Actual source code: ts.c
petsc-3.7.0 2016-04-25
2: #include <petsc/private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_AdjointStep, TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
14: struct _n_TSMonitorDrawCtx {
15: PetscViewer viewer;
16: Vec initialsolution;
17: PetscBool showinitial;
18: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
19: PetscBool showtimestepandtime;
20: };
24: /*@C
25: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
27: Collective on TS
29: Input Parameters:
30: + ts - TS object you wish to monitor
31: . name - the monitor type one is seeking
32: . help - message indicating what monitoring is done
33: . manual - manual page for the monitor
34: . monitor - the monitor function
35: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
37: Level: developer
39: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
40: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
41: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
42: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
43: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
44: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
45: PetscOptionsFList(), PetscOptionsEList()
46: @*/
47: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
48: {
49: PetscErrorCode ierr;
50: PetscViewer viewer;
51: PetscViewerFormat format;
52: PetscBool flg;
55: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
56: if (flg) {
57: PetscViewerAndFormat *vf;
58: PetscViewerAndFormatCreate(viewer,format,&vf);
59: PetscObjectDereference((PetscObject)viewer);
60: if (monitorsetup) {
61: (*monitorsetup)(ts,vf);
62: }
63: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
64: }
65: return(0);
66: }
70: /*@C
71: TSAdjointMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
73: Collective on TS
75: Input Parameters:
76: + ts - TS object you wish to monitor
77: . name - the monitor type one is seeking
78: . help - message indicating what monitoring is done
79: . manual - manual page for the monitor
80: . monitor - the monitor function
81: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
83: Level: developer
85: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
86: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
87: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
88: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
89: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
90: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
91: PetscOptionsFList(), PetscOptionsEList()
92: @*/
93: PetscErrorCode TSAdjointMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
94: {
95: PetscErrorCode ierr;
96: PetscViewer viewer;
97: PetscViewerFormat format;
98: PetscBool flg;
101: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
102: if (flg) {
103: PetscViewerAndFormat *vf;
104: PetscViewerAndFormatCreate(viewer,format,&vf);
105: PetscObjectDereference((PetscObject)viewer);
106: if (monitorsetup) {
107: (*monitorsetup)(ts,vf);
108: }
109: TSAdjointMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
110: }
111: return(0);
112: }
116: /*@
117: TSSetFromOptions - Sets various TS parameters from user options.
119: Collective on TS
121: Input Parameter:
122: . ts - the TS context obtained from TSCreate()
124: Options Database Keys:
125: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGL, TSSSP
126: . -ts_save_trajectory - checkpoint the solution at each time-step
127: . -ts_max_steps <maxsteps> - maximum number of time-steps to take
128: . -ts_final_time <time> - maximum time to compute to
129: . -ts_dt <dt> - initial time step
130: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
131: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
132: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
133: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
134: . -ts_rtol <rtol> - relative tolerance for local truncation error
135: . -ts_atol <atol> Absolute tolerance for local truncation error
136: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
137: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
138: . -ts_monitor - print information at each timestep
139: . -ts_monitor_lg_solution - Monitor solution graphically
140: . -ts_monitor_lg_error - Monitor error graphically
141: . -ts_monitor_lg_timestep - Monitor timestep size graphically
142: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
143: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
144: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
145: . -ts_monitor_draw_solution - Monitor solution graphically
146: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
147: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
148: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
149: . -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
150: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
151: . -ts_adjoint_monitor - print information at each adjoint time step
152: - -ts_adjoint_monitor_draw_sensi - monitor the sensitivity of the first cost function wrt initial conditions (lambda[0]) graphically
154: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
156: Level: beginner
158: .keywords: TS, timestep, set, options, database
160: .seealso: TSGetType()
161: @*/
162: PetscErrorCode TSSetFromOptions(TS ts)
163: {
164: PetscBool opt,flg,tflg;
165: PetscErrorCode ierr;
166: char monfilename[PETSC_MAX_PATH_LEN];
167: PetscReal time_step;
168: TSExactFinalTimeOption eftopt;
169: char dir[16];
170: TSIFunction ifun;
171: const char *defaultType;
172: char typeName[256];
177: TSRegisterAll();
178: TSGetIFunction(ts,NULL,&ifun,NULL);
180: PetscObjectOptionsBegin((PetscObject)ts);
181: if (((PetscObject)ts)->type_name)
182: defaultType = ((PetscObject)ts)->type_name;
183: else
184: defaultType = ifun ? TSBEULER : TSEULER;
185: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
186: if (opt) {
187: TSSetType(ts,typeName);
188: } else {
189: TSSetType(ts,defaultType);
190: }
192: /* Handle generic TS options */
193: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
194: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
195: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
196: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
197: if (flg) {TSSetTimeStep(ts,time_step);}
198: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
199: if (flg) {TSSetExactFinalTime(ts,eftopt);}
200: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
201: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
202: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
203: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
204: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
206: #if defined(PETSC_HAVE_SAWS)
207: {
208: PetscBool set;
209: flg = PETSC_FALSE;
210: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
211: if (set) {
212: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
213: }
214: }
215: #endif
217: /* Monitor options */
218: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
219: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
220: TSAdjointMonitorSetFromOptions(ts,"-ts_adjoint_monitor","Monitor adjoint timestep size","TSAdjointMonitorDefault",TSAdjointMonitorDefault,NULL);
222: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
223: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
225: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
226: if (opt) {
227: TSMonitorLGCtx ctx;
228: PetscInt howoften = 1;
230: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
231: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
232: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
233: }
235: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
236: if (opt) {
237: TSMonitorLGCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
241: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
243: }
245: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
246: if (opt) {
247: TSMonitorLGCtx ctx;
248: PetscInt howoften = 1;
250: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
251: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
252: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
253: }
254: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
255: if (opt) {
256: TSMonitorLGCtx ctx;
257: PetscInt howoften = 1;
259: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
260: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
261: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
262: }
263: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
264: if (opt) {
265: TSMonitorLGCtx ctx;
266: PetscInt howoften = 1;
268: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
269: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
270: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
271: }
272: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
273: if (opt) {
274: TSMonitorSPEigCtx ctx;
275: PetscInt howoften = 1;
277: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
278: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
279: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
280: }
281: opt = PETSC_FALSE;
282: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
283: if (opt) {
284: TSMonitorDrawCtx ctx;
285: PetscInt howoften = 1;
287: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
288: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
289: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
290: }
291: opt = PETSC_FALSE;
292: PetscOptionsName("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",&opt);
293: if (opt) {
294: TSMonitorDrawCtx ctx;
295: PetscInt howoften = 1;
297: PetscOptionsInt("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",howoften,&howoften,NULL);
298: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
299: TSAdjointMonitorSet(ts,TSAdjointMonitorDrawSensi,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
300: }
301: opt = PETSC_FALSE;
302: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
303: if (opt) {
304: TSMonitorDrawCtx ctx;
305: PetscReal bounds[4];
306: PetscInt n = 4;
307: PetscDraw draw;
308: PetscDrawAxis axis;
310: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
311: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
312: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
313: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
314: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
315: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
316: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
317: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
318: }
319: opt = PETSC_FALSE;
320: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
321: if (opt) {
322: TSMonitorDrawCtx ctx;
323: PetscInt howoften = 1;
325: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
326: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
327: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
328: }
330: opt = PETSC_FALSE;
331: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
332: if (flg) {
333: const char *ptr,*ptr2;
