Actual source code: ts.c

petsc-master 2020-08-25
Report Typos and Errors
  1:  #include <petsc/private/tsimpl.h>
  2:  #include <petscdmshell.h>
  3:  #include <petscdmda.h>
  4:  #include <petscviewer.h>
  5:  #include <petscdraw.h>
  6:  #include <petscconvest.h>

  8: #define SkipSmallValue(a,b,tol) if (PetscAbsScalar(a)< tol || PetscAbsScalar(b)< tol) continue;

 10: /* Logging support */
 11: PetscClassId  TS_CLASSID, DMTS_CLASSID;
 12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",NULL};


 17: /*@C
 18:    TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 20:    Collective on TS

 22:    Input Parameters:
 23: +  ts - TS object you wish to monitor
 24: .  name - the monitor type one is seeking
 25: .  help - message indicating what monitoring is done
 26: .  manual - manual page for the monitor
 27: .  monitor - the monitor function
 28: -  monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects

 30:    Level: developer

 32: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
 33:           PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
 34:           PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
 35:           PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
 36:           PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
 37:           PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
 38:           PetscOptionsFList(), PetscOptionsEList()
 39: @*/
 40: PetscErrorCode  TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
 41: {
 42:   PetscErrorCode    ierr;
 43:   PetscViewer       viewer;
 44:   PetscViewerFormat format;
 45:   PetscBool         flg;

 48:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
 49:   if (flg) {
 50:     PetscViewerAndFormat *vf;
 51:     PetscViewerAndFormatCreate(viewer,format,&vf);
 52:     PetscObjectDereference((PetscObject)viewer);
 53:     if (monitorsetup) {
 54:       (*monitorsetup)(ts,vf);
 55:     }
 56:     TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
 57:   }
 58:   return(0);
 59: }

 61: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
 62: {

 68:   if (!((PetscObject)adapt)->type_name) {
 69:     TSAdaptSetType(adapt,default_type);
 70:   }
 71:   return(0);
 72: }

 74: /*@
 75:    TSSetFromOptions - Sets various TS parameters from user options.

 77:    Collective on TS

 79:    Input Parameter:
 80: .  ts - the TS context obtained from TSCreate()

 82:    Options Database Keys:
 83: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
 84: .  -ts_save_trajectory - checkpoint the solution at each time-step
 85: .  -ts_max_time <time> - maximum time to compute to
 86: .  -ts_max_steps <steps> - maximum number of time-steps to take
 87: .  -ts_init_time <time> - initial time to start computation
 88: .  -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
 89: .  -ts_dt <dt> - initial time step
 90: .  -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that ti,e
 91: .  -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
 92: .  -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
 93: .  -ts_error_if_step_fails <true,false> - Error if no step succeeds
 94: .  -ts_rtol <rtol> - relative tolerance for local truncation error
 95: .  -ts_atol <atol> Absolute tolerance for local truncation error
 96: .  -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
 97: .  -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
 98: .  -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
 99: .  -ts_fd_color - Use finite differences with coloring to compute IJacobian
100: .  -ts_monitor - print information at each timestep
101: .  -ts_monitor_lg_solution - Monitor solution graphically
102: .  -ts_monitor_lg_error - Monitor error graphically
103: .  -ts_monitor_error - Monitors norm of error
104: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
105: .  -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
106: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
107: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
108: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
109: .  -ts_monitor_draw_solution - Monitor solution graphically
110: .  -ts_monitor_draw_solution_phase  <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
111: .  -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
112: .  -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
113: .  -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
114: -  -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time

116:    Developer Note:
117:    We should unify all the -ts_monitor options in the way that -xxx_view has been unified

119:    Level: beginner

121: .seealso: TSGetType()
122: @*/
123: PetscErrorCode  TSSetFromOptions(TS ts)
124: {
125:   PetscBool              opt,flg,tflg;
126:   PetscErrorCode         ierr;
127:   char                   monfilename[PETSC_MAX_PATH_LEN];
128:   PetscReal              time_step;
129:   TSExactFinalTimeOption eftopt;
130:   char                   dir[16];
131:   TSIFunction            ifun;
132:   const char             *defaultType;
133:   char                   typeName[256];


138:   TSRegisterAll();
139:   TSGetIFunction(ts,NULL,&ifun,NULL);

141:   PetscObjectOptionsBegin((PetscObject)ts);
142:   if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
143:   else defaultType = ifun ? TSBEULER : TSEULER;
144:   PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
145:   if (opt) {
146:     TSSetType(ts,typeName);
147:   } else {
148:     TSSetType(ts,defaultType);
149:   }

151:   /* Handle generic TS options */
152:   PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
153:   PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
154:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
155:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
156:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
157:   if (flg) {TSSetTimeStep(ts,time_step);}
158:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
159:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
160:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
161:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
162:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
163:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
164:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

166:   PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
167:   PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
168:   PetscOptionsBool("-ts_use_splitrhsfunction","Use the split RHS function for multirate solvers ","TSSetUseSplitRHSFunction",ts->use_splitrhsfunction,&ts->use_splitrhsfunction,NULL);
169: #if defined(PETSC_HAVE_SAWS)
170:   {
171:     PetscBool set;
172:     flg  = PETSC_FALSE;
173:     PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
174:     if (set) {
175:       PetscObjectSAWsSetBlock((PetscObject)ts,flg);
176:     }
177:   }
178: #endif

180:   /* Monitor options */
181:   TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
182:   TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
183:   TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);

185:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",NULL,monfilename,sizeof(monfilename),&flg);
186:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

188:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
189:   if (opt) {
190:     TSMonitorLGCtx ctx;
191:     PetscInt       howoften = 1;

193:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
194:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
195:     TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
196:   }

198:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
199:   if (opt) {
200:     TSMonitorLGCtx ctx;
201:     PetscInt       howoften = 1;

203:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
204:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
205:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
206:   }
207:   TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);

209:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
210:   if (opt) {
211:     TSMonitorLGCtx ctx;
212:     PetscInt       howoften = 1;

214:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
215:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
216:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
217:   }
218:   PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
219:   if (opt) {
220:     TSMonitorLGCtx ctx;
221:     PetscInt       howoften = 1;

223:     PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
224:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
225:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
226:     ctx->semilogy = PETSC_TRUE;
227:   }

229:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
230:   if (opt) {
231:     TSMonitorLGCtx ctx;
232:     PetscInt       howoften = 1;

234:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
235:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
236:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
237:   }
238:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
239:   if (opt) {
240:     TSMonitorLGCtx ctx;
241:     PetscInt       howoften = 1;

243:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
244:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
245:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
246:   }
247:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
248:   if (opt) {
249:     TSMonitorSPEigCtx ctx;
250:     PetscInt          howoften = 1;

252:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
253:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
254:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
255:   }
256:   PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
257:   if (opt) {
258:     TSMonitorSPCtx  ctx;
259:     PetscInt        howoften = 1;
260:     PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
261:     TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
262:     TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
263:   }
264:   opt  = PETSC_FALSE;
265:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
266:   if (opt) {
267:     TSMonitorDrawCtx ctx;
268:     PetscInt         howoften = 1;

270:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
271:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
272:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
273:   }
274:   opt  = PETSC_FALSE;
275:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
276:   if (opt) {
277:     TSMonitorDrawCtx ctx;
278:     PetscReal        bounds[4];
279:     PetscInt         n = 4;
280:     PetscDraw        draw;
281:     PetscDrawAxis    axis;

283:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
284:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
285:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
286:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
287:     PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
288:     PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
289:     PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
290:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
291:   }
292:   opt  = PETSC_FALSE;
293:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
294:   if (opt) {
295:     TSMonitorDrawCtx ctx;
296:     PetscInt         howoften = 1;

298:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
299:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
300:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
301:   }
302:   opt  = PETSC_FALSE;
303:   PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
304:   if (opt) {
305:     TSMonitorDrawCtx ctx;
306:     PetscInt         howoften = 1;

308:     PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
309:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
310:     TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
311:   }

313:   opt  = PETSC_FALSE;
314:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",NULL,monfilename,sizeof(monfilename),&flg);
315:   if (flg) {
316:     const char *ptr,*ptr2;
317:     char       *filetemplate;
318:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
319:     /* Do some cursory validation of the input. */
320:     PetscStrstr(monfilename,"%",(char**)&ptr);
321:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
322:     for (ptr++; ptr && *ptr; ptr++) {
323:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
324:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
325:       if (ptr2) break;
326:     }
327:     PetscStrallocpy(monfilename,&filetemplate);
328:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
329:   }

331:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,sizeof(dir),&flg);
332:   if (flg) {
333:     TSMonitorDMDARayCtx *rayctx;
334:     int                  ray = 0;
335:     DMDirection          ddir;
336:     DM                   da;
337:     PetscMPIInt          rank;

339:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
340:     if (dir[0] == 'x') ddir = DM_X;
341:     else if (dir[0] == 'y') ddir = DM_Y;
342:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
343:     sscanf(dir+2,"%d",&ray);

345:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %d\n",dir[0],ray);
346:     PetscNew(&rayctx);
347:     TSGetDM(ts,&da);
348:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
349:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
350:     if (!rank) {
351:       PetscViewerDrawOpen(PETSC_COMM_SELF,NULL,NULL,0,0,600,300,&rayctx->viewer);
352:     }
353:     rayctx->lgctx = NULL;
354:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
355:   }
356:   PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,sizeof(dir),&flg);
357:   if (flg) {
358:     TSMonitorDMDARayCtx *rayctx;
359:     int                 ray = 0;
360:     DMDirection         ddir;
361:     DM                  da;
362:     PetscInt            howoften = 1;

364:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
365:     if      (dir[0] == 'x') ddir = DM_X;
366:     else if (dir[0] == 'y') ddir = DM_Y;
367:     else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
368:     sscanf(dir+2, "%d", &ray);

370:     PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %d\n", dir[0], ray);
371:     PetscNew(&rayctx);
372:     TSGetDM(ts, &da);
373:     DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
374:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
375:     TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
376:   }

378:   PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
379:   if (opt) {
380:     TSMonitorEnvelopeCtx ctx;

382:     TSMonitorEnvelopeCtxCreate(ts,&ctx);
383:     TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
384:   }

386:   flg  = PETSC_FALSE;
387:   PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
388:   if (flg) {
389:     DM   dm;
390:     DMTS tdm;

392:     TSGetDM(ts, &dm);
393:     DMGetDMTS(dm, &tdm);
394:     tdm->ijacobianctx = NULL;
395:     TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL);
396:     PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
397:   }

399:   /* Handle specific TS options */
400:   if (ts->ops->setfromoptions) {
401:     (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
402:   }

404:   /* Handle TSAdapt options */
405:   TSGetAdapt(ts,&ts->adapt);
406:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
407:   TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);

409:   /* TS trajectory must be set after TS, since it may use some TS options above */
410:   tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
411:   PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
412:   if (tflg) {
413:     TSSetSaveTrajectory(ts);
414:   }

416:   TSAdjointSetFromOptions(PetscOptionsObject,ts);

418:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
419:   PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
420:   PetscOptionsEnd();

422:   if (ts->trajectory) {
423:     TSTrajectorySetFromOptions(ts->trajectory,ts);
424:   }

426:   /* why do we have to do this here and not during TSSetUp? */
427:   TSGetSNES(ts,&ts->snes);
428:   if (ts->problem_type == TS_LINEAR) {
429:     PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
430:     if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
431:   }
432:   SNESSetFromOptions(ts->snes);
433:   return(0);
434: }

436: /*@
437:    TSGetTrajectory - Gets the trajectory from a TS if it exists

439:    Collective on TS

441:    Input Parameters:
442: .  ts - the TS context obtained from TSCreate()

444:    Output Parameters:
445: .  tr - the TSTrajectory object, if it exists

447:    Note: This routine should be called after all TS options have been set

449:    Level: advanced

451: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()

453: @*/
454: PetscErrorCode  TSGetTrajectory(TS ts,TSTrajectory *tr)
455: {
458:   *tr = ts->trajectory;
459:   return(0);
460: }

462: /*@
463:    TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object

465:    Collective on TS

467:    Input Parameters:
468: .  ts - the TS context obtained from TSCreate()

470:    Options Database:
471: +  -ts_save_trajectory - saves the trajectory to a file
472: -  -ts_trajectory_type type

474: Note: This routine should be called after all TS options have been set

476:     The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
477:    MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m

479:    Level: intermediate

481: .seealso: TSGetTrajectory(), TSAdjointSolve()

483: @*/
484: PetscErrorCode  TSSetSaveTrajectory(TS ts)
485: {

490:   if (!ts->trajectory) {
491:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
492:   }
493:   return(0);
494: }

496: /*@
497:    TSResetTrajectory - Destroys and recreates the internal TSTrajectory object

499:    Collective on TS

501:    Input Parameters:
502: .  ts - the TS context obtained from TSCreate()

504:    Level: intermediate

506: .seealso: TSGetTrajectory(), TSAdjointSolve()

508: @*/
509: PetscErrorCode  TSResetTrajectory(TS ts)
510: {

515:   if (ts->trajectory) {
516:     TSTrajectoryDestroy(&ts->trajectory);
517:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
518:   }
519:   return(0);
520: }

522: /*@
523:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
524:       set with TSSetRHSJacobian().

526:    Collective on TS

528:    Input Parameters:
529: +  ts - the TS context
530: .  t - current timestep
531: -  U - input vector

533:    Output Parameters:
534: +  A - Jacobian matrix
535: .  B - optional preconditioning matrix
536: -  flag - flag indicating matrix structure

538:    Notes:
539:    Most users should not need to explicitly call this routine, as it
540:    is used internally within the nonlinear solvers.

542:    See KSPSetOperators() for important information about setting the
543:    flag parameter.

545:    Level: developer

547: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
548: @*/
549: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
550: {
551:   PetscErrorCode   ierr;
552:   PetscObjectState Ustate;
553:   PetscObjectId    Uid;
554:   DM               dm;
555:   DMTS             tsdm;
556:   TSRHSJacobian    rhsjacobianfunc;
557:   void             *ctx;
558:   TSIJacobian      ijacobianfunc;
559:   TSRHSFunction    rhsfunction;

565:   TSGetDM(ts,&dm);
566:   DMGetDMTS(dm,&tsdm);
567:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
568:   DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
569:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);
570:   PetscObjectStateGet((PetscObject)U,&Ustate);
571:   PetscObjectGetId((PetscObject)U,&Uid);

573:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
574:     /* restore back RHS Jacobian matrices if they have been shifted/scaled */
575:     if (A == ts->Arhs) {
576:       if (ts->rhsjacobian.shift != 0) {
577:         MatShift(A,-ts->rhsjacobian.shift);
578:       }
579:       if (ts->rhsjacobian.scale != 1.) {
580:         MatScale(A,1./ts->rhsjacobian.scale);
581:       }
582:     }
583:     if (B && B == ts->Brhs && A != B) {
584:       if (ts->rhsjacobian.shift != 0) {
585:         MatShift(B,-ts->rhsjacobian.shift);
586:       }
587:       if (ts->rhsjacobian.scale != 1.) {
588:         MatScale(B,1./ts->rhsjacobian.scale);
589:       }
590:     }
591:     ts->rhsjacobian.shift = 0;
592:     ts->rhsjacobian.scale = 1.;
593:     return(0);
594:   }

596:   if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

598:   if (ts->rhsjacobian.reuse) {
599:     if (A == ts->Arhs) {
600:       /* MatScale has a short path for this case.
601:          However, this code path is taken the first time TSComputeRHSJacobian is called
602:          and the matrices have not assembled yet */
603:       if (ts->rhsjacobian.shift != 0) {
604:         MatShift(A,-ts->rhsjacobian.shift);
605:       }
606:       if (ts->rhsjacobian.scale != 1.) {
607:         MatScale(A,1./ts->rhsjacobian.scale);
608:       }
609:     }
610:     if (B && B == ts->Brhs && A != B) {
611:       if (ts->rhsjacobian.shift != 0) {
612:         MatShift(B,-ts->rhsjacobian.shift);
613:       }
614:       if (ts->rhsjacobian.scale != 1.) {
615:         MatScale(B,1./ts->rhsjacobian.scale);
616:       }
617:     }
618:   }

620:   if (rhsjacobianfunc) {
621:     PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
622:     PetscStackPush("TS user Jacobian function");
623:     (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
624:     PetscStackPop;
625:     PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
626:   } else {
627:     MatZeroEntries(A);
628:     if (B && A != B) {MatZeroEntries(B);}
629:   }
630:   ts->rhsjacobian.time  = t;
631:   ts->rhsjacobian.shift = 0;
632:   ts->rhsjacobian.scale = 1.;
633:   PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
634:   PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
635:   return(0);
636: }

638: /*@
639:    TSComputeRHSFunction - Evaluates the right-hand-side function.

641:    Collective on TS

643:    Input Parameters:
644: +  ts - the TS context
645: .  t - current time
646: -  U - state vector

648:    Output Parameter:
649: .  y - right hand side

651:    Note:
652:    Most users should not need to explicitly call this routine, as it
653:    is used internally within the nonlinear solvers.

655:    Level: developer

657: .seealso: TSSetRHSFunction(), TSComputeIFunction()
658: @*/
659: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
660: {
662:   TSRHSFunction  rhsfunction;
663:   TSIFunction    ifunction;
664:   void           *ctx;
665:   DM             dm;

671:   TSGetDM(ts,&dm);
672:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
673:   DMTSGetIFunction(dm,&ifunction,NULL);

675:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

677:   PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
678:   if (rhsfunction) {
679:     VecLockReadPush(U);
680:     PetscStackPush("TS user right-hand-side function");
681:     (*rhsfunction)(ts,t,U,y,ctx);
682:     PetscStackPop;
683:     VecLockReadPop(U);
684:   } else {
685:     VecZeroEntries(y);
686:   }

688:   PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
689:   return(0);
690: }

692: /*@
693:    TSComputeSolutionFunction - Evaluates the solution function.

695:    Collective on TS

697:    Input Parameters:
698: +  ts - the TS context
699: -  t - current time

701:    Output Parameter:
702: .  U - the solution

704:    Note:
705:    Most users should not need to explicitly call this routine, as it
706:    is used internally within the nonlinear solvers.

708:    Level: developer

710: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
711: @*/
712: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
713: {
714:   PetscErrorCode     ierr;
715:   TSSolutionFunction solutionfunction;
716:   void               *ctx;
717:   DM                 dm;

722:   TSGetDM(ts,&dm);
723:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

725:   if (solutionfunction) {
726:     PetscStackPush("TS user solution function");
727:     (*solutionfunction)(ts,t,U,ctx);
728:     PetscStackPop;
729:   }
730:   return(0);
731: }
732: /*@
733:    TSComputeForcingFunction - Evaluates the forcing function.

735:    Collective on TS

737:    Input Parameters:
738: +  ts - the TS context
739: -  t - current time

741:    Output Parameter:
742: .  U - the function value

744:    Note:
745:    Most users should not need to explicitly call this routine, as it
746:    is used internally within the nonlinear solvers.

748:    Level: developer

750: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
751: @*/
752: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
753: {
754:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
755:   void               *ctx;
756:   DM                 dm;

761:   TSGetDM(ts,&dm);
762:   DMTSGetForcingFunction(dm,&forcing,&ctx);

764:   if (forcing) {
765:     PetscStackPush("TS user forcing function");
766:     (*forcing)(ts,t,U,ctx);
767:     PetscStackPop;
768:   }
769:   return(0);
770: }

772: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
773: {
774:   Vec            F;

778:   *Frhs = NULL;
779:   TSGetIFunction(ts,&F,NULL,NULL);
780:   if (!ts->Frhs) {
781:     VecDuplicate(F,&ts->Frhs);
782:   }
783:   *Frhs = ts->Frhs;
784:   return(0);
785: }

787: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
788: {
789:   Mat            A,B;
791:   TSIJacobian    ijacobian;

794:   if (Arhs) *Arhs = NULL;
795:   if (Brhs) *Brhs = NULL;
796:   TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
797:   if (Arhs) {
798:     if (!ts->Arhs) {
799:       if (ijacobian) {
800:         MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
801:       } else {
802:         ts->Arhs = A;
803:         PetscObjectReference((PetscObject)A);
804:       }
805:     } else {
806:       PetscBool flg;
807:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
808:       /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
809:       if (flg && !ijacobian && ts->Arhs == ts->Brhs){
810:         PetscObjectDereference((PetscObject)ts->Arhs);
811:         ts->Arhs = A;
812:         PetscObjectReference((PetscObject)A);
813:       }
814:     }
815:     *Arhs = ts->Arhs;
816:   }
817:   if (Brhs) {
818:     if (!ts->Brhs) {
819:       if (A != B) {
820:         if (ijacobian) {
821:           MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
822:         } else {
823:           ts->Brhs = B;
824:           PetscObjectReference((PetscObject)B);
825:         }
826:       } else {
827:         PetscObjectReference((PetscObject)ts->Arhs);
828:         ts->Brhs = ts->Arhs;
829:       }
830:     }
831:     *Brhs = ts->Brhs;
832:   }
833:   return(0);
834: }

836: /*@
837:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

839:    Collective on TS

841:    Input Parameters:
842: +  ts - the TS context
843: .  t - current time
844: .  U - state vector
845: .  Udot - time derivative of state vector
846: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

848:    Output Parameter:
849: .  Y - right hand side

851:    Note:
852:    Most users should not need to explicitly call this routine, as it
853:    is used internally within the nonlinear solvers.

855:    If the user did did not write their equations in implicit form, this
856:    function recasts them in implicit form.

858:    Level: developer

860: .seealso: TSSetIFunction(), TSComputeRHSFunction()
861: @*/
862: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
863: {
865:   TSIFunction    ifunction;
866:   TSRHSFunction  rhsfunction;
867:   void           *ctx;
868:   DM             dm;


876:   TSGetDM(ts,&dm);
877:   DMTSGetIFunction(dm,&ifunction,&ctx);
878:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

880:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

882:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
883:   if (ifunction) {
884:     PetscStackPush("TS user implicit function");
885:     (*ifunction)(ts,t,U,Udot,Y,ctx);
886:     PetscStackPop;
887:   }
888:   if (imex) {
889:     if (!ifunction) {
890:       VecCopy(Udot,Y);
891:     }
892:   } else if (rhsfunction) {
893:     if (ifunction) {
894:       Vec Frhs;
895:       TSGetRHSVec_Private(ts,&Frhs);
896:       TSComputeRHSFunction(ts,t,U,Frhs);
897:       VecAXPY(Y,-1,Frhs);
898:     } else {
899:       TSComputeRHSFunction(ts,t,U,Y);
900:       VecAYPX(Y,-1,Udot);
901:     }
902:   }
903:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
904:   return(0);
905: }

907: /*@
908:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

910:    Collective on TS

912:    Input
913:       Input Parameters:
914: +  ts - the TS context
915: .  t - current timestep
916: .  U - state vector
917: .  Udot - time derivative of state vector
918: .  shift - shift to apply, see note below
919: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

921:    Output Parameters:
922: +  A - Jacobian matrix
923: -  B - matrix from which the preconditioner is constructed; often the same as A

925:    Notes:
926:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

928:    dF/dU + shift*dF/dUdot

930:    Most users should not need to explicitly call this routine, as it
931:    is used internally within the nonlinear solvers.

