character storage units. If any s
has been requested in the deferred mode and not yet allocated by the memory m
(Section [Ref: sec:wait]), this storage is counted as though it were actually allocated

4.2.7 Print Error Summary (MDEROR/MCEROR)
MxEROR prints a summary of all errors detected by the memory manager. The retu
tus of the last memory manager routine called is also printed. MxEROR should be
any time an error is detected by a call to MxSTAT. Table 1 lists the error codes. MDE
and MCEROR are synonyms.

Several of the error codes listed in Table 1are not a result of a user error, but are u
signal an internal error, or that an internal array is full. For example, the table which re
the names of the arrays allocated with MxRSRV may not be large enough fo
application. In this case, the memory manager subroutines must be modifie
accommodate the user. A local support person should perform this task.
CALL MDEROR (IUNIT)
CALL MCEROR (IUNIT)

IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

Table 1. Memory Manager Error Codes

ERROR CODES

1 SUCCESSFUL COMPLETION

2 UNABLE TO GET REQUESTED SPACE FROM SYSTEM

3 DATA MANAGER NOT INITIALIZED
24

age.
ec-

r
ager
the
tum
ce the
 (or
ory is

ew
r of
4.2.8 Enable data initialization (MDFILL/MCFILL)
MxFILL defines a fill/initialization pattern that is to be used for newly allocated stor
MDFILL and MCFILL are in effect until canceled by MDFOFF and MCFOFF, resp
tively. MDFILL and MCFILL operate independently.

CALL MDFILL (NUMDAT)
CALL MCFILL (CHRDAT)

NUMDATINTEGER, REAL or LOGICALRead Only This is the initialization datum fo
new storage allocated with MDRSRV or extended with MDLONG. The memory man
makes no attempt to identify the type (INTEGER, REAL, or LOGICAL) of either
initialization datum or of a newly allocated array. Instead, the bit of the initialization da
is stored without interpretation. This pattern is then used to initialize new storage. Sin
internal machine representation of REAL data is different than INTEGER data
LOGICAL data), the user may experience unexpected results when dynamic mem
used as a numeric type which is different from the type of the initialization datum.

CHRDATCHARACTER\last (\last)Read Only This is the initialization data for n
storage allocated with MCRSRV or extended with MCLONG. Only the first characte
CHRDAT is used.

4 DATA MANAGER WAS PREVIOUSLY INITIALIZED

5 NAME NOT FOUND IN DICTIONARY

6 NAME ALREADY EXISTS IN DICTIONARY

7 ILLEGAL LENGTH REQUEST

8 UNKNOWN DATA TYPE

9 * DICTIONARY IS FULL

10 * VOID TABLE IS FULL

11 * MEMORY BLOCK TABLE IS FULL

12 * OVERLAPPING VOIDS - INTERNAL ERROR

13 * OVERLAPPING MEMORY BLOCKS - INTERNAL ERROR

14 * INVALID MEMORY BLOCK - EXTENSION LIBRARY ERROR

15 INVALID ERROR CODE

16 INVALID INPUT NAME

17 ILLEGAL CALL WHILE IN DEFER MODE

18 NAME IS OF WRONG TYPE FOR OPERATION

*These are not user errors

Table 1. Memory Manager Error Codes

ERROR CODES
25

data,

rested
ry, but

ray
E is

first
s case-

 first
ison is
4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF)
MDFOFF and MCFOFF cancel the data initialization for numeric and character
respectively. MDFOFF and MCFOFF operate independently.

CALL MDFOFF ()
CALL MCFOFF ()

4.2.10 Basic Example
 DIMENSION BASE(1)
 CHARACTER*1 CBASE(1)
 CALL MDINIT (BASE(1))
 CALL MCINIT (CBASE(1))
 CALL MDGET (20)
 CALL MDFILL (0.)
 CALL MCFILL (’Z’)
 CALL MDRSRV (’FIRST’, I1, 10)
 CALL MDRSRV (’SECOND’, I2, 10)
 CALL MCRSRV (’THIRD’, I3, 10)
 CALL MDDEL (’SECOND’)
 CALL MDGIVE ()
 CALL MDSTAT (MNERRS, MNUSED)
 IF (MNERRS .NE. 0) THEN
 CALL MDEROR (6)
 STOP
 END IF
 CALL SUBPRG (BASE(I1), CBASE(I3))

4.3 Advanced Routines

The advanced routines are supplied to give added capability to the user who is inte
in more sophisticated manipulation of memory. These routines are never necessa
may be very desirable.

4.3.1 Rename Dynamic Array (MDNAME/MCNAME)
MxNAME renames a dynamic array from NAME1 to NAME2. The location of the ar
is not changed, nor is its length. MDNAME is used for numeric arrays and MCNAM
used for character arrays.

CALL MDNAME (NAME1, NAME2)
CALL MCNAME (NAME1, NAME2)

NAME1CHARACTER\last (\last)Read Only This is the old name of the array. The
eight characters after the first nonblank are used for comparison. This comparison i
insensitive and embedded blanks are significant.

NAME2CHARACTER\last (\last)Read Only This is the new name of the array. The
eight characters starting from a nonblank are used for the new name. This compar
case-insensitive and embedded blanks are significant.
26

te the
n. The
 array
acter

hich

eric

utine
rticu-
char-

o be

er’s
 used as
rror

 or

 array
ulated
ill
 are
4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG)
MxLONG changes the length of a dynamic array. The memory manager will reloca
array and move its data if storage cannot be extended at the array’s current locatio
user should assume that MxLONG invalidates the previous index to this array if the
is extended. MDLONG is used for numeric arrays and MCLONG is used for char
arrays.

CALL MDLONG (NAME, NEWIDX, NEWLEN)
CALL MCLONG (NAME, NEWIDX, NEWLEN)

NAMECHARACTER\last (\last)Read Only This is the name of the dynamic array w
the user wishes to extend or shorten.

NEWIDXINTEGERWrite Only This is the new index to the dynamic array.

NEWLENINTEGERRead Only This is the new length for the dynamic array in num
storage units for MDLONG and in character storage units for MCLONG.

4.3.3 Locate Dynamic Array (MDFIND/MCFIND)
MxFIND returns the index and length of storage allocated to a dynamic array. This ro
would be used if the index from an earlier call to MxRSRV was not available in a pa
lar program segment. MDFIND is used for numeric arrays and MCFIND is used for
acter arrays.

CALL MDFIND (NAME, NEWIDX, NEWLEN)
CALL MCFIND (NAME, NEWIDX, NEWLEN)

NAMECHARACTER\last (\last)Read Only This is the name of the dynamic array t
located.

NEWIDXINTEGERWrite Only This is the index to the dynamic array relative to the us
reference array. Because an index can take any value, the returned value cannot be
an indication of success or failure of MxFIND. MxSTAT should always be used for e
checking.

NEWLENINTEGERWrite Only This is the length of the dynamic array in numeric
character storage units for MDFIND and MCFIND, respectively.

4.3.4 Compress Storage (MDCOMP/MCCOMP)
MxCOMP causes fragmented memory to be consolidated. Note that this may cause
storage locations to change. It is important to realize that all indexes must be recalc
by calling MxFIND after a compress operation. A call to MxCOMP prior to MxGIVE w
result in the return of the maximum memory to the system. MDCOMP and MCCOMP
synonyms.

CALL MDCOMP ()
CALL MCCOMP ()
27

d for a
ation

hes

alue.

 be

yn-

ious

, any
 not

 satis-
NG
yn-

call to
 fact,
 array

entually
ed by
4.3.5 Error Flag Query (MDERPT/MCERPT)
MxERPT requests the memory manager to report the number of errors accumulate
particular error flag. A programmer may use this to determine more detailed inform
than what is available from MxSTAT. MDERPT and MCERPT are synonyms.

CALL MDERPT (IFLAG, NERRS)
CALL MCERPT (IFLAG, NERRS)

IFLAGINTEGERRead Only IFLAG specifies the flag number for which the user wis
an error count. A list of the error flags can be printed by calling MxEROR.

NERRSINTEGERWrite Only NERSS will contain the error count.

4.3.6 Modify Error Count (MDEFIX/MCEFIX)
MxEFIX allows the error count for a particular error flag to be set to a specified v
MDEFIX and MCEFIX are synonyms.

CALL MDEFIX (IFLAG, NERRS)
CALL MCEFIX (IFLAG, NERRS)

IFLAGINTEGERRead Only IFLAG specifies the number of the error flag which will
set. See Table [Ref: tab:ecode] for a list and description of these flags.