334: char *filetemplate;
335: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
336: /* Do some cursory validation of the input. */
337: PetscStrstr(monfilename,"%",(char**)&ptr);
338: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
339: for (ptr++; ptr && *ptr; ptr++) {
340: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
341: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
342: if (ptr2) break;
343: }
344: PetscStrallocpy(monfilename,&filetemplate);
345: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
346: }
348: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
349: if (flg) {
350: TSMonitorDMDARayCtx *rayctx;
351: int ray = 0;
352: DMDADirection ddir;
353: DM da;
354: PetscMPIInt rank;
356: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
357: if (dir[0] == 'x') ddir = DMDA_X;
358: else if (dir[0] == 'y') ddir = DMDA_Y;
359: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
360: sscanf(dir+2,"%d",&ray);
362: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
363: PetscNew(&rayctx);
364: TSGetDM(ts,&da);
365: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
366: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
367: if (!rank) {
368: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
369: }
370: rayctx->lgctx = NULL;
371: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
372: }
373: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
374: if (flg) {
375: TSMonitorDMDARayCtx *rayctx;
376: int ray = 0;
377: DMDADirection ddir;
378: DM da;
379: PetscInt howoften = 1;
381: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
382: if (dir[0] == 'x') ddir = DMDA_X;
383: else if (dir[0] == 'y') ddir = DMDA_Y;
384: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
385: sscanf(dir+2, "%d", &ray);
387: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
388: PetscNew(&rayctx);
389: TSGetDM(ts, &da);
390: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
391: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
392: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
393: }
395: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
396: if (opt) {
397: TSMonitorEnvelopeCtx ctx;
399: TSMonitorEnvelopeCtxCreate(ts,&ctx);
400: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
401: }
403: flg = PETSC_FALSE;
404: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
405: if (flg) {
406: DM dm;
407: DMTS tdm;
409: TSGetDM(ts, &dm);
410: DMGetDMTS(dm, &tdm);
411: tdm->ijacobianctx = NULL;
412: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
413: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
414: }
416: if (ts->adapt) {
417: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
418: }
420: /* Handle specific TS options */
421: if (ts->ops->setfromoptions) {
422: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
423: }
425: /* TS trajectory must be set after TS, since it may use some TS options above */
426: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
427: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
428: if (tflg) {
429: TSSetSaveTrajectory(ts);
430: }
431: tflg = ts->adjoint_solve ? PETSC_TRUE : PETSC_FALSE;
432: PetscOptionsBool("-ts_adjoint_solve","Solve the adjoint problem immediately after solving the forward problem","",tflg,&tflg,&flg);
433: if (flg) {
434: TSSetSaveTrajectory(ts);
435: ts->adjoint_solve = tflg;
436: }
438: /* process any options handlers added with PetscObjectAddOptionsHandler() */
439: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
440: PetscOptionsEnd();
442: if (ts->trajectory) {
443: TSTrajectorySetFromOptions(ts->trajectory,ts);
444: }
446: TSGetSNES(ts,&ts->snes);
447: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
448: SNESSetFromOptions(ts->snes);
449: return(0);
450: }
454: /*@
455: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
457: Collective on TS
459: Input Parameters:
460: . ts - the TS context obtained from TSCreate()
462: Note: This routine should be called after all TS options have been set
464: Level: intermediate
466: .seealso: TSGetTrajectory(), TSAdjointSolve()
468: .keywords: TS, set, checkpoint,
469: @*/
470: PetscErrorCode TSSetSaveTrajectory(TS ts)
471: {
476: if (!ts->trajectory) {
477: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
478: TSTrajectorySetFromOptions(ts->trajectory,ts);
479: }
480: return(0);
481: }
485: /*@
486: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
487: set with TSSetRHSJacobian().
489: Collective on TS and Vec
491: Input Parameters:
492: + ts - the TS context
493: . t - current timestep
494: - U - input vector
496: Output Parameters:
497: + A - Jacobian matrix
498: . B - optional preconditioning matrix
499: - flag - flag indicating matrix structure
501: Notes:
502: Most users should not need to explicitly call this routine, as it
503: is used internally within the nonlinear solvers.
505: See KSPSetOperators() for important information about setting the
506: flag parameter.
508: Level: developer
510: .keywords: SNES, compute, Jacobian, matrix
512: .seealso: TSSetRHSJacobian(), KSPSetOperators()
513: @*/
514: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
515: {
517: PetscObjectState Ustate;
518: DM dm;
519: DMTS tsdm;
520: TSRHSJacobian rhsjacobianfunc;
521: void *ctx;
522: TSIJacobian ijacobianfunc;
523: TSRHSFunction rhsfunction;
529: TSGetDM(ts,&dm);
530: DMGetDMTS(dm,&tsdm);
531: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
532: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
533: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
534: PetscObjectStateGet((PetscObject)U,&Ustate);
535: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
536: return(0);
537: }
539: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
541: if (ts->rhsjacobian.reuse) {
542: MatShift(A,-ts->rhsjacobian.shift);
543: MatScale(A,1./ts->rhsjacobian.scale);
544: if (A != B) {
545: MatShift(B,-ts->rhsjacobian.shift);
546: MatScale(B,1./ts->rhsjacobian.scale);
547: }
548: ts->rhsjacobian.shift = 0;
549: ts->rhsjacobian.scale = 1.;
550: }
552: if (rhsjacobianfunc) {
553: PetscBool missing;
554: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
555: PetscStackPush("TS user Jacobian function");
556: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
557: PetscStackPop;
558: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
559: if (A) {
560: MatMissingDiagonal(A,&missing,NULL);
561: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
562: }
563: if (B && B != A) {
564: MatMissingDiagonal(B,&missing,NULL);
565: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
566: }
567: } else {
568: MatZeroEntries(A);
569: if (A != B) {MatZeroEntries(B);}
570: }
571: ts->rhsjacobian.time = t;
572: ts->rhsjacobian.X = U;
573: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
574: return(0);
575: }
579: /*@
580: TSComputeRHSFunction - Evaluates the right-hand-side function.
582: Collective on TS and Vec
584: Input Parameters:
585: + ts - the TS context
586: . t - current time
587: - U - state vector
589: Output Parameter:
590: . y - right hand side
592: Note:
593: Most users should not need to explicitly call this routine, as it
594: is used internally within the nonlinear solvers.
596: Level: developer
598: .keywords: TS, compute
600: .seealso: TSSetRHSFunction(), TSComputeIFunction()
601: @*/
602: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
603: {
605: TSRHSFunction rhsfunction;
606: TSIFunction ifunction;
607: void *ctx;
608: DM dm;
614: TSGetDM(ts,&dm);
615: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
616: DMTSGetIFunction(dm,&ifunction,NULL);
618: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
620: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
621: if (rhsfunction) {
622: PetscStackPush("TS user right-hand-side function");
623: (*rhsfunction)(ts,t,U,y,ctx);
624: PetscStackPop;
625: } else {
626: VecZeroEntries(y);
627: }
629: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
630: return(0);
631: }
635: /*@
636: TSComputeSolutionFunction - Evaluates the solution function.
638: Collective on TS and Vec
640: Input Parameters:
641: + ts - the TS context
642: - t - current time
644: Output Parameter:
645: . U - the solution
647: Note:
648: Most users should not need to explicitly call this routine, as it
649: is used internally within the nonlinear solvers.
651: Level: developer
653: .keywords: TS, compute
655: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
656: @*/
657: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
658: {
659: PetscErrorCode ierr;
660: TSSolutionFunction solutionfunction;
661: void *ctx;
662: DM dm;
667: TSGetDM(ts,&dm);
668: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
670: if (solutionfunction) {
671: PetscStackPush("TS user solution function");
672: (*solutionfunction)(ts,t,U,ctx);
673: PetscStackPop;
674: }
675: return(0);
676: }
679: /*@
680: TSComputeForcingFunction - Evaluates the forcing function.
682: Collective on TS and Vec
684: Input Parameters:
685: + ts - the TS context
686: - t - current time
688: Output Parameter:
689: . U - the function value
691: Note:
692: Most users should not need to explicitly call this routine, as it
693: is used internally within the nonlinear solvers.
695: Level: developer
697: .keywords: TS, compute
699: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
700: @*/
701: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
702: {
703: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
704: void *ctx;
705: DM dm;
710: TSGetDM(ts,&dm);
711: DMTSGetForcingFunction(dm,&forcing,&ctx);
713: if (forcing) {
714: PetscStackPush("TS user forcing function");
715: (*forcing)(ts,t,U,ctx);
716: PetscStackPop;
717: }
718: return(0);
719: }
723: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
724: {
725: Vec F;
729: *Frhs = NULL;
730: TSGetIFunction(ts,&F,NULL,NULL);
731: if (!ts->Frhs) {
732: VecDuplicate(F,&ts->Frhs);
733: }
734: *Frhs = ts->Frhs;
735: return(0);
736: }
740: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
741: {
742: Mat A,B;
746: if (Arhs) *Arhs = NULL;
747: if (Brhs) *Brhs = NULL;
748: TSGetIJacobian(ts,&A,&B,NULL,NULL);
749: if (Arhs) {
750: if (!ts->Arhs) {
751: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
752: }
753: *Arhs = ts->Arhs;
754: }
755: if (Brhs) {
756: if (!ts->Brhs) {
757: if (A != B) {
758: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
759: } else {
760: PetscObjectReference((PetscObject)ts->Arhs);
761: ts->Brhs = ts->Arhs;
762: }
763: }
764: *Brhs = ts->Brhs;
765: }
766: return(0);
767: }
771: /*@
772: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
774: Collective on TS and Vec
776: Input Parameters:
777: + ts - the TS context
778: . t - current time
779: . U - state vector
780: . Udot - time derivative of state vector
781: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
783: Output Parameter:
784: . Y - right hand side
786: Note:
787: Most users should not need to explicitly call this routine, as it
788: is used internally within the nonlinear solvers.
