Actual source code: ts.c
petsc-dev 2014-02-02
2: #include <petsc-private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
16: /*
17: TSSetTypeFromOptions - Sets the type of ts from user options.
19: Collective on TS
21: Input Parameter:
22: . ts - The ts
24: Level: intermediate
26: .keywords: TS, set, options, database, type
27: .seealso: TSSetFromOptions(), TSSetType()
28: */
29: static PetscErrorCode TSSetTypeFromOptions(TS ts)
30: {
31: PetscBool opt;
32: const char *defaultType;
33: char typeName[256];
37: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
38: else defaultType = TSEULER;
40: if (!TSRegisterAllCalled) {TSRegisterAll();}
41: PetscOptionsFList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
42: if (opt) {
43: TSSetType(ts, typeName);
44: } else {
45: TSSetType(ts, defaultType);
46: }
47: return(0);
48: }
50: struct _n_TSMonitorDrawCtx {
51: PetscViewer viewer;
52: PetscDrawAxis axis;
53: Vec initialsolution;
54: PetscBool showinitial;
55: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
56: PetscBool showtimestepandtime;
57: int color;
58: };
62: /*@
63: TSSetFromOptions - Sets various TS parameters from user options.
65: Collective on TS
67: Input Parameter:
68: . ts - the TS context obtained from TSCreate()
70: Options Database Keys:
71: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
72: . -ts_max_steps maxsteps - maximum number of time-steps to take
73: . -ts_final_time time - maximum time to compute to
74: . -ts_dt dt - initial time step
75: . -ts_monitor - print information at each timestep
76: . -ts_monitor_lg_timestep - Monitor timestep size graphically
77: . -ts_monitor_lg_solution - Monitor solution graphically
78: . -ts_monitor_lg_error - Monitor error graphically
79: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
80: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
81: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
82: . -ts_monitor_draw_solution - Monitor solution graphically
83: . -ts_monitor_draw_solution_phase - Monitor solution graphically with phase diagram
84: . -ts_monitor_draw_error - Monitor error graphically
85: . -ts_monitor_solution_binary <filename> - Save each solution to a binary file
86: - -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
88: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
90: Level: beginner
92: .keywords: TS, timestep, set, options, database
94: .seealso: TSGetType()
95: @*/
96: PetscErrorCode TSSetFromOptions(TS ts)
97: {
98: PetscBool opt,flg;
99: PetscErrorCode ierr;
100: PetscViewer monviewer;
101: char monfilename[PETSC_MAX_PATH_LEN];
102: SNES snes;
103: TSAdapt adapt;
104: PetscReal time_step;
105: TSExactFinalTimeOption eftopt;
106: char dir[16];
110: PetscObjectOptionsBegin((PetscObject)ts);
111: /* Handle TS type options */
112: TSSetTypeFromOptions(ts);
114: /* Handle generic TS options */
115: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
116: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
117: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
118: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
119: if (flg) {
120: TSSetTimeStep(ts,time_step);
121: }
122: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
123: if (flg) {TSSetExactFinalTime(ts,eftopt);}
124: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
125: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
126: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
127: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
128: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
130: #if defined(PETSC_HAVE_SAWS)
131: {
132: PetscBool set;
133: flg = PETSC_FALSE;
134: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
135: if (set) {
136: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
137: }
138: }
139: #endif
141: /* Monitor options */
142: PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
143: if (flg) {
144: PetscViewerASCIIOpen(PetscObjectComm((PetscObject)ts),monfilename,&monviewer);
145: TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
146: }
147: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
148: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
150: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
151: if (opt) {
152: TSMonitorLGCtx ctx;
153: PetscInt howoften = 1;
155: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
156: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
157: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
158: }
159: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
160: if (opt) {
161: TSMonitorLGCtx ctx;
162: PetscInt howoften = 1;
164: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
165: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
166: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
167: }
168: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
169: if (opt) {
170: TSMonitorLGCtx ctx;
171: PetscInt howoften = 1;
173: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
174: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
175: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
176: }
177: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
178: if (opt) {
179: TSMonitorLGCtx ctx;
180: PetscInt howoften = 1;
182: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
183: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
184: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
185: }
186: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
187: if (opt) {
188: TSMonitorLGCtx ctx;
189: PetscInt howoften = 1;
191: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
192: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
193: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
194: }
195: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
196: if (opt) {
197: TSMonitorSPEigCtx ctx;
198: PetscInt howoften = 1;
200: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
201: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
202: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
203: }
204: opt = PETSC_FALSE;
205: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
206: if (opt) {
207: TSMonitorDrawCtx ctx;
208: PetscInt howoften = 1;
210: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
211: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
212: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
213: }
214: opt = PETSC_FALSE;
215: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
216: if (opt) {
217: TSMonitorDrawCtx ctx;
218: PetscReal bounds[4];
219: PetscInt n = 4;
220: PetscDraw draw;
222: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
223: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
224: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,1,&ctx);
225: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
226: PetscDrawClear(draw);
227: PetscDrawAxisCreate(draw,&ctx->axis);
228: PetscDrawAxisSetLimits(ctx->axis,bounds[0],bounds[2],bounds[1],bounds[3]);
229: PetscDrawAxisSetLabels(ctx->axis,"Phase Diagram","Variable 1","Variable 2");
230: PetscDrawAxisDraw(ctx->axis);
231: /* PetscDrawSetCoordinates(draw,bounds[0],bounds[1],bounds[2],bounds[3]); */
232: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
233: }
234: opt = PETSC_FALSE;
235: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
236: if (opt) {