NERRSINTEGERRead Only NERRS is the new value for the error count.

4.3.7 Report Last Error (MDLAST/MCLAST)
MxLAST requests the flag number of the last error. MDLAST and MCLAST are s
onyms.

CALL MDLAST (IFLAG)
CALL MCLAST (IFLAG)

IFLAGINTEGERWrite Only IFLAG is the number of the last error caused by a prev
call to the memory manager.

4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT)
MxWAIT enables the deferred memory mode of the memory manager. In this mode
requests for additional memory with MxRSRV are satisfied only if a system call is
required. If a system call is required, the request for memory is deferred and will be
fied when the deferred mode is canceled by calling MxEXEC or a call to MxLO
requires a system call for memory for an existing array. MDWAIT and MCWAIT are s
onyms.

Because the deferred mode may not actually provide array space at the time a
MxRSRV is made, the base array pointer returned by MxRSRV may not be valid. In
for a deferred request, an invalid index is intentionally returned so that the requested
space cannot be erroneously used. When the deferred memory requests are ev
satisfied (by calling MxEXEC), the indexes are automatically, asynchronously updat
28

 will

ng calls
 by
dding
cated
.

ile the

call to
celed.

ated.

y be
uring

nits

nits

cter
e for
the memory manager. Thus, upon return from MxEXEC the indexes used in MxRSRV
have a valid value.

The deferred mode is provided as a means of reducing the sometimes time-consumi
to the operating system for new memory. A similar efficiency could be realized
judicious use of MxGET, but the deferred mode relieves the user of the burden of a
all memory requests before calling MxRSRV. The deferred mode is a sophisti
capability and should not be enabled if the user does not understand its implications

The deferred mode must be used as follows:

1. The deferred mode begins with a call to MxWAIT.

2. Except for MxPRNT, all memory manager calls are permissible in the deferred mode.

3. Indexes returned by MxRSRV, MxFIND, and MxLONG may not be assigned to other variables wh
deferred mode is in effect.

4. Dynamic memory may not be accessed while the deferred mode is in effect.

5. The deferred mode is canceled by calling MxEXEC.
CALL MDWAIT ()
CALL MCWAIT ()

4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC)
MxEXEC causes all deferred mode memory requests to be satisfied with a single
the operating system for the required memory. The deferred mode is also can
MDEXEC and MCEXEC are synonyms.

After returning from MxEXEC, all indexes to array space which was deferred are upd
CALL MDEXEC ()
CALL MCEXEC ()

4.3.10 Report storage information (MDMEMS/MCMEMS)
MxMEMS reports numeric or character storage information. This information ma
useful for planning storage strategies during code development and for flow control d
code execution.

CALL MDMEMS (NSUA, NSUD, NSUV, NSULV)
CALL MCMEMS (NSUA, NSUD, NSUV, NSULV)

NSUAINTEGERWrite Only NSUA is the number of numeric/character storage u
currently allocated and not deferred.

NSUDINTEGERWrite Only NSUD is the number of numeric/character storage u
currently deferred.

NSUVINTEGERWrite Only NSUV is the amount of void space in numeric or chara
storage units. Note that MDMEMS and MCMEMS may be reporting the same spac
NSUV, but in different units.
29

 or
same

nt of a
ept as

[Ref:

ly.

d.

to be
red

uped
R\last

racter

 time an
e only
syn-
NSULVINTEGERWrite Only NSULV is the size of the largest void space in numeric
character storage units. Note that MDMEMS and MCMEMS may be reporting the
space for NSULV, but in different units.

4.4 Development Aids

The routines in this section are designed to aid the programmer during developme
program, and probably would not be used during execution of a mature program, exc
a response to a memory manager error.

4.4.1 List Storage Tables (MDLIST/MCLIST)
MxLIST prints the contents of the memory manager’s internal tables. Section
sec:table] describes these tables. MDLIST and MCLIST are synonyms.

CALL MDLIST (IUNIT)
CALL MCLIST (IUNIT)

IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

4.4.2 Print Dynamic Array (MDPRNT/MCPRNT)
MxPRNT prints the contents of an individual numeric and character array, respective

CALL MDPRNT (NAME, IUNIT, TYPE)
CALL MCPRNT (NAME, IUNIT, NGRUP)

NAMECHARACTER\last (\last)Read Only This is the name of the array to be printe

IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

TYPECHARACTER\last (\last)Read Only TYPE indicates the data type of the data
printed; "R" for REAL, or "I" for INTEGER. Note that this is not necessarily the decla
type of the base array.

NGRUPINTEGERRead Only NGRUP controls the number of characters that are gro
together without intervening spaces. Since the storage is declared as a CHARACTE
1 array, NGRUP allows the user to format the output consistent with longer cha
strings.

4.4.3 Debug Printing (MDDEBG/MCDEBG)
Debug printing causes error messages to be printed by the memory manager at the
error is detected. The default is no debug printing — errors are detected, but ar
reported when requested by MxSTAT and MxERPT. MDDEBG and MCDEBG are
onyms.

CALL MDDEBG (IUNIT)
CALL MCDEBG (IUNIT)
30

rns
inted
IUNITINTEGERRead Only IUNIT controls debug printing. A negative or zero value tu
debug printing off. A positive value of IUNIT will cause any error messages to be pr
to FORTRAN unit number IUNIT.
31

Intentionally Left Blank
32

ystem
ten-
om a
ns of
e, the

des on
More-
reduce
PES
pport;
FOR-

eria:

ble on

ed to
at the
ftware
ystem
ty of a
h C
lowing
5 EXTENSION LIBRARY

The SUPES Extension Library provides a uniform interface to necessary operating s
functions which are not included in the ANSI FORTRAN-77 standard. While the Ex
sion Library itself is implemented in the C programming language, the interface fr
FORTRAN calling program is implemented in the same manner as in previous versio
SUPES [SUPES]. Thus, in the sections below which describe the calling sequenc
calls are defined accordingly. This package makes it possible to maintain many co
different operating systems with a single point of support for system dependencies.
over, this maintenance is done via a single set of source files which should not only
the time involved in bookkeeping, but allow for the procedures for building a SU
library to be codified as well. These routines provide very basic operating system su
they are not intended to implement clever features of a favorite system, to make
TRAN behave like a more elegant language, or to improve execution efficiency.

Each module included in the SUPES Extension Library must satisfy the following crit

1. The routine must provide a service which is beneficial to a wide range of users.

2. This task cannot be accomplished via standard FORTRAN.

3. This capability must be generic to scientific computers. Extension library routines must be supporta
virtually any system.

The SUPES Extension Library routines are designed to minimize the effort requir
implement this software on a new operating system. This is especially true given th
current single set of source files handle a variety of system architectures and so
configurations, making those files useful as starting points for a new port. Operating s
dependencies have been isolated at the lowest possible level with the major difficul
specific port being that of supplying the proper FORTRAN interface with eac
subprogram module. To make the above comments more concrete, consider the fol
section of code excerpted from the source fileexdate.c :
 #include <errno.h>

 #if defined (unix)
 # if defined (alliant)

 # include <sys/types.h>
 # include <sys/time.h>
 exdate_(string) /* Sadly, on the Alliant, */
 /* strings are not passed */
 /* similar to the SUN. */
 char *string;

 # endif /* Alliant */
 # if defined (sun)

 # include <sys/time.h>
 exdate_(string, len)
 char *string;
33

h
uld be

each
erently.
rrectly
of the
en the
ult the
ch

at are
 long len;

 # else /* Not Sun */
 # if defined (CRAY)

 # include <sys/types.h>
 # include <time.h>
 # include <fortran.h>
 EXDATE(string)
 _fcd string;

 # endif /* Unicos */
 # endif /* Sun */
 #else /* Not UNIX */
 # if defined (VMS)

 #include time
 #include descrip
 exdate(string)
 struct dsc$descriptor_s *string; /* We know that the VAX
saves */
 /* FORTRAN char arrays */
 /* as descriptors. */

 # else /* not VMS */
 # endif /* VMS */
 #endif /* UNIX */

The passages beginning with#if defined query the system at compile time throug
the use of a pre-processor to determine the hardware/software configuration. It sho
obvious that the FORTRAN-C interfacing is a nontrivial step. Specifically, note how
machine defines the module name, as well as the argument types in some cases, diff
One must exercise a great deal of caution, when attempting to implement a port, to co
predict how this step is to done. It is hoped that the examples provided in the form
source files will give the necessary hints at where to start on such a venture. Oft
appropriate symbols are defined automatically. To find out which one’s are, just cons
compiler and pre-processor (cpp) documentation for your particular application. On ea
of the machines listed, the call is invoked via the uniform FORTRAN call:
CALL EXDATE(STRING)

5.1 User Interface Routines

This section prescribes the calling sequence for FORTRAN Extension routines th
meant to be called directly from application programs.