790: If the user did did not write their equations in implicit form, this
791: function recasts them in implicit form.
793: Level: developer
795: .keywords: TS, compute
797: .seealso: TSSetIFunction(), TSComputeRHSFunction()
798: @*/
799: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
800: {
802: TSIFunction ifunction;
803: TSRHSFunction rhsfunction;
804: void *ctx;
805: DM dm;
813: TSGetDM(ts,&dm);
814: DMTSGetIFunction(dm,&ifunction,&ctx);
815: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
817: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
819: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
820: if (ifunction) {
821: PetscStackPush("TS user implicit function");
822: (*ifunction)(ts,t,U,Udot,Y,ctx);
823: PetscStackPop;
824: }
825: if (imex) {
826: if (!ifunction) {
827: VecCopy(Udot,Y);
828: }
829: } else if (rhsfunction) {
830: if (ifunction) {
831: Vec Frhs;
832: TSGetRHSVec_Private(ts,&Frhs);
833: TSComputeRHSFunction(ts,t,U,Frhs);
834: VecAXPY(Y,-1,Frhs);
835: } else {
836: TSComputeRHSFunction(ts,t,U,Y);
837: VecAYPX(Y,-1,Udot);
838: }
839: }
840: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
841: return(0);
842: }
846: /*@
847: TSComputeIJacobian - Evaluates the Jacobian of the DAE
849: Collective on TS and Vec
851: Input
852: Input Parameters:
853: + ts - the TS context
854: . t - current timestep
855: . U - state vector
856: . Udot - time derivative of state vector
857: . shift - shift to apply, see note below
858: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
860: Output Parameters:
861: + A - Jacobian matrix
862: . B - optional preconditioning matrix
863: - flag - flag indicating matrix structure
865: Notes:
866: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
868: dF/dU + shift*dF/dUdot
870: Most users should not need to explicitly call this routine, as it
871: is used internally within the nonlinear solvers.
873: Level: developer
875: .keywords: TS, compute, Jacobian, matrix
877: .seealso: TSSetIJacobian()
878: @*/
879: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
880: {
882: TSIJacobian ijacobian;
883: TSRHSJacobian rhsjacobian;
884: DM dm;
885: void *ctx;
896: TSGetDM(ts,&dm);
897: DMTSGetIJacobian(dm,&ijacobian,&ctx);
898: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
900: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
902: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
903: if (ijacobian) {
904: PetscBool missing;
905: PetscStackPush("TS user implicit Jacobian");
906: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
907: PetscStackPop;
908: if (A) {
909: MatMissingDiagonal(A,&missing,NULL);
910: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
911: }
912: if (B && B != A) {
913: MatMissingDiagonal(B,&missing,NULL);
914: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
915: }
916: }
917: if (imex) {
918: if (!ijacobian) { /* system was written as Udot = G(t,U) */
919: MatZeroEntries(A);
920: MatShift(A,shift);
921: if (A != B) {
922: MatZeroEntries(B);
923: MatShift(B,shift);
924: }
925: }
926: } else {
927: Mat Arhs = NULL,Brhs = NULL;
928: if (rhsjacobian) {
929: if (ijacobian) {
930: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
931: } else {
932: TSGetIJacobian(ts,&Arhs,&Brhs,NULL,NULL);
933: }
934: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
935: }
936: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
937: ts->rhsjacobian.scale = -1;
938: ts->rhsjacobian.shift = shift;
939: MatScale(A,-1);
940: MatShift(A,shift);
941: if (A != B) {
942: MatScale(B,-1);
943: MatShift(B,shift);
944: }
945: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
946: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
947: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
948: MatZeroEntries(A);
949: MatShift(A,shift);
950: if (A != B) {
951: MatZeroEntries(B);
952: MatShift(B,shift);
953: }
954: }
955: MatAXPY(A,-1,Arhs,axpy);
956: if (A != B) {
957: MatAXPY(B,-1,Brhs,axpy);
958: }
959: }
960: }
961: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
962: return(0);
963: }
967: /*@C
968: TSSetRHSFunction - Sets the routine for evaluating the function,
969: where U_t = G(t,u).
971: Logically Collective on TS
973: Input Parameters:
974: + ts - the TS context obtained from TSCreate()
975: . r - vector to put the computed right hand side (or NULL to have it created)
976: . f - routine for evaluating the right-hand-side function
977: - ctx - [optional] user-defined context for private data for the
978: function evaluation routine (may be NULL)
980: Calling sequence of func:
981: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
983: + t - current timestep
984: . u - input vector
985: . F - function vector
986: - ctx - [optional] user-defined function context
988: Level: beginner
990: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
992: .keywords: TS, timestep, set, right-hand-side, function
994: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
995: @*/
996: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
997: {
999: SNES snes;
1000: Vec ralloc = NULL;
1001: DM dm;
1007: TSGetDM(ts,&dm);
1008: DMTSSetRHSFunction(dm,f,ctx);
1009: TSGetSNES(ts,&snes);
1010: if (!r && !ts->dm && ts->vec_sol) {
1011: VecDuplicate(ts->vec_sol,&ralloc);
1012: r = ralloc;
1013: }
1014: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1015: VecDestroy(&ralloc);
1016: return(0);
1017: }
1021: /*@C
1022: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1024: Logically Collective on TS
1026: Input Parameters:
1027: + ts - the TS context obtained from TSCreate()
1028: . f - routine for evaluating the solution
1029: - ctx - [optional] user-defined context for private data for the
1030: function evaluation routine (may be NULL)
1032: Calling sequence of func:
1033: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1035: + t - current timestep
1036: . u - output vector
1037: - ctx - [optional] user-defined function context
1039: Notes:
1040: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1041: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1042: create closed-form solutions with non-physical forcing terms.
1044: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1046: Level: beginner
1048: .keywords: TS, timestep, set, right-hand-side, function
1050: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
1051: @*/
1052: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1053: {
1055: DM dm;
1059: TSGetDM(ts,&dm);
1060: DMTSSetSolutionFunction(dm,f,ctx);
1061: return(0);
1062: }
1066: /*@C
1067: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1069: Logically Collective on TS
1071: Input Parameters:
1072: + ts - the TS context obtained from TSCreate()
1073: . f - routine for evaluating the forcing function
1074: - ctx - [optional] user-defined context for private data for the
1075: function evaluation routine (may be NULL)
1077: Calling sequence of func:
1078: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1080: + t - current timestep
1081: . u - output vector
1082: - ctx - [optional] user-defined function context
1084: Notes:
1085: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1086: create closed-form solutions with a non-physical forcing term.
1088: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1090: Level: beginner
1092: .keywords: TS, timestep, set, right-hand-side, function
1094: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1095: @*/
1096: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction f,void *ctx)
1097: {
1099: DM dm;
1103: TSGetDM(ts,&dm);
1104: DMTSSetForcingFunction(dm,f,ctx);
1105: return(0);
1106: }
1110: /*@C
1111: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1112: where U_t = G(U,t), as well as the location to store the matrix.