237: TSMonitorDrawCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
241: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
243: }
244: opt = PETSC_FALSE;
245: PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
246: if (flg) {
247: PetscViewer ctx;
248: if (monfilename[0]) {
249: PetscViewerBinaryOpen(PetscObjectComm((PetscObject)ts),monfilename,FILE_MODE_WRITE,&ctx);
250: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
251: } else {
252: ctx = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)ts));
253: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))NULL);
254: }
255: }
256: opt = PETSC_FALSE;
257: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
258: if (flg) {
259: const char *ptr,*ptr2;
260: char *filetemplate;
261: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
262: /* Do some cursory validation of the input. */
263: PetscStrstr(monfilename,"%",(char**)&ptr);
264: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
265: for (ptr++; ptr && *ptr; ptr++) {
266: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
267: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
268: if (ptr2) break;
269: }
270: PetscStrallocpy(monfilename,&filetemplate);
271: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
272: }
274: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
275: if (flg) {
276: TSMonitorDMDARayCtx *rayctx;
277: int ray = 0;
278: DMDADirection ddir;
279: DM da;
280: PetscMPIInt rank;
282: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
283: if (dir[0] == 'x') ddir = DMDA_X;
284: else if (dir[0] == 'y') ddir = DMDA_Y;
285: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
286: sscanf(dir+2,"%d",&ray);
288: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
289: PetscNew(&rayctx);
290: TSGetDM(ts,&da);
291: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
292: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
293: if (!rank) {
294: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
295: }
296: rayctx->lgctx = NULL;
297: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
298: }
299: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
300: if (flg) {
301: TSMonitorDMDARayCtx *rayctx;
302: int ray = 0;
303: DMDADirection ddir;
304: DM da;
305: PetscInt howoften = 1;
307: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
308: if (dir[0] == 'x') ddir = DMDA_X;
309: else if (dir[0] == 'y') ddir = DMDA_Y;
310: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
311: sscanf(dir+2, "%d", &ray);
313: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
314: PetscNew(&rayctx);
315: TSGetDM(ts, &da);
316: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
317: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
318: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
319: }
321: /*
322: This code is all wrong. One is creating objects inside the TSSetFromOptions() so if run with the options gui
323: will bleed memory. Also one is using a PetscOptionsBegin() inside a PetscOptionsBegin()
324: */
325: TSGetAdapt(ts,&adapt);
326: TSAdaptSetFromOptions(adapt);
328: TSGetSNES(ts,&snes);
329: if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}
331: /* Handle specific TS options */
332: if (ts->ops->setfromoptions) {
333: (*ts->ops->setfromoptions)(ts);
334: }
336: /* process any options handlers added with PetscObjectAddOptionsHandler() */
337: PetscObjectProcessOptionsHandlers((PetscObject)ts);
338: PetscOptionsEnd();
339: return(0);
340: }
345: /*@
346: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
347: set with TSSetRHSJacobian().
349: Collective on TS and Vec
351: Input Parameters:
352: + ts - the TS context
353: . t - current timestep
354: - U - input vector
356: Output Parameters:
357: + A - Jacobian matrix
358: . B - optional preconditioning matrix
359: - flag - flag indicating matrix structure
361: Notes:
362: Most users should not need to explicitly call this routine, as it
363: is used internally within the nonlinear solvers.
365: See KSPSetOperators() for important information about setting the
366: flag parameter.
368: Level: developer
370: .keywords: SNES, compute, Jacobian, matrix
372: .seealso: TSSetRHSJacobian(), KSPSetOperators()
373: @*/
374: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg)
375: {
377: PetscObjectState Ustate;
378: DM dm;
379: DMTS tsdm;
380: TSRHSJacobian rhsjacobianfunc;
381: void *ctx;
382: TSIJacobian ijacobianfunc;
388: TSGetDM(ts,&dm);
389: DMGetDMTS(dm,&tsdm);
390: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
391: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
392: PetscObjectStateGet((PetscObject)U,&Ustate);
393: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate))) {
394: *flg = ts->rhsjacobian.mstructure;
395: return(0);
396: }
398: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
400: if (ts->rhsjacobian.reuse) {
401: MatShift(*A,-ts->rhsjacobian.shift);
402: MatScale(*A,1./ts->rhsjacobian.scale);
403: if (*A != *B) {
404: MatShift(*B,-ts->rhsjacobian.shift);
405: MatScale(*B,1./ts->rhsjacobian.scale);
406: }
407: ts->rhsjacobian.shift = 0;
408: ts->rhsjacobian.scale = 1.;
409: }
411: if (rhsjacobianfunc) {
412: PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
413: *flg = DIFFERENT_NONZERO_PATTERN;
414: PetscStackPush("TS user Jacobian function");
415: (*rhsjacobianfunc)(ts,t,U,A,B,flg,ctx);
416: PetscStackPop;
417: PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
418: /* make sure user returned a correct Jacobian and preconditioner */
421: } else {
422: MatZeroEntries(*A);
423: if (*A != *B) {MatZeroEntries(*B);}
424: *flg = SAME_NONZERO_PATTERN;
425: }
426: ts->rhsjacobian.time = t;
427: ts->rhsjacobian.X = U;
428: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
429: ts->rhsjacobian.mstructure = *flg;
430: return(0);
431: }
435: /*@
436: TSComputeRHSFunction - Evaluates the right-hand-side function.
438: Collective on TS and Vec
440: Input Parameters:
441: + ts - the TS context
442: . t - current time
443: - U - state vector
445: Output Parameter:
446: . y - right hand side
448: Note:
449: Most users should not need to explicitly call this routine, as it
450: is used internally within the nonlinear solvers.
452: Level: developer
454: .keywords: TS, compute
456: .seealso: TSSetRHSFunction(), TSComputeIFunction()
457: @*/
458: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
459: {
461: TSRHSFunction rhsfunction;
462: TSIFunction ifunction;
463: void *ctx;
464: DM dm;
470: TSGetDM(ts,&dm);
471: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
472: DMTSGetIFunction(dm,&ifunction,NULL);
474: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
476: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
477: if (rhsfunction) {
478: PetscStackPush("TS user right-hand-side function");
479: (*rhsfunction)(ts,t,U,y,ctx);
480: PetscStackPop;
481: } else {
482: VecZeroEntries(y);
483: }
485: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
486: return(0);
487: }
491: /*@
492: TSComputeSolutionFunction - Evaluates the solution function.
494: Collective on TS and Vec
496: Input Parameters:
497: + ts - the TS context
498: - t - current time
500: Output Parameter:
501: . U - the solution
503: Note:
504: Most users should not need to explicitly call this routine, as it
505: is used internally within the nonlinear solvers.