5.1.1 Get Today’s Date (EXDATE)
CALL EXDATE(STRING)
34

re
ar,

re
and

e is
sures

”.

.

, an
.

.

ect
s topic,

emory
nt of
ine,
umber

 RECL
is the
UM *
STRINGCHARACTER\last 8Write Only Current date formatted as “MM/DD/YY” whe
“MM”, “DD”, and “YY” are two digit integers representing the month, day, and ye
respectively. For example, “07/04/86” would be returned on July 4, 1986.

5.1.2 Get Time of Day (EXTIME)
CALL EXTIME(STRING)

STRINGCHARACTER\last 8Write Only Current time formatted as “HH:MM:SS” whe
“HH”, “MM”, and “SS” are two digit integers representing the hour (00-24), minute,
second, respectively. For example, “16:30:00” would be returned at 4:30 PM.

5.1.3 Get Accumulated Processor Time (EXCPUS)
CALL EXCPUS(CPUSEC)

CPUSECREALWrite Only Accumulated CPU time in seconds. The base tim
undefined; only relative times are valid. This is an unweighted value which mea
performance rather than cost.

5.1.4 Get Operating Environment Parameters (EXPARM)
CALL EXPARM(HARD,SOFT,MODE,KCSU,KNSU,IDAU)

HARDCHARACTER\last 8Write Only System Hardware ID. For example, “CRAY-1/S

SOFTCHARACTER\last 8Write Only System Software ID. For example, “COS 1.11”

MODEINTEGERWrite Only Job mode: 0 = batch, 1=interactive. For this purpose
interactive environment means that the user can respond to unanticipated questions

KCSUINTEGERWrite Only Number of character storage units per base system unit

KNSUINTEGERWrite Only Number of numeric storage units per base system unit.

IDAUINTEGERWrite Only Units of storage which define the size of unformatted dir
access I/O records: 0 = character, 1 = numeric. (For a more in-depth discussion of thi
the reader is referred to the VAX FORTRAN manual, section 13.1.21.)

The ANSI FORTRAN standard defines a character storage unit as the amount of m
required to store one CHARACTER element. A numeric storage unit is the amou
memory required to store one INTEGER, LOGICAL, or REAL element. For this rout
a base system unit is defined as the smallest unit of memory which holds an integral n
of both character and numeric storage units.

The last three parameters above can be used to calculate the proper value for the
specifier on the OPEN statement for a direct access I/O unit. For example, if NUM
number of numeric values to be contained on a record and IDAU=0, set RECL = (N
(KCSU + KNSU-1)) / KCSU.
35

the
ill be

tes

it/file
tion of
EN

ssages
 code

S free
 not
Ref:

ase
ntable
5.1.5 Get Unit File Name or Symbol Value (EXNAME)
CALL EXNAME(IUNIT,NAME,LN)

IUNITINTEGERRead Only Unit number if IUNIT > 0, or symbol ID if IUNIT≤ 0.

NAMECHARACTER\last (\last)Write Only File name or symbol value obtained from
operating system. It is assumed that the unit/file name or symbol/value linkage w
passed to this routine at program activation.

LNINTEGERWrite Only Effective length of the string returned in NAME. Zero indica
that no name or value was available.

This routine provides a standard interface for establishing execution time un
connection on operating systems (such as CTSS) which do not support pre-connec
FORTRAN I/O units. The returned string is used with the FILE specifier in an OP
statement, as in the following example.
 CALL EXNAME(10,NAME,LN)
 OPEN(10,FILE=NAME(1:LN),...)

The symbol mode of this routine provides a standard path through which to pass me
at program activation. An example use is identifying the target graphics device for a
which supports multiple devices.

5.2 Utility Support Routines

The routines prescribed in this section are intended primarily to support the SUPE
field input and memory manager utilities. While calling these routines directly will
disturb the internal operation of these other facilities, the use of EXMEMY (section [
sec:exmemy]) in conjunction with the memory manager is discouraged.

5.2.1 Convert String to Uppercase (EXUPCS)
CALL EXUPCS(STRING)

STRINGCHARACTER\last (\last)Read and Write Character string for which lowerc
letters will be translated to uppercase. All other characters which are not in the pri
ASCII character set are converted to spaces.

5.2.2 Prompt/Read/Echo Input Record (EXREAD)
CALL EXREAD(PROMPT,INPUT,IOSTAT)

PROMPTCHARACTER\last (\last)Read Only Prompt string.

INPUTCHARACTER\last (\last)Write Only Input record from standard input device.

IOSTATINTEGERWrite Only ANSI FORTRAN I/O status:
IOSTAT < 0 End of File
36

ase,
prefix.

ss

ress

EQ

ck.
Only
Y.

its.

age
t the

ward.

ture.
AN.
as
IOSTAT = 0 Normal

IOSTAT > 0 Error

This routine will prompt for input if the standard input device is interactive. In any c
the input line will be echoed to the standard output device with the prompt string as a

5.2.3 Evaluate Numeric Storage Location (IXLNUM)
NUMLOC = IXLNUM(NUMVAR)

NUMVARINTEGER or REALRead Only Any numeric variable.

NUMLOCINTEGERWrite Only Numeric location of NUMVAR. This value is an addre
measured in ANSI FORTRAN numeric storage units.

5.2.4 Evaluate Character Storage Location (IXLCHR)
CHRLOC = IXLCHR(CHRVAR)

CHRVARCHARACTERRead Only Any character variable.

CHRLOCINTEGERWrite Only Character location of CHRVAR. This value is an add
measured in ANSI FORTRAN character storage units.

5.2.5 Get/Release Memory Block (EXMEMY)
CALL EXMEMY(MEMREQ,LOCBLK,MEMRTN)

MEMREQINTEGERRead Only Number of numeric storage units to allocate if MEMR
> 0, or release if MEMREQ < 0.

LOCBLKINTEGERRead (release) or Write (allocate) Numeric location of memory blo
This value is an address measured in ANSI FORTRAN numeric storage units.
memory previously allocated to the caller via EXMEMY can be released via EXMEM

MEMRTNINTEGERWrite Only Size of memory block returned in numeric storage un

In allocate mode, MEMRTN < MEMREQ indicates that a sufficient amount of stor
could not be obtained from the operating system. MEMRTN > MEMREQ indicates tha
operating system rounded up the storage request.

In release mode, memory will always be released from the high end of the block down
MEMRTN = 0 indicates that the entire block was returned to the operating system.

5.3 Skeleton Library

The Skeleton Library is an integral part of the SUPES Extension Library architec
Each library module has a skeleton version which is written in fully standard FORTR
These routines are operational, thoughnot functional. The skeleton routines can serve
37

stem.
riod so
ry.

ed to
vides
uences
arly

e, and

ool
temporary placeholders for use when developing the Extension Library on a new sy
Such an approach allows one to achieve interim support during the development pe
that the functional version of each module can be developed individually, if necessa

Application codes which call SUPES Extension Library routines should be structur
work with the Skeleton Library, albeit at a reduced level, whenever possible. This pro
a consistent migration path for supporting these codes on a new system. The conseq
of skeletal support for the Extension Library on higher level SUPES utilities is cle
documented in this report.

5.3.1 Skeleton Routine Specifications
The results produced by each Skeleton Library module are prescribed below.

1. EXDATE returns the string “00/00/00”.

2. EXTIME returns the string “00:00:00”.

3. EXCPUS returns zero.

4. EXPARM returns blank strings for hardware and software IDs, a zero which indicates batch mod
unity for the three storage parameters.