1114: Logically Collective on TS
1116: Input Parameters:
1117: + ts - the TS context obtained from TSCreate()
1118: . Amat - (approximate) Jacobian matrix
1119: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1120: . f - the Jacobian evaluation routine
1121: - ctx - [optional] user-defined context for private data for the
1122: Jacobian evaluation routine (may be NULL)
1124: Calling sequence of f:
1125: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1127: + t - current timestep
1128: . u - input vector
1129: . Amat - (approximate) Jacobian matrix
1130: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1131: - ctx - [optional] user-defined context for matrix evaluation routine
1133: Notes:
1134: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1136: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1137: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1139: Level: beginner
1141: .keywords: TS, timestep, set, right-hand-side, Jacobian
1143: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1145: @*/
1146: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1147: {
1149: SNES snes;
1150: DM dm;
1151: TSIJacobian ijacobian;
1160: TSGetDM(ts,&dm);
1161: DMTSSetRHSJacobian(dm,f,ctx);
1162: if (f == TSComputeRHSJacobianConstant) {
1163: /* Handle this case automatically for the user; otherwise user should call themselves. */
1164: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1165: }
1166: DMTSGetIJacobian(dm,&ijacobian,NULL);
1167: TSGetSNES(ts,&snes);
1168: if (!ijacobian) {
1169: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1170: }
1171: if (Amat) {
1172: PetscObjectReference((PetscObject)Amat);
1173: MatDestroy(&ts->Arhs);
1174: ts->Arhs = Amat;
1175: }
1176: if (Pmat) {
1177: PetscObjectReference((PetscObject)Pmat);
1178: MatDestroy(&ts->Brhs);
1179: ts->Brhs = Pmat;
1180: }
1181: return(0);
1182: }
1187: /*@C
1188: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1190: Logically Collective on TS
1192: Input Parameters:
1193: + ts - the TS context obtained from TSCreate()
1194: . r - vector to hold the residual (or NULL to have it created internally)
1195: . f - the function evaluation routine
1196: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1198: Calling sequence of f:
1199: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1201: + t - time at step/stage being solved
1202: . u - state vector
1203: . u_t - time derivative of state vector
1204: . F - function vector
1205: - ctx - [optional] user-defined context for matrix evaluation routine
1207: Important:
1208: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1210: Level: beginner
1212: .keywords: TS, timestep, set, DAE, Jacobian
1214: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1215: @*/
1216: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1217: {
1219: SNES snes;
1220: Vec ralloc = NULL;
1221: DM dm;
1227: TSGetDM(ts,&dm);
1228: DMTSSetIFunction(dm,f,ctx);
1230: TSGetSNES(ts,&snes);
1231: if (!r && !ts->dm && ts->vec_sol) {
1232: VecDuplicate(ts->vec_sol,&ralloc);
1233: r = ralloc;
1234: }
1235: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1236: VecDestroy(&ralloc);
1237: return(0);
1238: }
1242: /*@C
1243: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1245: Not Collective
1247: Input Parameter:
1248: . ts - the TS context
1250: Output Parameter:
1251: + r - vector to hold residual (or NULL)
1252: . func - the function to compute residual (or NULL)
1253: - ctx - the function context (or NULL)
1255: Level: advanced
1257: .keywords: TS, nonlinear, get, function
1259: .seealso: TSSetIFunction(), SNESGetFunction()
1260: @*/
1261: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1262: {
1264: SNES snes;
1265: DM dm;
1269: TSGetSNES(ts,&snes);
1270: SNESGetFunction(snes,r,NULL,NULL);
1271: TSGetDM(ts,&dm);
1272: DMTSGetIFunction(dm,func,ctx);
1273: return(0);
1274: }
1278: /*@C
1279: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1281: Not Collective
1283: Input Parameter:
1284: . ts - the TS context
1286: Output Parameter:
1287: + r - vector to hold computed right hand side (or NULL)
1288: . func - the function to compute right hand side (or NULL)
1289: - ctx - the function context (or NULL)
1291: Level: advanced
1293: .keywords: TS, nonlinear, get, function
1295: .seealso: TSSetRHSFunction(), SNESGetFunction()
1296: @*/
1297: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1298: {
1300: SNES snes;
1301: DM dm;
1305: TSGetSNES(ts,&snes);
1306: SNESGetFunction(snes,r,NULL,NULL);
1307: TSGetDM(ts,&dm);
1308: DMTSGetRHSFunction(dm,func,ctx);
1309: return(0);
1310: }
1314: /*@C
1315: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1316: provided with TSSetIFunction().
1318: Logically Collective on TS
1320: Input Parameters:
1321: + ts - the TS context obtained from TSCreate()
1322: . Amat - (approximate) Jacobian matrix
1323: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1324: . f - the Jacobian evaluation routine
1325: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1327: Calling sequence of f:
1328: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1330: + t - time at step/stage being solved
1331: . U - state vector
1332: . U_t - time derivative of state vector
1333: . a - shift
1334: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1335: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1336: - ctx - [optional] user-defined context for matrix evaluation routine
1338: Notes:
1339: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1341: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1342: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1344: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1345: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1346: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1347: a and vector W depend on the integration method, step size, and past states. For example with
1348: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1349: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1351: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1353: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1354: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1356: Level: beginner
1358: .keywords: TS, timestep, DAE, Jacobian
1360: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1362: @*/
1363: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1364: {
1366: SNES snes;
1367: DM dm;
1376: TSGetDM(ts,&dm);
1377: DMTSSetIJacobian(dm,f,ctx);
1379: TSGetSNES(ts,&snes);
1380: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1381: return(0);
1382: }
1386: /*@
1387: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1388: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1389: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1390: not been changed by the TS.
1392: Logically Collective
1394: Input Arguments:
1395: + ts - TS context obtained from TSCreate()
1396: - reuse - PETSC_TRUE if the RHS Jacobian
1398: Level: intermediate
1400: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1401: @*/
1402: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1403: {
1405: ts->rhsjacobian.reuse = reuse;
1406: return(0);
1407: }
1411: /*@C
1412: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1414: Logically Collective on TS
1416: Input Parameters:
1417: + ts - the TS context obtained from TSCreate()
1418: . F - vector to hold the residual (or NULL to have it created internally)
1419: . fun - the function evaluation routine
1420: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1422: Calling sequence of fun:
1423: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1425: + t - time at step/stage being solved
1426: . U - state vector
1427: . U_t - time derivative of state vector
1428: . U_tt - second time derivative of state vector
1429: . F - function vector
1430: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1432: Level: beginner
1434: .keywords: TS, timestep, set, ODE, DAE, Function
1436: .seealso: TSSetI2Jacobian()
1437: @*/
1438: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1439: {
1440: DM dm;
1446: TSSetIFunction(ts,F,NULL,NULL);
1447: TSGetDM(ts,&dm);
1448: DMTSSetI2Function(dm,fun,ctx);
1449: return(0);
1450: }
1454: /*@C
1455: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1457: Not Collective
1459: Input Parameter:
1460: . ts - the TS context
1462: Output Parameter:
1463: + r - vector to hold residual (or NULL)
1464: . fun - the function to compute residual (or NULL)
1465: - ctx - the function context (or NULL)
1467: Level: advanced
1469: .keywords: TS, nonlinear, get, function
1471: .seealso: TSSetI2Function(), SNESGetFunction()
1472: @*/
1473: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1474: {
1476: SNES snes;
1477: DM dm;
1481: TSGetSNES(ts,&snes);
1482: SNESGetFunction(snes,r,NULL,NULL);
1483: TSGetDM(ts,&dm);
1484: DMTSGetI2Function(dm,fun,ctx);
1485: return(0);
1486: }
1490: /*@C
1491: TSSetIJacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1492: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1494: Logically Collective on TS
1496: Input Parameters:
1497: + ts - the TS context obtained from TSCreate()
1498: . J - Jacobian matrix
1499: . P - preconditioning matrix for J (may be same as J)
1500: . jac - the Jacobian evaluation routine
1501: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1503: Calling sequence of jac:
1504: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat *J,Mat *P,MatStructure *m,void *ctx);
1506: + t - time at step/stage being solved
1507: . U - state vector
1508: . U_t - time derivative of state vector
1509: . U_tt - second time derivative of state vector
1510: . v - shift for U_t
1511: . a - shift for U_tt
1512: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1513: . P - preconditioning matrix for J, may be same as J
1514: . m - flag indicating information about the preconditioner matrix
1515: structure (same as flag in KSPSetOperators())
1516: - ctx - [optional] user-defined context for matrix evaluation routine
1518: Notes:
1519: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1521: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1522: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1523: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1524: parameters 'a' and 'b' and vectors W, W' depend on the integration method, step size, and past states.