507: Level: developer
509: .keywords: TS, compute
511: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
512: @*/
513: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
514: {
515: PetscErrorCode ierr;
516: TSSolutionFunction solutionfunction;
517: void *ctx;
518: DM dm;
523: TSGetDM(ts,&dm);
524: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
526: if (solutionfunction) {
527: PetscStackPush("TS user solution function");
528: (*solutionfunction)(ts,t,U,ctx);
529: PetscStackPop;
530: }
531: return(0);
532: }
535: /*@
536: TSComputeForcingFunction - Evaluates the forcing function.
538: Collective on TS and Vec
540: Input Parameters:
541: + ts - the TS context
542: - t - current time
544: Output Parameter:
545: . U - the function value
547: Note:
548: Most users should not need to explicitly call this routine, as it
549: is used internally within the nonlinear solvers.
551: Level: developer
553: .keywords: TS, compute
555: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
556: @*/
557: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
558: {
559: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
560: void *ctx;
561: DM dm;
566: TSGetDM(ts,&dm);
567: DMTSGetForcingFunction(dm,&forcing,&ctx);
569: if (forcing) {
570: PetscStackPush("TS user forcing function");
571: (*forcing)(ts,t,U,ctx);
572: PetscStackPop;
573: }
574: return(0);
575: }
579: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
580: {
581: Vec F;
585: *Frhs = NULL;
586: TSGetIFunction(ts,&F,NULL,NULL);
587: if (!ts->Frhs) {
588: VecDuplicate(F,&ts->Frhs);
589: }
590: *Frhs = ts->Frhs;
591: return(0);
592: }
596: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
597: {
598: Mat A,B;
602: TSGetIJacobian(ts,&A,&B,NULL,NULL);
603: if (Arhs) {
604: if (!ts->Arhs) {
605: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
606: }
607: *Arhs = ts->Arhs;
608: }
609: if (Brhs) {
610: if (!ts->Brhs) {
611: if (A != B) {
612: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
613: } else {
614: ts->Brhs = ts->Arhs;
615: PetscObjectReference((PetscObject)ts->Arhs);
616: }
617: }
618: *Brhs = ts->Brhs;
619: }
620: return(0);
621: }
625: /*@
626: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
628: Collective on TS and Vec
630: Input Parameters:
631: + ts - the TS context
632: . t - current time
633: . U - state vector
634: . Udot - time derivative of state vector
635: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
637: Output Parameter:
638: . Y - right hand side
640: Note:
641: Most users should not need to explicitly call this routine, as it
642: is used internally within the nonlinear solvers.
644: If the user did did not write their equations in implicit form, this
645: function recasts them in implicit form.
647: Level: developer
649: .keywords: TS, compute
651: .seealso: TSSetIFunction(), TSComputeRHSFunction()
652: @*/
653: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
654: {
656: TSIFunction ifunction;
657: TSRHSFunction rhsfunction;
658: void *ctx;
659: DM dm;
667: TSGetDM(ts,&dm);
668: DMTSGetIFunction(dm,&ifunction,&ctx);
669: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
671: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
673: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
674: if (ifunction) {
675: PetscStackPush("TS user implicit function");
676: (*ifunction)(ts,t,U,Udot,Y,ctx);
677: PetscStackPop;
678: }
679: if (imex) {
680: if (!ifunction) {
681: VecCopy(Udot,Y);
682: }
683: } else if (rhsfunction) {
684: if (ifunction) {
685: Vec Frhs;
686: TSGetRHSVec_Private(ts,&Frhs);
687: TSComputeRHSFunction(ts,t,U,Frhs);
688: VecAXPY(Y,-1,Frhs);
689: } else {
690: TSComputeRHSFunction(ts,t,U,Y);
691: VecAYPX(Y,-1,Udot);
692: }
693: }
694: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
695: return(0);
696: }
700: /*@
701: TSComputeIJacobian - Evaluates the Jacobian of the DAE
703: Collective on TS and Vec
705: Input
706: Input Parameters:
707: + ts - the TS context
708: . t - current timestep
709: . U - state vector
710: . Udot - time derivative of state vector
711: . shift - shift to apply, see note below
712: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
714: Output Parameters:
715: + A - Jacobian matrix
716: . B - optional preconditioning matrix
717: - flag - flag indicating matrix structure
719: Notes:
720: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
722: dF/dU + shift*dF/dUdot
724: Most users should not need to explicitly call this routine, as it
725: is used internally within the nonlinear solvers.
727: Level: developer
729: .keywords: TS, compute, Jacobian, matrix
731: .seealso: TSSetIJacobian()
732: @*/
733: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,PetscBool imex)
734: {
736: TSIJacobian ijacobian;
737: TSRHSJacobian rhsjacobian;
738: DM dm;
739: void *ctx;
751: TSGetDM(ts,&dm);
752: DMTSGetIJacobian(dm,&ijacobian,&ctx);
753: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
755: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
757: *flg = SAME_NONZERO_PATTERN; /* In case we're solving a linear problem in which case it wouldn't get initialized below. */
758: PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
759: if (ijacobian) {
760: *flg = DIFFERENT_NONZERO_PATTERN;
761: PetscStackPush("TS user implicit Jacobian");
762: (*ijacobian)(ts,t,U,Udot,shift,A,B,flg,ctx);
763: PetscStackPop;
764: /* make sure user returned a correct Jacobian and preconditioner */
767: }
768: if (imex) {
769: if (!ijacobian) { /* system was written as Udot = G(t,U) */
770: MatZeroEntries(*A);
771: MatShift(*A,shift);
772: if (*A != *B) {
773: MatZeroEntries(*B);
774: MatShift(*B,shift);
775: }
776: *flg = SAME_PRECONDITIONER;
777: }
778: } else {
779: Mat Arhs = NULL,Brhs = NULL;
780: MatStructure flg2;
781: if (rhsjacobian) {
782: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
783: TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
784: }
785: if (Arhs == *A) { /* No IJacobian, so we only have the RHS matrix */
786: ts->rhsjacobian.scale = -1;
787: ts->rhsjacobian.shift = shift;
788: MatScale(*A,-1);
789: MatShift(*A,shift);
790: if (*A != *B) {
791: MatScale(*B,-1);
792: MatShift(*B,shift);
793: }
794: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
795: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
796: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
797: MatZeroEntries(*A);
798: MatShift(*A,shift);
799: if (*A != *B) {
800: MatZeroEntries(*B);
801: MatShift(*B,shift);
802: }
803: }
804: MatAXPY(*A,-1,Arhs,axpy);
805: if (*A != *B) {
806: MatAXPY(*B,-1,Brhs,axpy);
807: }
808: *flg = PetscMin(*flg,flg2);
809: }
810: }
812: PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
813: return(0);
814: }
818: /*@C
819: TSSetRHSFunction - Sets the routine for evaluating the function,
820: where U_t = G(t,u).