5. EXNAME returns a null string; the result string is undefined and the length returned is zero.

6. EXUPCS converts all non-ANSI characters to spaces.

7. EXREAD simply reads from the standard input device.

8. IXLNUM returns unity.

9. IXLCHR returns unity.

10. EXMEMY allocates memory from the named COMMON block /EXTLIB/. The size of this static p
defaults to 1024, but can be changed by modifying a PARAMETER statement.
38

e the
conse-
on of

 [Ref:
 and
ard

only
[Ref:

o call

only
echo

ystem
ithin

hase.

ks. A

lows.

he max-

uation
6 SUPPORT PROGRAMMER’S GUIDE

This chapter documents the internal architecture for SUPES. It is intended to guid
maintenance of SUPES and support of SUPES on new operating systems. The
quences of using the Skeleton FORTRAN extension library on the internal operati
SUPES is fully discussed.

6.1 Free Field Input

The SUPES free field input system consists of four subroutines: FREFLD (section
sec:frefld]), FFISTR (section [Ref: sec:ffistr]), GETINP (section [Ref: sec:getinp]),
STRIPB (section [Ref: sec:stripb]). All of these routines are written in fully stand
ANSI FORTRAN.

FREFLD calls the extension library routine EXUPCS (section [Ref: sec:exupcs]). If
the skeleton version of EXUPCS is available, case insensitivity of input data (rule
itm:case] of section [Ref: sec:syntax]) can not be guaranteed.

FFISTR is the input line parsing routine. It is called by FREFLD, but the user is free t
it independently. The input line may be of arbitrary length.

GETINP calls the extension library routine EXREAD (section [Ref: sec:exread]). If
the skeleton version of EXREAD is available, GETINP will not prompt nor guarantee
when reading from the standard input device (KIN = 0).

6.1.1 Implementation Notes on FREFLD
This section contains a basic outline of the internal operation of the free field input s
and other supplemental information. More complete documentation is contained w
the code itself.

FREFLD is organized into five phases:

1. All the output arrays are initialized to their default values.

2. The next input record is obtained via GETINP. Processing of a continuation line begins with this p

3. The effective portion of the input line is isolated by stripping any comment and leading/trailing blan
flag is set if a continuation line is to follow this record.

4. All field separators are made uniform. This phase streamlines the main processing loop which fol

5. Successive fields are extracted, translated, and categorized until the input line is exhausted. After t
imum number of fields is reached, fields are counted but not processed further.

Upon leaving the main translation loop, the routine is restarted at phase 2 if the contin
flag is set.

The only errors returned by FREFLD are any returned from GETINP.
39

 to
 data

valid
s may
s are

AN
LD to
fting

nput
 (e.g.,

n). This
rating
s pro-
rksta-
A data field is left-justified to define a CHARACTER value, but must be right-justified
obtain a numeric value. An internal READ is used to decode a numeric value from a
field. FREFLD relies upon the IOSTAT specifier to determine if the field represents a
numeric format; this presents the possibility that some non-standard numeric string
be interpreted inconsistently by various operating systems. Default numeric value
overwritten if and only if IOSTAT indicates a valid translation.

CHARACTER data manipulation tends to be the area of lowest reliability for FORTR
compilers, especially with supercomputers. An attempt was made in coding FREF
minimize the risk of triggering compiler bugs by manipulating pointers rather than shi
CHARACTER strings.

6.1.2 Test Program for FREFLD
A simple test program which calls FREFLD is included with the SUPES free field i
system. FREFLD is instructed to digest data entered via the standard input device
keyboard), then the results are dumped to the standard output device (e.g., scree
program should always be run to verify proper operation of FREFLD on a new ope
system or compiler. Application programmers are encouraged to experiment with thi
gram to learn what to expect from FREFLD. A sample session from a Sun 4/60 Wo
tion follows:

% ffrtest <-- At the system prompt, enter the program name.
 1: This is an example <-- At the SUPES prompt, the user enters a line,
etc.
 NFIELD = 4
 I KV(I) CV(I) RV(I) IV(I)
 1 0 "THIS " 0. 0
 2 2 "IS " 0. 0
 3 0 "AN " 0. 0
 4 0 "EXAMPLE " 0. 0
 5 -1 " " 0. 0
 2: Another line = example.
 NFIELD = 3
 I KV(I) CV(I) RV(I) IV(I)
 1 0 "ANOTHER " 0. 0
 2 0 "LINE " 0. 0
 3 0 "EXAMPLE. " 0. 0
 4 -1 " " 0. 0
 5 -1 " " 0. 0
 3: This is a further 3.e5
 NFIELD = 6
 I KV(I) CV(I) RV(I) IV(I)
 1 0 "THIS " 0. 0
 2 2 "IS " 0. 0
 3 2 "A " 0. 0
 4 0 "FURTHER " 0. 0
 5 2 "3.E5 " 3.000E+05 300000
 4: exit
 NFIELD = 1
 I KV(I) CV(I) RV(I) IV(I)
 1 0 "EXIT " 0. 0
40

sump-
y man-

emory

een
 become
emory

rrays
us

ary is
) are

 eight
gth of

 the

is loca-

 the
ill be
 2 -1 " " 0. 0
 3 -1 " " 0. 0
 4 -1 " " 0. 0
 5 -1 " " 0. 0
 5: ^C <-- To exit, the user enters a ^C.
%

6.2 Memory Manager

This section includes details of the internal operations of the memory manager, as
tions used in the memory manager, and details on the implementation of the memor
ager on systems which do not support the extension library.

6.2.1 Table Architecture and Maintenance
The bookkeeping for the memory manager is accomplished with three tables; a m
block table, a void area table, and a dictionary.

Thememory block table maintains a record of contiguous blocks of memory that have b
received from the operating system. If a series of requests causes separate blocks to
contiguous, these blocks are joined. The beginning location and length of each m
block is recorded, and the table is sorted in location order.

Within each memory block, sections of memory that are not currently allocated to a
are recorded in thevoid area table. As in the case of the memory block table, contiguo
voids are joined and this table is sorted in location order.

Thedictionary relates storage locations with eight character array names. The diction
sorted via the default FORTRAN collating sequence. All characters (including blanks
significant. All names are converted to upper case then blank filled or truncated to
characters. In addition to the array name, the dictionary stores the location and len
each dynamic array.

Any call for memory (MDGET or MDRSRV) will be satisfied in one of two ways:

1. If a void of sufficient size is available, then this void will be used for the new array (MDRSRV). In
case of MDGET, no further action is taken.

2. An extension library call (EXMEMY) is made to get more memory from the system.

A request to extend an array (MDLONG) is satisfied in one of three ways:

1. If a void of sufficient size exists at the end of the array, then this space is allocated to the array.

2. If a void large enough for the extended array exists elsewhere in memory, the array is moved to th
tion. Note that the data is actually shifted and the pointer is updated.

3. An extension library call (EXMEMY) is made to get more memory from the system.

A call to MDCOMP will cause all arrays within each memory block to be moved to
lower addresses (pointers) within that memory block. Thus, all voids in the block w
joined at the end of the block.
41

d of
ons of
ory

d on
:

by MD-

 array to

anta-
ynamic
 man-
ate the

ble,

tently

DINIT,

st pro-
 mem-
on of
corre-
m fol-
A call to MDGIVE will attempt to return memory to the system. Only voids at the en
a memory block are subject to this attempt, and the system may accept only porti
these. Thus a call to MDCOMP followed by MDGIVE will release the maximum mem
to the system.

6.2.2 Non-ANSI FORTRAN Assumptions
Although the memory manager is written in standard FORTRAN-77, it does depen
some assumptions which are not part of the ANSI standard. These assumptions are

1. The contents of a word are not checked nor altered by an INTEGER assignment. Data is moved
LONG or MDCOMP as INTEGER variables.

2. Strong typing is not enforced between dummy and actual arguments. This allows the same base
pass storage to any INTEGER, REAL, or LOGICAL array.

3. Array bounds are not enforced. Thus, any value is a valid subscript for the base array.

4. All dynamically allocated memory must remain fixed in relation to the base array.

6.2.3 Standard FORTRAN Implementation
If an installation does not yet support the extension library, it is still possible and adv
geous to use the memory manager. In this case, the memory manager will act as a d
allocator of static (already dimensioned) memory. Codes which employ the memory
ager therefore do not need to be rewritten, and codes under development can anticip
implementation of the extension library.

When the subprograms IXLNUM or EXMEMY of the extension library are not availa
the following steps must be taken before using the memory manager:

1. Install the skeleton version of the extension library (Section [Ref: sec:skel]).

2. Alter the memory manager subroutine MDINIT as follows:

ORIGINAL

DIMENSION MYV(1)

ALTERED
PARAMETER (MAXSIZ=1024)
COMMON /EXTLIB/ MYV(MAXSIZ)

3. Put the base vector in the user’s program in the COMMON block EXTLIB and dimension it consis
with the COMMON blocks in EXMEMY and MDINIT.