1526: Level: beginner
1528: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1530: .seealso: TSSetI2Function()
1531: @*/
1532: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1533: {
1534: DM dm;
1541: TSSetIJacobian(ts,J,P,NULL,NULL);
1542: TSGetDM(ts,&dm);
1543: DMTSSetI2Jacobian(dm,jac,ctx);
1544: return(0);
1545: }
1549: /*@C
1550: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1552: Not Collective, but parallel objects are returned if TS is parallel
1554: Input Parameter:
1555: . ts - The TS context obtained from TSCreate()
1557: Output Parameters:
1558: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1559: . P - The matrix from which the preconditioner is constructed, often the same as J
1560: . jac - The function to compute the Jacobian matrices
1561: - ctx - User-defined context for Jacobian evaluation routine
1563: Notes: You can pass in NULL for any return argument you do not need.
1565: Level: advanced
1567: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
1569: .keywords: TS, timestep, get, matrix, Jacobian
1570: @*/
1571: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1572: {
1574: SNES snes;
1575: DM dm;
1578: TSGetSNES(ts,&snes);
1579: SNESSetUpMatrices(snes);
1580: SNESGetJacobian(snes,J,P,NULL,NULL);
1581: TSGetDM(ts,&dm);
1582: DMTSGetI2Jacobian(dm,jac,ctx);
1583: return(0);
1584: }
1588: /*@
1589: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1591: Collective on TS and Vec
1593: Input Parameters:
1594: + ts - the TS context
1595: . t - current time
1596: . U - state vector
1597: . V - time derivative of state vector (U_t)
1598: - A - second time derivative of state vector (U_tt)
1600: Output Parameter:
1601: . F - the residual vector
1603: Note:
1604: Most users should not need to explicitly call this routine, as it
1605: is used internally within the nonlinear solvers.
1607: Level: developer
1609: .keywords: TS, compute, function, vector
1611: .seealso: TSSetI2Function()
1612: @*/
1613: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1614: {
1615: DM dm;
1616: TSI2Function I2Function;
1617: void *ctx;
1618: TSRHSFunction rhsfunction;
1628: TSGetDM(ts,&dm);
1629: DMTSGetI2Function(dm,&I2Function,&ctx);
1630: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1632: if (!I2Function) {
1633: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1634: return(0);
1635: }
1637: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1639: PetscStackPush("TS user implicit function");
1640: I2Function(ts,t,U,V,A,F,ctx);
1641: PetscStackPop;
1643: if (rhsfunction) {
1644: Vec Frhs;
1645: TSGetRHSVec_Private(ts,&Frhs);
1646: TSComputeRHSFunction(ts,t,U,Frhs);
1647: VecAXPY(F,-1,Frhs);
1648: }
1650: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1651: return(0);
1652: }
1656: /*@
1657: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1659: Collective on TS and Vec
1661: Input Parameters:
1662: + ts - the TS context
1663: . t - current timestep
1664: . U - state vector
1665: . V - time derivative of state vector
1666: . A - second time derivative of state vector
1667: . shiftV - shift to apply, see note below
1668: - shiftA - shift to apply, see note below
1670: Output Parameters:
1671: + J - Jacobian matrix
1672: - P - optional preconditioning matrix
1674: Notes:
1675: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1677: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1679: Most users should not need to explicitly call this routine, as it
1680: is used internally within the nonlinear solvers.
1682: Level: developer
1684: .keywords: TS, compute, Jacobian, matrix
1686: .seealso: TSSetI2Jacobian()
1687: @*/
1688: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1689: {
1690: DM dm;
1691: TSI2Jacobian I2Jacobian;
1692: void *ctx;
1693: TSRHSJacobian rhsjacobian;
1704: TSGetDM(ts,&dm);
1705: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1706: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1708: if (!I2Jacobian) {
1709: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1710: return(0);
1711: }
1713: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1715: PetscStackPush("TS user implicit Jacobian");
1716: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1717: PetscStackPop;
1719: if (rhsjacobian) {
1720: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1721: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1722: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1723: MatAXPY(J,-1,Jrhs,axpy);
1724: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1725: }
1727: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1728: return(0);
1729: }
1733: /*@
1734: TS2SetSolution - Sets the initial solution and time derivative vectors
1735: for use by the TS routines handling second order equations.
1737: Logically Collective on TS and Vec
1739: Input Parameters:
1740: + ts - the TS context obtained from TSCreate()
1741: . u - the solution vector
1742: - v - the time derivative vector
1744: Level: beginner
1746: .keywords: TS, timestep, set, solution, initial conditions
1747: @*/
1748: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1749: {
1756: TSSetSolution(ts,u);
1757: PetscObjectReference((PetscObject)v);
1758: VecDestroy(&ts->vec_dot);
1759: ts->vec_dot = v;
1760: return(0);
1761: }
1765: /*@
1766: TS2GetSolution - Returns the solution and time derivative at the present timestep
1767: for second order equations. It is valid to call this routine inside the function
1768: that you are evaluating in order to move to the new timestep. This vector not
1769: changed until the solution at the next timestep has been calculated.
1771: Not Collective, but Vec returned is parallel if TS is parallel
1773: Input Parameter:
1774: . ts - the TS context obtained from TSCreate()
1776: Output Parameter:
1777: + u - the vector containing the solution
1778: - v - the vector containing the time derivative
1780: Level: intermediate
1782: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1784: .keywords: TS, timestep, get, solution
1785: @*/
1786: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1787: {
1792: if (u) *u = ts->vec_sol;
1793: if (v) *v = ts->vec_dot;
1794: return(0);
1795: }
1799: /*@C
1800: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1802: Collective on PetscViewer
1804: Input Parameters:
1805: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1806: some related function before a call to TSLoad().
1807: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1809: Level: intermediate
1811: Notes:
1812: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1814: Notes for advanced users:
1815: Most users should not need to know the details of the binary storage
1816: format, since TSLoad() and TSView() completely hide these details.
1817: But for anyone who's interested, the standard binary matrix storage
1818: format is
1819: .vb
1820: has not yet been determined
1821: .ve
1823: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1824: @*/
1825: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1826: {
1828: PetscBool isbinary;
1829: PetscInt classid;
1830: char type[256];
1831: DMTS sdm;
1832: DM dm;
1837: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1838: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1840: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1841: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1842: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1843: TSSetType(ts, type);
1844: if (ts->ops->load) {
1845: (*ts->ops->load)(ts,viewer);
1846: }
1847: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1848: DMLoad(dm,viewer);
1849: TSSetDM(ts,dm);
1850: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1851: VecLoad(ts->vec_sol,viewer);
1852: DMGetDMTS(ts->dm,&sdm);
1853: DMTSLoad(sdm,viewer);
1854: return(0);
1855: }
1857: #include <petscdraw.h>
1858: #if defined(PETSC_HAVE_SAWS)
1859: #include <petscviewersaws.h>
1860: #endif
1863: /*@C
1864: TSView - Prints the TS data structure.
1866: Collective on TS
1868: Input Parameters:
1869: + ts - the TS context obtained from TSCreate()
1870: - viewer - visualization context
1872: Options Database Key:
1873: . -ts_view - calls TSView() at end of TSStep()
1875: Notes:
1876: The available visualization contexts include
1877: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1878: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1879: output where only the first processor opens
1880: the file. All other processors send their
1881: data to the first processor to print.
1883: The user can open an alternative visualization context with
1884: PetscViewerASCIIOpen() - output to a specified file.