822: Logically Collective on TS
824: Input Parameters:
825: + ts - the TS context obtained from TSCreate()
826: . r - vector to put the computed right hand side (or NULL to have it created)
827: . f - routine for evaluating the right-hand-side function
828: - ctx - [optional] user-defined context for private data for the
829: function evaluation routine (may be NULL)
831: Calling sequence of func:
832: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
834: + t - current timestep
835: . u - input vector
836: . F - function vector
837: - ctx - [optional] user-defined function context
839: Level: beginner
841: .keywords: TS, timestep, set, right-hand-side, function
843: .seealso: TSSetRHSJacobian(), TSSetIJacobian()
844: @*/
845: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
846: {
848: SNES snes;
849: Vec ralloc = NULL;
850: DM dm;
856: TSGetDM(ts,&dm);
857: DMTSSetRHSFunction(dm,f,ctx);
858: TSGetSNES(ts,&snes);
859: if (!r && !ts->dm && ts->vec_sol) {
860: VecDuplicate(ts->vec_sol,&ralloc);
861: r = ralloc;
862: }
863: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
864: VecDestroy(&ralloc);
865: return(0);
866: }
870: /*@C
871: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
873: Logically Collective on TS
875: Input Parameters:
876: + ts - the TS context obtained from TSCreate()
877: . f - routine for evaluating the solution
878: - ctx - [optional] user-defined context for private data for the
879: function evaluation routine (may be NULL)
881: Calling sequence of func:
882: $ func (TS ts,PetscReal t,Vec u,void *ctx);
884: + t - current timestep
885: . u - output vector
886: - ctx - [optional] user-defined function context
888: Notes:
889: This routine is used for testing accuracy of time integration schemes when you already know the solution.
890: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
891: create closed-form solutions with non-physical forcing terms.
893: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
895: Level: beginner
897: .keywords: TS, timestep, set, right-hand-side, function
899: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
900: @*/
901: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
902: {
904: DM dm;
908: TSGetDM(ts,&dm);
909: DMTSSetSolutionFunction(dm,f,ctx);
910: return(0);
911: }
915: /*@C
916: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
918: Logically Collective on TS
920: Input Parameters:
921: + ts - the TS context obtained from TSCreate()
922: . f - routine for evaluating the forcing function
923: - ctx - [optional] user-defined context for private data for the
924: function evaluation routine (may be NULL)
926: Calling sequence of func:
927: $ func (TS ts,PetscReal t,Vec u,void *ctx);
929: + t - current timestep
930: . u - output vector
931: - ctx - [optional] user-defined function context
933: Notes:
934: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
935: create closed-form solutions with a non-physical forcing term.
937: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
939: Level: beginner
941: .keywords: TS, timestep, set, right-hand-side, function
943: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
944: @*/
945: PetscErrorCode TSSetForcingFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
946: {
948: DM dm;
952: TSGetDM(ts,&dm);
953: DMTSSetForcingFunction(dm,f,ctx);
954: return(0);
955: }
959: /*@C
960: TSSetRHSJacobian - Sets the function to compute the Jacobian of F,
961: where U_t = G(U,t), as well as the location to store the matrix.
963: Logically Collective on TS
965: Input Parameters:
966: + ts - the TS context obtained from TSCreate()
967: . Amat - (approximate) Jacobian matrix
968: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
969: . f - the Jacobian evaluation routine
970: - ctx - [optional] user-defined context for private data for the
971: Jacobian evaluation routine (may be NULL)
973: Calling sequence of func:
974: $ func (TS ts,PetscReal t,Vec u,Mat *A,Mat *B,MatStructure *flag,void *ctx);
976: + t - current timestep
977: . u - input vector
978: . Amat - (approximate) Jacobian matrix
979: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
980: . flag - flag indicating information about the preconditioner matrix
981: structure (same as flag in KSPSetOperators())
982: - ctx - [optional] user-defined context for matrix evaluation routine
984: Notes:
985: See KSPSetOperators() for important information about setting the flag
986: output parameter in the routine func(). Be sure to read this information!
988: The routine func() takes Mat * as the matrix arguments rather than Mat.
989: This allows the matrix evaluation routine to replace A and/or B with a
990: completely new matrix structure (not just different matrix elements)
991: when appropriate, for instance, if the nonzero structure is changing
992: throughout the global iterations.
994: Level: beginner
996: .keywords: TS, timestep, set, right-hand-side, Jacobian
998: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse()
1000: @*/
1001: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1002: {
1004: SNES snes;
1005: DM dm;
1006: TSIJacobian ijacobian;
1015: TSGetDM(ts,&dm);
1016: DMTSSetRHSJacobian(dm,f,ctx);
1017: if (f == TSComputeRHSJacobianConstant) {
1018: /* Handle this case automatically for the user; otherwise user should call themselves. */
1019: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1020: }
1021: DMTSGetIJacobian(dm,&ijacobian,NULL);
1022: TSGetSNES(ts,&snes);
1023: if (!ijacobian) {
1024: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1025: }
1026: if (Amat) {
1027: PetscObjectReference((PetscObject)Amat);
1028: MatDestroy(&ts->Arhs);
1030: ts->Arhs = Amat;
1031: }
1032: if (Pmat) {
1033: PetscObjectReference((PetscObject)Pmat);
1034: MatDestroy(&ts->Brhs);
1036: ts->Brhs = Pmat;
1037: }
1038: return(0);
1039: }
1044: /*@C
1045: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1047: Logically Collective on TS
1049: Input Parameters:
1050: + ts - the TS context obtained from TSCreate()
1051: . r - vector to hold the residual (or NULL to have it created internally)
1052: . f - the function evaluation routine
1053: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1055: Calling sequence of f:
1056: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1058: + t - time at step/stage being solved
1059: . u - state vector
1060: . u_t - time derivative of state vector
1061: . F - function vector
1062: - ctx - [optional] user-defined context for matrix evaluation routine
1064: Important:
1065: The user MUST call either this routine, TSSetRHSFunction(). This routine must be used when not solving an ODE, for example a DAE.