4. If more than 1024 numeric storage units are required, change the parameter statement in M
EXMEMY and the user’s program.

6.2.4 Test Program
In order to aid the installation of the memory manager at a new site, an interactive te
gram has been written which allows the user to exercise each of the features of the
ory manager and insure that it is operating properly. While the proper implementati
the memory management test program requires an in-depth examination of the
sponding source file, a short test run on a Cray running the UNICOS operating syste
lows (comments are included after an arrow,<--):

% memtest <-- At the system prompt, enter program name.
42

a firm
 Since
proce-
. This
imple-

sophy
ally,
ble in
FUNC: mdinit <-- At the SUPES prompt, the user enters a string, etc.
FUNC: mcinit
FUNC: mdwait
FUNC: mdrsrv real1 108
 POINTER: -65733
FUNC: mcrsrv char 850
 POINTER: -532696
FUNC: mdrsrv real2 108
 POINTER: -65733
FUNC: mdexec
 POINTER BEFORE -65733
 POINTER AFTER 17879 <-- Having the pointer updated is vital!
FUNC: mdlist
 **
0 * * * * * * * D I C T I O N A R Y * * * * * * *
0 NUMERIC CHARACTER
 NAME LOCATION LENGTH LENGTH
 1 CHAR 17664 107 850
 2 REAL1 17771 108 -1
 3 REAL2 17879 108 -1
0 TOTAL 323 850
0 * * * V O I D T A B L E * * *
0 LOCATION LENGTH
 1 17987 61
0 TOTAL 61
 **
0 * * * * * * O R D E R E D L I S T * * * * * *
0 NUMERIC CHARACTER
 NAME LOCATION LENGTH LENGTH
 1 CHAR 17664 107 850
 2 REAL1 17771 108 -1
 3 REAL2 17879 108 -1
 4 17987 61
 BLOCK SIZE 384 850
 ALLOCATED TOTAL 384 850
 GRAND TOTAL 384 850
FUNC: exit
 STOP in MEMTEST
%

6.3 Extension Library Implementation

Implementing the SUPES extension library on a new operating system requires
understanding of that system, but should not require a great deal of programming.
the package is by definition system dependent, it is impossible to predict the exact
dure which will be required to implement these routines on a given operating system
section provides some general guidelines and hints compiled from experience in
menting the package on several very different systems.

As has been mentioned previously, this version represents a change in philo
regarding the procedure for implementing a port of the extension library. Specific
many of the features of the extension library require a richer data type than is availa
43

r the
uage.
UPES
hines.

machine

now be
endent
s to be

 should

the
utines
ovided
SS
de

ack of

ted in

ard
ls for

 of
h these

y a
UPES

sired
 In any
ANSI FORTRAN 77. For example, the requirement to do pointer assignment fo
memory management made it desirable to utilize a more flexible programming lang
The language chosen was C . A direct consequence of this is that the entire S
extension library is now coded in a single set of source files across all supported mac
Among the advantages are:

1. It reduces the amount of bookkeeping that is necessary to maintain the library across a number of
architectures at a given site,

2. It now allows for a codified approach to building the library on any given machine, and finally,

3. It permits one to use the current source as an example for a future port.

Of course, these advantages do come at a cost. The FORTRAN–C interface must
handled at the source level in the extension library. This is an extremely system dep
area. However, most systems do allow for such a scenario, and, accordingly, it tend
documented quite extensively.

The code should be well commented and references to appropriate system manuals
be included.

The original FORTRAN version of the skeleton library will continue to be part of
distribution. To use them, it is recommended that one start with the skeleton library ro
and gradually add system dependent code to provide full capability. Examples are pr
in the distribution in the form of the original source code for VAX/VMS and Cray CT
with the CFTLIB FORTRAN run-time library. In fact, for the latter case that co
represents the only method of implementation of SUPES. This is entirely due to the l
a suitable FORTRAN-C interfacing scheme under that system.

If this is the desired plan, it is suggested that extension library modules be implemen
the following order:

1. EXUPCS. The skeleton version should be sufficient.

2. EXTIME, EXDATE, EXCPUS, IXLNUM, and EXPARM. These routines are generally straightforw
and can be accomplished simply with the aid of the FORTRAN and/or C Run Time Library manua
the particular operating system.

3. EXREAD, EXNAME, EXMEMY, and IXLCHR. These routines require a more intimate knowledge
the operating system. A substantial set of system documentation may be required to accomplis
tasks.

6.3.1 Implementation Notes for Modules
The format of the date forEXDATE must be strictly observed. Many systems suppl
date service routine which formats the date in a different style. Conversion to the S
format should be straightforward.

Most systems provide a time of day service routine which formats the time in the de
style. Some systems also return fractional seconds which can easily be trimmed off.
case, the format specified byEXTIME must be strictly observed.
44

ned by
ld be

 of
ake

uch as
ght
. For
PES

NSU
ross

r the

er
it to a
upport

m the
ol is a

 the
coding
ing

wer

ut is
t. For
m a

ld be
ith the
EXCPUS is intended to measure performance rather than cost. The quantity retur
EXCPUS should be raw CPU seconds; any weighting for memory use or priority shou
removed. I/O time should be included only if it is performed by the CPU.

The hardware ID string forEXPARM should reflect both the manufacturer and model
the processor. For example, “VAX 8600” rather than just “VAX” allows the user to m
sense of the CPU time returned by EXCPUS.

The software ID string should reflect the release of the operating system in use, s
“COS 1.11”. It is not a trivial exercise to provide all pertinent information in ei
characters for ad hoc systems like CTSS which vary widely between installations
example, the string “CFTLIB14” has been used to indicate a variation of the SU
package for CTSS using CFTLIB and the CFT 1.14 compiler.

On most systems KCSU will give the number of characters per numeric word and K
will be unity. For a hypothetical 36-bit processor which allows 8-bit characters to c
word boundaries, KCSU=9 and KNSU=2 would define the storage relationship.

The proper value for IDAU should always be indicated in the reference manual fo
compiler where it discusses Unformatted Direct Access files.

The unit/file mode ofEXNAME should follow as closely as possible to whatev
convention the particular operating system uses for connecting a FORTRAN I/O un
file at execution time. This feature should be easy to implement on systems which s
pre-connection. Support for units 1-99 should be sufficient.

The symbol mode feature of EXNAME should be designed to obtain messages fro
system level procedure which activates the program. Eight characters per symb
reasonable limit. Support for symbols 0-7 should be adequate.

Support for EXNAME not only requires coding the routine itself, but also designing
system procedure level interface. This interface should always be designed before
EXNAME. It should fit as cleanly as possible into normal techniques for writ
procedures for the system.

The skeleton version ofEXUPCS is designed to work on any system which supports lo
case letters. This routine will rarely require any change.

EXREAD must provide a prompt for an interactive device and guarantee that inp
echoed. This requires a careful determination of the current execution environmen
example, EXREAD must be able to handle input from a script file as well as fro
terminal. Any automatic echo service provided by the operating system shou
employed wherever possible, as long as the user supplied prompt appears along w
input data echo.
45

ng the
meric
tes to
ress as

ary
 latest

brary.
 sizes
ory is
e) to

ated.
of in a
emory

ilable.
ation.
hould
 (with

which

UPES

.

In all instances, the C programming language provides a clean method for returni
address forIXLNUM . In some cases it may be necessary to convert the address to nu
units. For example, addresses on VMS must be divided by four to convert from by
numeric storage units. The same cannot necessarily be said for a character add
returned byIXLCHR . The reader is referred to the source fileixlchr.c for further
details on how to attack this problem.

EXMEMY is the most crucial routine in the extension library—and one the prim
reasons for choosing to do the extension library in C. As opposed to in the past, this
approach has made it one of the most straightforward in the entire extension li
However, care should still be taken to ensure that both memory block locations and
are measured in numeric storage units. In the current version of SUPES, mem
allocated in blocks of 512 bytes (a number which can be changed at compile tim
improve performance. EXMEMY should return the precise amount of memory alloc
Any memory that is given by the system, but not requested by the user is kept track
void table by the memory manager. So, it is generally unnecessary to keep track of m
blocks allocated via EXMEMY.