1886: Level: beginner
1888: .keywords: TS, timestep, view
1890: .seealso: PetscViewerASCIIOpen()
1891: @*/
1892: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1893: {
1895: TSType type;
1896: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1897: DMTS sdm;
1898: #if defined(PETSC_HAVE_SAWS)
1899: PetscBool issaws;
1900: #endif
1904: if (!viewer) {
1905: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1906: }
1910: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1911: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1912: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1913: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1914: #if defined(PETSC_HAVE_SAWS)
1915: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1916: #endif
1917: if (iascii) {
1918: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1919: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1920: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1921: if (ts->problem_type == TS_NONLINEAR) {
1922: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1923: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1924: }
1925: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1926: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1927: DMGetDMTS(ts->dm,&sdm);
1928: DMTSView(sdm,viewer);
1929: if (ts->ops->view) {
1930: PetscViewerASCIIPushTab(viewer);
1931: (*ts->ops->view)(ts,viewer);
1932: PetscViewerASCIIPopTab(viewer);
1933: }
1934: } else if (isstring) {
1935: TSGetType(ts,&type);
1936: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1937: } else if (isbinary) {
1938: PetscInt classid = TS_FILE_CLASSID;
1939: MPI_Comm comm;
1940: PetscMPIInt rank;
1941: char type[256];
1943: PetscObjectGetComm((PetscObject)ts,&comm);
1944: MPI_Comm_rank(comm,&rank);
1945: if (!rank) {
1946: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1947: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1948: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1949: }
1950: if (ts->ops->view) {
1951: (*ts->ops->view)(ts,viewer);
1952: }
1953: DMView(ts->dm,viewer);
1954: VecView(ts->vec_sol,viewer);
1955: DMGetDMTS(ts->dm,&sdm);
1956: DMTSView(sdm,viewer);
1957: } else if (isdraw) {
1958: PetscDraw draw;
1959: char str[36];
1960: PetscReal x,y,bottom,h;
1962: PetscViewerDrawGetDraw(viewer,0,&draw);
1963: PetscDrawGetCurrentPoint(draw,&x,&y);
1964: PetscStrcpy(str,"TS: ");
1965: PetscStrcat(str,((PetscObject)ts)->type_name);
1966: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1967: bottom = y - h;
1968: PetscDrawPushCurrentPoint(draw,x,bottom);
1969: if (ts->ops->view) {
1970: (*ts->ops->view)(ts,viewer);
1971: }
1972: PetscDrawPopCurrentPoint(draw);
1973: #if defined(PETSC_HAVE_SAWS)
1974: } else if (issaws) {
1975: PetscMPIInt rank;
1976: const char *name;
1978: PetscObjectGetName((PetscObject)ts,&name);
1979: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1980: if (!((PetscObject)ts)->amsmem && !rank) {
1981: char dir[1024];
1983: PetscObjectViewSAWs((PetscObject)ts,viewer);
1984: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1985: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1986: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
1987: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
1988: }
1989: if (ts->ops->view) {
1990: (*ts->ops->view)(ts,viewer);
1991: }
1992: #endif
1993: }
1995: PetscViewerASCIIPushTab(viewer);
1996: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1997: PetscViewerASCIIPopTab(viewer);
1998: return(0);
1999: }
2004: /*@
2005: TSSetApplicationContext - Sets an optional user-defined context for
2006: the timesteppers.
2008: Logically Collective on TS
2010: Input Parameters:
2011: + ts - the TS context obtained from TSCreate()
2012: - usrP - optional user context
2014: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2015: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2017: Level: intermediate
2019: .keywords: TS, timestep, set, application, context
2021: .seealso: TSGetApplicationContext()
2022: @*/
2023: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2024: {
2027: ts->user = usrP;
2028: return(0);
2029: }
2033: /*@
2034: TSGetApplicationContext - Gets the user-defined context for the
2035: timestepper.
2037: Not Collective
2039: Input Parameter:
2040: . ts - the TS context obtained from TSCreate()
2042: Output Parameter:
2043: . usrP - user context
2045: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2046: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2048: Level: intermediate
2050: .keywords: TS, timestep, get, application, context
2052: .seealso: TSSetApplicationContext()
2053: @*/
2054: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2055: {
2058: *(void**)usrP = ts->user;
2059: return(0);
2060: }
2064: /*@
2065: TSGetTimeStepNumber - Gets the number of time steps completed.
2067: Not Collective
2069: Input Parameter:
2070: . ts - the TS context obtained from TSCreate()
2072: Output Parameter:
2073: . iter - number of steps completed so far
2075: Level: intermediate
2077: .keywords: TS, timestep, get, iteration, number
2078: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2079: @*/
2080: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
2081: {
2085: *iter = ts->steps;
2086: return(0);
2087: }
2091: /*@
2092: TSSetInitialTimeStep - Sets the initial timestep to be used,
2093: as well as the initial time.
2095: Logically Collective on TS
2097: Input Parameters:
2098: + ts - the TS context obtained from TSCreate()
2099: . initial_time - the initial time
2100: - time_step - the size of the timestep
2102: Level: intermediate
2104: .seealso: TSSetTimeStep(), TSGetTimeStep()
2106: .keywords: TS, set, initial, timestep
2107: @*/
2108: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2109: {
2114: TSSetTimeStep(ts,time_step);
2115: TSSetTime(ts,initial_time);
2116: return(0);
2117: }
2121: /*@
2122: TSSetTimeStep - Allows one to reset the timestep at any time,
2123: useful for simple pseudo-timestepping codes.
2125: Logically Collective on TS
2127: Input Parameters:
2128: + ts - the TS context obtained from TSCreate()
2129: - time_step - the size of the timestep
2131: Level: intermediate
2133: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2135: .keywords: TS, set, timestep
2136: @*/
2137: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2138: {
2142: ts->time_step = time_step;
2143: return(0);
2144: }
2148: /*@
2149: TSSetExactFinalTime - Determines whether to adapt the final time step to
2150: match the exact final time, interpolate solution to the exact final time,
2151: or just return at the final time TS computed.
2153: Logically Collective on TS
2155: Input Parameter:
2156: + ts - the time-step context
2157: - eftopt - exact final time option
2159: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2160: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2161: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2163: Options Database:
2164: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2166: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2167: then the final time you selected.
2169: Level: beginner
2171: .seealso: TSExactFinalTimeOption
2172: @*/
2173: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2174: {
2178: ts->exact_final_time = eftopt;
2179: return(0);
2180: }
2184: /*@
2185: TSGetTimeStep - Gets the current timestep size.
2187: Not Collective
2189: Input Parameter:
2190: . ts - the TS context obtained from TSCreate()
2192: Output Parameter:
2193: . dt - the current timestep size
2195: Level: intermediate
2197: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2199: .keywords: TS, get, timestep
2200: @*/
2201: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2202: {
2206: *dt = ts->time_step;
2207: return(0);
2208: }
2212: /*@
2213: TSGetSolution - Returns the solution at the present timestep. It
2214: is valid to call this routine inside the function that you are evaluating
2215: in order to move to the new timestep. This vector not changed until
2216: the solution at the next timestep has been calculated.
2218: Not Collective, but Vec returned is parallel if TS is parallel
2220: Input Parameter:
2221: . ts - the TS context obtained from TSCreate()
2223: Output Parameter:
2224: . v - the vector containing the solution
2226: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2227: final time. It returns the solution at the next timestep.
2229: Level: intermediate
2231: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime()
2233: .keywords: TS, timestep, get, solution
2234: @*/
2235: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2236: {
2240: *v = ts->vec_sol;
2241: return(0);
2242: }
2246: /*@
2247: TSGetCostGradients - Returns the gradients from the TSAdjointSolve()
2249: Not Collective, but Vec returned is parallel if TS is parallel
2251: Input Parameter:
2252: . ts - the TS context obtained from TSCreate()
2254: Output Parameter:
2255: + lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
2256: - mu - vectors containing the gradients of the cost functions with respect to the problem parameters
2258: Level: intermediate
2260: .seealso: TSGetTimeStep()
2262: .keywords: TS, timestep, get, sensitivity
2263: @*/
2264: PetscErrorCode TSGetCostGradients(TS ts,PetscInt *numcost,Vec **lambda,Vec **mu)
2265: {
2268: if (numcost) *numcost = ts->numcost;
2269: if (lambda) *lambda = ts->vecs_sensi;
2270: if (mu) *mu = ts->vecs_sensip;
2271: return(0);
2272: }
2274: /* ----- Routines to initialize and destroy a timestepper ---- */
2277: /*@
2278: TSSetProblemType - Sets the type of problem to be solved.
2280: Not collective
2282: Input Parameters:
2283: + ts - The TS
2284: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2285: .vb
2286: U_t - A U = 0 (linear)
2287: U_t - A(t) U = 0 (linear)
2288: F(t,U,U_t) = 0 (nonlinear)
2289: .ve
2291: Level: beginner
2293: .keywords: TS, problem type
2294: .seealso: TSSetUp(), TSProblemType, TS
2295: @*/
2296: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2297: {
2302: ts->problem_type = type;
2303: if (type == TS_LINEAR) {
2304: SNES snes;
2305: TSGetSNES(ts,&snes);
2306: SNESSetType(snes,SNESKSPONLY);
2307: }
2308: return(0);
2309: }
2313: /*@C
2314: TSGetProblemType - Gets the type of problem to be solved.