933:    Level: developer

935: .seealso:  TSSetIJacobian()
936: @*/
937: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
938: {
940:   TSIJacobian    ijacobian;
941:   TSRHSJacobian  rhsjacobian;
942:   DM             dm;
943:   void           *ctx;


954:   TSGetDM(ts,&dm);
955:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
956:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

958:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

960:   PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
961:   if (ijacobian) {
962:     PetscStackPush("TS user implicit Jacobian");
963:     (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
964:     PetscStackPop;
965:   }
966:   if (imex) {
967:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
968:       PetscBool assembled;
969:       if (rhsjacobian) {
970:         Mat Arhs = NULL;
971:         TSGetRHSMats_Private(ts,&Arhs,NULL);
972:         if (A == Arhs) {
973:           if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant");
974:           ts->rhsjacobian.time = PETSC_MIN_REAL;
975:         }
976:       }
977:       MatZeroEntries(A);
978:       MatAssembled(A,&assembled);
979:       if (!assembled) {
980:         MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
981:         MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
982:       }
983:       MatShift(A,shift);
984:       if (A != B) {
985:         MatZeroEntries(B);
986:         MatAssembled(B,&assembled);
987:         if (!assembled) {
988:           MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
989:           MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
990:         }
991:         MatShift(B,shift);
992:       }
993:     }
994:   } else {
995:     Mat Arhs = NULL,Brhs = NULL;
996:     if (rhsjacobian) {
997:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
998:       TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
999:     }
1000:     if (Arhs == A) {           /* No IJacobian, so we only have the RHS matrix */
1001:       PetscBool flg;
1002:       ts->rhsjacobian.scale = -1;
1003:       ts->rhsjacobian.shift = shift;
1004:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1005:       /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1006:       if (!flg) {
1007:         MatScale(A,-1);
1008:         MatShift(A,shift);
1009:       }
1010:       if (A != B) {
1011:         MatScale(B,-1);
1012:         MatShift(B,shift);
1013:       }
1014:     } else if (Arhs) {          /* Both IJacobian and RHSJacobian */
1015:       MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1016:       if (!ijacobian) {         /* No IJacobian provided, but we have a separate RHS matrix */
1017:         MatZeroEntries(A);
1018:         MatShift(A,shift);
1019:         if (A != B) {
1020:           MatZeroEntries(B);
1021:           MatShift(B,shift);
1022:         }
1023:       }
1024:       MatAXPY(A,-1,Arhs,axpy);
1025:       if (A != B) {
1026:         MatAXPY(B,-1,Brhs,axpy);
1027:       }
1028:     }
1029:   }
1030:   PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1031:   return(0);
1032: }

1034: /*@C
1035:     TSSetRHSFunction - Sets the routine for evaluating the function,
1036:     where U_t = G(t,u).

1038:     Logically Collective on TS

1040:     Input Parameters:
1041: +   ts - the TS context obtained from TSCreate()
1042: .   r - vector to put the computed right hand side (or NULL to have it created)
1043: .   f - routine for evaluating the right-hand-side function
1044: -   ctx - [optional] user-defined context for private data for the
1045:           function evaluation routine (may be NULL)

1047:     Calling sequence of f:
1048: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec F,void *ctx);

1050: +   ts - timestep context
1051: .   t - current timestep
1052: .   u - input vector
1053: .   F - function vector
1054: -   ctx - [optional] user-defined function context

1056:     Level: beginner

1058:     Notes:
1059:     You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.

1061: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1062: @*/
1063: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1064: {
1066:   SNES           snes;
1067:   Vec            ralloc = NULL;
1068:   DM             dm;


1074:   TSGetDM(ts,&dm);
1075:   DMTSSetRHSFunction(dm,f,ctx);
1076:   TSGetSNES(ts,&snes);
1077:   if (!r && !ts->dm && ts->vec_sol) {
1078:     VecDuplicate(ts->vec_sol,&ralloc);
1079:     r = ralloc;
1080:   }
1081:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1082:   VecDestroy(&ralloc);
1083:   return(0);
1084: }

1086: /*@C
1087:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

1089:     Logically Collective on TS

1091:     Input Parameters:
1092: +   ts - the TS context obtained from TSCreate()
1093: .   f - routine for evaluating the solution
1094: -   ctx - [optional] user-defined context for private data for the
1095:           function evaluation routine (may be NULL)

1097:     Calling sequence of f:
1098: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,void *ctx);

1100: +   t - current timestep
1101: .   u - output vector
1102: -   ctx - [optional] user-defined function context

1104:     Options Database:
1105: +  -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1106: -  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

1108:     Notes:
1109:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
1110:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1111:     create closed-form solutions with non-physical forcing terms.

1113:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1115:     Level: beginner

1117: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1118: @*/
1119: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1120: {
1122:   DM             dm;

1126:   TSGetDM(ts,&dm);
1127:   DMTSSetSolutionFunction(dm,f,ctx);
1128:   return(0);
1129: }

1131: /*@C
1132:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

1134:     Logically Collective on TS

1136:     Input Parameters:
1137: +   ts - the TS context obtained from TSCreate()
1138: .   func - routine for evaluating the forcing function
1139: -   ctx - [optional] user-defined context for private data for the
1140:           function evaluation routine (may be NULL)

1142:     Calling sequence of func:
1143: $     PetscErrorCode func (TS ts,PetscReal t,Vec f,void *ctx);

1145: +   t - current timestep
1146: .   f - output vector
1147: -   ctx - [optional] user-defined function context

1149:     Notes:
1150:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1151:     create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1152:     definition of the problem you are solving and hence possibly introducing bugs.

1154:     This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0

1156:     This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1157:     parameters can be passed in the ctx variable.

1159:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1161:     Level: beginner

1163: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1164: @*/
1165: PetscErrorCode  TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1166: {
1168:   DM             dm;

1172:   TSGetDM(ts,&dm);
1173:   DMTSSetForcingFunction(dm,func,ctx);
1174:   return(0);
1175: }

1177: /*@C
1178:    TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1179:    where U_t = G(U,t), as well as the location to store the matrix.

1181:    Logically Collective on TS

1183:    Input Parameters:
1184: +  ts  - the TS context obtained from TSCreate()
1185: .  Amat - (approximate) Jacobian matrix
1186: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1187: .  f   - the Jacobian evaluation routine
1188: -  ctx - [optional] user-defined context for private data for the
1189:          Jacobian evaluation routine (may be NULL)

1191:    Calling sequence of f:
1192: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);

1194: +  t - current timestep
1195: .  u - input vector
1196: .  Amat - (approximate) Jacobian matrix
1197: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1198: -  ctx - [optional] user-defined context for matrix evaluation routine

1200:    Notes:
1201:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1203:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1204:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1206:    Level: beginner

1208: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()

1210: @*/
1211: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1212: {
1214:   SNES           snes;
1215:   DM             dm;
1216:   TSIJacobian    ijacobian;


1225:   TSGetDM(ts,&dm);
1226:   DMTSSetRHSJacobian(dm,f,ctx);
1227:   if (f == TSComputeRHSJacobianConstant) {
1228:     /* Handle this case automatically for the user; otherwise user should call themselves. */
1229:     TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1230:   }
1231:   DMTSGetIJacobian(dm,&ijacobian,NULL);
1232:   TSGetSNES(ts,&snes);
1233:   if (!ijacobian) {
1234:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1235:   }
1236:   if (Amat) {
1237:     PetscObjectReference((PetscObject)Amat);
1238:     MatDestroy(&ts->Arhs);
1239:     ts->Arhs = Amat;
1240:   }
1241:   if (Pmat) {
1242:     PetscObjectReference((PetscObject)Pmat);
1243:     MatDestroy(&ts->Brhs);
1244:     ts->Brhs = Pmat;
1245:   }
1246:   return(0);
1247: }

1249: /*@C
1250:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1252:    Logically Collective on TS

1254:    Input Parameters:
1255: +  ts  - the TS context obtained from TSCreate()
1256: .  r   - vector to hold the residual (or NULL to have it created internally)
1257: .  f   - the function evaluation routine
1258: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1260:    Calling sequence of f:
1261: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1263: +  t   - time at step/stage being solved
1264: .  u   - state vector
1265: .  u_t - time derivative of state vector
1266: .  F   - function vector
1267: -  ctx - [optional] user-defined context for matrix evaluation routine

1269:    Important:
1270:    The user MUST call either this routine or TSSetRHSFunction() to define the ODE.  When solving DAEs you must use this function.

1272:    Level: beginner

1274: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1275: @*/
1276: PetscErrorCode  TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1277: {
1279:   SNES           snes;
1280:   Vec            ralloc = NULL;
1281:   DM             dm;


1287:   TSGetDM(ts,&dm);
1288:   DMTSSetIFunction(dm,f,ctx);

1290:   TSGetSNES(ts,&snes);
1291:   if (!r && !ts->dm && ts->vec_sol) {
1292:     VecDuplicate(ts->vec_sol,&ralloc);
1293:     r  = ralloc;
1294:   }
1295:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1296:   VecDestroy(&ralloc);
1297:   return(0);
1298: }

1300: /*@C
1301:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1303:    Not Collective

1305:    Input Parameter:
1306: .  ts - the TS context

1308:    Output Parameter:
1309: +  r - vector to hold residual (or NULL)
1310: .  func - the function to compute residual (or NULL)
1311: -  ctx - the function context (or NULL)

1313:    Level: advanced

1315: .seealso: TSSetIFunction(), SNESGetFunction()
1316: @*/
1317: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1318: {
1320:   SNES           snes;
1321:   DM             dm;

1325:   TSGetSNES(ts,&snes);
1326:   SNESGetFunction(snes,r,NULL,NULL);
1327:   TSGetDM(ts,&dm);
1328:   DMTSGetIFunction(dm,func,ctx);
1329:   return(0);
1330: }

1332: /*@C
1333:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1335:    Not Collective

1337:    Input Parameter:
1338: .  ts - the TS context

1340:    Output Parameter:
1341: +  r - vector to hold computed right hand side (or NULL)
1342: .  func - the function to compute right hand side (or NULL)
1343: -  ctx - the function context (or NULL)

1345:    Level: advanced

1347: .seealso: TSSetRHSFunction(), SNESGetFunction()
1348: @*/
1349: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1350: {
1352:   SNES           snes;
1353:   DM             dm;

1357:   TSGetSNES(ts,&snes);
1358:   SNESGetFunction(snes,r,NULL,NULL);
1359:   TSGetDM(ts,&dm);
1360:   DMTSGetRHSFunction(dm,func,ctx);
1361:   return(0);
1362: }

1364: /*@C
1365:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1366:         provided with TSSetIFunction().

1368:    Logically Collective on TS

1370:    Input Parameters:
1371: +  ts  - the TS context obtained from TSCreate()
1372: .  Amat - (approximate) Jacobian matrix
1373: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1374: .  f   - the Jacobian evaluation routine
1375: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1377:    Calling sequence of f:
1378: $    PetscErrorCode f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);

1380: +  t    - time at step/stage being solved
1381: .  U    - state vector
1382: .  U_t  - time derivative of state vector
1383: .  a    - shift
1384: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1385: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1386: -  ctx  - [optional] user-defined context for matrix evaluation routine

1388:    Notes:
1389:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1391:    If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1392:    space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.

1394:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1395:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1396:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1397:    a and vector W depend on the integration method, step size, and past states. For example with
1398:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1399:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1401:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1403:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1404:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1406:    Level: beginner

1408: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()

1410: @*/
1411: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1412: {
1414:   SNES           snes;
1415:   DM             dm;


1424:   TSGetDM(ts,&dm);
1425:   DMTSSetIJacobian(dm,f,ctx);

1427:   TSGetSNES(ts,&snes);
1428:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1429:   return(0);
1430: }

1432: /*@
1433:    TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating.  Without this flag, TS will change the sign and
1434:    shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1435:    the entire Jacobian.  The reuse flag must be set if the evaluation function will assume that the matrix entries have
1436:    not been changed by the TS.

1438:    Logically Collective

1440:    Input Arguments:
1441: +  ts - TS context obtained from TSCreate()
1442: -  reuse - PETSC_TRUE if the RHS Jacobian

1444:    Level: intermediate

1446: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1447: @*/
1448: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1449: {
1451:   ts->rhsjacobian.reuse = reuse;
1452:   return(0);
1453: }

1455: /*@C
1456:    TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.

1458:    Logically Collective on TS

1460:    Input Parameters:
1461: +  ts  - the TS context obtained from TSCreate()
1462: .  F   - vector to hold the residual (or NULL to have it created internally)
1463: .  fun - the function evaluation routine
1464: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1466:    Calling sequence of fun:
1467: $     PetscErrorCode fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);

1469: +  t    - time at step/stage being solved
1470: .  U    - state vector
1471: .  U_t  - time derivative of state vector
1472: .  U_tt - second time derivative of state vector
1473: .  F    - function vector
1474: -  ctx  - [optional] user-defined context for matrix evaluation routine (may be NULL)

1476:    Level: beginner

1478: .seealso: TSSetI2Jacobian(), TSSetIFunction(), TSCreate(), TSSetRHSFunction()
1479: @*/
1480: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1481: {
1482:   DM             dm;

1488:   TSSetIFunction(ts,F,NULL,NULL);
1489:   TSGetDM(ts,&dm);
1490:   DMTSSetI2Function(dm,fun,ctx);
1491:   return(0);
1492: }

1494: /*@C
1495:   TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1497:   Not Collective

1499:   Input Parameter:
1500: . ts - the TS context

1502:   Output Parameter:
1503: + r - vector to hold residual (or NULL)
1504: . fun - the function to compute residual (or NULL)
1505: - ctx - the function context (or NULL)

1507:   Level: advanced

1509: .seealso: TSSetIFunction(), SNESGetFunction(), TSCreate()
1510: @*/
1511: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1512: {
1514:   SNES           snes;
1515:   DM             dm;

1519:   TSGetSNES(ts,&snes);
1520:   SNESGetFunction(snes,r,NULL,NULL);
1521:   TSGetDM(ts,&dm);
1522:   DMTSGetI2Function(dm,fun,ctx);
1523:   return(0);
1524: }

1526: /*@C
1527:    TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t  + a*dF/dU_tt
1528:         where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().

1530:    Logically Collective on TS

1532:    Input Parameters:
1533: +  ts  - the TS context obtained from TSCreate()
1534: .  J   - Jacobian matrix
1535: .  P   - preconditioning matrix for J (may be same as J)
1536: .  jac - the Jacobian evaluation routine
1537: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1539:    Calling sequence of jac:
1540: $    PetscErrorCode jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);

1542: +  t    - time at step/stage being solved
1543: .  U    - state vector
1544: .  U_t  - time derivative of state vector
1545: .  U_tt - second time derivative of state vector
1546: .  v    - shift for U_t
1547: .  a    - shift for U_tt
1548: .  J    - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t  + a*dF/dU_tt
1549: .  P    - preconditioning matrix for J, may be same as J
1550: -  ctx  - [optional] user-defined context for matrix evaluation routine

1552:    Notes:
1553:    The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.

1555:    The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1556:    the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1557:    The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U  where the positive "shift"
1558:    parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.

1560:    Level: beginner

1562: .seealso: TSSetI2Function(), TSGetI2Jacobian()
1563: @*/
1564: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1565: {
1566:   DM             dm;

1573:   TSSetIJacobian(ts,J,P,NULL,NULL);
1574:   TSGetDM(ts,&dm);
1575:   DMTSSetI2Jacobian(dm,jac,ctx);
1576:   return(0);
1577: }

1579: /*@C
1580:   TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.

1582:   Not Collective, but parallel objects are returned if TS is parallel

1584:   Input Parameter:
1585: . ts  - The TS context obtained from TSCreate()

1587:   Output Parameters:
1588: + J  - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1589: . P - The matrix from which the preconditioner is constructed, often the same as J
1590: . jac - The function to compute the Jacobian matrices
1591: - ctx - User-defined context for Jacobian evaluation routine

1593:   Notes:
1594:     You can pass in NULL for any return argument you do not need.

1596:   Level: advanced

1598: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber(), TSSetI2Jacobian(), TSGetI2Function(), TSCreate()

1600: @*/
1601: PetscErrorCode  TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1602: {
1604:   SNES           snes;
1605:   DM             dm;

1608:   TSGetSNES(ts,&snes);
1609:   SNESSetUpMatrices(snes);
1610:   SNESGetJacobian(snes,J,P,NULL,NULL);
1611:   TSGetDM(ts,&dm);
1612:   DMTSGetI2Jacobian(dm,jac,ctx);
1613:   return(0);
1614: }

1616: /*@
1617:   TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0

1619:   Collective on TS

1621:   Input Parameters:
1622: + ts - the TS context
1623: . t - current time
1624: . U - state vector
1625: . V - time derivative of state vector (U_t)
1626: - A - second time derivative of state vector (U_tt)

1628:   Output Parameter:
1629: . F - the residual vector

1631:   Note:
1632:   Most users should not need to explicitly call this routine, as it
1633:   is used internally within the nonlinear solvers.

1635:   Level: developer

1637: .seealso: TSSetI2Function(), TSGetI2Function()
1638: @*/
1639: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1640: {
1641:   DM             dm;
1642:   TSI2Function   I2Function;
1643:   void           *ctx;
1644:   TSRHSFunction  rhsfunction;


1654:   TSGetDM(ts,&dm);
1655:   DMTSGetI2Function(dm,&I2Function,&ctx);
1656:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

1658:   if (!I2Function) {
1659:     TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1660:     return(0);
1661:   }

1663:   PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);

1665:   PetscStackPush("TS user implicit function");
1666:   I2Function(ts,t,U,V,A,F,ctx);
1667:   PetscStackPop;

1669:   if (rhsfunction) {
1670:     Vec Frhs;
1671:     TSGetRHSVec_Private(ts,&Frhs);
1672:     TSComputeRHSFunction(ts,t,U,Frhs);
1673:     VecAXPY(F,-1,Frhs);
1674:   }

1676:   PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1677:   return(0);
1678: }

1680: /*@
1681:   TSComputeI2Jacobian - Evaluates the Jacobian of the DAE

1683:   Collective on TS

1685:   Input Parameters:
1686: + ts - the TS context
1687: . t - current timestep
1688: . U - state vector
1689: . V - time derivative of state vector
1690: . A - second time derivative of state vector
1691: . shiftV - shift to apply, see note below
1692: - shiftA - shift to apply, see note below

1694:   Output Parameters:
1695: + J - Jacobian matrix
1696: - P - optional preconditioning matrix

1698:   Notes:
1699:   If F(t,U,V,A)=0 is the DAE, the required Jacobian is

1701:   dF/dU + shiftV*dF/dV + shiftA*dF/dA

1703:   Most users should not need to explicitly call this routine, as it
1704:   is used internally within the nonlinear solvers.

1706:   Level: developer

1708: .seealso:  TSSetI2Jacobian()
1709: @*/
1710: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1711: {
1712:   DM             dm;
1713:   TSI2Jacobian   I2Jacobian;
1714:   void           *ctx;
1715:   TSRHSJacobian  rhsjacobian;


1726:   TSGetDM(ts,&dm);
1727:   DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1728:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

1730:   if (!I2Jacobian) {
1731:     TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1732:     return(0);
1733:   }

1735:   PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);

1737:   PetscStackPush("TS user implicit Jacobian");
1738:   I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1739:   PetscStackPop;

1741:   if (rhsjacobian) {
1742:     Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1743:     TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1744:     TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1745:     MatAXPY(J,-1,Jrhs,axpy);
1746:     if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1747:   }

1749:   PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1750:   return(0);
1751: }

1753: /*@C
1754:    TSSetTransientVariable - sets function to transform from state to transient variables

1756:    Logically Collective

1758:    Input Arguments:
1759: +  ts - time stepping context on which to change the transient variable
1760: .  tvar - a function that transforms to transient variables
1761: -  ctx - a context for tvar

1763:     Calling sequence of tvar:
1764: $     PetscErrorCode tvar(TS ts,Vec p,Vec c,void *ctx);

1766: +   ts - timestep context
1767: .   p - input vector (primative form)
1768: .   c - output vector, transient variables (conservative form)
1769: -   ctx - [optional] user-defined function context

1771:    Level: advanced

1773:    Notes:
1774:    This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., TSBDF)
1775:    can be conservative.  In this context, primitive variables P are used to model the state (e.g., because they lead to
1776:    well-conditioned formulations even in limiting cases such as low-Mach or zero porosity).  The transient variable is
1777:    C(P), specified by calling this function.  An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1778:    evaluated via the chain rule, as in

1780:      dF/dP + shift * dF/dCdot dC/dP.

1782: .seealso: DMTSSetTransientVariable(), DMTSGetTransientVariable(), TSSetIFunction(), TSSetIJacobian()
1783: @*/
1784: PetscErrorCode TSSetTransientVariable(TS ts,TSTransientVariable tvar,void *ctx)
1785: {
1787:   DM             dm;

1791:   TSGetDM(ts,&dm);
1792:   DMTSSetTransientVariable(dm,tvar,ctx);
1793:   return(0);
1794: }

1796: /*@
1797:    TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables

1799:    Logically Collective

1801:    Input Parameters:
1802: +  ts - TS on which to compute
1803: -  U - state vector to be transformed to transient variables

1805:    Output Parameters:
1806: .  C - transient (conservative) variable

1808:    Developer Notes:
1809:    If DMTSSetTransientVariable() has not been called, then C is not modified in this routine and C=NULL is allowed.
1810:    This makes it safe to call without a guard.  One can use TSHasTransientVariable() to check if transient variables are
1811:    being used.

1813:    Level: developer

1815: .seealso: DMTSSetTransientVariable(), TSComputeIFunction(), TSComputeIJacobian()
1816: @*/
1817: PetscErrorCode TSComputeTransientVariable(TS ts,Vec U,Vec C)
1818: {
1820:   DM             dm;
1821:   DMTS           dmts;

1826:   TSGetDM(ts,&dm);
1827:   DMGetDMTS(dm,&dmts);
1828:   if (dmts->ops->transientvar) {
1830:     (*dmts->ops->transientvar)(ts,U,C,dmts->transientvarctx);
1831:   }
1832:   return(0);
1833: }

1835: /*@
1836:    TSHasTransientVariable - determine whether transient variables have been set

1838:    Logically Collective

1840:    Input Parameters:
1841: .  ts - TS on which to compute

1843:    Output Parameters:
1844: .  has - PETSC_TRUE if transient variables have been set

1846:    Level: developer

1848: .seealso: DMTSSetTransientVariable(), TSComputeTransientVariable()
1849: @*/
1850: PetscErrorCode TSHasTransientVariable(TS ts,PetscBool *has)
1851: {
1853:   DM             dm;
1854:   DMTS           dmts;

1858:   TSGetDM(ts,&dm);
1859:   DMGetDMTS(dm,&dmts);
1860:   *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1861:   return(0);
1862: }

1864: /*@
1865:    TS2SetSolution - Sets the initial solution and time derivative vectors
1866:    for use by the TS routines handling second order equations.