6.3.2 Extension Library Test Program
A short program which exercises all features of the SUPES extension library is ava
This program should be considered a starting point for testing a new implement
Other tests which more extensively exercise complex modules, such as EXMEMY, s
be developed as needed. An example session on a Sun 4/60 Workstation follows
comments offset by an arrow,<--):

% setenv FOR001 junk.dat <-- Test EXNAME.
% exttest <-- At the system prompt, invoke the procedure.
TST: ldkj <-- At the SUPES prompt, the user enters a string.
Input line = LDKJ <-- The input line is returned in upper case.
Date = 12/18/89
Time = 09:58:05
Unit 1 name = junk.dat
Unit 10 name =
Symbol 1 =
Processor = Sun4 System = OS4.0.3c Mode = 1
Character, Numeric, D/A Units: 4 1 0
Memory block location and length: 24700 128
Numeric difference = 4
Character difference = 4
CPU time = 7.00000E-02

6.4 Installation Documentation Guidelines

A supplement to this document should be written for each operating system on
SUPES is installed. As a minimum, this supplement should include:

1. How to access the SUPES library and link it to an applications program. Individual copies of S
should never be propagated as this reduces the quality assurance level of SUPES.

2. How to interface from the operating system to EXNAME for both unit/ file mode and symbol mode
46

of file

ndix.
3. How to interface to EXREAD via an interactive device. Information such as how to signal an end
should be specified.

Any known bugs or idiosyncrasies.

The installation supplements for several operating systems are included in the Appe
47

48

7 References

1. American National Standard Programming Language FORTRAN, American
National Standards Institute, Inc., ANSI X3.9-1978, New York, 1978.

2. D. P. Flanagan, W. C. Mills-Curran, and L. M. Taylor, “SUPES A Software
Utilities Package for the Engineering Sciences,” SAND86-0911, Sandia
National Laboratories, Albuquerque, NM, September 1986.
49

50

talled.
ppen-
 point.

ystem
mat.
 done

ation
point of

elow

wing
8 SITE SUPPLEMENTS

This appendix contains a supplement for each site at which SUPES is currently ins
Changes to the current systems and the addition of new sites will require that this a
dix be amended; the information contained here should be considered just a starting

All system independent source code for SUPES is stored on the SNLA Central File S
(CFS) with those files having a file type of “.STX” being stored in Standard Text for
The SNLA installation of SUPES contains both the previous and new versions. This is
for two reasons, first, to provide the necessary compatibility during an interim migr
period, and, second, to assure that current users of Cray/CTSS continue to have a
reference for the SUPES library.

The previous version is stored under the root directory “/SUPES”. The table b
documents the files stored in this directory.

The current version is stored under the CFS root directory “/SUPES2_1” in the follo
files (the last two arenot in Standard Text Format):

Node Contents

FRE_FLD.STX Free field reader source code

MEM_MGR.STX Memory manager source code

EXT_LIB.STX Skeleton FORTRAN extension library source code

FRR_TEST.STX Free field reader test program source code

MEM_TEST.STX Memory manager test program source code

EXT_TEST.STX FORTRAN extension library test program source code

Node Contents

FRE_FLD.STX Free field reader source code

MEM_MGR.STX Memory manager source code

EXT_LIB.STX Portable C extension library source code

FRR_TEST.STX Free field reader test program source code

MEM_TEST.STX Memory manager test program source code

EXT_TEST.STX Extension library test program source code

SUPES2_1.BCK The version 2.1 distribution in VMS BACKUP format

SUPES2_1.TAR The version 2.1 distribution in UN*X TAR format
51

on
ons:

. This
 was
 in the
tem is

t via
ining

AV07
hich
e older

alled by
en

rnal
vide the
 to

gical
l has
 file
[Footnote: Note that these files arenot/ stored in Standard Text] The current extensi
library has been ported to run on the following machine/operating system combinati

1. Sun 3 and Sun 4 running SunOS operating system version 4.0.3 and later,

2. VAXen running VMS version 4.5 and later,

3. Cray X/MP and Y/MP running UNICOS version 5.0 and later, and

4. Alliant F/X 8 running Concentrix 5.0.0.

A notable exception to the above list is the Cray using the CTSS operating system
configuration still requires the FORTRAN source code for the extension library that
provided in previous implementations of SUPES. This code continues to be included
current standard SUPES distribution, though a build procedure designed for this sys
not.

These files may be retrieved via the MASS utility and converted to Native Text Forma
the NTEXT utility. Sandia personnel may consult the Computer Consulting and Tra
Division (2614) for details on these utilities.

8.1 Site Supplement For 1500 VAX Cluster (VAX/VMS 5.1)

8.1.1 Linking
The SUPES package is accessed on the 1500 VAX CLUSTER (SAV01, SAV03, S
and SAV08) as an object library located via either of two system logical names. W
one that the user uses depends on which version that he or she wants to use. Th
SUPES routines are linked to an application program as follows:

$ LINK your_program,SUPES/LIB,etc.

While the newer version can be accessed at link time via:
$ LINK your_program,SUPES2_1/LIB,etc.

The last of the above commands assumes that the SUPES2_1 library has been inst
someone using theVMSINSTALL.COM command procedure. If that is not the case, th
the user will be informed by theLINK er that there is an abundance of unsatisfied exte
references that have been made. To avoid this scenario, one should be sure to pro
VAX C Run Time Library to theLINK command. One way to do this appropriately is
modify the above link command as:
$ LINK your_program,SUPES2_1/LIB,SYS$LIBRARY:VAXCRTL/LIB

The alternative is to define the logicalLNK$LIBRARY to beSYS$LIBRARY:VAXCRTL.
For systems which already have this logical assigned, define the lo
LNK$LIBRARY_n, where n is the smallest integer for which the corresponding logica
not been assigned. (Hints about how to go about this are provided in the
[.BUILD]VMSINSTALL.COM .)
52

me is
 three

r

amed

er

to
text
the
 call
iting
rd is

under
utput
n the
8.1.2 Defining Unit/File or Symbol/Value for EXNAME:
Both versions of SUPES use this extension library call in the same manner. A file na
connected to a unit number via a logical name of the form FORnnn, where “nnn” is a
digit integer indicating the FORTRAN unit number. For example:

$ ASSIGN CARDS.INP FOR007

causes the following FORTRAN statements to open “CARDS.INP” on unit 7.
CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(1:LN))

One caveat to note regarding the above sequence is that if theASSIGN statement is not
performed, the user program will abort with an error in theOPEN statement. A possible, o
preferred code sequence is:
CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN
 ! has been performed. Use the system default.
 OPEN(7)
ELSE ! I’ve found an ASSIGN’d filename, use it.
 OPEN(7, FILE=FILENM)
ENDIF

where the system default mentioned in the above FORTRAN comment is a file n
“FOR007.DAT” in the current default directory.

EXNAME looks for a DCL symbol of the form EXTnn, where “nn” is a two digit integ
which defines a symbol number. For example:
$ EXT01 = "HELLO"

will cause the following call to return NAME=“HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.1.3 Interface to EXREAD
EXREAD will prompt to, and read from, SYS$INPUT. It will automatically echo
SYS$OUTPUT if that device is a terminal. However, if a program is run in a con
where SYS$OUTPUT isnot a terminal, such as from within a command procedure,
input is not echoed—the user will have to control this himself with an appropriate
parameter to the routine FREFLD. EXREAD supports all the VMS command line ed
features (e.g., CTRL/U, <up-arrow>, etc.). An end-of-file from the terminal keyboa
indicated by CTRL/Z.

8.1.4 Additional Comments Regarding SUPES2_1
When attempting to redefine the logical SYS$OUTPUT, the user should note that
VMS, the mixed language environment has a minor side effect: two versions of the o
file are created by default. To avoid this scenario, he or she, will have to explicitly ope
file. The following code segment demonstrates the required command sequence:

$ OPEN/WRITE SYSOUT OUTPUT.DAT
53

X C
ernal

ons.

ltiply

sys-
MS/
 “/

ckage
. The
$ ASSIGN/USER_MODE SYSOUT SYS$OUTPUT
$ RUN PROG
$ CLOSE SYSOUT

Finally, the user should be aware that his or her program is being linked with the VA
Run-time Library. Consequently, certain function, subroutine or more generally, ext
symbol names [Footnote: This doesnot include FORTRAN keywords, for example,READ
andWRITE statements.] might be in conflict with some of these run time library functi
These include the names:

1. SPRINTF

2. GETENV

3. READ

4. WRITE

5. STRNCPY

6. STRCPY

7. STRLEN

8. SBRK

9. BRK

10.ISATTY

11.PERROR

12.ISASCII

13.ISCNTRL

14.ISALPHA

15.ISLOWER

16.TOUPPER

The remedy is to redefine any user-supplied conflict when warned by the linker of mu
defined symbol names.