2316: Not collective
2318: Input Parameter:
2319: . ts - The TS
2321: Output Parameter:
2322: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2323: .vb
2324: M U_t = A U
2325: M(t) U_t = A(t) U
2326: F(t,U,U_t)
2327: .ve
2329: Level: beginner
2331: .keywords: TS, problem type
2332: .seealso: TSSetUp(), TSProblemType, TS
2333: @*/
2334: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2335: {
2339: *type = ts->problem_type;
2340: return(0);
2341: }
2345: /*@
2346: TSSetUp - Sets up the internal data structures for the later use
2347: of a timestepper.
2349: Collective on TS
2351: Input Parameter:
2352: . ts - the TS context obtained from TSCreate()
2354: Notes:
2355: For basic use of the TS solvers the user need not explicitly call
2356: TSSetUp(), since these actions will automatically occur during
2357: the call to TSStep(). However, if one wishes to control this
2358: phase separately, TSSetUp() should be called after TSCreate()
2359: and optional routines of the form TSSetXXX(), but before TSStep().
2361: Level: advanced
2363: .keywords: TS, timestep, setup
2365: .seealso: TSCreate(), TSStep(), TSDestroy()
2366: @*/
2367: PetscErrorCode TSSetUp(TS ts)
2368: {
2370: DM dm;
2371: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2372: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2373: TSIFunction ifun;
2374: TSIJacobian ijac;
2375: TSI2Jacobian i2jac;
2376: TSRHSJacobian rhsjac;
2380: if (ts->setupcalled) return(0);
2382: ts->total_steps = 0;
2383: if (!((PetscObject)ts)->type_name) {
2384: TSGetIFunction(ts,NULL,&ifun,NULL);
2385: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2386: }
2388: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2390: if (ts->rhsjacobian.reuse) {
2391: Mat Amat,Pmat;
2392: SNES snes;
2393: TSGetSNES(ts,&snes);
2394: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2395: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2396: * have displaced the RHS matrix */
2397: if (Amat == ts->Arhs) {
2398: MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
2399: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2400: MatDestroy(&Amat);
2401: }
2402: if (Pmat == ts->Brhs) {
2403: MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
2404: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2405: MatDestroy(&Pmat);
2406: }
2407: }
2408: if (ts->ops->setup) {
2409: (*ts->ops->setup)(ts);
2410: }
2412: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2413: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2414: */
2415: TSGetDM(ts,&dm);
2416: DMSNESGetFunction(dm,&func,NULL);
2417: if (!func) {
2418: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2419: }
2420: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2421: Otherwise, the SNES will use coloring internally to form the Jacobian.
2422: */
2423: DMSNESGetJacobian(dm,&jac,NULL);
2424: DMTSGetIJacobian(dm,&ijac,NULL);
2425: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2426: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2427: if (!jac && (ijac || i2jac || rhsjac)) {
2428: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2429: }
2430: ts->setupcalled = PETSC_TRUE;
2431: return(0);
2432: }
2436: /*@
2437: TSAdjointSetUp - Sets up the internal data structures for the later use
2438: of an adjoint solver
2440: Collective on TS
2442: Input Parameter:
2443: . ts - the TS context obtained from TSCreate()
2445: Level: advanced
2447: .keywords: TS, timestep, setup
2449: .seealso: TSCreate(), TSAdjointStep(), TSSetCostGradients()
2450: @*/
2451: PetscErrorCode TSAdjointSetUp(TS ts)
2452: {
2457: if (ts->adjointsetupcalled) return(0);
2458: if (!ts->vecs_sensi) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetCostGradients() first");
2460: if (ts->vec_costintegral) { /* if there is integral in the cost function*/
2461: VecDuplicateVecs(ts->vecs_sensi[0],ts->numcost,&ts->vecs_drdy);
2462: if (ts->vecs_sensip){
2463: VecDuplicateVecs(ts->vecs_sensip[0],ts->numcost,&ts->vecs_drdp);
2464: }
2465: }
2467: if (ts->ops->adjointsetup) {
2468: (*ts->ops->adjointsetup)(ts);
2469: }
2470: ts->adjointsetupcalled = PETSC_TRUE;
2471: return(0);
2472: }
2476: /*@
2477: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2479: Collective on TS
2481: Input Parameter:
2482: . ts - the TS context obtained from TSCreate()
2484: Level: beginner
2486: .keywords: TS, timestep, reset
2488: .seealso: TSCreate(), TSSetup(), TSDestroy()
2489: @*/
2490: PetscErrorCode TSReset(TS ts)
2491: {
2497: if (ts->ops->reset) {
2498: (*ts->ops->reset)(ts);
2499: }
2500: if (ts->snes) {SNESReset(ts->snes);}
2501: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2503: MatDestroy(&ts->Arhs);
2504: MatDestroy(&ts->Brhs);
2505: VecDestroy(&ts->Frhs);
2506: VecDestroy(&ts->vec_sol);
2507: VecDestroy(&ts->vec_dot);
2508: VecDestroy(&ts->vatol);
2509: VecDestroy(&ts->vrtol);
2510: VecDestroyVecs(ts->nwork,&ts->work);
2512: if (ts->vec_costintegral) {
2513: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2514: if (ts->vecs_drdp){
2515: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2516: }
2517: }
2518: ts->vecs_sensi = NULL;
2519: ts->vecs_sensip = NULL;
2520: MatDestroy(&ts->Jacp);
2521: VecDestroy(&ts->vec_costintegral);
2522: VecDestroy(&ts->vec_costintegrand);
2523: ts->setupcalled = PETSC_FALSE;
2524: return(0);
2525: }
2529: /*@
2530: TSDestroy - Destroys the timestepper context that was created
2531: with TSCreate().
2533: Collective on TS
2535: Input Parameter:
2536: . ts - the TS context obtained from TSCreate()
2538: Level: beginner
2540: .keywords: TS, timestepper, destroy
2542: .seealso: TSCreate(), TSSetUp(), TSSolve()
2543: @*/
2544: PetscErrorCode TSDestroy(TS *ts)
2545: {
2549: if (!*ts) return(0);
2551: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2553: TSReset((*ts));
2555: /* if memory was published with SAWs then destroy it */
2556: PetscObjectSAWsViewOff((PetscObject)*ts);
2557: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2559: TSTrajectoryDestroy(&(*ts)->trajectory);
2561: TSAdaptDestroy(&(*ts)->adapt);
2562: TSEventDestroy(&(*ts)->event);
2564: SNESDestroy(&(*ts)->snes);
2565: DMDestroy(&(*ts)->dm);
2566: TSMonitorCancel((*ts));
2567: TSAdjointMonitorCancel((*ts));
2569: PetscHeaderDestroy(ts);
2570: return(0);
2571: }
2575: /*@
2576: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2577: a TS (timestepper) context. Valid only for nonlinear problems.
2579: Not Collective, but SNES is parallel if TS is parallel
2581: Input Parameter:
2582: . ts - the TS context obtained from TSCreate()
2584: Output Parameter:
2585: . snes - the nonlinear solver context
2587: Notes:
2588: The user can then directly manipulate the SNES context to set various
2589: options, etc. Likewise, the user can then extract and manipulate the
2590: KSP, KSP, and PC contexts as well.
2592: TSGetSNES() does not work for integrators that do not use SNES; in
2593: this case TSGetSNES() returns NULL in snes.
2595: Level: beginner
2597: .keywords: timestep, get, SNES
2598: @*/
2599: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2600: {
2606: if (!ts->snes) {
2607: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2608: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2609: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2610: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2611: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2612: if (ts->problem_type == TS_LINEAR) {
2613: SNESSetType(ts->snes,SNESKSPONLY);
2614: }
2615: }
2616: *snes = ts->snes;
2617: return(0);
2618: }
2622: /*@
2623: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2625: Collective
2627: Input Parameter:
2628: + ts - the TS context obtained from TSCreate()
2629: - snes - the nonlinear solver context
2631: Notes:
2632: Most users should have the TS created by calling TSGetSNES()
2634: Level: developer
2636: .keywords: timestep, set, SNES
2637: @*/
2638: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2639: {
2641: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2646: PetscObjectReference((PetscObject)snes);
2647: SNESDestroy(&ts->snes);
2649: ts->snes = snes;
2651: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2652: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2653: if (func == SNESTSFormJacobian) {
2654: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2655: }
2656: return(0);
2657: }
2661: /*@
2662: TSGetKSP - Returns the KSP (linear solver) associated with
2663: a TS (timestepper) context.