1868:    Logically Collective on TS

1870:    Input Parameters:
1871: +  ts - the TS context obtained from TSCreate()
1872: .  u - the solution vector
1873: -  v - the time derivative vector

1875:    Level: beginner

1877: @*/
1878: PetscErrorCode  TS2SetSolution(TS ts,Vec u,Vec v)
1879: {

1886:   TSSetSolution(ts,u);
1887:   PetscObjectReference((PetscObject)v);
1888:   VecDestroy(&ts->vec_dot);
1889:   ts->vec_dot = v;
1890:   return(0);
1891: }

1893: /*@
1894:    TS2GetSolution - Returns the solution and time derivative at the present timestep
1895:    for second order equations. It is valid to call this routine inside the function
1896:    that you are evaluating in order to move to the new timestep. This vector not
1897:    changed until the solution at the next timestep has been calculated.

1899:    Not Collective, but Vec returned is parallel if TS is parallel

1901:    Input Parameter:
1902: .  ts - the TS context obtained from TSCreate()

1904:    Output Parameter:
1905: +  u - the vector containing the solution
1906: -  v - the vector containing the time derivative

1908:    Level: intermediate

1910: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()

1912: @*/
1913: PetscErrorCode  TS2GetSolution(TS ts,Vec *u,Vec *v)
1914: {
1919:   if (u) *u = ts->vec_sol;
1920:   if (v) *v = ts->vec_dot;
1921:   return(0);
1922: }

1924: /*@C
1925:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1927:   Collective on PetscViewer

1929:   Input Parameters:
1930: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1931:            some related function before a call to TSLoad().
1932: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1934:    Level: intermediate

1936:   Notes:
1937:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1939:   Notes for advanced users:
1940:   Most users should not need to know the details of the binary storage
1941:   format, since TSLoad() and TSView() completely hide these details.
1942:   But for anyone who's interested, the standard binary matrix storage
1943:   format is
1944: .vb
1945:      has not yet been determined
1946: .ve

1948: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1949: @*/
1950: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1951: {
1953:   PetscBool      isbinary;
1954:   PetscInt       classid;
1955:   char           type[256];
1956:   DMTS           sdm;
1957:   DM             dm;

1962:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1963:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1965:   PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1966:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1967:   PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1968:   TSSetType(ts, type);
1969:   if (ts->ops->load) {
1970:     (*ts->ops->load)(ts,viewer);
1971:   }
1972:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1973:   DMLoad(dm,viewer);
1974:   TSSetDM(ts,dm);
1975:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1976:   VecLoad(ts->vec_sol,viewer);
1977:   DMGetDMTS(ts->dm,&sdm);
1978:   DMTSLoad(sdm,viewer);
1979:   return(0);
1980: }

1982:  #include <petscdraw.h>
1983: #if defined(PETSC_HAVE_SAWS)
1984:  #include <petscviewersaws.h>
1985: #endif

1987: /*@C
1988:    TSViewFromOptions - View from Options

1990:    Collective on TS

1992:    Input Parameters:
1993: +  A - the Section 1.5 Writing Application Codes with PETSc ordering context
1994: .  obj - Optional object
1995: -  name - command line option

1997:    Level: intermediate
1998: .seealso:  TS, TSView, PetscObjectViewFromOptions(), TSCreate()
1999: @*/
2000: PetscErrorCode  TSViewFromOptions(TS A,PetscObject obj,const char name[])
2001: {

2006:   PetscObjectViewFromOptions((PetscObject)A,obj,name);
2007:   return(0);
2008: }

2010: /*@C
2011:     TSView - Prints the TS data structure.

2013:     Collective on TS

2015:     Input Parameters:
2016: +   ts - the TS context obtained from TSCreate()
2017: -   viewer - visualization context

2019:     Options Database Key:
2020: .   -ts_view - calls TSView() at end of TSStep()

2022:     Notes:
2023:     The available visualization contexts include
2024: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
2025: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
2026:          output where only the first processor opens
2027:          the file.  All other processors send their
2028:          data to the first processor to print.

2030:     The user can open an alternative visualization context with
2031:     PetscViewerASCIIOpen() - output to a specified file.

2033:     Level: beginner

2035: .seealso: PetscViewerASCIIOpen()
2036: @*/
2037: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
2038: {
2040:   TSType         type;
2041:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
2042:   DMTS           sdm;
2043: #if defined(PETSC_HAVE_SAWS)
2044:   PetscBool      issaws;
2045: #endif

2049:   if (!viewer) {
2050:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
2051:   }

2055:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2056:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
2057:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2058:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
2059: #if defined(PETSC_HAVE_SAWS)
2060:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
2061: #endif
2062:   if (iascii) {
2063:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
2064:     if (ts->ops->view) {
2065:       PetscViewerASCIIPushTab(viewer);
2066:       (*ts->ops->view)(ts,viewer);
2067:       PetscViewerASCIIPopTab(viewer);
2068:     }
2069:     if (ts->max_steps < PETSC_MAX_INT) {
2070:       PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
2071:     }
2072:     if (ts->max_time < PETSC_MAX_REAL) {
2073:       PetscViewerASCIIPrintf(viewer,"  maximum time=%g\n",(double)ts->max_time);
2074:     }
2075:     if (ts->usessnes) {
2076:       PetscBool lin;
2077:       if (ts->problem_type == TS_NONLINEAR) {
2078:         PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
2079:       }
2080:       PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
2081:       PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2082:       PetscViewerASCIIPrintf(viewer,"  total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2083:     }
2084:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
2085:     if (ts->vrtol) {
2086:       PetscViewerASCIIPrintf(viewer,"  using vector of relative error tolerances, ");
2087:     } else {
2088:       PetscViewerASCIIPrintf(viewer,"  using relative error tolerance of %g, ",(double)ts->rtol);
2089:     }
2090:     if (ts->vatol) {
2091:       PetscViewerASCIIPrintf(viewer,"  using vector of absolute error tolerances\n");
2092:     } else {
2093:       PetscViewerASCIIPrintf(viewer,"  using absolute error tolerance of %g\n",(double)ts->atol);
2094:     }
2095:     PetscViewerASCIIPushTab(viewer);
2096:     TSAdaptView(ts->adapt,viewer);
2097:     PetscViewerASCIIPopTab(viewer);
2098:   } else if (isstring) {
2099:     TSGetType(ts,&type);
2100:     PetscViewerStringSPrintf(viewer," TSType: %-7.7s",type);
2101:     if (ts->ops->view) {(*ts->ops->view)(ts,viewer);}
2102:   } else if (isbinary) {
2103:     PetscInt    classid = TS_FILE_CLASSID;
2104:     MPI_Comm    comm;
2105:     PetscMPIInt rank;
2106:     char        type[256];

2108:     PetscObjectGetComm((PetscObject)ts,&comm);
2109:     MPI_Comm_rank(comm,&rank);
2110:     if (!rank) {
2111:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
2112:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2113:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR);
2114:     }
2115:     if (ts->ops->view) {
2116:       (*ts->ops->view)(ts,viewer);
2117:     }
2118:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2119:     DMView(ts->dm,viewer);
2120:     VecView(ts->vec_sol,viewer);
2121:     DMGetDMTS(ts->dm,&sdm);
2122:     DMTSView(sdm,viewer);
2123:   } else if (isdraw) {
2124:     PetscDraw draw;
2125:     char      str[36];
2126:     PetscReal x,y,bottom,h;

2128:     PetscViewerDrawGetDraw(viewer,0,&draw);
2129:     PetscDrawGetCurrentPoint(draw,&x,&y);
2130:     PetscStrcpy(str,"TS: ");
2131:     PetscStrcat(str,((PetscObject)ts)->type_name);
2132:     PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2133:     bottom = y - h;
2134:     PetscDrawPushCurrentPoint(draw,x,bottom);
2135:     if (ts->ops->view) {
2136:       (*ts->ops->view)(ts,viewer);
2137:     }
2138:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2139:     if (ts->snes)  {SNESView(ts->snes,viewer);}
2140:     PetscDrawPopCurrentPoint(draw);
2141: #if defined(PETSC_HAVE_SAWS)
2142:   } else if (issaws) {
2143:     PetscMPIInt rank;
2144:     const char  *name;

2146:     PetscObjectGetName((PetscObject)ts,&name);
2147:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2148:     if (!((PetscObject)ts)->amsmem && !rank) {
2149:       char       dir[1024];

2151:       PetscObjectViewSAWs((PetscObject)ts,viewer);
2152:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2153:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2154:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2155:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2156:     }
2157:     if (ts->ops->view) {
2158:       (*ts->ops->view)(ts,viewer);
2159:     }
2160: #endif
2161:   }
2162:   if (ts->snes && ts->usessnes)  {
2163:     PetscViewerASCIIPushTab(viewer);
2164:     SNESView(ts->snes,viewer);
2165:     PetscViewerASCIIPopTab(viewer);
2166:   }
2167:   DMGetDMTS(ts->dm,&sdm);
2168:   DMTSView(sdm,viewer);

2170:   PetscViewerASCIIPushTab(viewer);
2171:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2172:   PetscViewerASCIIPopTab(viewer);
2173:   return(0);
2174: }

2176: /*@
2177:    TSSetApplicationContext - Sets an optional user-defined context for
2178:    the timesteppers.

2180:    Logically Collective on TS

2182:    Input Parameters:
2183: +  ts - the TS context obtained from TSCreate()
2184: -  usrP - optional user context

2186:    Fortran Notes:
2187:     To use this from Fortran you must write a Fortran interface definition for this
2188:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2190:    Level: intermediate

2192: .seealso: TSGetApplicationContext()
2193: @*/
2194: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
2195: {
2198:   ts->user = usrP;
2199:   return(0);
2200: }

2202: /*@
2203:     TSGetApplicationContext - Gets the user-defined context for the
2204:     timestepper.

2206:     Not Collective

2208:     Input Parameter:
2209: .   ts - the TS context obtained from TSCreate()

2211:     Output Parameter:
2212: .   usrP - user context

2214:    Fortran Notes:
2215:     To use this from Fortran you must write a Fortran interface definition for this
2216:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2218:     Level: intermediate

2220: .seealso: TSSetApplicationContext()
2221: @*/
2222: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
2223: {
2226:   *(void**)usrP = ts->user;
2227:   return(0);
2228: }

2230: /*@
2231:    TSGetStepNumber - Gets the number of steps completed.

2233:    Not Collective

2235:    Input Parameter:
2236: .  ts - the TS context obtained from TSCreate()

2238:    Output Parameter:
2239: .  steps - number of steps completed so far

2241:    Level: intermediate

2243: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2244: @*/
2245: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2246: {
2250:   *steps = ts->steps;
2251:   return(0);
2252: }

2254: /*@
2255:    TSSetStepNumber - Sets the number of steps completed.

2257:    Logically Collective on TS

2259:    Input Parameters:
2260: +  ts - the TS context
2261: -  steps - number of steps completed so far

2263:    Notes:
2264:    For most uses of the TS solvers the user need not explicitly call
2265:    TSSetStepNumber(), as the step counter is appropriately updated in
2266:    TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2267:    reinitialize timestepping by setting the step counter to zero (and time
2268:    to the initial time) to solve a similar problem with different initial
2269:    conditions or parameters. Other possible use case is to continue
2270:    timestepping from a previously interrupted run in such a way that TS
2271:    monitors will be called with a initial nonzero step counter.

2273:    Level: advanced

2275: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2276: @*/
2277: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2278: {
2282:   if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2283:   ts->steps = steps;
2284:   return(0);
2285: }

2287: /*@
2288:    TSSetTimeStep - Allows one to reset the timestep at any time,
2289:    useful for simple pseudo-timestepping codes.

2291:    Logically Collective on TS

2293:    Input Parameters:
2294: +  ts - the TS context obtained from TSCreate()
2295: -  time_step - the size of the timestep

2297:    Level: intermediate

2299: .seealso: TSGetTimeStep(), TSSetTime()

2301: @*/
2302: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
2303: {
2307:   ts->time_step = time_step;
2308:   return(0);
2309: }

2311: /*@
2312:    TSSetExactFinalTime - Determines whether to adapt the final time step to
2313:      match the exact final time, interpolate solution to the exact final time,
2314:      or just return at the final time TS computed.

2316:   Logically Collective on TS

2318:    Input Parameter:
2319: +   ts - the time-step context
2320: -   eftopt - exact final time option

2322: $  TS_EXACTFINALTIME_STEPOVER    - Don't do anything if final time is exceeded
2323: $  TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2324: $  TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time

2326:    Options Database:
2327: .   -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime

2329:    Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2330:     then the final time you selected.

2332:    Level: beginner

2334: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2335: @*/
2336: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2337: {
2341:   ts->exact_final_time = eftopt;
2342:   return(0);
2343: }

2345: /*@
2346:    TSGetExactFinalTime - Gets the exact final time option.

2348:    Not Collective

2350:    Input Parameter:
2351: .  ts - the TS context

2353:    Output Parameter:
2354: .  eftopt - exact final time option

2356:    Level: beginner

2358: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2359: @*/
2360: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2361: {
2365:   *eftopt = ts->exact_final_time;
2366:   return(0);
2367: }

2369: /*@
2370:    TSGetTimeStep - Gets the current timestep size.

2372:    Not Collective

2374:    Input Parameter:
2375: .  ts - the TS context obtained from TSCreate()

2377:    Output Parameter:
2378: .  dt - the current timestep size

2380:    Level: intermediate

2382: .seealso: TSSetTimeStep(), TSGetTime()

2384: @*/
2385: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
2386: {
2390:   *dt = ts->time_step;
2391:   return(0);
2392: }

2394: /*@
2395:    TSGetSolution - Returns the solution at the present timestep. It
2396:    is valid to call this routine inside the function that you are evaluating
2397:    in order to move to the new timestep. This vector not changed until
2398:    the solution at the next timestep has been calculated.

2400:    Not Collective, but Vec returned is parallel if TS is parallel

2402:    Input Parameter:
2403: .  ts - the TS context obtained from TSCreate()

2405:    Output Parameter:
2406: .  v - the vector containing the solution

2408:    Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2409:    final time. It returns the solution at the next timestep.

2411:    Level: intermediate

2413: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()

2415: @*/
2416: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
2417: {
2421:   *v = ts->vec_sol;
2422:   return(0);
2423: }

2425: /*@
2426:    TSGetSolutionComponents - Returns any solution components at the present
2427:    timestep, if available for the time integration method being used.
2428:    Solution components are quantities that share the same size and
2429:    structure as the solution vector.

2431:    Not Collective, but Vec returned is parallel if TS is parallel

2433:    Parameters :
2434: +  ts - the TS context obtained from TSCreate() (input parameter).
2435: .  n - If v is PETSC_NULL, then the number of solution components is
2436:        returned through n, else the n-th solution component is
2437:        returned in v.
2438: -  v - the vector containing the n-th solution component
2439:        (may be PETSC_NULL to use this function to find out
2440:         the number of solutions components).

2442:    Level: advanced

2444: .seealso: TSGetSolution()

2446: @*/
2447: PetscErrorCode  TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2448: {

2453:   if (!ts->ops->getsolutioncomponents) *n = 0;
2454:   else {
2455:     (*ts->ops->getsolutioncomponents)(ts,n,v);
2456:   }
2457:   return(0);
2458: }

2460: /*@
2461:    TSGetAuxSolution - Returns an auxiliary solution at the present
2462:    timestep, if available for the time integration method being used.

2464:    Not Collective, but Vec returned is parallel if TS is parallel

2466:    Parameters :
2467: +  ts - the TS context obtained from TSCreate() (input parameter).
2468: -  v - the vector containing the auxiliary solution

2470:    Level: intermediate

2472: .seealso: TSGetSolution()

2474: @*/
2475: PetscErrorCode  TSGetAuxSolution(TS ts,Vec *v)
2476: {

2481:   if (ts->ops->getauxsolution) {
2482:     (*ts->ops->getauxsolution)(ts,v);
2483:   } else {
2484:     VecZeroEntries(*v);
2485:   }
2486:   return(0);
2487: }

2489: /*@
2490:    TSGetTimeError - Returns the estimated error vector, if the chosen
2491:    TSType has an error estimation functionality.

2493:    Not Collective, but Vec returned is parallel if TS is parallel

2495:    Note: MUST call after TSSetUp()

2497:    Parameters :
2498: +  ts - the TS context obtained from TSCreate() (input parameter).
2499: .  n - current estimate (n=0) or previous one (n=-1)
2500: -  v - the vector containing the error (same size as the solution).

2502:    Level: intermediate

2504: .seealso: TSGetSolution(), TSSetTimeError()

2506: @*/
2507: PetscErrorCode  TSGetTimeError(TS ts,PetscInt n,Vec *v)
2508: {

2513:   if (ts->ops->gettimeerror) {
2514:     (*ts->ops->gettimeerror)(ts,n,v);
2515:   } else {
2516:     VecZeroEntries(*v);
2517:   }
2518:   return(0);
2519: }

2521: /*@
2522:    TSSetTimeError - Sets the estimated error vector, if the chosen
2523:    TSType has an error estimation functionality. This can be used
2524:    to restart such a time integrator with a given error vector.

2526:    Not Collective, but Vec returned is parallel if TS is parallel

2528:    Parameters :
2529: +  ts - the TS context obtained from TSCreate() (input parameter).
2530: -  v - the vector containing the error (same size as the solution).

2532:    Level: intermediate

2534: .seealso: TSSetSolution(), TSGetTimeError)

2536: @*/
2537: PetscErrorCode  TSSetTimeError(TS ts,Vec v)
2538: {

2543:   if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2544:   if (ts->ops->settimeerror) {
2545:     (*ts->ops->settimeerror)(ts,v);
2546:   }
2547:   return(0);
2548: }

2550: /* ----- Routines to initialize and destroy a timestepper ---- */
2551: /*@
2552:   TSSetProblemType - Sets the type of problem to be solved.

2554:   Not collective

2556:   Input Parameters:
2557: + ts   - The TS
2558: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2559: .vb
2560:          U_t - A U = 0      (linear)
2561:          U_t - A(t) U = 0   (linear)
2562:          F(t,U,U_t) = 0     (nonlinear)
2563: .ve

2565:    Level: beginner

2567: .seealso: TSSetUp(), TSProblemType, TS
2568: @*/
2569: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
2570: {

2575:   ts->problem_type = type;
2576:   if (type == TS_LINEAR) {
2577:     SNES snes;
2578:     TSGetSNES(ts,&snes);
2579:     SNESSetType(snes,SNESKSPONLY);
2580:   }
2581:   return(0);
2582: }

2584: /*@C
2585:   TSGetProblemType - Gets the type of problem to be solved.

2587:   Not collective

2589:   Input Parameter:
2590: . ts   - The TS

2592:   Output Parameter:
2593: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2594: .vb
2595:          M U_t = A U
2596:          M(t) U_t = A(t) U
2597:          F(t,U,U_t)
2598: .ve

2600:    Level: beginner

2602: .seealso: TSSetUp(), TSProblemType, TS
2603: @*/
2604: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
2605: {
2609:   *type = ts->problem_type;
2610:   return(0);
2611: }

2613: /*
2614:     Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2615: */
2616: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2617: {
2619:   PetscBool      isnone;

2622:   TSGetAdapt(ts,&ts->adapt);
2623:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2625:   PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2626:   if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2627:     ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2628:   } else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2629:     ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2630:   }
2631:   return(0);
2632: }


2635: /*@
2636:    TSSetUp - Sets up the internal data structures for the later use of a timestepper.

2638:    Collective on TS

2640:    Input Parameter:
2641: .  ts - the TS context obtained from TSCreate()

2643:    Notes:
2644:    For basic use of the TS solvers the user need not explicitly call
2645:    TSSetUp(), since these actions will automatically occur during
2646:    the call to TSStep() or TSSolve().  However, if one wishes to control this
2647:    phase separately, TSSetUp() should be called after TSCreate()
2648:    and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().

2650:    Level: advanced

2652: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2653: @*/
2654: PetscErrorCode  TSSetUp(TS ts)
2655: {
2657:   DM             dm;
2658:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2659:   PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2660:   TSIFunction    ifun;
2661:   TSIJacobian    ijac;
2662:   TSI2Jacobian   i2jac;
2663:   TSRHSJacobian  rhsjac;

2667:   if (ts->setupcalled) return(0);

2669:   if (!((PetscObject)ts)->type_name) {
2670:     TSGetIFunction(ts,NULL,&ifun,NULL);
2671:     TSSetType(ts,ifun ? TSBEULER : TSEULER);
2672:   }

2674:   if (!ts->vec_sol) {
2675:     if (ts->dm) {
2676:       DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2677:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2678:   }

2680:   if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2681:     PetscObjectReference((PetscObject)ts->Jacprhs);
2682:     ts->Jacp = ts->Jacprhs;
2683:   }

2685:   if (ts->quadraturets) {
2686:     TSSetUp(ts->quadraturets);
2687:     VecDestroy(&ts->vec_costintegrand);
2688:     VecDuplicate(ts->quadraturets->vec_sol,&ts->vec_costintegrand);
2689:   }

2691:   TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2692:   if (ts->rhsjacobian.reuse && rhsjac == TSComputeRHSJacobianConstant) {
2693:     Mat Amat,Pmat;
2694:     SNES snes;
2695:     TSGetSNES(ts,&snes);
2696:     SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2697:     /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2698:      * have displaced the RHS matrix */
2699:     if (Amat && Amat == ts->Arhs) {
2700:       /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2701:       MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2702:       SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2703:       MatDestroy(&Amat);
2704:     }
2705:     if (Pmat && Pmat == ts->Brhs) {
2706:       MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2707:       SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2708:       MatDestroy(&Pmat);
2709:     }
2710:   }

2712:   TSGetAdapt(ts,&ts->adapt);
2713:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2715:   if (ts->ops->setup) {
2716:     (*ts->ops->setup)(ts);
2717:   }

2719:   TSSetExactFinalTimeDefault(ts);

2721:   /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2722:      to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2723:    */
2724:   TSGetDM(ts,&dm);
2725:   DMSNESGetFunction(dm,&func,NULL);
2726:   if (!func) {
2727:     DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2728:   }
2729:   /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2730:      Otherwise, the SNES will use coloring internally to form the Jacobian.
2731:    */
2732:   DMSNESGetJacobian(dm,&jac,NULL);
2733:   DMTSGetIJacobian(dm,&ijac,NULL);
2734:   DMTSGetI2Jacobian(dm,&i2jac,NULL);
2735:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2736:   if (!jac && (ijac || i2jac || rhsjac)) {
2737:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2738:   }

2740:   /* if time integration scheme has a starting method, call it */
2741:   if (ts->ops->startingmethod) {
2742:     (*ts->ops->startingmethod)(ts);
2743:   }

2745:   ts->setupcalled = PETSC_TRUE;
2746:   return(0);
2747: }

2749: /*@
2750:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

2752:    Collective on TS

2754:    Input Parameter:
2755: .  ts - the TS context obtained from TSCreate()

2757:    Level: beginner

2759: .seealso: TSCreate(), TSSetup(), TSDestroy()
2760: @*/
2761: PetscErrorCode  TSReset(TS ts)
2762: {
2763:   TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2764:   PetscErrorCode  ierr;


2769:   if (ts->ops->reset) {
2770:     (*ts->ops->reset)(ts);
2771:   }
2772:   if (ts->snes) {SNESReset(ts->snes);}
2773:   if (ts->adapt) {TSAdaptReset(ts->adapt);}

2775:   MatDestroy(&ts->Arhs);
2776:   MatDestroy(&ts->Brhs);
2777:   VecDestroy(&ts->Frhs);
2778:   VecDestroy(&ts->vec_sol);
2779:   VecDestroy(&ts->vec_dot);
2780:   VecDestroy(&ts->vatol);
2781:   VecDestroy(&ts->vrtol);
2782:   VecDestroyVecs(ts->nwork,&ts->work);

2784:   MatDestroy(&ts->Jacprhs);
2785:   MatDestroy(&ts->Jacp);
2786:   if (ts->forward_solve) {
2787:     TSForwardReset(ts);
2788:   }
2789:   if (ts->quadraturets) {
2790:     TSReset(ts->quadraturets);
2791:     VecDestroy(&ts->vec_costintegrand);
2792:   }
2793:   while (ilink) {
2794:     next = ilink->next;
2795:     TSDestroy(&ilink->ts);
2796:     PetscFree(ilink->splitname);
2797:     ISDestroy(&ilink->is);
2798:     PetscFree(ilink);
2799:     ilink = next;
2800:   }
2801:   ts->num_rhs_splits = 0;
2802:   ts->setupcalled = PETSC_FALSE;
2803:   return(0);
2804: }

2806: /*@
2807:    TSDestroy - Destroys the timestepper context that was created
2808:    with TSCreate().