1067: Level: beginner
1069: .keywords: TS, timestep, set, DAE, Jacobian
1071: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1072: @*/
1073: PetscErrorCode TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
1074: {
1076: SNES snes;
1077: Vec resalloc = NULL;
1078: DM dm;
1084: TSGetDM(ts,&dm);
1085: DMTSSetIFunction(dm,f,ctx);
1087: TSGetSNES(ts,&snes);
1088: if (!res && !ts->dm && ts->vec_sol) {
1089: VecDuplicate(ts->vec_sol,&resalloc);
1090: res = resalloc;
1091: }
1092: SNESSetFunction(snes,res,SNESTSFormFunction,ts);
1093: VecDestroy(&resalloc);
1094: return(0);
1095: }
1099: /*@C
1100: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1102: Not Collective
1104: Input Parameter:
1105: . ts - the TS context
1107: Output Parameter:
1108: + r - vector to hold residual (or NULL)
1109: . func - the function to compute residual (or NULL)
1110: - ctx - the function context (or NULL)
1112: Level: advanced
1114: .keywords: TS, nonlinear, get, function
1116: .seealso: TSSetIFunction(), SNESGetFunction()
1117: @*/
1118: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1119: {
1121: SNES snes;
1122: DM dm;
1126: TSGetSNES(ts,&snes);
1127: SNESGetFunction(snes,r,NULL,NULL);
1128: TSGetDM(ts,&dm);
1129: DMTSGetIFunction(dm,func,ctx);
1130: return(0);
1131: }
1135: /*@C
1136: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1138: Not Collective
1140: Input Parameter:
1141: . ts - the TS context
1143: Output Parameter:
1144: + r - vector to hold computed right hand side (or NULL)
1145: . func - the function to compute right hand side (or NULL)
1146: - ctx - the function context (or NULL)
1148: Level: advanced
1150: .keywords: TS, nonlinear, get, function
1152: .seealso: TSSetRhsfunction(), SNESGetFunction()
1153: @*/
1154: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1155: {
1157: SNES snes;
1158: DM dm;
1162: TSGetSNES(ts,&snes);
1163: SNESGetFunction(snes,r,NULL,NULL);
1164: TSGetDM(ts,&dm);
1165: DMTSGetRHSFunction(dm,func,ctx);
1166: return(0);
1167: }
1171: /*@C
1172: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1173: you provided with TSSetIFunction().
1175: Logically Collective on TS
1177: Input Parameters:
1178: + ts - the TS context obtained from TSCreate()
1179: . Amat - (approximate) Jacobian matrix
1180: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1181: . f - the Jacobian evaluation routine
1182: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1184: Calling sequence of f:
1185: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat *Amat,Mat *Pmat,MatStructure *flag,void *ctx);
1187: + t - time at step/stage being solved
1188: . U - state vector
1189: . U_t - time derivative of state vector
1190: . a - shift
1191: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1192: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1193: . flag - flag indicating information about the preconditioner matrix
1194: structure (same as flag in KSPSetOperators())
1195: - ctx - [optional] user-defined context for matrix evaluation routine
1197: Notes:
1198: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1200: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1201: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1202: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1203: a and vector W depend on the integration method, step size, and past states. For example with
1204: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1205: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1207: Level: beginner
1209: .keywords: TS, timestep, DAE, Jacobian
1211: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault()
1213: @*/
1214: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1215: {
1217: SNES snes;
1218: DM dm;
1227: TSGetDM(ts,&dm);
1228: DMTSSetIJacobian(dm,f,ctx);
1230: TSGetSNES(ts,&snes);
1231: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1232: return(0);
1233: }
1237: /*@
1238: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1239: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1240: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1241: not been changed by the TS.
1243: Logically Collective
1245: Input Arguments:
1246: + ts - TS context obtained from TSCreate()
1247: - reuse - PETSC_TRUE if the RHS Jacobian
1249: Level: intermediate
1251: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1252: @*/
1253: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1254: {
1256: ts->rhsjacobian.reuse = reuse;
1257: return(0);
1258: }
1262: /*@C
1263: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1265: Collective on PetscViewer
1267: Input Parameters:
1268: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1269: some related function before a call to TSLoad().
1270: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1272: Level: intermediate
1274: Notes:
1275: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1277: Notes for advanced users:
1278: Most users should not need to know the details of the binary storage
1279: format, since TSLoad() and TSView() completely hide these details.
1280: But for anyone who's interested, the standard binary matrix storage
1281: format is
1282: .vb
1283: has not yet been determined
1284: .ve
1286: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1287: @*/
1288: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1289: {
1291: PetscBool isbinary;
1292: PetscInt classid;
1293: char type[256];
1294: DMTS sdm;
1295: DM dm;
1300: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1301: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1303: PetscViewerBinaryRead(viewer,&classid,1,PETSC_INT);
1304: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1305: PetscViewerBinaryRead(viewer,type,256,PETSC_CHAR);
1306: TSSetType(ts, type);
1307: if (ts->ops->load) {
1308: (*ts->ops->load)(ts,viewer);
1309: }
1310: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1311: DMLoad(dm,viewer);
1312: TSSetDM(ts,dm);
1313: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1314: VecLoad(ts->vec_sol,viewer);
1315: DMGetDMTS(ts->dm,&sdm);
1316: DMTSLoad(sdm,viewer);
1317: return(0);
1318: }
1320: #include <petscdraw.h>
1321: #if defined(PETSC_HAVE_SAWS)
1322: #include <petscviewersaws.h>
1323: #endif
1326: /*@C
1327: TSView - Prints the TS data structure.