8.1.5 Source Code
The source code for the old FORTRAN extension library for the VAX/VMS operating
tem is stored in the SNLA Central File System under node “/SUPES/V
EXT_LIB.STX” in SNLA Standard Text format. Conversely, the new version is in
SUPES2_1/EXT_LIB.STX”.

8.2 Site Supplement for SNLA CRAY-1/S (COS 1.11)

8.2.1 Linking
The newer version of SUPES is not available for this system. However, the older pa
can still be accessed on the SNLA CRAY-1/S using COS 1.11 as an object library
permanent dataset containing SUPES is accessed as follows:

ACCESS,DN=SUPES,ID=ACCLIB.
54

” is a

ame
ting

ich

 no

ction
ams

TAT
rned in
at a
at;

und
SUPES routines are then linked to an application program as follows:
LDR,other_options,LIB=SUPES:other_libraries.

8.2.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via an alias of the form FTnn, where “nn
two digit integer indicating the FORTRAN unit number. For example:

ASSIGN,DN=CARDS,A=FT07.

causes the following FORTRAN statements to open ’CARDS’ on unit 7.
 CALL EXNAME(7, NAME, LN)
 OPEN(7, FILE=NAME(1:LN))

Again, the more suitable code sequence is
CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN
 ! has been performed. Use the system default.
 OPEN(7)
ELSE ! I’ve found an ASSIGN’d filename, use it.
 OPEN(7, FILE=FILENM)
ENDIF

If no file has been assigned the alias for a particular unit, EXNAME will return a file n
of the form TAPEnn, where “nn” is a one (if less than ten) or two digit integer indica
the FORTRAN unit number—this is also the system default.

EXNAME looks for a JCL symbol of the form Jn, where “n” is a one digit integer wh
defines a symbol number. For example:
SET(J1=’HELLO’)

will cause the following call to return NAME=“HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.2.3 Interface to EXREAD
EXREAD will read from $IN and automatically echo to $OUT. COS at SNLA has
interactive capability.

8.2.4 Known Problems
The CFT 1.11 support routines contain a bug which may cause FREFLD to fun
improperly. FREFLD was modified for this installation such that application progr
which call FREFLD should not notice any problem.

The problem is that the CFT 1.11 support routines do not return an error in the IOS
argument for invalid real formats; a zero value and a zero (success) status are retu
such a case. The symptom observed from FREFLD is that KVALUE will indicate th
valid REAL value was specified for a data field which contains an invalid REAL form
the value returned in RVALUE for this field will be set correctly to zero. To work aro
55

AL

tem is
” in
FLD
dard

 in the

ation

form
For

 that
this problem FREFLD was modified to downgrade KVALUE from one (valid RE
value) to zero (invalid REAL value) under the following conditions:

1. The field does not contain a valid INTEGER value.

2. The REAL value translated for the field is zero.

3. The field does not begin with ’0.’ nor ’.0’.

8.2.5 Source Code
The source code for the FORTRAN extension library for the COS 1.11 operating sys
stored in the SNLA Central File System under node “/SUPES/COS/EXT_LIB.STX
SNLA Standard Text format. The source code for the modified version of FRE
described above is stored under node “/SUPES/COS/FRE_BUG.STX” in SNLA Stan
Text format.

8.3 Site Supplement for SNLA CRAY-1/S (UNICOS)

8.3.1 Linking
The new version of SUPES is the only one that is available for this system. It resides
directory/usr/local/lib with the file namelibsupes.a

In what follows, an example of how the SUPES routines can be linked to an applic
program is given:
% cf77 -o your-executable your-source.f -lsupes.

8.3.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via an environment variable of the
FOR0nn, where “nn” is a two digit integer indicating the FORTRAN unit number.
example, if the user is currently running under the shell program/bin/csh , the required
sequence is:

% setenv FOR007 cards.dat

This causes the following FORTRAN statements to open ’cards.dat ’ on unit 7.
CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN
 ! has been performed. Use the system default.
 OPEN(7)
ELSE ! I’ve found an ASSIGN’d filename, use it.
 OPEN(7, FILE=FILENM)
ENDIF

From the Bourne Shell,/bin/sh , the following sequence is required:
$ FOR007=cards.dat
$ export TERM

If no file has been assigned, a system default file name of the formfort.nn , where “nn”
is a one (if less than ten) or two digit integer indicating the FORTRAN unit number
will be written.
56

 link-
s of

red in
an-

sed on
wo
 CFT

e, the

tlib in
Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXT05 hello

will cause the following call to return NAME=“hello” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.3.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo tostdout .

8.3.4 Known Problems
The Cray running UNICOS appears to have some compiler specific problems when
ing programs of differing levels of optimization. To alleviate this situation, two version
the SUPES library are maintained in/usr/local/lib , libsupes.a and lib-
supesnopt.a . The user will be responsible for linking to the appropriate library.

8.3.5 Source Code
The source code for the extension library for the UNICOS operating system is sto
the SNLA Central File System under node “/SUPES2_1/EXT_LIB.STX” in SNLA St
dard Text format.

8.4 Site Supplement For SNLA CRAY X-MP/24 (CTSS/CFTLIB 1.11 or
1.14)

8.4.1 Linking
The old SUPES package is all that is currently available on this system. It is acces
the SNLA CRAY X-MP/24 as an object library which is stored in a public library file. T
versions of this object library exists: one for the CFT 1.11 compiler, and one for the
1.14 compiler. The CFT 1.11 object library is obtained interactively as follows:

lib acclib
ok. x supes11
ok. end
switch supes11 supes

Either compiler version can also be obtained within a CCL procedure. For exampl
CFT 1.14 object library can be extracted by:
lib acclib
-x supes14
-end
switch supes14 supes

The SUPES routines are then linked to an application program as follows:
ldr other_options,lib=(supes,other_libraries)

Note that CFTLIB is a dependent library of SUPES, so there is no need to specify cf
the above lib list.
57

” is a
This

rog”

one

lt,
xt

ctive
indi-

ution

 stan-
 fail

ent list.
nd
pplica-

ctions
8.4.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via a name of the form tapenn, where “nn
one (if less than ten) or two digit integer indicating the FORTRAN unit number.
name can be replaced via the execution line as shown in the following example:

myprog tape7=cards

The above command would cause the following FORTRAN statements within “myp
to open “cards” on unit 7:
CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(1:LN))

EXNAME looks for a symbol on the execution line of the form extn, where “n” is a
digit integer which defines a symbol number. For example:
myprog ext1=HELLO

will cause the following call within ’myprog’ to return NAME=“HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.4.3 Interface to EXREAD
EXREAD will read from “input” and automatically echo to “output”. By defau
EXREAD connects both “input” and “output” to “tty”. CTSS defines “tty” as the ne
higher level controller, which is normally the terminal keyboard / screen for an intera
job, or the JCI / log files for a batch job. An end-of-file from the terminal keyboard is
cated by a null response (just a carriage return).

The default connections for either “input” or “output” can be overridden on the exec
line as follows:

myprog input=deck output=list

8.4.4 Known Problems
Contrary to the ANSI FORTRAN standard, CTSS does not automatically open the
dard input and output devices. This causes reading from or writing to UNIT=\last to
unless you add some CTSS-specific code, such as a PROGRAM statement argum
EXNAME and EXPARM, as well as EXREAD, explicitly open the standard input a
output devices according to the rules described above. This is an advantage to the a
tions programmer since it avoids nonstandard code, but it places the following restri
on any program which calls EXNAME, EXPARM, or EXREAD under CTSS:

1. Do not use a PROGRAM statement argument list.

2. Do not read from nor write to UNIT=* before a call to either EXNAME, EXPARM, or EXREAD.
58

per-
MS/

or

 in the

ation

form
For

 that
8.4.5 Source Code
The source code for the FORTRAN extension library for the CTSS/CFTLIB/SNLA o
ating system is stored in the SNLA Central File System under nodes “/SUPES/V
EXT_111.STX” and “/SUPES/VMS/EXT_114.STX” in SNLA Standard Text format f
the CFT 1.11 and 1.14 compilers, respectively.