2810:    Collective on TS

2812:    Input Parameter:
2813: .  ts - the TS context obtained from TSCreate()

2815:    Level: beginner

2817: .seealso: TSCreate(), TSSetUp(), TSSolve()
2818: @*/
2819: PetscErrorCode  TSDestroy(TS *ts)
2820: {

2824:   if (!*ts) return(0);
2826:   if (--((PetscObject)(*ts))->refct > 0) {*ts = NULL; return(0);}

2828:   TSReset(*ts);
2829:   TSAdjointReset(*ts);
2830:   if ((*ts)->forward_solve) {
2831:     TSForwardReset(*ts);
2832:   }
2833:   /* if memory was published with SAWs then destroy it */
2834:   PetscObjectSAWsViewOff((PetscObject)*ts);
2835:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

2837:   TSTrajectoryDestroy(&(*ts)->trajectory);

2839:   TSAdaptDestroy(&(*ts)->adapt);
2840:   TSEventDestroy(&(*ts)->event);

2842:   SNESDestroy(&(*ts)->snes);
2843:   DMDestroy(&(*ts)->dm);
2844:   TSMonitorCancel((*ts));
2845:   TSAdjointMonitorCancel((*ts));

2847:   TSDestroy(&(*ts)->quadraturets);
2848:   PetscHeaderDestroy(ts);
2849:   return(0);
2850: }

2852: /*@
2853:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
2854:    a TS (timestepper) context. Valid only for nonlinear problems.

2856:    Not Collective, but SNES is parallel if TS is parallel

2858:    Input Parameter:
2859: .  ts - the TS context obtained from TSCreate()

2861:    Output Parameter:
2862: .  snes - the nonlinear solver context

2864:    Notes:
2865:    The user can then directly manipulate the SNES context to set various
2866:    options, etc.  Likewise, the user can then extract and manipulate the
2867:    KSP, KSP, and PC contexts as well.

2869:    TSGetSNES() does not work for integrators that do not use SNES; in
2870:    this case TSGetSNES() returns NULL in snes.

2872:    Level: beginner

2874: @*/
2875: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
2876: {

2882:   if (!ts->snes) {
2883:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2884:     PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2885:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2886:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2887:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2888:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2889:     if (ts->problem_type == TS_LINEAR) {
2890:       SNESSetType(ts->snes,SNESKSPONLY);
2891:     }
2892:   }
2893:   *snes = ts->snes;
2894:   return(0);
2895: }

2897: /*@
2898:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

2900:    Collective

2902:    Input Parameter:
2903: +  ts - the TS context obtained from TSCreate()
2904: -  snes - the nonlinear solver context

2906:    Notes:
2907:    Most users should have the TS created by calling TSGetSNES()

2909:    Level: developer

2911: @*/
2912: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2913: {
2915:   PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);

2920:   PetscObjectReference((PetscObject)snes);
2921:   SNESDestroy(&ts->snes);

2923:   ts->snes = snes;

2925:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2926:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2927:   if (func == SNESTSFormJacobian) {
2928:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2929:   }
2930:   return(0);
2931: }

2933: /*@
2934:    TSGetKSP - Returns the KSP (linear solver) associated with
2935:    a TS (timestepper) context.

2937:    Not Collective, but KSP is parallel if TS is parallel

2939:    Input Parameter:
2940: .  ts - the TS context obtained from TSCreate()

2942:    Output Parameter:
2943: .  ksp - the nonlinear solver context

2945:    Notes:
2946:    The user can then directly manipulate the KSP context to set various
2947:    options, etc.  Likewise, the user can then extract and manipulate the
2948:    KSP and PC contexts as well.

2950:    TSGetKSP() does not work for integrators that do not use KSP;
2951:    in this case TSGetKSP() returns NULL in ksp.

2953:    Level: beginner

2955: @*/
2956: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
2957: {
2959:   SNES           snes;

2964:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2965:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2966:   TSGetSNES(ts,&snes);
2967:   SNESGetKSP(snes,ksp);
2968:   return(0);
2969: }

2971: /* ----------- Routines to set solver parameters ---------- */

2973: /*@
2974:    TSSetMaxSteps - Sets the maximum number of steps to use.

2976:    Logically Collective on TS

2978:    Input Parameters:
2979: +  ts - the TS context obtained from TSCreate()
2980: -  maxsteps - maximum number of steps to use

2982:    Options Database Keys:
2983: .  -ts_max_steps <maxsteps> - Sets maxsteps

2985:    Notes:
2986:    The default maximum number of steps is 5000

2988:    Level: intermediate

2990: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2991: @*/
2992: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2993: {
2997:   if (maxsteps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2998:   ts->max_steps = maxsteps;
2999:   return(0);
3000: }

3002: /*@
3003:    TSGetMaxSteps - Gets the maximum number of steps to use.

3005:    Not Collective

3007:    Input Parameters:
3008: .  ts - the TS context obtained from TSCreate()

3010:    Output Parameter:
3011: .  maxsteps - maximum number of steps to use

3013:    Level: advanced

3015: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
3016: @*/
3017: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
3018: {
3022:   *maxsteps = ts->max_steps;
3023:   return(0);
3024: }

3026: /*@
3027:    TSSetMaxTime - Sets the maximum (or final) time for timestepping.

3029:    Logically Collective on TS

3031:    Input Parameters:
3032: +  ts - the TS context obtained from TSCreate()
3033: -  maxtime - final time to step to

3035:    Options Database Keys:
3036: .  -ts_max_time <maxtime> - Sets maxtime

3038:    Notes:
3039:    The default maximum time is 5.0

3041:    Level: intermediate

3043: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
3044: @*/
3045: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
3046: {
3050:   ts->max_time = maxtime;
3051:   return(0);
3052: }

3054: /*@
3055:    TSGetMaxTime - Gets the maximum (or final) time for timestepping.

3057:    Not Collective

3059:    Input Parameters:
3060: .  ts - the TS context obtained from TSCreate()

3062:    Output Parameter:
3063: .  maxtime - final time to step to

3065:    Level: advanced

3067: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3068: @*/
3069: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3070: {
3074:   *maxtime = ts->max_time;
3075:   return(0);
3076: }

3078: /*@
3079:    TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().

3081:    Level: deprecated

3083: @*/
3084: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3085: {
3089:   TSSetTime(ts,initial_time);
3090:   TSSetTimeStep(ts,time_step);
3091:   return(0);
3092: }

3094: /*@
3095:    TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().

3097:    Level: deprecated

3099: @*/
3100: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3101: {
3104:   if (maxsteps) {
3106:     *maxsteps = ts->max_steps;
3107:   }
3108:   if (maxtime) {
3110:     *maxtime = ts->max_time;
3111:   }
3112:   return(0);
3113: }

3115: /*@
3116:    TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().

3118:    Level: deprecated

3120: @*/
3121: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3122: {
3127:   if (maxsteps >= 0) ts->max_steps = maxsteps;
3128:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3129:   return(0);
3130: }

3132: /*@
3133:    TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().

3135:    Level: deprecated

3137: @*/
3138: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3140: /*@
3141:    TSGetTotalSteps - Deprecated, use TSGetStepNumber().

3143:    Level: deprecated

3145: @*/
3146: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3148: /*@
3149:    TSSetSolution - Sets the initial solution vector
3150:    for use by the TS routines.

3152:    Logically Collective on TS

3154:    Input Parameters:
3155: +  ts - the TS context obtained from TSCreate()
3156: -  u - the solution vector

3158:    Level: beginner

3160: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3161: @*/
3162: PetscErrorCode  TSSetSolution(TS ts,Vec u)
3163: {
3165:   DM             dm;

3170:   PetscObjectReference((PetscObject)u);
3171:   VecDestroy(&ts->vec_sol);
3172:   ts->vec_sol = u;

3174:   TSGetDM(ts,&dm);
3175:   DMShellSetGlobalVector(dm,u);
3176:   return(0);
3177: }

3179: /*@C
3180:   TSSetPreStep - Sets the general-purpose function
3181:   called once at the beginning of each time step.

3183:   Logically Collective on TS

3185:   Input Parameters:
3186: + ts   - The TS context obtained from TSCreate()
3187: - func - The function

3189:   Calling sequence of func:
3190: .   PetscErrorCode func (TS ts);

3192:   Level: intermediate

3194: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3195: @*/
3196: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3197: {
3200:   ts->prestep = func;
3201:   return(0);
3202: }

3204: /*@
3205:   TSPreStep - Runs the user-defined pre-step function.

3207:   Collective on TS

3209:   Input Parameters:
3210: . ts   - The TS context obtained from TSCreate()

3212:   Notes:
3213:   TSPreStep() is typically used within time stepping implementations,
3214:   so most users would not generally call this routine themselves.

3216:   Level: developer

3218: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3219: @*/
3220: PetscErrorCode  TSPreStep(TS ts)
3221: {

3226:   if (ts->prestep) {
3227:     Vec              U;
3228:     PetscObjectState sprev,spost;

3230:     TSGetSolution(ts,&U);
3231:     PetscObjectStateGet((PetscObject)U,&sprev);
3232:     PetscStackCallStandard((*ts->prestep),(ts));
3233:     PetscObjectStateGet((PetscObject)U,&spost);
3234:     if (sprev != spost) {TSRestartStep(ts);}
3235:   }
3236:   return(0);
3237: }

3239: /*@C
3240:   TSSetPreStage - Sets the general-purpose function
3241:   called once at the beginning of each stage.

3243:   Logically Collective on TS

3245:   Input Parameters:
3246: + ts   - The TS context obtained from TSCreate()
3247: - func - The function

3249:   Calling sequence of func:
3250: .    PetscErrorCode func(TS ts, PetscReal stagetime);

3252:   Level: intermediate

3254:   Note:
3255:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3256:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3257:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3259: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3260: @*/
3261: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3262: {
3265:   ts->prestage = func;
3266:   return(0);
3267: }

3269: /*@C
3270:   TSSetPostStage - Sets the general-purpose function
3271:   called once at the end of each stage.

3273:   Logically Collective on TS

3275:   Input Parameters:
3276: + ts   - The TS context obtained from TSCreate()
3277: - func - The function

3279:   Calling sequence of func:
3280: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);

3282:   Level: intermediate

3284:   Note:
3285:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3286:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3287:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3289: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3290: @*/
3291: PetscErrorCode  TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3292: {
3295:   ts->poststage = func;
3296:   return(0);
3297: }

3299: /*@C
3300:   TSSetPostEvaluate - Sets the general-purpose function
3301:   called once at the end of each step evaluation.

3303:   Logically Collective on TS

3305:   Input Parameters:
3306: + ts   - The TS context obtained from TSCreate()
3307: - func - The function

3309:   Calling sequence of func:
3310: . PetscErrorCode func(TS ts);

3312:   Level: intermediate

3314:   Note:
3315:   Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3316:   thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3317:   may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3318:   solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3319:   with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()

3321: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3322: @*/
3323: PetscErrorCode  TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3324: {
3327:   ts->postevaluate = func;
3328:   return(0);
3329: }

3331: /*@
3332:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

3334:   Collective on TS

3336:   Input Parameters:
3337: . ts          - The TS context obtained from TSCreate()
3338:   stagetime   - The absolute time of the current stage

3340:   Notes:
3341:   TSPreStage() is typically used within time stepping implementations,
3342:   most users would not generally call this routine themselves.

3344:   Level: developer

3346: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3347: @*/
3348: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
3349: {
3352:   if (ts->prestage) {
3353:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3354:   }
3355:   return(0);
3356: }

3358: /*@
3359:   TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()

3361:   Collective on TS

3363:   Input Parameters:
3364: . ts          - The TS context obtained from TSCreate()
3365:   stagetime   - The absolute time of the current stage
3366:   stageindex  - Stage number
3367:   Y           - Array of vectors (of size = total number
3368:                 of stages) with the stage solutions

3370:   Notes:
3371:   TSPostStage() is typically used within time stepping implementations,
3372:   most users would not generally call this routine themselves.

3374:   Level: developer

3376: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3377: @*/
3378: PetscErrorCode  TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3379: {
3382:   if (ts->poststage) {
3383:     PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3384:   }
3385:   return(0);
3386: }

3388: /*@
3389:   TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()

3391:   Collective on TS

3393:   Input Parameters:
3394: . ts          - The TS context obtained from TSCreate()

3396:   Notes:
3397:   TSPostEvaluate() is typically used within time stepping implementations,
3398:   most users would not generally call this routine themselves.

3400:   Level: developer

3402: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3403: @*/
3404: PetscErrorCode  TSPostEvaluate(TS ts)
3405: {

3410:   if (ts->postevaluate) {
3411:     Vec              U;
3412:     PetscObjectState sprev,spost;

3414:     TSGetSolution(ts,&U);
3415:     PetscObjectStateGet((PetscObject)U,&sprev);
3416:     PetscStackCallStandard((*ts->postevaluate),(ts));
3417:     PetscObjectStateGet((PetscObject)U,&spost);
3418:     if (sprev != spost) {TSRestartStep(ts);}
3419:   }
3420:   return(0);
3421: }

3423: /*@C
3424:   TSSetPostStep - Sets the general-purpose function
3425:   called once at the end of each time step.

3427:   Logically Collective on TS

3429:   Input Parameters:
3430: + ts   - The TS context obtained from TSCreate()
3431: - func - The function

3433:   Calling sequence of func:
3434: $ func (TS ts);

3436:   Notes:
3437:   The function set by TSSetPostStep() is called after each successful step. The solution vector X
3438:   obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3439:   locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.

3441:   Level: intermediate

3443: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3444: @*/
3445: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3446: {
3449:   ts->poststep = func;
3450:   return(0);
3451: }

3453: /*@
3454:   TSPostStep - Runs the user-defined post-step function.

3456:   Collective on TS

3458:   Input Parameters:
3459: . ts   - The TS context obtained from TSCreate()

3461:   Notes:
3462:   TSPostStep() is typically used within time stepping implementations,
3463:   so most users would not generally call this routine themselves.

3465:   Level: developer

3467: @*/
3468: PetscErrorCode  TSPostStep(TS ts)
3469: {

3474:   if (ts->poststep) {
3475:     Vec              U;
3476:     PetscObjectState sprev,spost;

3478:     TSGetSolution(ts,&U);
3479:     PetscObjectStateGet((PetscObject)U,&sprev);
3480:     PetscStackCallStandard((*ts->poststep),(ts));
3481:     PetscObjectStateGet((PetscObject)U,&spost);
3482:     if (sprev != spost) {TSRestartStep(ts);}
3483:   }
3484:   return(0);
3485: }

3487: /* ------------ Routines to set performance monitoring options ----------- */

3489: /*@C
3490:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3491:    timestep to display the iteration's  progress.

3493:    Logically Collective on TS

3495:    Input Parameters:
3496: +  ts - the TS context obtained from TSCreate()
3497: .  monitor - monitoring routine
3498: .  mctx - [optional] user-defined context for private data for the
3499:              monitor routine (use NULL if no context is desired)
3500: -  monitordestroy - [optional] routine that frees monitor context
3501:           (may be NULL)

3503:    Calling sequence of monitor:
3504: $    PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

3506: +    ts - the TS context
3507: .    steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3508: .    time - current time
3509: .    u - current iterate
3510: -    mctx - [optional] monitoring context

3512:    Notes:
3513:    This routine adds an additional monitor to the list of monitors that
3514:    already has been loaded.

3516:    Fortran Notes:
3517:     Only a single monitor function can be set for each TS object

3519:    Level: intermediate

3521: .seealso: TSMonitorDefault(), TSMonitorCancel()
3522: @*/
3523: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3524: {
3526:   PetscInt       i;
3527:   PetscBool      identical;

3531:   for (i=0; i<ts->numbermonitors;i++) {
3532:     PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3533:     if (identical) return(0);
3534:   }
3535:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3536:   ts->monitor[ts->numbermonitors]          = monitor;
3537:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
3538:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3539:   return(0);
3540: }

3542: /*@C
3543:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

3545:    Logically Collective on TS

3547:    Input Parameters:
3548: .  ts - the TS context obtained from TSCreate()

3550:    Notes:
3551:    There is no way to remove a single, specific monitor.

3553:    Level: intermediate

3555: .seealso: TSMonitorDefault(), TSMonitorSet()
3556: @*/
3557: PetscErrorCode  TSMonitorCancel(TS ts)
3558: {
3560:   PetscInt       i;

3564:   for (i=0; i<ts->numbermonitors; i++) {
3565:     if (ts->monitordestroy[i]) {
3566:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3567:     }
3568:   }
3569:   ts->numbermonitors = 0;
3570:   return(0);
3571: }

3573: /*@C
3574:    TSMonitorDefault - The Default monitor, prints the timestep and time for each step

3576:    Level: intermediate

3578: .seealso:  TSMonitorSet()
3579: @*/
3580: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3581: {
3583:   PetscViewer    viewer =  vf->viewer;
3584:   PetscBool      iascii,ibinary;

3588:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3589:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3590:   PetscViewerPushFormat(viewer,vf->format);
3591:   if (iascii) {
3592:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3593:     if (step == -1){ /* this indicates it is an interpolated solution */
3594:       PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3595:     } else {
3596:       PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3597:     }
3598:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3599:   } else if (ibinary) {
3600:     PetscMPIInt rank;
3601:     MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3602:     if (!rank) {
3603:       PetscBool skipHeader;
3604:       PetscInt  classid = REAL_FILE_CLASSID;

3606:       PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3607:       if (!skipHeader) {
3608:          PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
3609:        }
3610:       PetscRealView(1,&ptime,viewer);
3611:     } else {
3612:       PetscRealView(0,&ptime,viewer);
3613:     }
3614:   }
3615:   PetscViewerPopFormat(viewer);
3616:   return(0);
3617: }

3619: /*@C
3620:    TSMonitorExtreme - Prints the extreme values of the solution at each timestep

3622:    Level: intermediate

3624: .seealso:  TSMonitorSet()
3625: @*/
3626: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3627: {
3629:   PetscViewer    viewer =  vf->viewer;
3630:   PetscBool      iascii;
3631:   PetscReal      max,min;


3636:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3637:   PetscViewerPushFormat(viewer,vf->format);
3638:   if (iascii) {
3639:     VecMax(v,NULL,&max);
3640:     VecMin(v,NULL,&min);
3641:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3642:     PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3643:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3644:   }
3645:   PetscViewerPopFormat(viewer);
3646:   return(0);
3647: }

3649: /*@
3650:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

3652:    Collective on TS

3654:    Input Argument:
3655: +  ts - time stepping context
3656: -  t - time to interpolate to

3658:    Output Argument:
3659: .  U - state at given time

3661:    Level: intermediate

3663:    Developer Notes:
3664:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

3666: .seealso: TSSetExactFinalTime(), TSSolve()
3667: @*/
3668: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3669: {

3675:   if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3676:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3677:   (*ts->ops->interpolate)(ts,t,U);
3678:   return(0);
3679: }

3681: /*@
3682:    TSStep - Steps one time step

3684:    Collective on TS

3686:    Input Parameter:
3687: .  ts - the TS context obtained from TSCreate()

3689:    Level: developer

3691:    Notes:
3692:    The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.

3694:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3695:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

3697:    This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3698:    time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

3700: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3701: @*/
3702: PetscErrorCode  TSStep(TS ts)
3703: {
3704:   PetscErrorCode   ierr;
3705:   static PetscBool cite = PETSC_FALSE;
3706:   PetscReal        ptime;

3710:   PetscCitationsRegister("@article{tspaper,\n"
3711:                                 "  title         = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3712:                                 "  author        = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3713:                                 "  journal       = {arXiv e-preprints},\n"
3714:                                 "  eprint        = {1806.01437},\n"
3715:                                 "  archivePrefix = {arXiv},\n"
3716:                                 "  year          = {2018}\n}\n",&cite);

3718:   TSSetUp(ts);
3719:   TSTrajectorySetUp(ts->trajectory,ts);

3721:   if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3722:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3723:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3724:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

3726:   if (!ts->steps) ts->ptime_prev = ts->ptime;
3727:   ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3728:   ts->reason = TS_CONVERGED_ITERATING;

3730:   PetscLogEventBegin(TS_Step,ts,0,0,0);
3731:   (*ts->ops->step)(ts);
3732:   PetscLogEventEnd(TS_Step,ts,0,0,0);

3734:   if (ts->reason >= 0) {
3735:     ts->ptime_prev = ptime;
3736:     ts->steps++;
3737:     ts->steprollback = PETSC_FALSE;
3738:     ts->steprestart  = PETSC_FALSE;
3739:   }

3741:   if (!ts->reason) {
3742:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3743:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3744:   }

3746:   if (ts->reason < 0 && ts->errorifstepfailed && ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3747:   if (ts->reason < 0 && ts->errorifstepfailed) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3748:   return(0);
3749: }

3751: /*@
3752:    TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3753:    at the end of a time step with a given order of accuracy.

3755:    Collective on TS

3757:    Input Arguments:
3758: +  ts - time stepping context
3759: .  wnormtype - norm type, either NORM_2 or NORM_INFINITY
3760: -  order - optional, desired order for the error evaluation or PETSC_DECIDE

3762:    Output Arguments:
3763: +  order - optional, the actual order of the error evaluation
3764: -  wlte - the weighted local truncation error norm

3766:    Level: advanced

3768:    Notes:
3769:    If the timestepper cannot evaluate the error in a particular step
3770:    (eg. in the first step or restart steps after event handling),
3771:    this routine returns wlte=-1.0 .

3773: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3774: @*/
3775: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3776: {

3786:   if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3787:   if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3788:   (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3789:   return(0);
3790: }

3792: /*@
3793:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

3795:    Collective on TS

3797:    Input Arguments:
3798: +  ts - time stepping context
3799: .  order - desired order of accuracy
3800: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

3802:    Output Arguments:
3803: .  U - state at the end of the current step

3805:    Level: advanced

3807:    Notes:
3808:    This function cannot be called until all stages have been evaluated.
3809:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

3811: .seealso: TSStep(), TSAdapt
3812: @*/
3813: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3814: {

3821:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3822:   (*ts->ops->evaluatestep)(ts,order,U,done);
3823:   return(0);
3824: }

3826: /*@C
3827:   TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.