1329: Collective on TS
1331: Input Parameters:
1332: + ts - the TS context obtained from TSCreate()
1333: - viewer - visualization context
1335: Options Database Key:
1336: . -ts_view - calls TSView() at end of TSStep()
1338: Notes:
1339: The available visualization contexts include
1340: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1341: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1342: output where only the first processor opens
1343: the file. All other processors send their
1344: data to the first processor to print.
1346: The user can open an alternative visualization context with
1347: PetscViewerASCIIOpen() - output to a specified file.
1349: Level: beginner
1351: .keywords: TS, timestep, view
1353: .seealso: PetscViewerASCIIOpen()
1354: @*/
1355: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1356: {
1358: TSType type;
1359: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1360: DMTS sdm;
1361: #if defined(PETSC_HAVE_SAWS)
1362: PetscBool isams;
1363: #endif
1367: if (!viewer) {
1368: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1369: }
1373: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1374: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1375: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1376: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1377: #if defined(PETSC_HAVE_SAWS)
1378: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&isams);
1379: #endif
1380: if (iascii) {
1381: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1382: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1383: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1384: if (ts->problem_type == TS_NONLINEAR) {
1385: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1386: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1387: }
1388: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1389: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1390: DMGetDMTS(ts->dm,&sdm);
1391: DMTSView(sdm,viewer);
1392: if (ts->ops->view) {
1393: PetscViewerASCIIPushTab(viewer);
1394: (*ts->ops->view)(ts,viewer);
1395: PetscViewerASCIIPopTab(viewer);
1396: }
1397: } else if (isstring) {
1398: TSGetType(ts,&type);
1399: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1400: } else if (isbinary) {
1401: PetscInt classid = TS_FILE_CLASSID;
1402: MPI_Comm comm;
1403: PetscMPIInt rank;
1404: char type[256];
1406: PetscObjectGetComm((PetscObject)ts,&comm);
1407: MPI_Comm_rank(comm,&rank);
1408: if (!rank) {
1409: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1410: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1411: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1412: }
1413: if (ts->ops->view) {
1414: (*ts->ops->view)(ts,viewer);
1415: }
1416: DMView(ts->dm,viewer);
1417: VecView(ts->vec_sol,viewer);
1418: DMGetDMTS(ts->dm,&sdm);
1419: DMTSView(sdm,viewer);
1420: } else if (isdraw) {
1421: PetscDraw draw;
1422: char str[36];
1423: PetscReal x,y,bottom,h;
1425: PetscViewerDrawGetDraw(viewer,0,&draw);
1426: PetscDrawGetCurrentPoint(draw,&x,&y);
1427: PetscStrcpy(str,"TS: ");
1428: PetscStrcat(str,((PetscObject)ts)->type_name);
1429: PetscDrawBoxedString(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1430: bottom = y - h;
1431: PetscDrawPushCurrentPoint(draw,x,bottom);
1432: if (ts->ops->view) {
1433: (*ts->ops->view)(ts,viewer);
1434: }
1435: PetscDrawPopCurrentPoint(draw);
1436: #if defined(PETSC_HAVE_SAWS)
1437: } else if (isams) {
1438: PetscMPIInt rank;
1439: const char *name;
1441: PetscObjectGetName((PetscObject)ts,&name);
1442: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1443: if (!((PetscObject)ts)->amsmem && !rank) {
1444: char dir[1024];
1446: PetscObjectViewSAWs((PetscObject)ts,viewer);
1447: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1448: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1449: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
1450: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
1451: }
1452: if (ts->ops->view) {
1453: (*ts->ops->view)(ts,viewer);
1454: }
1455: #endif
1456: }
1458: PetscViewerASCIIPushTab(viewer);
1459: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1460: PetscViewerASCIIPopTab(viewer);
1461: return(0);
1462: }
1467: /*@
1468: TSSetApplicationContext - Sets an optional user-defined context for
1469: the timesteppers.
1471: Logically Collective on TS
1473: Input Parameters:
1474: + ts - the TS context obtained from TSCreate()
1475: - usrP - optional user context
1477: Level: intermediate
1479: .keywords: TS, timestep, set, application, context
1481: .seealso: TSGetApplicationContext()
1482: @*/
1483: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
1484: {
1487: ts->user = usrP;
1488: return(0);
1489: }
1493: /*@
1494: TSGetApplicationContext - Gets the user-defined context for the
1495: timestepper.
1497: Not Collective
1499: Input Parameter:
1500: . ts - the TS context obtained from TSCreate()
1502: Output Parameter:
1503: . usrP - user context
1505: Level: intermediate
1507: .keywords: TS, timestep, get, application, context
1509: .seealso: TSSetApplicationContext()
1510: @*/
1511: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
1512: {
1515: *(void**)usrP = ts->user;
1516: return(0);
1517: }
1521: /*@
1522: TSGetTimeStepNumber - Gets the number of time steps completed.
1524: Not Collective
1526: Input Parameter:
1527: . ts - the TS context obtained from TSCreate()
1529: Output Parameter:
1530: . iter - number of steps completed so far
1532: Level: intermediate
1534: .keywords: TS, timestep, get, iteration, number
1535: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
1536: @*/
1537: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
1538: {
1542: *iter = ts->steps;
1543: return(0);
1544: }
1548: /*@
1549: TSSetInitialTimeStep - Sets the initial timestep to be used,
1550: as well as the initial time.
1552: Logically Collective on TS
1554: Input Parameters:
1555: + ts - the TS context obtained from TSCreate()
1556: . initial_time - the initial time
1557: - time_step - the size of the timestep
1559: Level: intermediate
1561: .seealso: TSSetTimeStep(), TSGetTimeStep()
1563: .keywords: TS, set, initial, timestep
1564: @*/
1565: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
1566: {
1571: TSSetTimeStep(ts,time_step);
1572: TSSetTime(ts,initial_time);
1573: return(0);
1574: }
1578: /*@
1579: TSSetTimeStep - Allows one to reset the timestep at any time,
1580: useful for simple pseudo-timestepping codes.