2665: Not Collective, but KSP is parallel if TS is parallel
2667: Input Parameter:
2668: . ts - the TS context obtained from TSCreate()
2670: Output Parameter:
2671: . ksp - the nonlinear solver context
2673: Notes:
2674: The user can then directly manipulate the KSP context to set various
2675: options, etc. Likewise, the user can then extract and manipulate the
2676: KSP and PC contexts as well.
2678: TSGetKSP() does not work for integrators that do not use KSP;
2679: in this case TSGetKSP() returns NULL in ksp.
2681: Level: beginner
2683: .keywords: timestep, get, KSP
2684: @*/
2685: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2686: {
2688: SNES snes;
2693: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2694: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2695: TSGetSNES(ts,&snes);
2696: SNESGetKSP(snes,ksp);
2697: return(0);
2698: }
2700: /* ----------- Routines to set solver parameters ---------- */
2704: /*@
2705: TSGetDuration - Gets the maximum number of timesteps to use and
2706: maximum time for iteration.
2708: Not Collective
2710: Input Parameters:
2711: + ts - the TS context obtained from TSCreate()
2712: . maxsteps - maximum number of iterations to use, or NULL
2713: - maxtime - final time to iterate to, or NULL
2715: Level: intermediate
2717: .keywords: TS, timestep, get, maximum, iterations, time
2718: @*/
2719: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2720: {
2723: if (maxsteps) {
2725: *maxsteps = ts->max_steps;
2726: }
2727: if (maxtime) {
2729: *maxtime = ts->max_time;
2730: }
2731: return(0);
2732: }
2736: /*@
2737: TSSetDuration - Sets the maximum number of timesteps to use and
2738: maximum time for iteration.
2740: Logically Collective on TS
2742: Input Parameters:
2743: + ts - the TS context obtained from TSCreate()
2744: . maxsteps - maximum number of iterations to use
2745: - maxtime - final time to iterate to
2747: Options Database Keys:
2748: . -ts_max_steps <maxsteps> - Sets maxsteps
2749: . -ts_final_time <maxtime> - Sets maxtime
2751: Notes:
2752: The default maximum number of iterations is 5000. Default time is 5.0
2754: Level: intermediate
2756: .keywords: TS, timestep, set, maximum, iterations
2758: .seealso: TSSetExactFinalTime()
2759: @*/
2760: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2761: {
2766: if (maxsteps >= 0) ts->max_steps = maxsteps;
2767: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2768: return(0);
2769: }
2773: /*@
2774: TSSetSolution - Sets the initial solution vector
2775: for use by the TS routines.
2777: Logically Collective on TS and Vec
2779: Input Parameters:
2780: + ts - the TS context obtained from TSCreate()
2781: - u - the solution vector
2783: Level: beginner
2785: .keywords: TS, timestep, set, solution, initial conditions
2786: @*/
2787: PetscErrorCode TSSetSolution(TS ts,Vec u)
2788: {
2790: DM dm;
2795: PetscObjectReference((PetscObject)u);
2796: VecDestroy(&ts->vec_sol);
2797: ts->vec_sol = u;
2799: TSGetDM(ts,&dm);
2800: DMShellSetGlobalVector(dm,u);
2801: return(0);
2802: }
2806: /*@
2807: TSAdjointSetSteps - Sets the number of steps the adjoint solver should take backward in time
2809: Logically Collective on TS
2811: Input Parameters:
2812: + ts - the TS context obtained from TSCreate()
2813: . steps - number of steps to use
2815: Level: intermediate
2817: Notes: Normally one does not call this and TSAdjointSolve() integrates back to the original timestep. One can call this
2818: so as to integrate back to less than the original timestep
2820: .keywords: TS, timestep, set, maximum, iterations
2822: .seealso: TSSetExactFinalTime()
2823: @*/
2824: PetscErrorCode TSAdjointSetSteps(TS ts,PetscInt steps)
2825: {
2829: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back a negative number of steps");
2830: if (steps > ts->total_steps) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back more than the total number of forward steps");
2831: ts->adjoint_max_steps = steps;
2832: return(0);
2833: }
2837: /*@
2838: TSSetCostGradients - Sets the initial value of the gradients of the cost function w.r.t. initial conditions and w.r.t. the problem parameters
2839: for use by the TSAdjoint routines.
2841: Logically Collective on TS and Vec
2843: Input Parameters:
2844: + ts - the TS context obtained from TSCreate()
2845: . lambda - gradients with respect to the initial condition variables, the dimension and parallel layout of these vectors is the same as the ODE solution vector
2846: - mu - gradients with respect to the parameters, the number of entries in these vectors is the same as the number of parameters
2848: Level: beginner
2850: Notes: the entries in these vectors must be correctly initialized with the values lamda_i = df/dy|finaltime mu_i = df/dp|finaltime
2852: .keywords: TS, timestep, set, sensitivity, initial conditions
2853: @*/
2854: PetscErrorCode TSSetCostGradients(TS ts,PetscInt numcost,Vec *lambda,Vec *mu)
2855: {
2859: ts->vecs_sensi = lambda;
2860: ts->vecs_sensip = mu;
2861: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostIntegrand");
2862: ts->numcost = numcost;
2863: return(0);
2864: }
2868: /*@C
2869: TSAdjointSetRHSJacobian - Sets the function that computes the Jacobian of G w.r.t. the parameters p where y_t = G(y,p,t), as well as the location to store the matrix.
2871: Logically Collective on TS
2873: Input Parameters:
2874: + ts - The TS context obtained from TSCreate()
2875: - func - The function
2877: Calling sequence of func:
2878: $ func (TS ts,PetscReal t,Vec y,Mat A,void *ctx);
2879: + t - current timestep
2880: . y - input vector (current ODE solution)
2881: . A - output matrix
2882: - ctx - [optional] user-defined function context
2884: Level: intermediate
2886: Notes: Amat has the same number of rows and the same row parallel layout as u, Amat has the same number of columns and parallel layout as p
2888: .keywords: TS, sensitivity
2889: .seealso:
2890: @*/
2891: PetscErrorCode TSAdjointSetRHSJacobian(TS ts,Mat Amat,PetscErrorCode (*func)(TS,PetscReal,Vec,Mat,void*),void *ctx)
2892: {
2899: ts->rhsjacobianp = func;
2900: ts->rhsjacobianpctx = ctx;
2901: if(Amat) {
2902: PetscObjectReference((PetscObject)Amat);
2903: MatDestroy(&ts->Jacp);
2904: ts->Jacp = Amat;
2905: }
2906: return(0);
2907: }
2911: /*@C
2912: TSAdjointComputeRHSJacobian - Runs the user-defined Jacobian function.
2914: Collective on TS
2916: Input Parameters:
2917: . ts - The TS context obtained from TSCreate()
2919: Level: developer
2921: .keywords: TS, sensitivity
2922: .seealso: TSAdjointSetRHSJacobian()
2923: @*/
2924: PetscErrorCode TSAdjointComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat)
2925: {
2933: PetscStackPush("TS user JacobianP function for sensitivity analysis");
2934: (*ts->rhsjacobianp)(ts,t,X,Amat,ts->rhsjacobianpctx);
2935: PetscStackPop;
2936: return(0);
2937: }
2941: /*@C
2942: TSSetCostIntegrand - Sets the routine for evaluating the integral term in one or more cost functions
2944: Logically Collective on TS
2946: Input Parameters:
2947: + ts - the TS context obtained from TSCreate()
2948: . numcost - number of gradients to be computed, this is the number of cost functions
2949: . rf - routine for evaluating the integrand function
2950: . drdyf - function that computes the gradients of the r's with respect to y,NULL if not a function y
2951: . drdpf - function that computes the gradients of the r's with respect to p, NULL if not a function of p
Binary file (standard input) matches