3829:   Not collective

3831:   Input Argument:
3832: . ts        - time stepping context

3834:   Output Argument:
3835: . initConditions - The function which computes an initial condition

3837:    Level: advanced

3839:    Notes:
3840:    The calling sequence for the function is
3841: $ initCondition(TS ts, Vec u)
3842: $ ts - The timestepping context
3843: $ u  - The input vector in which the initial condition is stored

3845: .seealso: TSSetComputeInitialCondition(), TSComputeInitialCondition()
3846: @*/
3847: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS, Vec))
3848: {
3852:   *initCondition = ts->ops->initcondition;
3853:   return(0);
3854: }

3856: /*@C
3857:   TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.

3859:   Logically collective on ts

3861:   Input Arguments:
3862: + ts        - time stepping context
3863: - initCondition - The function which computes an initial condition

3865:   Level: advanced

3867:   Calling sequence for initCondition:
3868: $ PetscErrorCode initCondition(TS ts, Vec u)

3870: + ts - The timestepping context
3871: - u  - The input vector in which the initial condition is to be stored

3873: .seealso: TSGetComputeInitialCondition(), TSComputeInitialCondition()
3874: @*/
3875: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS, Vec))
3876: {
3880:   ts->ops->initcondition = initCondition;
3881:   return(0);
3882: }

3884: /*@
3885:   TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set.

3887:   Collective on ts

3889:   Input Arguments:
3890: + ts - time stepping context
3891: - u  - The Vec to store the condition in which will be used in TSSolve()

3893:   Level: advanced

3895: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3896: @*/
3897: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3898: {

3904:   if (ts->ops->initcondition) {(*ts->ops->initcondition)(ts, u);}
3905:   return(0);
3906: }

3908: /*@C
3909:   TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.

3911:   Not collective

3913:   Input Argument:
3914: . ts         - time stepping context

3916:   Output Argument:
3917: . exactError - The function which computes the solution error

3919:   Level: advanced

3921:   Calling sequence for exactError:
3922: $ PetscErrorCode exactError(TS ts, Vec u)

3924: + ts - The timestepping context
3925: . u  - The approximate solution vector
3926: - e  - The input vector in which the error is stored

3928: .seealso: TSGetComputeExactError(), TSComputeExactError()
3929: @*/
3930: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS, Vec, Vec))
3931: {
3935:   *exactError = ts->ops->exacterror;
3936:   return(0);
3937: }

3939: /*@C
3940:   TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.

3942:   Logically collective on ts

3944:   Input Arguments:
3945: + ts         - time stepping context
3946: - exactError - The function which computes the solution error

3948:   Level: advanced

3950:   Calling sequence for exactError:
3951: $ PetscErrorCode exactError(TS ts, Vec u)

3953: + ts - The timestepping context
3954: . u  - The approximate solution vector
3955: - e  - The input vector in which the error is stored

3957: .seealso: TSGetComputeExactError(), TSComputeExactError()
3958: @*/
3959: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS, Vec, Vec))
3960: {
3964:   ts->ops->exacterror = exactError;
3965:   return(0);
3966: }

3968: /*@
3969:   TSComputeExactError - Compute the solution error for the timestepping using the function previously set.

3971:   Collective on ts

3973:   Input Arguments:
3974: + ts - time stepping context
3975: . u  - The approximate solution
3976: - e  - The Vec used to store the error

3978:   Level: advanced

3980: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3981: @*/
3982: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
3983: {

3990:   if (ts->ops->exacterror) {(*ts->ops->exacterror)(ts, u, e);}
3991:   return(0);
3992: }

3994: /*@
3995:    TSSolve - Steps the requested number of timesteps.

3997:    Collective on TS

3999:    Input Parameter:
4000: +  ts - the TS context obtained from TSCreate()
4001: -  u - the solution vector  (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4002:                              otherwise must contain the initial conditions and will contain the solution at the final requested time

4004:    Level: beginner

4006:    Notes:
4007:    The final time returned by this function may be different from the time of the internally
4008:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
4009:    stepped over the final time.

4011: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4012: @*/
4013: PetscErrorCode TSSolve(TS ts,Vec u)
4014: {
4015:   Vec               solution;
4016:   PetscErrorCode    ierr;


4022:   TSSetExactFinalTimeDefault(ts);
4023:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4024:     if (!ts->vec_sol || u == ts->vec_sol) {
4025:       VecDuplicate(u,&solution);
4026:       TSSetSolution(ts,solution);
4027:       VecDestroy(&solution); /* grant ownership */
4028:     }
4029:     VecCopy(u,ts->vec_sol);
4030:     if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4031:   } else if (u) {
4032:     TSSetSolution(ts,u);
4033:   }
4034:   TSSetUp(ts);
4035:   TSTrajectorySetUp(ts->trajectory,ts);

4037:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4038:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4039:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

4041:   if (ts->forward_solve) {
4042:     TSForwardSetUp(ts);
4043:   }

4045:   /* reset number of steps only when the step is not restarted. ARKIMEX
4046:      restarts the step after an event. Resetting these counters in such case causes
4047:      TSTrajectory to incorrectly save the output files
4048:   */
4049:   /* reset time step and iteration counters */
4050:   if (!ts->steps) {
4051:     ts->ksp_its           = 0;
4052:     ts->snes_its          = 0;
4053:     ts->num_snes_failures = 0;
4054:     ts->reject            = 0;
4055:     ts->steprestart       = PETSC_TRUE;
4056:     ts->steprollback      = PETSC_FALSE;
4057:     ts->rhsjacobian.time  = PETSC_MIN_REAL;
4058:   }

4060:   /* make sure initial time step does not overshoot final time */
4061:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4062:     PetscReal maxdt = ts->max_time-ts->ptime;
4063:     PetscReal dt = ts->time_step;

4065:     ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt,maxdt,10*PETSC_MACHINE_EPSILON,0) ? maxdt : dt);
4066:   }
4067:   ts->reason = TS_CONVERGED_ITERATING;

4069:   {
4070:     PetscViewer       viewer;
4071:     PetscViewerFormat format;
4072:     PetscBool         flg;
4073:     static PetscBool  incall = PETSC_FALSE;

4075:     if (!incall) {
4076:       /* Estimate the convergence rate of the time discretization */
4077:       PetscOptionsGetViewer(PetscObjectComm((PetscObject) ts),((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg);
4078:       if (flg) {
4079:         PetscConvEst conv;
4080:         DM           dm;
4081:         PetscReal   *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4082:         PetscInt     Nf;
4083:         PetscBool    checkTemporal = PETSC_TRUE;

4085:         incall = PETSC_TRUE;
4086:         PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg);
4087:         TSGetDM(ts, &dm);
4088:         DMGetNumFields(dm, &Nf);
4089:         PetscCalloc1(PetscMax(Nf, 1), &alpha);
4090:         PetscConvEstCreate(PetscObjectComm((PetscObject) ts), &conv);
4091:         PetscConvEstUseTS(conv, checkTemporal);
4092:         PetscConvEstSetSolver(conv, (PetscObject) ts);
4093:         PetscConvEstSetFromOptions(conv);
4094:         PetscConvEstSetUp(conv);
4095:         PetscConvEstGetConvRate(conv, alpha);
4096:         PetscViewerPushFormat(viewer, format);
4097:         PetscConvEstRateView(conv, alpha, viewer);
4098:         PetscViewerPopFormat(viewer);
4099:         PetscViewerDestroy(&viewer);
4100:         PetscConvEstDestroy(&conv);
4101:         PetscFree(alpha);
4102:         incall = PETSC_FALSE;
4103:       }
4104:     }
4105:   }

4107:   TSViewFromOptions(ts,NULL,"-ts_view_pre");

4109:   if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4110:     (*ts->ops->solve)(ts);
4111:     if (u) {VecCopy(ts->vec_sol,u);}
4112:     ts->solvetime = ts->ptime;
4113:     solution = ts->vec_sol;
4114:   } else { /* Step the requested number of timesteps. */
4115:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4116:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;

4118:     if (!ts->steps) {
4119:       TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4120:       TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4121:     }

4123:     while (!ts->reason) {
4124:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4125:       if (!ts->steprollback) {
4126:         TSPreStep(ts);
4127:       }
4128:       TSStep(ts);
4129:       if (ts->testjacobian) {
4130:         TSRHSJacobianTest(ts,NULL);
4131:       }
4132:       if (ts->testjacobiantranspose) {
4133:         TSRHSJacobianTestTranspose(ts,NULL);
4134:       }
4135:       if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4136:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4137:         TSForwardCostIntegral(ts);
4138:         if (ts->reason >= 0) ts->steps++;
4139:       }
4140:       if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4141:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4142:         TSForwardStep(ts);
4143:         if (ts->reason >= 0) ts->steps++;
4144:       }
4145:       TSPostEvaluate(ts);
4146:       TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4147:       if (ts->steprollback) {
4148:         TSPostEvaluate(ts);
4149:       }
4150:       if (!ts->steprollback) {
4151:         TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4152:         TSPostStep(ts);
4153:       }
4154:     }
4155:     TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

4157:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4158:       TSInterpolate(ts,ts->max_time,u);
4159:       ts->solvetime = ts->max_time;
4160:       solution = u;
4161:       TSMonitor(ts,-1,ts->solvetime,solution);
4162:     } else {
4163:       if (u) {VecCopy(ts->vec_sol,u);}
4164:       ts->solvetime = ts->ptime;
4165:       solution = ts->vec_sol;
4166:     }
4167:   }

4169:   TSViewFromOptions(ts,NULL,"-ts_view");
4170:   VecViewFromOptions(solution,NULL,"-ts_view_solution");
4171:   PetscObjectSAWsBlock((PetscObject)ts);
4172:   if (ts->adjoint_solve) {
4173:     TSAdjointSolve(ts);
4174:   }
4175:   return(0);
4176: }

4178: /*@C
4179:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

4181:    Collective on TS

4183:    Input Parameters:
4184: +  ts - time stepping context obtained from TSCreate()
4185: .  step - step number that has just completed
4186: .  ptime - model time of the state
4187: -  u - state at the current model time

4189:    Notes:
4190:    TSMonitor() is typically used automatically within the time stepping implementations.
4191:    Users would almost never call this routine directly.

4193:    A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions

4195:    Level: developer

4197: @*/
4198: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4199: {
4200:   DM             dm;
4201:   PetscInt       i,n = ts->numbermonitors;


4208:   TSGetDM(ts,&dm);
4209:   DMSetOutputSequenceNumber(dm,step,ptime);

4211:   VecLockReadPush(u);
4212:   for (i=0; i<n; i++) {
4213:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4214:   }
4215:   VecLockReadPop(u);
4216:   return(0);
4217: }

4219: /* ------------------------------------------------------------------------*/
4220: /*@C
4221:    TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4222:    TS to monitor the solution process graphically in various ways

4224:    Collective on TS

4226:    Input Parameters:
4227: +  host - the X display to open, or null for the local machine
4228: .  label - the title to put in the title bar
4229: .  x, y - the screen coordinates of the upper left coordinate of the window
4230: .  m, n - the screen width and height in pixels
4231: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

4233:    Output Parameter:
4234: .  ctx - the context

4236:    Options Database Key:
4237: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
4238: +  -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4239: .  -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4240: .  -ts_monitor_lg_error -  monitor the error
4241: .  -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4242: .  -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4243: -  -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true

4245:    Notes:
4246:    Use TSMonitorLGCtxDestroy() to destroy.

4248:    One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()

4250:    Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4251:    first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4252:    as the first argument.

4254:    One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()

4256:    Level: intermediate

4258: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4259:            TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4260:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4261:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4262:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()

4264: @*/
4265: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4266: {
4267:   PetscDraw      draw;

4271:   PetscNew(ctx);
4272:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4273:   PetscDrawSetFromOptions(draw);
4274:   PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4275:   PetscDrawLGSetFromOptions((*ctx)->lg);
4276:   PetscDrawDestroy(&draw);
4277:   (*ctx)->howoften = howoften;
4278:   return(0);
4279: }

4281: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4282: {
4283:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4284:   PetscReal      x   = ptime,y;

4288:   if (step < 0) return(0); /* -1 indicates an interpolated solution */
4289:   if (!step) {
4290:     PetscDrawAxis axis;
4291:     const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4292:     PetscDrawLGGetAxis(ctx->lg,&axis);
4293:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4294:     PetscDrawLGReset(ctx->lg);
4295:   }
4296:   TSGetTimeStep(ts,&y);
4297:   if (ctx->semilogy) y = PetscLog10Real(y);
4298:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4299:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4300:     PetscDrawLGDraw(ctx->lg);
4301:     PetscDrawLGSave(ctx->lg);
4302:   }
4303:   return(0);
4304: }

4306: /*@C
4307:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4308:    with TSMonitorLGCtxCreate().

4310:    Collective on TSMonitorLGCtx

4312:    Input Parameter:
4313: .  ctx - the monitor context

4315:    Level: intermediate

4317: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
4318: @*/
4319: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4320: {

4324:   if ((*ctx)->transformdestroy) {
4325:     ((*ctx)->transformdestroy)((*ctx)->transformctx);
4326:   }
4327:   PetscDrawLGDestroy(&(*ctx)->lg);
4328:   PetscStrArrayDestroy(&(*ctx)->names);
4329:   PetscStrArrayDestroy(&(*ctx)->displaynames);
4330:   PetscFree((*ctx)->displayvariables);
4331:   PetscFree((*ctx)->displayvalues);
4332:   PetscFree(*ctx);
4333:   return(0);
4334: }

4336: /*

4338:   Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations

4340: */
4341: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4342: {
4343:   PetscDraw      draw;

4347:   PetscNew(ctx);
4348:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4349:   PetscDrawSetFromOptions(draw);
4350:   PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4351:   PetscDrawDestroy(&draw);
4352:   (*ctx)->howoften = howoften;
4353:   return(0);

4355: }

4357: /*
4358:   Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4359: */
4360: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4361: {


4366:   PetscDrawSPDestroy(&(*ctx)->sp);
4367:   PetscFree(*ctx);

4369:   return(0);

4371: }

4373: /*@
4374:    TSGetTime - Gets the time of the most recently completed step.

4376:    Not Collective

4378:    Input Parameter:
4379: .  ts - the TS context obtained from TSCreate()

4381:    Output Parameter:
4382: .  t  - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().

4384:    Level: beginner

4386:    Note:
4387:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4388:    TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

4390: .seealso:  TSGetSolveTime(), TSSetTime(), TSGetTimeStep(), TSGetStepNumber()

4392: @*/
4393: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
4394: {
4398:   *t = ts->ptime;
4399:   return(0);
4400: }

4402: /*@
4403:    TSGetPrevTime - Gets the starting time of the previously completed step.

4405:    Not Collective

4407:    Input Parameter:
4408: .  ts - the TS context obtained from TSCreate()

4410:    Output Parameter:
4411: .  t  - the previous time

4413:    Level: beginner

4415: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()

4417: @*/
4418: PetscErrorCode  TSGetPrevTime(TS ts,PetscReal *t)
4419: {
4423:   *t = ts->ptime_prev;
4424:   return(0);
4425: }

4427: /*@
4428:    TSSetTime - Allows one to reset the time.

4430:    Logically Collective on TS

4432:    Input Parameters:
4433: +  ts - the TS context obtained from TSCreate()
4434: -  time - the time

4436:    Level: intermediate

4438: .seealso: TSGetTime(), TSSetMaxSteps()

4440: @*/
4441: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
4442: {
4446:   ts->ptime = t;
4447:   return(0);
4448: }

4450: /*@C
4451:    TSSetOptionsPrefix - Sets the prefix used for searching for all
4452:    TS options in the database.

4454:    Logically Collective on TS

4456:    Input Parameter:
4457: +  ts     - The TS context
4458: -  prefix - The prefix to prepend to all option names

4460:    Notes:
4461:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4462:    The first character of all runtime options is AUTOMATICALLY the
4463:    hyphen.

4465:    Level: advanced

4467: .seealso: TSSetFromOptions()

4469: @*/
4470: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
4471: {
4473:   SNES           snes;

4477:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4478:   TSGetSNES(ts,&snes);
4479:   SNESSetOptionsPrefix(snes,prefix);
4480:   return(0);
4481: }

4483: /*@C
4484:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4485:    TS options in the database.

4487:    Logically Collective on TS

4489:    Input Parameter:
4490: +  ts     - The TS context
4491: -  prefix - The prefix to prepend to all option names

4493:    Notes:
4494:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4495:    The first character of all runtime options is AUTOMATICALLY the
4496:    hyphen.

4498:    Level: advanced

4500: .seealso: TSGetOptionsPrefix()

4502: @*/
4503: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
4504: {
4506:   SNES           snes;

4510:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4511:   TSGetSNES(ts,&snes);
4512:   SNESAppendOptionsPrefix(snes,prefix);
4513:   return(0);
4514: }

4516: /*@C
4517:    TSGetOptionsPrefix - Sets the prefix used for searching for all
4518:    TS options in the database.

4520:    Not Collective

4522:    Input Parameter:
4523: .  ts - The TS context

4525:    Output Parameter:
4526: .  prefix - A pointer to the prefix string used

4528:    Notes:
4529:     On the fortran side, the user should pass in a string 'prifix' of
4530:    sufficient length to hold the prefix.

4532:    Level: intermediate

4534: .seealso: TSAppendOptionsPrefix()
4535: @*/
4536: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
4537: {

4543:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4544:   return(0);
4545: }

4547: /*@C
4548:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

4550:    Not Collective, but parallel objects are returned if TS is parallel

4552:    Input Parameter:
4553: .  ts  - The TS context obtained from TSCreate()

4555:    Output Parameters:
4556: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
4557: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
4558: .  func - Function to compute the Jacobian of the RHS  (or NULL)
4559: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

4561:    Notes:
4562:     You can pass in NULL for any return argument you do not need.

4564:    Level: intermediate

4566: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4568: @*/
4569: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4570: {
4572:   DM             dm;

4575:   if (Amat || Pmat) {
4576:     SNES snes;
4577:     TSGetSNES(ts,&snes);
4578:     SNESSetUpMatrices(snes);
4579:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4580:   }
4581:   TSGetDM(ts,&dm);
4582:   DMTSGetRHSJacobian(dm,func,ctx);
4583:   return(0);
4584: }

4586: /*@C
4587:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

4589:    Not Collective, but parallel objects are returned if TS is parallel

4591:    Input Parameter:
4592: .  ts  - The TS context obtained from TSCreate()

4594:    Output Parameters:
4595: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
4596: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4597: .  f   - The function to compute the matrices
4598: - ctx - User-defined context for Jacobian evaluation routine

4600:    Notes:
4601:     You can pass in NULL for any return argument you do not need.

4603:    Level: advanced

4605: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4607: @*/
4608: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4609: {
4611:   DM             dm;

4614:   if (Amat || Pmat) {
4615:     SNES snes;
4616:     TSGetSNES(ts,&snes);
4617:     SNESSetUpMatrices(snes);
4618:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4619:   }
4620:   TSGetDM(ts,&dm);
4621:   DMTSGetIJacobian(dm,f,ctx);
4622:   return(0);
4623: }

4625: /*@C
4626:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4627:    VecView() for the solution at each timestep

4629:    Collective on TS

4631:    Input Parameters:
4632: +  ts - the TS context
4633: .  step - current time-step
4634: .  ptime - current time
4635: -  dummy - either a viewer or NULL

4637:    Options Database:
4638: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4640:    Notes:
4641:     the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4642:        will look bad

4644:    Level: intermediate

4646: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4647: @*/
4648: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4649: {
4650:   PetscErrorCode   ierr;
4651:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4652:   PetscDraw        draw;

4655:   if (!step && ictx->showinitial) {
4656:     if (!ictx->initialsolution) {
4657:       VecDuplicate(u,&ictx->initialsolution);
4658:     }
4659:     VecCopy(u,ictx->initialsolution);
4660:   }
4661:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

4663:   if (ictx->showinitial) {
4664:     PetscReal pause;
4665:     PetscViewerDrawGetPause(ictx->viewer,&pause);
4666:     PetscViewerDrawSetPause(ictx->viewer,0.0);
4667:     VecView(ictx->initialsolution,ictx->viewer);
4668:     PetscViewerDrawSetPause(ictx->viewer,pause);
4669:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4670:   }
4671:   VecView(u,ictx->viewer);
4672:   if (ictx->showtimestepandtime) {
4673:     PetscReal xl,yl,xr,yr,h;
4674:     char      time[32];

4676:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4677:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4678:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4679:     h    = yl + .95*(yr - yl);
4680:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4681:     PetscDrawFlush(draw);
4682:   }

4684:   if (ictx->showinitial) {
4685:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4686:   }
4687:   return(0);
4688: }

4690: /*@C
4691:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

4693:    Collective on TS

4695:    Input Parameters:
4696: +  ts - the TS context
4697: .  step - current time-step
4698: .  ptime - current time
4699: -  dummy - either a viewer or NULL

4701:    Level: intermediate

4703: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4704: @*/
4705: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4706: {
4707:   PetscErrorCode    ierr;
4708:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
4709:   PetscDraw         draw;
4710:   PetscDrawAxis     axis;
4711:   PetscInt          n;
4712:   PetscMPIInt       size;
4713:   PetscReal         U0,U1,xl,yl,xr,yr,h;
4714:   char              time[32];
4715:   const PetscScalar *U;

4718:   MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4719:   if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4720:   VecGetSize(u,&n);
4721:   if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");

4723:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4724:   PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4725:   PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4726:   if (!step) {
4727:     PetscDrawClear(draw);
4728:     PetscDrawAxisDraw(axis);
4729:   }

4731:   VecGetArrayRead(u,&U);
4732:   U0 = PetscRealPart(U[0]);
4733:   U1 = PetscRealPart(U[1]);
4734:   VecRestoreArrayRead(u,&U);
4735:   if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);

4737:   PetscDrawCollectiveBegin(draw);
4738:   PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4739:   if (ictx->showtimestepandtime) {
4740:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4741:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4742:     h    = yl + .95*(yr - yl);
4743:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4744:   }
4745:   PetscDrawCollectiveEnd(draw);
4746:   PetscDrawFlush(draw);
4747:   PetscDrawPause(draw);
4748:   PetscDrawSave(draw);
4749:   return(0);
4750: }

4752: /*@C
4753:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

4755:    Collective on TS

4757:    Input Parameters:
4758: .    ctx - the monitor context

4760:    Level: intermediate

4762: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4763: @*/
4764: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4765: {

4769:   PetscViewerDestroy(&(*ictx)->viewer);
4770:   VecDestroy(&(*ictx)->initialsolution);
4771:   PetscFree(*ictx);
4772:   return(0);
4773: }

4775: /*@C
4776:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

4778:    Collective on TS

4780:    Input Parameter:
4781: .    ts - time-step context

4783:    Output Patameter:
4784: .    ctx - the monitor context

4786:    Options Database:
4787: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4789:    Level: intermediate

4791: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4792: @*/
4793: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4794: {
4795:   PetscErrorCode   ierr;

4798:   PetscNew(ctx);
4799:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4800:   PetscViewerSetFromOptions((*ctx)->viewer);

4802:   (*ctx)->howoften    = howoften;
4803:   (*ctx)->showinitial = PETSC_FALSE;
4804:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

4806:   (*ctx)->showtimestepandtime = PETSC_FALSE;
4807:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4808:   return(0);
4809: }

4811: /*@C
4812:    TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4813:    VecView() for the solution provided by TSSetSolutionFunction() at each timestep

4815:    Collective on TS

4817:    Input Parameters:
4818: +  ts - the TS context
4819: .  step - current time-step
4820: .  ptime - current time
4821: -  dummy - either a viewer or NULL

4823:    Options Database:
4824: .  -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4826:    Level: intermediate

4828: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4829: @*/
4830: PetscErrorCode  TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4831: {
4832:   PetscErrorCode   ierr;
4833:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4834:   PetscViewer      viewer = ctx->viewer;
4835:   Vec              work;

4838:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4839:   VecDuplicate(u,&work);
4840:   TSComputeSolutionFunction(ts,ptime,work);
4841:   VecView(work,viewer);
4842:   VecDestroy(&work);
4843:   return(0);
4844: }

4846: /*@C
4847:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
4848:    VecView() for the error at each timestep

4850:    Collective on TS

4852:    Input Parameters:
4853: +  ts - the TS context
4854: .  step - current time-step
4855: .  ptime - current time
4856: -  dummy - either a viewer or NULL

4858:    Options Database:
4859: .  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4861:    Level: intermediate

4863: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4864: @*/
4865: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4866: {
4867:   PetscErrorCode   ierr;
4868:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4869:   PetscViewer      viewer = ctx->viewer;
4870:   Vec              work;

4873:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4874:   VecDuplicate(u,&work);
4875:   TSComputeSolutionFunction(ts,ptime,work);
4876:   VecAXPY(work,-1.0,u);
4877:   VecView(work,viewer);
4878:   VecDestroy(&work);
4879:   return(0);
4880: }

4882:  #include <petsc/private/dmimpl.h>
4883: /*@
4884:    TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS

4886:    Logically Collective on ts

4888:    Input Parameters:
4889: +  ts - the ODE integrator object
4890: -  dm - the dm, cannot be NULL

4892:    Notes:
4893:    A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4894:    even when not using interfaces like DMTSSetIFunction().  Use DMClone() to get a distinct DM when solving
4895:    different problems using the same function space.