1582: Logically Collective on TS
1584: Input Parameters:
1585: + ts - the TS context obtained from TSCreate()
1586: - time_step - the size of the timestep
1588: Level: intermediate
1590: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1592: .keywords: TS, set, timestep
1593: @*/
1594: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
1595: {
1599: ts->time_step = time_step;
1600: ts->time_step_orig = time_step;
1601: return(0);
1602: }
1606: /*@
1607: TSSetExactFinalTime - Determines whether to adapt the final time step to
1608: match the exact final time, interpolate solution to the exact final time,
1609: or just return at the final time TS computed.
1611: Logically Collective on TS
1613: Input Parameter:
1614: + ts - the time-step context
1615: - eftopt - exact final time option
1617: Level: beginner
1619: .seealso: TSExactFinalTimeOption
1620: @*/
1621: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
1622: {
1626: ts->exact_final_time = eftopt;
1627: return(0);
1628: }
1632: /*@
1633: TSGetTimeStep - Gets the current timestep size.
1635: Not Collective
1637: Input Parameter:
1638: . ts - the TS context obtained from TSCreate()
1640: Output Parameter:
1641: . dt - the current timestep size
1643: Level: intermediate
1645: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1647: .keywords: TS, get, timestep
1648: @*/
1649: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
1650: {
1654: *dt = ts->time_step;
1655: return(0);
1656: }
1660: /*@
1661: TSGetSolution - Returns the solution at the present timestep. It
1662: is valid to call this routine inside the function that you are evaluating
1663: in order to move to the new timestep. This vector not changed until
1664: the solution at the next timestep has been calculated.
1666: Not Collective, but Vec returned is parallel if TS is parallel
1668: Input Parameter:
1669: . ts - the TS context obtained from TSCreate()
1671: Output Parameter:
1672: . v - the vector containing the solution
1674: Level: intermediate
1676: .seealso: TSGetTimeStep()
1678: .keywords: TS, timestep, get, solution
1679: @*/
1680: PetscErrorCode TSGetSolution(TS ts,Vec *v)
1681: {
1685: *v = ts->vec_sol;
1686: return(0);
1687: }
1689: /* ----- Routines to initialize and destroy a timestepper ---- */
1692: /*@
1693: TSSetProblemType - Sets the type of problem to be solved.
1695: Not collective
1697: Input Parameters:
1698: + ts - The TS
1699: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1700: .vb
1701: U_t - A U = 0 (linear)
1702: U_t - A(t) U = 0 (linear)
1703: F(t,U,U_t) = 0 (nonlinear)
1704: .ve
1706: Level: beginner
1708: .keywords: TS, problem type
1709: .seealso: TSSetUp(), TSProblemType, TS
1710: @*/
1711: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
1712: {
1717: ts->problem_type = type;
1718: if (type == TS_LINEAR) {
1719: SNES snes;
1720: TSGetSNES(ts,&snes);
1721: SNESSetType(snes,SNESKSPONLY);
1722: }
1723: return(0);
1724: }
1728: /*@C
1729: TSGetProblemType - Gets the type of problem to be solved.
1731: Not collective
1733: Input Parameter:
1734: . ts - The TS
1736: Output Parameter:
1737: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1738: .vb
1739: M U_t = A U
1740: M(t) U_t = A(t) U
1741: F(t,U,U_t)
1742: .ve
1744: Level: beginner
1746: .keywords: TS, problem type
1747: .seealso: TSSetUp(), TSProblemType, TS
1748: @*/
1749: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
1750: {
1754: *type = ts->problem_type;
1755: return(0);
1756: }
1760: /*@
1761: TSSetUp - Sets up the internal data structures for the later use
1762: of a timestepper.
1764: Collective on TS
1766: Input Parameter:
1767: . ts - the TS context obtained from TSCreate()
1769: Notes:
1770: For basic use of the TS solvers the user need not explicitly call
1771: TSSetUp(), since these actions will automatically occur during
1772: the call to TSStep(). However, if one wishes to control this
1773: phase separately, TSSetUp() should be called after TSCreate()
1774: and optional routines of the form TSSetXXX(), but before TSStep().
1776: Level: advanced
1778: .keywords: TS, timestep, setup
1780: .seealso: TSCreate(), TSStep(), TSDestroy()
1781: @*/
1782: PetscErrorCode TSSetUp(TS ts)
1783: {
1785: DM dm;
1786: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
1787: PetscErrorCode (*jac)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
1788: TSIJacobian ijac;
1789: TSRHSJacobian rhsjac;
1793: if (ts->setupcalled) return(0);
1795: if (!((PetscObject)ts)->type_name) {
1796: TSSetType(ts,TSEULER);
1797: }
1799: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
1801: TSGetAdapt(ts,&ts->adapt);
1803: if (ts->rhsjacobian.reuse) {
1804: Mat Amat,Pmat;
1805: SNES snes;
1806: TSGetSNES(ts,&snes);
1807: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
1808: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
1809: * have displaced the RHS matrix */
1810: if (Amat == ts->Arhs) {
1811: MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
1812: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
1813: MatDestroy(&Amat);
1814: }
1815: if (Pmat == ts->Brhs) {
1816: MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
1817: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
1818: MatDestroy(&Pmat);
1819: }
1820: }
1822: if (ts->ops->setup) {
1823: (*ts->ops->setup)(ts);
1824: }
1826: /* in the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
1827: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
1828: */
1829: TSGetDM(ts,&dm);
1830: DMSNESGetFunction(dm,&func,NULL);
1831: if (!func) {
1832: ierr =DMSNESSetFunction(dm,SNESTSFormFunction,ts);
1833: }
1834: /* if the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
1835: Otherwise, the SNES will use coloring internally to form the Jacobian.