8.5 Site Supplement for SNLA Alliant FX/8 (Concentrix 5.0.0)

8.5.1 Linking
The new version of SUPES is the only one that is available for this system. It resides
directory/usr/local/lib with the file namelibsupes.a

In what follows, an example of how the SUPES routines can be linked to an applic
program is given:
% fortran -o your-executable your-source.f -lsupes.

8.5.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via an environment variable of the
FOR0nn, where “nn” is a two digit integer indicating the FORTRAN unit number.
example, if the user is currently running under the shell program/bin/csh , the required
sequence is:

% setenv FOR007 cards.dat

This causes the following FORTRAN statements to open ’cards.dat ’ on unit 7.
CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN
 ! has been performed. Use the system default.
 OPEN(7)
ELSE ! I’ve found an ASSIGN’d filename, use it.
 OPEN(7, FILE=FILENM)
ENDIF

From the Bourne Shell,/bin/sh , the following sequence is required:
$ FOR007=cards.dat
$ export TERM

If no file has been assigned, a system default file name of the formfort.nn , where “nn”
is a one (if less than ten) or two digit integer indicating the FORTRAN unit number
will be written.

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXT05 hello

will cause the following call to return NAME=“hello” and LN=5.
CALL EXNAME(-1, NAME, LN)
59

l File

te that
struc-

ation

form
For

 that
8.5.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo tostdout .

8.5.4 Source Code
The source code for the extension library for the Alliant is stored in the SNLA Centra
System under node “/SUPES2_1/EXT_LIB.STX” in SNLA Standard Text format.

8.6 Site Supplement for SNLA Sun Workstations (SunOS version 4)

8.6.1 Linking
The new version of SUPES is also the only one that is available for this system. No
the SUPES installation must have been performed according to the installation in
tions [Ref: sec:install] . If so, then it resides in the directory/usr/local/lib with the
file namelibsupes.a

In what follows, an example of how the SUPES routines can be linked to an applic
program is given:
% f77 -o your-executable your-source.f -lsupes.

8.6.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via an environment variable of the
FOR0nn, where “nn” is a two digit integer indicating the FORTRAN unit number.
example, if the user is currently running under the shell program/bin/csh , the required
sequence is:

% setenv FOR007 cards.dat

This causes the following FORTRAN statements to open ’cards.dat ’ on unit 7.
CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN
 ! has been performed. Use the system default.
 OPEN(7)
ELSE ! I’ve found an ASSIGN’d filename, use it.
 OPEN(7, FILE=FILENM)
ENDIF

From the Bourne Shell,/bin/sh , the following sequence is required:
$ FOR007=cards.dat
$ export TERM

If no file has been assigned, a system default file name of the formfort.nn , where “nn”
is a one (if less than ten) or two digit integer indicating the FORTRAN unit number
will be written.

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXT05 hello
60

l File
will cause the following call to return NAME=“hello” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.6.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo tostdout .

8.6.4 Source Code
The source code for the extension library for the Sun is stored in the SNLA Centra
System under node “/SUPES2_1/EXT_LIB.STX” in SNLA Standard Text format.
61

	1 INTRODUCTION
	2 INSTALLATION PROCEDURE
	2.1 VAX/VMS Installation Procedure
	2.1.1 Building SUPES
	2.1.2 Building the Test Programs
	2.1.3 Installing SUPES On Your VMS System

	2.2 General UNIX Installation Procedure
	2.2.1 Building SUPES
	2.2.2 Building the Test Programs
	2.2.3 Installing SUPES On Your UNIX System

	3 FREE FIELD INPUT
	3.1 Keyword/Value Input System
	3.2 Syntax Rules
	3.3 Free Field Input Routines
	3.3.1 External Input Routine (FREFLD)
	3.3.2 Internal Input Routine (FFISTR)
	3.3.3 Basic Examples

	3.4 Utility Routines
	3.4.1 Get Literal Input Line (GETINP)
	3.4.2 Strip Leading/Trailing Blanks (STRIPB)
	3.4.3 Process Quoted String (QUOTED)

	4 MEMORY MANAGER
	4.1 Indexing System
	4.2 Basic Routines
	4.2.1 Initialize (MDINIT/MCINIT)
	4.2.2 Define Dynamic Array (MDRSRV/MCRSRV)
	4.2.3 Delete Dynamic Array (MDDEL/MCDEL)
	4.2.4 Reserve Memory Block (MDGET/MCGET)
	4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE)
	4.2.6 Obtain Statistics (MDSTAT/MCSTAT)
	4.2.7 Print Error Summary (MDEROR/MCEROR)
	4.2.8 Enable data initialization (MDFILL/MCFILL)
	4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF)
	4.2.10 Basic Example

	4.3 Advanced Routines
	4.3.1 Rename Dynamic Array (MDNAME/MCNAME)
	4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG)
	4.3.3 Locate Dynamic Array (MDFIND/MCFIND)
	4.3.4 Compress Storage (MDCOMP/MCCOMP)
	4.3.5 Error Flag Query (MDERPT/MCERPT)
	4.3.6 Modify Error Count (MDEFIX/MCEFIX)
	4.3.7 Report Last Error (MDLAST/MCLAST)
	4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT)
	4.3.9 Execute Deferred Memory Requests (MDEXEC/MCE...
	4.3.10 Report storage information (MDMEMS/MCMEMS)

	4.4 Development Aids
	4.4.1 List Storage Tables (MDLIST/MCLIST)
	4.4.2 Print Dynamic Array (MDPRNT/MCPRNT)
	4.4.3 Debug Printing (MDDEBG/MCDEBG)

	5 EXTENSION LIBRARY
	5.1 User Interface Routines
	5.1.1 Get Today’s Date (EXDATE)
	5.1.2 Get Time of Day (EXTIME)
	5.1.3 Get Accumulated Processor Time (EXCPUS)
	5.1.4 Get Operating Environment Parameters (EXPARM...
	5.1.5 Get Unit File Name or Symbol Value (EXNAME)

	5.2 Utility Support Routines
	5.2.1 Convert String to Uppercase (EXUPCS)
	5.2.2 Prompt/Read/Echo Input Record (EXREAD)
	5.2.3 Evaluate Numeric Storage Location (IXLNUM)
	5.2.4 Evaluate Character Storage Location (IXLCHR)...
	5.2.5 Get/Release Memory Block (EXMEMY)

	5.3 Skeleton Library
	5.3.1 Skeleton Routine Specifications

	6 SUPPORT PROGRAMMER’S GUIDE
	6.1 Free Field Input
	6.1.1 Implementation Notes on FREFLD
	6.1.2 Test Program for FREFLD

	6.2 Memory Manager
	6.2.1 Table Architecture and Maintenance
	6.2.2 Non-ANSI FORTRAN Assumptions
	6.2.3 Standard FORTRAN Implementation
	6.2.4 Test Program

	6.3 Extension Library Implementation
	6.3.1 Implementation Notes for Modules
	6.3.2 Extension Library Test Program

	6.4 Installation Documentation Guidelines

	7 References
	8 SITE SUPPLEMENTS
	8.1 Site Supplement For 1500 VAX Cluster (VAX/VMS ...
	8.1.1 Linking
	8.1.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.1.3 Interface to EXREAD
	8.1.4 Additional Comments Regarding SUPES2_1
	8.1.5 Source Code

	8.2 Site Supplement for SNLA CRAY-1/S (COS 1.11)
	8.2.1 Linking
	8.2.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.2.3 Interface to EXREAD
	8.2.4 Known Problems
	8.2.5 Source Code

	8.3 Site Supplement for SNLA CRAY-1/S (UNICOS)
	8.3.1 Linking
	8.3.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.3.3 Interface to EXREAD
	8.3.4 Known Problems
	8.3.5 Source Code

	8.4 Site Supplement For SNLA CRAY X-MP/24 (CTSS/CF...
	8.4.1 Linking
	8.4.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.4.3 Interface to EXREAD
	8.4.4 Known Problems
	8.4.5 Source Code

	8.5 Site Supplement for SNLA Alliant FX/8 (Concent...
	8.5.1 Linking
	8.5.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.5.3 Interface to EXREAD
	8.5.4 Source Code

	8.6 Site Supplement for SNLA Sun Workstations (Sun...
	8.6.1 Linking
	8.6.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.6.3 Interface to EXREAD
	8.6.4 Source Code

	Table of Contents