4897:    Level: intermediate

4899: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4900: @*/
4901: PetscErrorCode  TSSetDM(TS ts,DM dm)
4902: {
4904:   SNES           snes;
4905:   DMTS           tsdm;

4910:   PetscObjectReference((PetscObject)dm);
4911:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
4912:     if (ts->dm->dmts && !dm->dmts) {
4913:       DMCopyDMTS(ts->dm,dm);
4914:       DMGetDMTS(ts->dm,&tsdm);
4915:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4916:         tsdm->originaldm = dm;
4917:       }
4918:     }
4919:     DMDestroy(&ts->dm);
4920:   }
4921:   ts->dm = dm;

4923:   TSGetSNES(ts,&snes);
4924:   SNESSetDM(snes,dm);
4925:   return(0);
4926: }

4928: /*@
4929:    TSGetDM - Gets the DM that may be used by some preconditioners

4931:    Not Collective

4933:    Input Parameter:
4934: . ts - the preconditioner context

4936:    Output Parameter:
4937: .  dm - the dm

4939:    Level: intermediate

4941: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4942: @*/
4943: PetscErrorCode  TSGetDM(TS ts,DM *dm)
4944: {

4949:   if (!ts->dm) {
4950:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4951:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4952:   }
4953:   *dm = ts->dm;
4954:   return(0);
4955: }

4957: /*@
4958:    SNESTSFormFunction - Function to evaluate nonlinear residual

4960:    Logically Collective on SNES

4962:    Input Parameter:
4963: + snes - nonlinear solver
4964: . U - the current state at which to evaluate the residual
4965: - ctx - user context, must be a TS

4967:    Output Parameter:
4968: . F - the nonlinear residual

4970:    Notes:
4971:    This function is not normally called by users and is automatically registered with the SNES used by TS.
4972:    It is most frequently passed to MatFDColoringSetFunction().

4974:    Level: advanced

4976: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4977: @*/
4978: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4979: {
4980:   TS             ts = (TS)ctx;

4988:   (ts->ops->snesfunction)(snes,U,F,ts);
4989:   return(0);
4990: }

4992: /*@
4993:    SNESTSFormJacobian - Function to evaluate the Jacobian

4995:    Collective on SNES

4997:    Input Parameter:
4998: + snes - nonlinear solver
4999: . U - the current state at which to evaluate the residual
5000: - ctx - user context, must be a TS

5002:    Output Parameter:
5003: + A - the Jacobian
5004: . B - the preconditioning matrix (may be the same as A)
5005: - flag - indicates any structure change in the matrix

5007:    Notes:
5008:    This function is not normally called by users and is automatically registered with the SNES used by TS.

5010:    Level: developer

5012: .seealso: SNESSetJacobian()
5013: @*/
5014: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5015: {
5016:   TS             ts = (TS)ctx;

5027:   (ts->ops->snesjacobian)(snes,U,A,B,ts);
5028:   return(0);
5029: }

5031: /*@C
5032:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only

5034:    Collective on TS

5036:    Input Arguments:
5037: +  ts - time stepping context
5038: .  t - time at which to evaluate
5039: .  U - state at which to evaluate
5040: -  ctx - context

5042:    Output Arguments:
5043: .  F - right hand side

5045:    Level: intermediate

5047:    Notes:
5048:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5049:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

5051: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5052: @*/
5053: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5054: {
5056:   Mat            Arhs,Brhs;

5059:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5060:   TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5061:   MatMult(Arhs,U,F);
5062:   return(0);
5063: }

5065: /*@C
5066:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

5068:    Collective on TS

5070:    Input Arguments:
5071: +  ts - time stepping context
5072: .  t - time at which to evaluate
5073: .  U - state at which to evaluate
5074: -  ctx - context

5076:    Output Arguments:
5077: +  A - pointer to operator
5078: .  B - pointer to preconditioning matrix
5079: -  flg - matrix structure flag

5081:    Level: intermediate

5083:    Notes:
5084:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

5086: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5087: @*/
5088: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5089: {
5091:   return(0);
5092: }

5094: /*@C
5095:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

5097:    Collective on TS

5099:    Input Arguments:
5100: +  ts - time stepping context
5101: .  t - time at which to evaluate
5102: .  U - state at which to evaluate
5103: .  Udot - time derivative of state vector
5104: -  ctx - context

5106:    Output Arguments:
5107: .  F - left hand side

5109:    Level: intermediate

5111:    Notes:
5112:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5113:    user is required to write their own TSComputeIFunction.
5114:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5115:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

5117:    Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U

5119: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5120: @*/
5121: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5122: {
5124:   Mat            A,B;

5127:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
5128:   TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5129:   MatMult(A,Udot,F);
5130:   return(0);
5131: }

5133: /*@C
5134:    TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE

5136:    Collective on TS

5138:    Input Arguments:
5139: +  ts - time stepping context
5140: .  t - time at which to evaluate
5141: .  U - state at which to evaluate
5142: .  Udot - time derivative of state vector
5143: .  shift - shift to apply
5144: -  ctx - context

5146:    Output Arguments:
5147: +  A - pointer to operator
5148: .  B - pointer to preconditioning matrix
5149: -  flg - matrix structure flag

5151:    Level: advanced

5153:    Notes:
5154:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

5156:    It is only appropriate for problems of the form

5158: $     M Udot = F(U,t)

5160:   where M is constant and F is non-stiff.  The user must pass M to TSSetIJacobian().  The current implementation only
5161:   works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5162:   an implicit operator of the form

5164: $    shift*M + J

5166:   where J is the Jacobian of -F(U).  Support may be added in a future version of PETSc, but for now, the user must store
5167:   a copy of M or reassemble it when requested.

5169: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5170: @*/
5171: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5172: {

5176:   MatScale(A, shift / ts->ijacobian.shift);
5177:   ts->ijacobian.shift = shift;
5178:   return(0);
5179: }

5181: /*@
5182:    TSGetEquationType - Gets the type of the equation that TS is solving.

5184:    Not Collective

5186:    Input Parameter:
5187: .  ts - the TS context

5189:    Output Parameter:
5190: .  equation_type - see TSEquationType

5192:    Level: beginner

5194: .seealso: TSSetEquationType(), TSEquationType
5195: @*/
5196: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
5197: {
5201:   *equation_type = ts->equation_type;
5202:   return(0);
5203: }

5205: /*@
5206:    TSSetEquationType - Sets the type of the equation that TS is solving.

5208:    Not Collective

5210:    Input Parameter:
5211: +  ts - the TS context
5212: -  equation_type - see TSEquationType

5214:    Level: advanced

5216: .seealso: TSGetEquationType(), TSEquationType
5217: @*/
5218: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
5219: {
5222:   ts->equation_type = equation_type;
5223:   return(0);
5224: }

5226: /*@
5227:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

5229:    Not Collective

5231:    Input Parameter:
5232: .  ts - the TS context

5234:    Output Parameter:
5235: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5236:             manual pages for the individual convergence tests for complete lists

5238:    Level: beginner

5240:    Notes:
5241:    Can only be called after the call to TSSolve() is complete.

5243: .seealso: TSSetConvergenceTest(), TSConvergedReason
5244: @*/
5245: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5246: {
5250:   *reason = ts->reason;
5251:   return(0);
5252: }

5254: /*@
5255:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

5257:    Logically Collective; reason must contain common value

5259:    Input Parameters:
5260: +  ts - the TS context
5261: -  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5262:             manual pages for the individual convergence tests for complete lists

5264:    Level: advanced

5266:    Notes:
5267:    Can only be called while TSSolve() is active.

5269: .seealso: TSConvergedReason
5270: @*/
5271: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
5272: {
5275:   ts->reason = reason;
5276:   return(0);
5277: }

5279: /*@
5280:    TSGetSolveTime - Gets the time after a call to TSSolve()

5282:    Not Collective

5284:    Input Parameter:
5285: .  ts - the TS context

5287:    Output Parameter:
5288: .  ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()

5290:    Level: beginner

5292:    Notes:
5293:    Can only be called after the call to TSSolve() is complete.

5295: .seealso: TSSetConvergenceTest(), TSConvergedReason
5296: @*/
5297: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
5298: {
5302:   *ftime = ts->solvetime;
5303:   return(0);
5304: }

5306: /*@
5307:    TSGetSNESIterations - Gets the total number of nonlinear iterations
5308:    used by the time integrator.

5310:    Not Collective

5312:    Input Parameter:
5313: .  ts - TS context

5315:    Output Parameter:
5316: .  nits - number of nonlinear iterations

5318:    Notes:
5319:    This counter is reset to zero for each successive call to TSSolve().

5321:    Level: intermediate

5323: .seealso:  TSGetKSPIterations()
5324: @*/
5325: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5326: {
5330:   *nits = ts->snes_its;
5331:   return(0);
5332: }

5334: /*@
5335:    TSGetKSPIterations - Gets the total number of linear iterations
5336:    used by the time integrator.

5338:    Not Collective

5340:    Input Parameter:
5341: .  ts - TS context

5343:    Output Parameter:
5344: .  lits - number of linear iterations

5346:    Notes:
5347:    This counter is reset to zero for each successive call to TSSolve().

5349:    Level: intermediate

5351: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
5352: @*/
5353: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5354: {
5358:   *lits = ts->ksp_its;
5359:   return(0);
5360: }

5362: /*@
5363:    TSGetStepRejections - Gets the total number of rejected steps.

5365:    Not Collective

5367:    Input Parameter:
5368: .  ts - TS context

5370:    Output Parameter:
5371: .  rejects - number of steps rejected

5373:    Notes:
5374:    This counter is reset to zero for each successive call to TSSolve().

5376:    Level: intermediate

5378: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5379: @*/
5380: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5381: {
5385:   *rejects = ts->reject;
5386:   return(0);
5387: }

5389: /*@
5390:    TSGetSNESFailures - Gets the total number of failed SNES solves

5392:    Not Collective

5394:    Input Parameter:
5395: .  ts - TS context

5397:    Output Parameter:
5398: .  fails - number of failed nonlinear solves

5400:    Notes:
5401:    This counter is reset to zero for each successive call to TSSolve().

5403:    Level: intermediate

5405: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5406: @*/
5407: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5408: {
5412:   *fails = ts->num_snes_failures;
5413:   return(0);
5414: }

5416: /*@
5417:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

5419:    Not Collective

5421:    Input Parameter:
5422: +  ts - TS context
5423: -  rejects - maximum number of rejected steps, pass -1 for unlimited

5425:    Notes:
5426:    The counter is reset to zero for each step

5428:    Options Database Key:
5429:  .  -ts_max_reject - Maximum number of step rejections before a step fails

5431:    Level: intermediate

5433: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5434: @*/
5435: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5436: {
5439:   ts->max_reject = rejects;
5440:   return(0);
5441: }

5443: /*@
5444:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

5446:    Not Collective

5448:    Input Parameter:
5449: +  ts - TS context
5450: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

5452:    Notes:
5453:    The counter is reset to zero for each successive call to TSSolve().

5455:    Options Database Key:
5456:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

5458:    Level: intermediate

5460: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5461: @*/
5462: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5463: {
5466:   ts->max_snes_failures = fails;
5467:   return(0);
5468: }

5470: /*@
5471:    TSSetErrorIfStepFails - Error if no step succeeds

5473:    Not Collective

5475:    Input Parameter:
5476: +  ts - TS context
5477: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

5479:    Options Database Key:
5480:  .  -ts_error_if_step_fails - Error if no step succeeds

5482:    Level: intermediate

5484: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5485: @*/
5486: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5487: {
5490:   ts->errorifstepfailed = err;
5491:   return(0);
5492: }

5494: /*@C
5495:    TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object

5497:    Collective on TS

5499:    Input Parameters:
5500: +  ts - the TS context
5501: .  step - current time-step
5502: .  ptime - current time
5503: .  u - current state
5504: -  vf - viewer and its format

5506:    Level: intermediate

5508: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5509: @*/
5510: PetscErrorCode  TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5511: {

5515:   PetscViewerPushFormat(vf->viewer,vf->format);
5516:   VecView(u,vf->viewer);
5517:   PetscViewerPopFormat(vf->viewer);
5518:   return(0);
5519: }

5521: /*@C
5522:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

5524:    Collective on TS

5526:    Input Parameters:
5527: +  ts - the TS context
5528: .  step - current time-step
5529: .  ptime - current time
5530: .  u - current state
5531: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5533:    Level: intermediate

5535:    Notes:
5536:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5537:    These are named according to the file name template.

5539:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

5541: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5542: @*/
5543: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5544: {
5546:   char           filename[PETSC_MAX_PATH_LEN];
5547:   PetscViewer    viewer;

5550:   if (step < 0) return(0); /* -1 indicates interpolated solution */
5551:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5552:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5553:   VecView(u,viewer);
5554:   PetscViewerDestroy(&viewer);
5555:   return(0);
5556: }

5558: /*@C
5559:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

5561:    Collective on TS

5563:    Input Parameters:
5564: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5566:    Level: intermediate

5568:    Note:
5569:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

5571: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5572: @*/
5573: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5574: {

5578:   PetscFree(*(char**)filenametemplate);
5579:   return(0);
5580: }

5582: /*@
5583:    TSGetAdapt - Get the adaptive controller context for the current method

5585:    Collective on TS if controller has not been created yet

5587:    Input Arguments:
5588: .  ts - time stepping context

5590:    Output Arguments:
5591: .  adapt - adaptive controller

5593:    Level: intermediate

5595: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5596: @*/
5597: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5598: {

5604:   if (!ts->adapt) {
5605:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5606:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5607:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5608:   }
5609:   *adapt = ts->adapt;
5610:   return(0);
5611: }

5613: /*@
5614:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

5616:    Logically Collective

5618:    Input Arguments:
5619: +  ts - time integration context
5620: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5621: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5622: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5623: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

5625:    Options Database keys:
5626: +  -ts_rtol <rtol> - relative tolerance for local truncation error
5627: -  -ts_atol <atol> Absolute tolerance for local truncation error

5629:    Notes:
5630:    With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5631:    (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5632:    computed only for the differential or the algebraic part then this can be done using the vector of
5633:    tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5634:    differential part and infinity for the algebraic part, the LTE calculation will include only the
5635:    differential variables.

5637:    Level: beginner

5639: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSGetTolerances()
5640: @*/
5641: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5642: {

5646:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5647:   if (vatol) {
5648:     PetscObjectReference((PetscObject)vatol);
5649:     VecDestroy(&ts->vatol);
5650:     ts->vatol = vatol;
5651:   }
5652:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5653:   if (vrtol) {
5654:     PetscObjectReference((PetscObject)vrtol);
5655:     VecDestroy(&ts->vrtol);
5656:     ts->vrtol = vrtol;
5657:   }
5658:   return(0);
5659: }

5661: /*@
5662:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

5664:    Logically Collective

5666:    Input Arguments:
5667: .  ts - time integration context

5669:    Output Arguments:
5670: +  atol - scalar absolute tolerances, NULL to ignore
5671: .  vatol - vector of absolute tolerances, NULL to ignore
5672: .  rtol - scalar relative tolerances, NULL to ignore
5673: -  vrtol - vector of relative tolerances, NULL to ignore

5675:    Level: beginner

5677: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSSetTolerances()
5678: @*/
5679: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5680: {
5682:   if (atol)  *atol  = ts->atol;
5683:   if (vatol) *vatol = ts->vatol;
5684:   if (rtol)  *rtol  = ts->rtol;
5685:   if (vrtol) *vrtol = ts->vrtol;
5686:   return(0);
5687: }

5689: /*@
5690:    TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors

5692:    Collective on TS

5694:    Input Arguments:
5695: +  ts - time stepping context
5696: .  U - state vector, usually ts->vec_sol
5697: -  Y - state vector to be compared to U

5699:    Output Arguments:
5700: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5701: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5702: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5704:    Level: developer

5706: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5707: @*/
5708: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5709: {
5710:   PetscErrorCode    ierr;
5711:   PetscInt          i,n,N,rstart;
5712:   PetscInt          n_loc,na_loc,nr_loc;
5713:   PetscReal         n_glb,na_glb,nr_glb;
5714:   const PetscScalar *u,*y;
5715:   PetscReal         sum,suma,sumr,gsum,gsuma,gsumr,diff;
5716:   PetscReal         tol,tola,tolr;
5717:   PetscReal         err_loc[6],err_glb[6];

5729:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5731:   VecGetSize(U,&N);
5732:   VecGetLocalSize(U,&n);
5733:   VecGetOwnershipRange(U,&rstart,NULL);
5734:   VecGetArrayRead(U,&u);
5735:   VecGetArrayRead(Y,&y);
5736:   sum  = 0.; n_loc  = 0;
5737:   suma = 0.; na_loc = 0;
5738:   sumr = 0.; nr_loc = 0;
5739:   if (ts->vatol && ts->vrtol) {
5740:     const PetscScalar *atol,*rtol;
5741:     VecGetArrayRead(ts->vatol,&atol);
5742:     VecGetArrayRead(ts->vrtol,&rtol);
5743:     for (i=0; i<n; i++) {
5744:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5745:       diff = PetscAbsScalar(y[i] - u[i]);
5746:       tola = PetscRealPart(atol[i]);
5747:       if (tola>0.){
5748:         suma  += PetscSqr(diff/tola);
5749:         na_loc++;
5750:       }
5751:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5752:       if (tolr>0.){
5753:         sumr  += PetscSqr(diff/tolr);
5754:         nr_loc++;
5755:       }
5756:       tol=tola+tolr;
5757:       if (tol>0.){
5758:         sum  += PetscSqr(diff/tol);
5759:         n_loc++;
5760:       }
5761:     }
5762:     VecRestoreArrayRead(ts->vatol,&atol);
5763:     VecRestoreArrayRead(ts->vrtol,&rtol);
5764:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5765:     const PetscScalar *atol;
5766:     VecGetArrayRead(ts->vatol,&atol);
5767:     for (i=0; i<n; i++) {
5768:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5769:       diff = PetscAbsScalar(y[i] - u[i]);
5770:       tola = PetscRealPart(atol[i]);
5771:       if (tola>0.){
5772:         suma  += PetscSqr(diff/tola);
5773:         na_loc++;
5774:       }
5775:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5776:       if (tolr>0.){
5777:         sumr  += PetscSqr(diff/tolr);
5778:         nr_loc++;
5779:       }
5780:       tol=tola+tolr;
5781:       if (tol>0.){
5782:         sum  += PetscSqr(diff/tol);
5783:         n_loc++;
5784:       }
5785:     }
5786:     VecRestoreArrayRead(ts->vatol,&atol);
5787:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
5788:     const PetscScalar *rtol;
5789:     VecGetArrayRead(ts->vrtol,&rtol);
5790:     for (i=0; i<n; i++) {
5791:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5792:       diff = PetscAbsScalar(y[i] - u[i]);
5793:       tola = ts->atol;
5794:       if (tola>0.){
5795:         suma  += PetscSqr(diff/tola);
5796:         na_loc++;
5797:       }
5798:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5799:       if (tolr>0.){
5800:         sumr  += PetscSqr(diff/tolr);
5801:         nr_loc++;
5802:       }
5803:       tol=tola+tolr;
5804:       if (tol>0.){
5805:         sum  += PetscSqr(diff/tol);
5806:         n_loc++;
5807:       }
5808:     }
5809:     VecRestoreArrayRead(ts->vrtol,&rtol);
5810:   } else {                      /* scalar atol, scalar rtol */
5811:     for (i=0; i<n; i++) {
5812:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5813:       diff = PetscAbsScalar(y[i] - u[i]);
5814:       tola = ts->atol;
5815:       if (tola>0.){
5816:         suma  += PetscSqr(diff/tola);
5817:         na_loc++;
5818:       }
5819:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5820:       if (tolr>0.){
5821:         sumr  += PetscSqr(diff/tolr);
5822:         nr_loc++;
5823:       }
5824:       tol=tola+tolr;
5825:       if (tol>0.){
5826:         sum  += PetscSqr(diff/tol);
5827:         n_loc++;
5828:       }
5829:     }
5830:   }
5831:   VecRestoreArrayRead(U,&u);
5832:   VecRestoreArrayRead(Y,&y);

5834:   err_loc[0] = sum;
5835:   err_loc[1] = suma;
5836:   err_loc[2] = sumr;
5837:   err_loc[3] = (PetscReal)n_loc;
5838:   err_loc[4] = (PetscReal)na_loc;
5839:   err_loc[5] = (PetscReal)nr_loc;

5841:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

5843:   gsum   = err_glb[0];
5844:   gsuma  = err_glb[1];
5845:   gsumr  = err_glb[2];
5846:   n_glb  = err_glb[3];
5847:   na_glb = err_glb[4];
5848:   nr_glb = err_glb[5];

5850:   *norm  = 0.;
5851:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
5852:   *norma = 0.;
5853:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5854:   *normr = 0.;
5855:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

5857:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5858:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5859:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5860:   return(0);
5861: }

5863: /*@
5864:    TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors

5866:    Collective on TS

5868:    Input Arguments:
5869: +  ts - time stepping context
5870: .  U - state vector, usually ts->vec_sol
5871: -  Y - state vector to be compared to U

5873:    Output Arguments:
5874: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5875: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5876: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5878:    Level: developer

5880: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5881: @*/
5882: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5883: {
5884:   PetscErrorCode    ierr;
5885:   PetscInt          i,n,N,rstart;
5886:   const PetscScalar *u,*y;
5887:   PetscReal         max,gmax,maxa,gmaxa,maxr,gmaxr;
5888:   PetscReal         tol,tola,tolr,diff;
5889:   PetscReal         err_loc[3],err_glb[3];

5901:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5903:   VecGetSize(U,&N);
5904:   VecGetLocalSize(U,&n);
5905:   VecGetOwnershipRange(U,&rstart,NULL);
5906:   VecGetArrayRead(U,&u);
5907:   VecGetArrayRead(Y,&y);

5909:   max=0.;
5910:   maxa=0.;
5911:   maxr=0.;

5913:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
5914:     const PetscScalar *atol,*rtol;
5915:     VecGetArrayRead(ts->vatol,&atol);
5916:     VecGetArrayRead(ts->vrtol,&rtol);

5918:     for (i=0; i<n; i++) {
5919:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5920:       diff = PetscAbsScalar(y[i] - u[i]);
5921:       tola = PetscRealPart(atol[i]);
5922:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5923:       tol  = tola+tolr;
5924:       if (tola>0.){
5925:         maxa = PetscMax(maxa,diff / tola);
5926:       }
5927:       if (tolr>0.){
5928:         maxr = PetscMax(maxr,diff / tolr);
5929:       }
5930:       if (tol>0.){
5931:         max = PetscMax(max,diff / tol);
5932:       }
5933:     }
5934:     VecRestoreArrayRead(ts->vatol,&atol);
5935:     VecRestoreArrayRead(ts->vrtol,&rtol);
5936:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5937:     const PetscScalar *atol;
5938:     VecGetArrayRead(ts->vatol,&atol);
5939:     for (i=0; i<n; i++) {
5940:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5941:       diff = PetscAbsScalar(y[i] - u[i]);
5942:       tola = PetscRealPart(atol[i]);
5943:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5944:       tol  = tola+tolr;
5945:       if (tola>0.){
5946:         maxa = PetscMax(maxa,diff / tola);
5947:       }
5948:       if (tolr>0.){
5949:         maxr = PetscMax(maxr,diff / tolr);
5950:       }
5951:       if (tol>0.){
5952:         max = PetscMax(max,diff / tol);
5953:       }
5954:     }
5955:     VecRestoreArrayRead(ts->vatol,&atol);
5956:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
5957:     const PetscScalar *rtol;
5958:     VecGetArrayRead(ts->vrtol,&rtol);

5960:     for (i=0; i<n; i++) {
5961:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5962:       diff = PetscAbsScalar(y[i] - u[i]);
5963:       tola = ts->atol;
5964:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5965:       tol  = tola+tolr;
5966:       if (tola>0.){
5967:         maxa = PetscMax(maxa,diff / tola);
5968:       }
5969:       if (tolr>0.){
5970:         maxr = PetscMax(maxr,diff / tolr);
5971:       }
5972:       if (tol>0.){
5973:         max = PetscMax(max,diff / tol);
5974:       }
5975:     }
5976:     VecRestoreArrayRead(ts->vrtol,&rtol);
5977:   } else {                      /* scalar atol, scalar rtol */

5979:     for (i=0; i<n; i++) {
5980:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5981:       diff = PetscAbsScalar(y[i] - u[i]);
5982:       tola = ts->atol;
5983:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5984:       tol  = tola+tolr;
5985:       if (tola>0.){
5986:         maxa = PetscMax(maxa,diff / tola);
5987:       }
5988:       if (tolr>0.){
5989:         maxr = PetscMax(maxr,diff / tolr);
5990:       }
5991:       if (tol>0.){
5992:         max = PetscMax(max,diff / tol);
5993:       }
5994:     }
5995:   }
5996:   VecRestoreArrayRead(U,&u);
5997:   VecRestoreArrayRead(Y,&y);
5998:   err_loc[0] = max;
5999:   err_loc[1] = maxa;
6000:   err_loc[2] = maxr;
6001:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6002:   gmax   = err_glb[0];
6003:   gmaxa  = err_glb[1];
6004:   gmaxr  = err_glb[2];

6006:   *norm = gmax;
6007:   *norma = gmaxa;
6008:   *normr = gmaxr;
6009:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6010:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6011:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6012:   return(0);
6013: }

6015: /*@
6016:    TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances

6018:    Collective on TS

6020:    Input Arguments:
6021: +  ts - time stepping context
6022: .  U - state vector, usually ts->vec_sol
6023: .  Y - state vector to be compared to U
6024: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6026:    Output Arguments:
6027: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6028: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6029: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6031:    Options Database Keys:
6032: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6034:    Level: developer

6036: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6037: @*/
6038: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6039: {

6043:   if (wnormtype == NORM_2) {
6044:     TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6045:   } else if (wnormtype == NORM_INFINITY) {
6046:     TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6047:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6048:   return(0);
6049: }


6052: /*@
6053:    TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances

6055:    Collective on TS

6057:    Input Arguments:
6058: +  ts - time stepping context
6059: .  E - error vector
6060: .  U - state vector, usually ts->vec_sol
6061: -  Y - state vector, previous time step

6063:    Output Arguments:
6064: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6065: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6066: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6068:    Level: developer

6070: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6071: @*/
6072: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6073: {
6074:   PetscErrorCode    ierr;
6075:   PetscInt          i,n,N,rstart;
6076:   PetscInt          n_loc,na_loc,nr_loc;
6077:   PetscReal         n_glb,na_glb,nr_glb;
6078:   const PetscScalar *e,*u,*y;
6079:   PetscReal         err,sum,suma,sumr,gsum,gsuma,gsumr;
6080:   PetscReal         tol,tola,tolr;
6081:   PetscReal         err_loc[6],err_glb[6];


6097:   VecGetSize(E,&N);
6098:   VecGetLocalSize(E,&n);
6099:   VecGetOwnershipRange(E,&rstart,NULL);
6100:   VecGetArrayRead(E,&e);
6101:   VecGetArrayRead(U,&u);
6102:   VecGetArrayRead(Y,&y);
6103:   sum  = 0.; n_loc  = 0;
6104:   suma = 0.; na_loc = 0;
6105:   sumr = 0.; nr_loc = 0;
6106:   if (ts->vatol && ts->vrtol) {
6107:     const PetscScalar *atol,*rtol;
6108:     VecGetArrayRead(ts->vatol,&atol);
6109:     VecGetArrayRead(ts->vrtol,&rtol);
6110:     for (i=0; i<n; i++) {
6111:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6112:       err = PetscAbsScalar(e[i]);
6113:       tola = PetscRealPart(atol[i]);
6114:       if (tola>0.){
6115:         suma  += PetscSqr(err/tola);
6116:         na_loc++;
6117:       }
6118:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6119:       if (tolr>0.){
6120:         sumr  += PetscSqr(err/tolr);
6121:         nr_loc++;
6122:       }
6123:       tol=tola+tolr;
6124:       if (tol>0.){
6125:         sum  += PetscSqr(err/tol);
6126:         n_loc++;
6127:       }
6128:     }
6129:     VecRestoreArrayRead(ts->vatol,&atol);
6130:     VecRestoreArrayRead(ts->vrtol,&rtol);
6131:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6132:     const PetscScalar *atol;
6133:     VecGetArrayRead(ts->vatol,&atol);
6134:     for (i=0; i<n; i++) {
6135:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6136:       err = PetscAbsScalar(e[i]);
6137:       tola = PetscRealPart(atol[i]);
6138:       if (tola>0.){
6139:         suma  += PetscSqr(err/tola);
6140:         na_loc++;
6141:       }
6142:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6143:       if (tolr>0.){
6144:         sumr  += PetscSqr(err/tolr);
6145:         nr_loc++;
6146:       }
6147:       tol=tola+tolr;
6148:       if (tol>0.){
6149:         sum  += PetscSqr(err/tol);
6150:         n_loc++;
6151:       }
6152:     }
6153:     VecRestoreArrayRead(ts->vatol,&atol);
6154:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6155:     const PetscScalar *rtol;
6156:     VecGetArrayRead(ts->vrtol,&rtol);
6157:     for (i=0; i<n; i++) {
6158:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6159:       err = PetscAbsScalar(e[i]);
6160:       tola = ts->atol;
6161:       if (tola>0.){
6162:         suma  += PetscSqr(err/tola);
6163:         na_loc++;
6164:       }
6165:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6166:       if (tolr>0.){
6167:         sumr  += PetscSqr(err/tolr);
6168:         nr_loc++;
6169:       }
6170:       tol=tola+tolr;
6171:       if (tol>0.){
6172:         sum  += PetscSqr(err/tol);
6173:         n_loc++;
6174:       }
6175:     }
6176:     VecRestoreArrayRead(ts->vrtol,&rtol);
6177:   } else {                      /* scalar atol, scalar rtol */
6178:     for (i=0; i<n; i++) {
6179:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6180:       err = PetscAbsScalar(e[i]);
6181:       tola = ts->atol;
6182:       if (tola>0.){
6183:         suma  += PetscSqr(err/tola);
6184:         na_loc++;
6185:       }
6186:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6187:       if (tolr>0.){
6188:         sumr  += PetscSqr(err/tolr);
6189:         nr_loc++;
6190:       }
6191:       tol=tola+tolr;
6192:       if (tol>0.){
6193:         sum  += PetscSqr(err/tol);
6194:         n_loc++;
6195:       }
6196:     }
6197:   }
6198:   VecRestoreArrayRead(E,&e);
6199:   VecRestoreArrayRead(U,&u);
6200:   VecRestoreArrayRead(Y,&y);

6202:   err_loc[0] = sum;
6203:   err_loc[1] = suma;
6204:   err_loc[2] = sumr;
6205:   err_loc[3] = (PetscReal)n_loc;
6206:   err_loc[4] = (PetscReal)na_loc;
6207:   err_loc[5] = (PetscReal)nr_loc;

6209:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

6211:   gsum   = err_glb[0];
6212:   gsuma  = err_glb[1];
6213:   gsumr  = err_glb[2];
6214:   n_glb  = err_glb[3];
6215:   na_glb = err_glb[4];
6216:   nr_glb = err_glb[5];

6218:   *norm  = 0.;
6219:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
6220:   *norma = 0.;
6221:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6222:   *normr = 0.;
6223:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

6225:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6226:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6227:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6228:   return(0);
6229: }

6231: /*@
6232:    TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6233:    Collective on TS

6235:    Input Arguments:
6236: +  ts - time stepping context
6237: .  E - error vector
6238: .  U - state vector, usually ts->vec_sol
6239: -  Y - state vector, previous time step

6241:    Output Arguments:
6242: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6243: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6244: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6246:    Level: developer

6248: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6249: @*/
6250: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6251: {
6252:   PetscErrorCode    ierr;
6253:   PetscInt          i,n,N,rstart;
6254:   const PetscScalar *e,*u,*y;
6255:   PetscReal         err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6256:   PetscReal         tol,tola,tolr;
6257:   PetscReal         err_loc[3],err_glb[3];


6273:   VecGetSize(E,&N);
6274:   VecGetLocalSize(E,&n);
6275:   VecGetOwnershipRange(E,&rstart,NULL);
6276:   VecGetArrayRead(E,&e);
6277:   VecGetArrayRead(U,&u);
6278:   VecGetArrayRead(Y,&y);

6280:   max=0.;
6281:   maxa=0.;
6282:   maxr=0.;

6284:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
6285:     const PetscScalar *atol,*rtol;
6286:     VecGetArrayRead(ts->vatol,&atol);
6287:     VecGetArrayRead(ts->vrtol,&rtol);

6289:     for (i=0; i<n; i++) {
6290:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6291:       err = PetscAbsScalar(e[i]);
6292:       tola = PetscRealPart(atol[i]);
6293:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6294:       tol  = tola+tolr;
6295:       if (tola>0.){
6296:         maxa = PetscMax(maxa,err / tola);
6297:       }
6298:       if (tolr>0.){
6299:         maxr = PetscMax(maxr,err / tolr);
6300:       }
6301:       if (tol>0.){
6302:         max = PetscMax(max,err / tol);
6303:       }
6304:     }
6305:     VecRestoreArrayRead(ts->vatol,&atol);
6306:     VecRestoreArrayRead(ts->vrtol,&rtol);
6307:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6308:     const PetscScalar *atol;
6309:     VecGetArrayRead(ts->vatol,&atol);
6310:     for (i=0; i<n; i++) {
6311:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6312:       err = PetscAbsScalar(e[i]);
6313:       tola = PetscRealPart(atol[i]);
6314:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6315:       tol  = tola+tolr;
6316:       if (tola>0.){
6317:         maxa = PetscMax(maxa,err / tola);
6318:       }
6319:       if (tolr>0.){
6320:         maxr = PetscMax(maxr,err / tolr);
6321:       }
6322:       if (tol>0.){
6323:         max = PetscMax(max,err / tol);
6324:       }
6325:     }
6326:     VecRestoreArrayRead(ts->vatol,&atol);
6327:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6328:     const PetscScalar *rtol;
6329:     VecGetArrayRead(ts->vrtol,&rtol);

6331:     for (i=0; i<n; i++) {
6332:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6333:       err = PetscAbsScalar(e[i]);
6334:       tola = ts->atol;
6335:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6336:       tol  = tola+tolr;
6337:       if (tola>0.){
6338:         maxa = PetscMax(maxa,err / tola);
6339:       }
6340:       if (tolr>0.){
6341:         maxr = PetscMax(maxr,err / tolr);
6342:       }
6343:       if (tol>0.){
6344:         max = PetscMax(max,err / tol);
6345:       }
6346:     }
6347:     VecRestoreArrayRead(ts->vrtol,&rtol);
6348:   } else {                      /* scalar atol, scalar rtol */

6350:     for (i=0; i<n; i++) {
6351:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6352:       err = PetscAbsScalar(e[i]);
6353:       tola = ts->atol;
6354:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6355:       tol  = tola+tolr;
6356:       if (tola>0.){
6357:         maxa = PetscMax(maxa,err / tola);
6358:       }
6359:       if (tolr>0.){
6360:         maxr = PetscMax(maxr,err / tolr);
6361:       }
6362:       if (tol>0.){
6363:         max = PetscMax(max,err / tol);
6364:       }
6365:     }
6366:   }
6367:   VecRestoreArrayRead(E,&e);
6368:   VecRestoreArrayRead(U,&u);
6369:   VecRestoreArrayRead(Y,&y);
6370:   err_loc[0] = max;
6371:   err_loc[1] = maxa;
6372:   err_loc[2] = maxr;
6373:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6374:   gmax   = err_glb[0];
6375:   gmaxa  = err_glb[1];
6376:   gmaxr  = err_glb[2];

6378:   *norm = gmax;
6379:   *norma = gmaxa;
6380:   *normr = gmaxr;
6381:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6382:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6383:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6384:   return(0);
6385: }

6387: /*@
6388:    TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances

6390:    Collective on TS

6392:    Input Arguments:
6393: +  ts - time stepping context
6394: .  E - error vector
6395: .  U - state vector, usually ts->vec_sol
6396: .  Y - state vector, previous time step
6397: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6399:    Output Arguments:
6400: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6401: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6402: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6404:    Options Database Keys:
6405: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6407:    Level: developer

6409: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6410: @*/
6411: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6412: {

6416:   if (wnormtype == NORM_2) {
6417:     TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6418:   } else if (wnormtype == NORM_INFINITY) {
6419:     TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6420:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6421:   return(0);
6422: }


6425: /*@
6426:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

6428:    Logically Collective on TS

6430:    Input Arguments:
6431: +  ts - time stepping context
6432: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

6434:    Note:
6435:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

6437:    Level: intermediate

6439: .seealso: TSGetCFLTime(), TSADAPTCFL
6440: @*/
6441: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6442: {
6445:   ts->cfltime_local = cfltime;
6446:   ts->cfltime       = -1.;
6447:   return(0);
6448: }

6450: /*@
6451:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

6453:    Collective on TS

6455:    Input Arguments:
6456: .  ts - time stepping context

6458:    Output Arguments:
6459: .  cfltime - maximum stable time step for forward Euler

6461:    Level: advanced

6463: .seealso: TSSetCFLTimeLocal()
6464: @*/
6465: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6466: {

6470:   if (ts->cfltime < 0) {
6471:     MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6472:   }
6473:   *cfltime = ts->cfltime;
6474:   return(0);
6475: }

6477: /*@
6478:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

6480:    Input Parameters:
6481: +  ts   - the TS context.
6482: .  xl   - lower bound.
6483: -  xu   - upper bound.

6485:    Notes:
6486:    If this routine is not called then the lower and upper bounds are set to
6487:    PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().

6489:    Level: advanced

6491: @*/
6492: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6493: {
6495:   SNES           snes;

6498:   TSGetSNES(ts,&snes);
6499:   SNESVISetVariableBounds(snes,xl,xu);
6500:   return(0);
6501: }

6503: /*@C
6504:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6505:        in a time based line graph

6507:    Collective on TS

6509:    Input Parameters:
6510: +  ts - the TS context
6511: .  step - current time-step
6512: .  ptime - current time
6513: .  u - current solution
6514: -  dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()

6516:    Options Database:
6517: .   -ts_monitor_lg_solution_variables

6519:    Level: intermediate

6521:    Notes:
6522:     Each process in a parallel run displays its component solutions in a separate window

6524: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6525:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6526:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6527:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6528: @*/
6529: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6530: {
6531:   PetscErrorCode    ierr;
6532:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dctx;
6533:   const PetscScalar *yy;
6534:   Vec               v;

6537:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6538:   if (!step) {
6539:     PetscDrawAxis axis;
6540:     PetscInt      dim;
6541:     PetscDrawLGGetAxis(ctx->lg,&axis);
6542:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6543:     if (!ctx->names) {
6544:       PetscBool flg;
6545:       /* user provides names of variables to plot but no names has been set so assume names are integer values */
6546:       PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6547:       if (flg) {
6548:         PetscInt i,n;
6549:         char     **names;
6550:         VecGetSize(u,&n);
6551:         PetscMalloc1(n+1,&names);
6552:         for (i=0; i<n; i++) {
6553:           PetscMalloc1(5,&names[i]);
6554:           PetscSNPrintf(names[i],5,"%D",i);
6555:         }
6556:         names[n] = NULL;
6557:         ctx->names = names;
6558:       }
6559:     }
6560:     if (ctx->names && !ctx->displaynames) {
6561:       char      **displaynames;
6562:       PetscBool flg;
6563:       VecGetLocalSize(u,&dim);
6564:       PetscCalloc1(dim+1,&displaynames);
6565:       PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6566:       if (flg) {
6567:         TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6568:       }
6569:       PetscStrArrayDestroy(&displaynames);
6570:     }
6571:     if (ctx->displaynames) {
6572:       PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6573:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6574:     } else if (ctx->names) {
6575:       VecGetLocalSize(u,&dim);
6576:       PetscDrawLGSetDimension(ctx->lg,dim);
6577:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6578:     } else {
6579:       VecGetLocalSize(u,&dim);
6580:       PetscDrawLGSetDimension(ctx->lg,dim);
6581:     }
6582:     PetscDrawLGReset(ctx->lg);
6583:   }

6585:   if (!ctx->transform) v = u;
6586:   else {(*ctx->transform)(ctx->transformctx,u,&v);}
6587:   VecGetArrayRead(v,&yy);
6588:   if (ctx->displaynames) {
6589:     PetscInt i;
6590:     for (i=0; i<ctx->ndisplayvariables; i++)
6591:       ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6592:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6593:   } else {
6594: #if defined(PETSC_USE_COMPLEX)
6595:     PetscInt  i,n;
6596:     PetscReal *yreal;
6597:     VecGetLocalSize(v,&n);
6598:     PetscMalloc1(n,&yreal);
6599:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6600:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6601:     PetscFree(yreal);
6602: #else
6603:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6604: #endif
6605:   }
6606:   VecRestoreArrayRead(v,&yy);
6607:   if (ctx->transform) {VecDestroy(&v);}

6609:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6610:     PetscDrawLGDraw(ctx->lg);
6611:     PetscDrawLGSave(ctx->lg);
6612:   }
6613:   return(0);
6614: }

6616: /*@C
6617:    TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6619:    Collective on TS

6621:    Input Parameters:
6622: +  ts - the TS context
6623: -  names - the names of the components, final string must be NULL

6625:    Level: intermediate

6627:    Notes:
6628:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6630: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6631: @*/
6632: PetscErrorCode  TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6633: {
6634:   PetscErrorCode    ierr;
6635:   PetscInt          i;

6638:   for (i=0; i<ts->numbermonitors; i++) {
6639:     if (ts->monitor[i] == TSMonitorLGSolution) {
6640:       TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6641:       break;
6642:     }
6643:   }
6644:   return(0);
6645: }

6647: /*@C
6648:    TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6650:    Collective on TS

6652:    Input Parameters:
6653: +  ts - the TS context
6654: -  names - the names of the components, final string must be NULL

6656:    Level: intermediate

6658: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6659: @*/
6660: PetscErrorCode  TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6661: {
6662:   PetscErrorCode    ierr;

6665:   PetscStrArrayDestroy(&ctx->names);
6666:   PetscStrArrayallocpy(names,&ctx->names);
6667:   return(0);
6668: }

6670: /*@C
6671:    TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot

6673:    Collective on TS

6675:    Input Parameter:
6676: .  ts - the TS context

6678:    Output Parameter:
6679: .  names - the names of the components, final string must be NULL

6681:    Level: intermediate

6683:    Notes:
6684:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6686: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6687: @*/
6688: PetscErrorCode  TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6689: {
6690:   PetscInt       i;

6693:   *names = NULL;
6694:   for (i=0; i<ts->numbermonitors; i++) {
6695:     if (ts->monitor[i] == TSMonitorLGSolution) {
6696:       TSMonitorLGCtx  ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6697:       *names = (const char *const *)ctx->names;
6698:       break;
6699:     }
6700:   }
6701:   return(0);
6702: }

6704: /*@C
6705:    TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor

6707:    Collective on TS

6709:    Input Parameters:
6710: +  ctx - the TSMonitorLG context
6711: -  displaynames - the names of the components, final string must be NULL

6713:    Level: intermediate

6715: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6716: @*/
6717: PetscErrorCode  TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6718: {
6719:   PetscInt          j = 0,k;
6720:   PetscErrorCode    ierr;

6723:   if (!ctx->names) return(0);
6724:   PetscStrArrayDestroy(&ctx->displaynames);
6725:   PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6726:   while (displaynames[j]) j++;
6727:   ctx->ndisplayvariables = j;
6728:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6729:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6730:   j = 0;
6731:   while (displaynames[j]) {
6732:     k = 0;
6733:     while (ctx->names[k]) {
6734:       PetscBool flg;
6735:       PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6736:       if (flg) {
6737:         ctx->displayvariables[j] = k;
6738:         break;
6739:       }
6740:       k++;
6741:     }
6742:     j++;
6743:   }
6744:   return(0);
6745: }

6747: /*@C
6748:    TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor

6750:    Collective on TS

6752:    Input Parameters:
6753: +  ts - the TS context
6754: -  displaynames - the names of the components, final string must be NULL

6756:    Notes:
6757:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6759:    Level: intermediate

6761: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6762: @*/
6763: PetscErrorCode  TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6764: {
6765:   PetscInt          i;
6766:   PetscErrorCode    ierr;

6769:   for (i=0; i<ts->numbermonitors; i++) {
6770:     if (ts->monitor[i] == TSMonitorLGSolution) {
6771:       TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6772:       break;
6773:     }
6774:   }
6775:   return(0);
6776: }

6778: /*@C
6779:    TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed

6781:    Collective on TS

6783:    Input Parameters:
6784: +  ts - the TS context
6785: .  transform - the transform function
6786: .  destroy - function to destroy the optional context
6787: -  ctx - optional context used by transform function

6789:    Notes:
6790:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6792:    Level: intermediate

6794: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6795: @*/
6796: PetscErrorCode  TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6797: {
6798:   PetscInt          i;
6799:   PetscErrorCode    ierr;

6802:   for (i=0; i<ts->numbermonitors; i++) {
6803:     if (ts->monitor[i] == TSMonitorLGSolution) {
6804:       TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6805:     }
6806:   }
6807:   return(0);
6808: }

6810: /*@C
6811:    TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed

6813:    Collective on TSLGCtx

6815:    Input Parameters:
6816: +  ts - the TS context
6817: .  transform - the transform function
6818: .  destroy - function to destroy the optional context
6819: -  ctx - optional context used by transform function

6821:    Level: intermediate

6823: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6824: @*/
6825: PetscErrorCode  TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6826: {
6828:   ctx->transform    = transform;
6829:   ctx->transformdestroy = destroy;
6830:   ctx->transformctx = tctx;
6831:   return(0);
6832: }

6834: /*@C
6835:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6836:        in a time based line graph

6838:    Collective on TS

6840:    Input Parameters:
6841: +  ts - the TS context
6842: .  step - current time-step
6843: .  ptime - current time
6844: .  u - current solution
6845: -  dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()

6847:    Level: intermediate

6849:    Notes:
6850:     Each process in a parallel run displays its component errors in a separate window

6852:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

6854:    Options Database Keys:
6855: .  -ts_monitor_lg_error - create a graphical monitor of error history

6857: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6858: @*/
6859: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6860: {
6861:   PetscErrorCode    ierr;
6862:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
6863:   const PetscScalar *yy;
6864:   Vec               y;

6867:   if (!step) {
6868:     PetscDrawAxis axis;
6869:     PetscInt      dim;
6870:     PetscDrawLGGetAxis(ctx->lg,&axis);
6871:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6872:     VecGetLocalSize(u,&dim);
6873:     PetscDrawLGSetDimension(ctx->lg,dim);
6874:     PetscDrawLGReset(ctx->lg);
6875:   }
6876:   VecDuplicate(u,&y);
6877:   TSComputeSolutionFunction(ts,ptime,y);
6878:   VecAXPY(y,-1.0,u);
6879:   VecGetArrayRead(y,&yy);
6880: #if defined(PETSC_USE_COMPLEX)
6881:   {
6882:     PetscReal *yreal;
6883:     PetscInt  i,n;
6884:     VecGetLocalSize(y,&n);
6885:     PetscMalloc1(n,&yreal);
6886:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6887:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6888:     PetscFree(yreal);
6889:   }
6890: #else
6891:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6892: #endif
6893:   VecRestoreArrayRead(y,&yy);
6894:   VecDestroy(&y);
6895:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6896:     PetscDrawLGDraw(ctx->lg);
6897:     PetscDrawLGSave(ctx->lg);
6898:   }
6899:   return(0);
6900: }

6902: /*@C
6903:    TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot

6905:    Input Parameters:
6906: +  ts - the TS context
6907: .  step - current time-step
6908: .  ptime - current time
6909: .  u - current solution
6910: -  dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()

6912:    Options Database:
6913: .   -ts_monitor_sp_swarm

6915:    Level: intermediate

6917: @*/
6918: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6919: {
6920:   PetscErrorCode    ierr;
6921:   TSMonitorSPCtx    ctx = (TSMonitorSPCtx)dctx;
6922:   const PetscScalar *yy;
6923:   PetscReal       *y,*x;
6924:   PetscInt          Np, p, dim=2;
6925:   DM                dm;


6929:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6930:   if (!step) {
6931:     PetscDrawAxis axis;
6932:     PetscDrawSPGetAxis(ctx->sp,&axis);
6933:     PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6934:     PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6935:     PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6936:     TSGetDM(ts, &dm);
6937:     DMGetDimension(dm, &dim);
6938:     if (dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
6939:     VecGetLocalSize(u, &Np);
6940:     Np /= 2*dim;
6941:     PetscDrawSPSetDimension(ctx->sp, Np);
6942:     PetscDrawSPReset(ctx->sp);
6943:   }

6945:   VecGetLocalSize(u, &Np);
6946:   Np /= 2*dim;
6947:   VecGetArrayRead(u,&yy);
6948:   PetscMalloc2(Np, &x, Np, &y);
6949:   /* get points from solution vector */
6950:   for (p=0; p<Np; ++p){
6951:     x[p] = PetscRealPart(yy[2*dim*p]);
6952:     y[p] = PetscRealPart(yy[2*dim*p+1]);
6953:   }
6954:   VecRestoreArrayRead(u,&yy);

6956:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6957:     PetscDrawSPAddPoint(ctx->sp,x,y);
6958:     PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
6959:     PetscDrawSPSave(ctx->sp);
6960:   }

6962:   PetscFree2(x, y);

6964:   return(0);
6965: }



6969: /*@C
6970:    TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep

6972:    Collective on TS

6974:    Input Parameters:
6975: +  ts - the TS context
6976: .  step - current time-step
6977: .  ptime - current time
6978: .  u - current solution
6979: -  dctx - unused context

6981:    Level: intermediate

6983:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

6985:    Options Database Keys:
6986: .  -ts_monitor_error - create a graphical monitor of error history

6988: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6989: @*/
6990: PetscErrorCode  TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
6991: {
6992:   PetscErrorCode    ierr;
6993:   Vec               y;
6994:   PetscReal         nrm;
6995:   PetscBool         flg;

6998:   VecDuplicate(u,&y);
6999:   TSComputeSolutionFunction(ts,ptime,y);
7000:   VecAXPY(y,-1.0,u);
7001:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7002:   if (flg) {
7003:     VecNorm(y,NORM_2,&nrm);
7004:     PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7005:   }
7006:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7007:   if (flg) {
7008:     VecView(y,vf->viewer);
7009:   }
7010:   VecDestroy(&y);
7011:   return(0);
7012: }

7014: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7015: {
7016:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7017:   PetscReal      x   = ptime,y;
7019:   PetscInt       its;

7022:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7023:   if (!n) {
7024:     PetscDrawAxis axis;
7025:     PetscDrawLGGetAxis(ctx->lg,&axis);
7026:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7027:     PetscDrawLGReset(ctx->lg);
7028:     ctx->snes_its = 0;
7029:   }
7030:   TSGetSNESIterations(ts,&its);
7031:   y    = its - ctx->snes_its;
7032:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7033:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7034:     PetscDrawLGDraw(ctx->lg);
7035:     PetscDrawLGSave(ctx->lg);
7036:   }
7037:   ctx->snes_its = its;
7038:   return(0);
7039: }

7041: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7042: {
7043:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7044:   PetscReal      x   = ptime,y;
7046:   PetscInt       its;

7049:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7050:   if (!n) {
7051:     PetscDrawAxis axis;
7052:     PetscDrawLGGetAxis(ctx->lg,&axis);
7053:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7054:     PetscDrawLGReset(ctx->lg);
7055:     ctx->ksp_its = 0;
7056:   }
7057:   TSGetKSPIterations(ts,&its);
7058:   y    = its - ctx->ksp_its;
7059:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7060:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7061:     PetscDrawLGDraw(ctx->lg);
7062:     PetscDrawLGSave(ctx->lg);
7063:   }
7064:   ctx->ksp_its = its;
7065:   return(0);
7066: }

7068: /*@
7069:    TSComputeLinearStability - computes the linear stability function at a point

7071:    Collective on TS

7073:    Input Parameters:
7074: +  ts - the TS context
7075: -  xr,xi - real and imaginary part of input arguments

7077:    Output Parameters:
7078: .  yr,yi - real and imaginary part of function value

7080:    Level: developer

7082: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7083: @*/
7084: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7085: {

7090:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7091:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7092:   return(0);
7093: }

7095: /* ------------------------------------------------------------------------*/
7096: /*@C
7097:    TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()

7099:    Collective on TS

7101:    Input Parameters:
7102: .  ts  - the ODE solver object

7104:    Output Parameter:
7105: .  ctx - the context

7107:    Level: intermediate

7109: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

7111: @*/
7112: PetscErrorCode  TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7113: {

7117:   PetscNew(ctx);
7118:   return(0);
7119: }

7121: /*@C
7122:    TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution

7124:    Collective on TS

7126:    Input Parameters:
7127: +  ts - the TS context
7128: .  step - current time-step
7129: .  ptime - current time
7130: .  u  - current solution
7131: -  dctx - the envelope context

7133:    Options Database:
7134: .  -ts_monitor_envelope

7136:    Level: intermediate

7138:    Notes:
7139:     after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope

7141: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7142: @*/
7143: PetscErrorCode  TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7144: {
7145:   PetscErrorCode       ierr;
7146:   TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;

7149:   if (!ctx->max) {
7150:     VecDuplicate(u,&ctx->max);
7151:     VecDuplicate(u,&ctx->min);
7152:     VecCopy(u,ctx->max);
7153:     VecCopy(u,ctx->min);
7154:   } else {
7155:     VecPointwiseMax(ctx->max,u,ctx->max);
7156:     VecPointwiseMin(ctx->min,u,ctx->min);
7157:   }
7158:   return(0);
7159: }

7161: /*@C
7162:    TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution

7164:    Collective on TS

7166:    Input Parameter:
7167: .  ts - the TS context

7169:    Output Parameter:
7170: +  max - the maximum values
7171: -  min - the minimum values

7173:    Notes:
7174:     If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored

7176:    Level: intermediate

7178: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7179: @*/
7180: PetscErrorCode  TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7181: {
7182:   PetscInt i;

7185:   if (max) *max = NULL;
7186:   if (min) *min = NULL;
7187:   for (i=0; i<ts->numbermonitors; i++) {
7188:     if (ts->monitor[i] == TSMonitorEnvelope) {
7189:       TSMonitorEnvelopeCtx  ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7190:       if (max) *max = ctx->max;
7191:       if (min) *min = ctx->min;
7192:       break;
7193:     }
7194:   }
7195:   return(0);
7196: }

7198: /*@C
7199:    TSMonitorEnvelopeCtxDestroy - Destroys a context that was created  with TSMonitorEnvelopeCtxCreate().

7201:    Collective on TSMonitorEnvelopeCtx

7203:    Input Parameter:
7204: .  ctx - the monitor context

7206:    Level: intermediate

7208: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep()
7209: @*/
7210: PetscErrorCode  TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7211: {

7215:   VecDestroy(&(*ctx)->min);
7216:   VecDestroy(&(*ctx)->max);
7217:   PetscFree(*ctx);
7218:   return(0);
7219: }

7221: /*@
7222:    TSRestartStep - Flags the solver to restart the next step

7224:    Collective on TS

7226:    Input Parameter:
7227: .  ts - the TS context obtained from TSCreate()

7229:    Level: advanced

7231:    Notes:
7232:    Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7233:    discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7234:    vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7235:    the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7236:    discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7237:    discontinuous source terms).

7239: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7240: @*/
7241: PetscErrorCode TSRestartStep(TS ts)
7242: {
7245:   ts->steprestart = PETSC_TRUE;
7246:   return(0);
7247: }

7249: /*@
7250:    TSRollBack - Rolls back one time step

7252:    Collective on TS

7254:    Input Parameter:
7255: .  ts - the TS context obtained from TSCreate()

7257:    Level: advanced

7259: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7260: @*/
7261: PetscErrorCode  TSRollBack(TS ts)
7262: {

7267:   if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7268:   if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7269:   (*ts->ops->rollback)(ts);
7270:   ts->time_step = ts->ptime - ts->ptime_prev;
7271:   ts->ptime = ts->ptime_prev;
7272:   ts->ptime_prev = ts->ptime_prev_rollback;
7273:   ts->steps--;
7274:   ts->steprollback = PETSC_TRUE;
7275:   return(0);
7276: }

7278: /*@
7279:    TSGetStages - Get the number of stages and stage values

7281:    Input Parameter:
7282: .  ts - the TS context obtained from TSCreate()

7284:    Output Parameters:
7285: +  ns - the number of stages
7286: -  Y - the current stage vectors

7288:    Level: advanced

7290:    Notes: Both ns and Y can be NULL.

7292: .seealso: TSCreate()
7293: @*/
7294: PetscErrorCode  TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7295: {

7302:   if (!ts->ops->getstages) {
7303:     if (ns) *ns = 0;
7304:     if (Y) *Y = NULL;
7305:   } else {
7306:     (*ts->ops->getstages)(ts,ns,Y);
7307:   }
7308:   return(0);
7309: }

7311: /*@C
7312:   TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.

7314:   Collective on SNES

7316:   Input Parameters:
7317: + ts - the TS context
7318: . t - current timestep
7319: . U - state vector
7320: . Udot - time derivative of state vector
7321: . shift - shift to apply, see note below
7322: - ctx - an optional user context

7324:   Output Parameters:
7325: + J - Jacobian matrix (not altered in this routine)
7326: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)

7328:   Level: intermediate

7330:   Notes:
7331:   If F(t,U,Udot)=0 is the DAE, the required Jacobian is

7333:   dF/dU + shift*dF/dUdot

7335:   Most users should not need to explicitly call this routine, as it
7336:   is used internally within the nonlinear solvers.

7338:   This will first try to get the coloring from the DM.  If the DM type has no coloring
7339:   routine, then it will try to get the coloring from the matrix.  This requires that the
7340:   matrix have nonzero entries precomputed.

7342: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7343: @*/
7344: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7345: {
7346:   SNES           snes;
7347:   MatFDColoring  color;
7348:   PetscBool      hascolor, matcolor = PETSC_FALSE;

7352:   PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7353:   PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7354:   if (!color) {
7355:     DM         dm;
7356:     ISColoring iscoloring;

7358:     TSGetDM(ts, &dm);
7359:     DMHasColoring(dm, &hascolor);
7360:     if (hascolor && !matcolor) {
7361:       DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7362:       MatFDColoringCreate(B, iscoloring, &color);
7363:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7364:       MatFDColoringSetFromOptions(color);
7365:       MatFDColoringSetUp(B, iscoloring, color);
7366:       ISColoringDestroy(&iscoloring);
7367:     } else {
7368:       MatColoring mc;

7370:       MatColoringCreate(B, &mc);
7371:       MatColoringSetDistance(mc, 2);
7372:       MatColoringSetType(mc, MATCOLORINGSL);
7373:       MatColoringSetFromOptions(mc);
7374:       MatColoringApply(mc, &iscoloring);
7375:       MatColoringDestroy(&mc);
7376:       MatFDColoringCreate(B, iscoloring, &color);
7377:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7378:       MatFDColoringSetFromOptions(color);
7379:       MatFDColoringSetUp(B, iscoloring, color);
7380:       ISColoringDestroy(&iscoloring);
7381:     }
7382:     PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7383:     PetscObjectDereference((PetscObject) color);
7384:   }
7385:   TSGetSNES(ts, &snes);
7386:   MatFDColoringApply(B, color, U, snes);
7387:   if (J != B) {
7388:     MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7389:     MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7390:   }
7391:   return(0);
7392: }

7394: /*@
7395:     TSSetFunctionDomainError - Set a function that tests if the current state vector is valid

7397:     Input Parameters:
7398: +    ts - the TS context
7399: -    func - function called within TSFunctionDomainError

7401:     Calling sequence of func:
7402: $     PetscErrorCode func(TS ts,PetscReal time,Vec state,PetscBool reject)

7404: +   ts - the TS context
7405: .   time - the current time (of the stage)
7406: .   state - the state to check if it is valid
7407: -   reject - (output parameter) PETSC_FALSE if the state is acceptable, PETSC_TRUE if not acceptable

7409:     Level: intermediate

7411:     Notes:
7412:       If an implicit ODE solver is being used then, in addition to providing this routine, the
7413:       user's code should call SNESSetFunctionDomainError() when domain errors occur during
7414:       function evaluations where the functions are provided by TSSetIFunction() or TSSetRHSFunction().
7415:       Use TSGetSNES() to obtain the SNES object

7417:     Developer Notes:
7418:       The naming of this function is inconsistent with the SNESSetFunctionDomainError()
7419:       since one takes a function pointer and the other does not.

7421: .seealso: TSAdaptCheckStage(), TSFunctionDomainError(), SNESSetFunctionDomainError(), TSGetSNES()
7422: @*/

7424: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7425: {
7428:   ts->functiondomainerror = func;
7429:   return(0);
7430: }

7432: /*@
7433:     TSFunctionDomainError - Checks if the current state is valid

7435:     Input Parameters:
7436: +    ts - the TS context
7437: .    stagetime - time of the simulation
7438: -    Y - state vector to check.

7440:     Output Parameter:
7441: .    accept - Set to PETSC_FALSE if the current state vector is valid.

7443:     Note:
7444:     This function is called by the TS integration routines and calls the user provided function (set with TSSetFunctionDomainError())
7445:     to check if the current state is valid.

7447:     Level: developer

7449: .seealso: TSSetFunctionDomainError()
7450: @*/
7451: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7452: {
7455:   *accept = PETSC_TRUE;
7456:   if (ts->functiondomainerror) {
7457:     PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7458:   }
7459:   return(0);
7460: }

7462: /*@C
7463:   TSClone - This function clones a time step object.

7465:   Collective

7467:   Input Parameter:
7468: . tsin    - The input TS

7470:   Output Parameter:
7471: . tsout   - The output TS (cloned)

7473:   Notes:
7474:   This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.

7476:   When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);

7478:   Level: developer

7480: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7481: @*/
7482: PetscErrorCode  TSClone(TS tsin, TS *tsout)
7483: {
7484:   TS             t;
7486:   SNES           snes_start;
7487:   DM             dm;
7488:   TSType         type;

7492:   *tsout = NULL;

7494:   PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);

7496:   /* General TS description */
7497:   t->numbermonitors    = 0;
7498:   t->setupcalled       = 0;
7499:   t->ksp_its           = 0;
7500:   t->snes_its          = 0;
7501:   t->nwork             = 0;
7502:   t->rhsjacobian.time  = PETSC_MIN_REAL;
7503:   t->rhsjacobian.scale = 1.;
7504:   t->ijacobian.shift   = 1.;

7506:   TSGetSNES(tsin,&snes_start);
7507:   TSSetSNES(t,snes_start);

7509:   TSGetDM(tsin,&dm);
7510:   TSSetDM(t,dm);

7512:   t->adapt = tsin->adapt;
7513:   PetscObjectReference((PetscObject)t->adapt);

7515:   t->trajectory = tsin->trajectory;
7516:   PetscObjectReference((PetscObject)t->trajectory);

7518:   t->event = tsin->event;
7519:   if (t->event) t->event->refct++;

7521:   t->problem_type      = tsin->problem_type;
7522:   t->ptime             = tsin->ptime;
7523:   t->ptime_prev        = tsin->ptime_prev;
7524:   t->time_step         = tsin->time_step;
7525:   t->max_time          = tsin->max_time;
7526:   t->steps             = tsin->steps;
7527:   t->max_steps         = tsin->max_steps;
7528:   t->equation_type     = tsin->equation_type;
7529:   t->atol              = tsin->atol;
7530:   t->rtol              = tsin->rtol;
7531:   t->max_snes_failures = tsin->max_snes_failures;
7532:   t->max_reject        = tsin->max_reject;
7533:   t->errorifstepfailed = tsin->errorifstepfailed;

7535:   TSGetType(tsin,&type);
7536:   TSSetType(t,type);

7538:   t->vec_sol           = NULL;

7540:   t->cfltime          = tsin->cfltime;
7541:   t->cfltime_local    = tsin->cfltime_local;
7542:   t->exact_final_time = tsin->exact_final_time;

7544:   PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));

7546:   if (((PetscObject)tsin)->fortran_func_pointers) {
7547:     PetscInt i;
7548:     PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7549:     for (i=0; i<10; i++) {
7550:       ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7551:     }
7552:   }
7553:   *tsout = t;
7554:   return(0);
7555: }

7557: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7558: {
7560:   TS             ts = (TS) ctx;

7563:   TSComputeRHSFunction(ts,0,x,y);
7564:   return(0);
7565: }

7567: /*@
7568:     TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.

7570:    Logically Collective on TS

7572:     Input Parameters:
7573:     TS - the time stepping routine

7575:    Output Parameter:
7576: .   flg - PETSC_TRUE if the multiply is likely correct

7578:    Options Database:
7579:  .   -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator

7581:    Level: advanced

7583:    Notes:
7584:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7586: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7587: @*/
7588: PetscErrorCode  TSRHSJacobianTest(TS ts,PetscBool *flg)
7589: {
7590:   Mat            J,B;
7592:   TSRHSJacobian  func;
7593:   void*          ctx;

7596:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7597:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7598:   MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7599:   return(0);
7600: }

7602: /*@C
7603:     TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.

7605:    Logically Collective on TS

7607:     Input Parameters:
7608:     TS - the time stepping routine

7610:    Output Parameter:
7611: .   flg - PETSC_TRUE if the multiply is likely correct

7613:    Options Database:
7614: .   -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator

7616:    Notes:
7617:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7619:    Level: advanced

7621: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7622: @*/
7623: PetscErrorCode  TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7624: {
7625:   Mat            J,B;
7627:   void           *ctx;
7628:   TSRHSJacobian  func;

7631:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7632:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7633:   MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7634:   return(0);
7635: }

7637: /*@
7638:   TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.

7640:   Logically collective

7642:   Input Parameter:
7643: +  ts - timestepping context
7644: -  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7646:   Options Database:
7647: .   -ts_use_splitrhsfunction - <true,false>

7649:   Notes:
7650:     This is only useful for multirate methods

7652:   Level: intermediate

7654: .seealso: TSGetUseSplitRHSFunction()
7655: @*/
7656: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
7657: {
7660:   ts->use_splitrhsfunction = use_splitrhsfunction;
7661:   return(0);
7662: }

7664: /*@
7665:   TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.

7667:   Not collective

7669:   Input Parameter:
7670: .  ts - timestepping context

7672:   Output Parameter:
7673: .  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7675:   Level: intermediate

7677: .seealso: TSSetUseSplitRHSFunction()
7678: @*/
7679: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
7680: {
7683:   *use_splitrhsfunction = ts->use_splitrhsfunction;
7684:   return(0);
7685: }