1836: */
1837: DMSNESGetJacobian(dm,&jac,NULL);
1838: DMTSGetIJacobian(dm,&ijac,NULL);
1839: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
1840: if (!jac && (ijac || rhsjac)) {
1841: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
1842: }
1843: ts->setupcalled = PETSC_TRUE;
1844: return(0);
1845: }
1849: /*@
1850: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
1852: Collective on TS
1854: Input Parameter:
1855: . ts - the TS context obtained from TSCreate()
1857: Level: beginner
1859: .keywords: TS, timestep, reset
1861: .seealso: TSCreate(), TSSetup(), TSDestroy()
1862: @*/
1863: PetscErrorCode TSReset(TS ts)
1864: {
1869: if (ts->ops->reset) {
1870: (*ts->ops->reset)(ts);
1871: }
1872: if (ts->snes) {SNESReset(ts->snes);}
1874: MatDestroy(&ts->Arhs);
1875: MatDestroy(&ts->Brhs);
1876: VecDestroy(&ts->Frhs);
1877: VecDestroy(&ts->vec_sol);
1878: VecDestroy(&ts->vatol);
1879: VecDestroy(&ts->vrtol);
1880: VecDestroyVecs(ts->nwork,&ts->work);
1882: ts->setupcalled = PETSC_FALSE;
1883: return(0);
1884: }
1888: /*@
1889: TSDestroy - Destroys the timestepper context that was created
1890: with TSCreate().
1892: Collective on TS
1894: Input Parameter:
1895: . ts - the TS context obtained from TSCreate()
1897: Level: beginner
1899: .keywords: TS, timestepper, destroy
1901: .seealso: TSCreate(), TSSetUp(), TSSolve()
1902: @*/
1903: PetscErrorCode TSDestroy(TS *ts)
1904: {
1908: if (!*ts) return(0);
1910: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
1912: TSReset((*ts));
1914: /* if memory was published with SAWs then destroy it */
1915: PetscObjectSAWsViewOff((PetscObject)*ts);
1916: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
1918: TSAdaptDestroy(&(*ts)->adapt);
1919: SNESDestroy(&(*ts)->snes);
1920: DMDestroy(&(*ts)->dm);
1921: TSMonitorCancel((*ts));
1923: PetscHeaderDestroy(ts);
1924: return(0);
1925: }
1929: /*@
1930: TSGetSNES - Returns the SNES (nonlinear solver) associated with
1931: a TS (timestepper) context. Valid only for nonlinear problems.
1933: Not Collective, but SNES is parallel if TS is parallel
1935: Input Parameter:
1936: . ts - the TS context obtained from TSCreate()
1938: Output Parameter:
1939: . snes - the nonlinear solver context
1941: Notes:
1942: The user can then directly manipulate the SNES context to set various
1943: options, etc. Likewise, the user can then extract and manipulate the
1944: KSP, KSP, and PC contexts as well.
1946: TSGetSNES() does not work for integrators that do not use SNES; in
1947: this case TSGetSNES() returns NULL in snes.
1949: Level: beginner
1951: .keywords: timestep, get, SNES
1952: @*/
1953: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
1954: {
1960: if (!ts->snes) {
1961: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
1962: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1963: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
1964: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
1965: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
1966: if (ts->problem_type == TS_LINEAR) {
1967: SNESSetType(ts->snes,SNESKSPONLY);
1968: }
1969: }
1970: *snes = ts->snes;
1971: return(0);
1972: }
1976: /*@
1977: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
1979: Collective
1981: Input Parameter:
1982: + ts - the TS context obtained from TSCreate()
1983: - snes - the nonlinear solver context
1985: Notes:
1986: Most users should have the TS created by calling TSGetSNES()
1988: Level: developer
1990: .keywords: timestep, set, SNES
1991: @*/
1992: PetscErrorCode TSSetSNES(TS ts,SNES snes)
1993: {
1995: PetscErrorCode (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
2000: PetscObjectReference((PetscObject)snes);
2001: SNESDestroy(&ts->snes);
2003: ts->snes = snes;
2005: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2006: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2007: if (func == SNESTSFormJacobian) {
2008: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2009: }
2010: return(0);
2011: }
2015: /*@
2016: TSGetKSP - Returns the KSP (linear solver) associated with
2017: a TS (timestepper) context.
2019: Not Collective, but KSP is parallel if TS is parallel
2021: Input Parameter:
2022: . ts - the TS context obtained from TSCreate()
2024: Output Parameter:
2025: . ksp - the nonlinear solver context
2027: Notes:
2028: The user can then directly manipulate the KSP context to set various
2029: options, etc. Likewise, the user can then extract and manipulate the
2030: KSP and PC contexts as well.
2032: TSGetKSP() does not work for integrators that do not use KSP;
2033: in this case TSGetKSP() returns NULL in ksp.
2035: Level: beginner
2037: .keywords: timestep, get, KSP
2038: @*/
2039: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2040: {
2042: SNES snes;
2047: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2048: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2049: TSGetSNES(ts,&snes);
2050: SNESGetKSP(snes,ksp);
2051: return(0);
2052: }
2054: /* ----------- Routines to set solver parameters ---------- */
2058: /*@
2059: TSGetDuration - Gets the maximum number of timesteps to use and
2060: maximum time for iteration.
2062: Not Collective
2064: Input Parameters:
2065: + ts - the TS context obtained from TSCreate()
2066: . maxsteps - maximum number of iterations to use, or NULL
2067: - maxtime - final time to iterate to, or NULL
2069: Level: intermediate
2071: .keywords: TS, timestep, get, maximum, iterations, time
2072: @*/
2073: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2074: {
2077: if (maxsteps) {
2079: *maxsteps = ts->max_steps;
2080: }
2081: if (maxtime) {
2083: *maxtime = ts->max_time;
2084: }
2085: return(0);
2086: }
2090: /*@
2091: TSSetDuration - Sets the maximum number of timesteps to use and
2092: maximum time for iteration.
2094: Logically Collective on TS
2096: Input Parameters:
2097: + ts - the TS context obtained from TSCreate()
2098: . maxsteps - maximum number of iterations to use
2099: - maxtime - final time to iterate to
2101: Options Database Keys:
2102: . -ts_max_steps <maxsteps> - Sets maxsteps
2103: . -ts_final_time <maxtime> - Sets maxtime
2105: Notes:
2106: The default maximum number of iterations is 5000. Default time is 5.0
2108: Level: intermediate
2110: .keywords: TS, timestep, set, maximum, iterations
2112: .seealso: TSSetExactFinalTime()
2113: @*/
2114: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2115: {
2120: if (maxsteps >= 0) ts->max_steps = maxsteps;
2121: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2122: return(0);
2123: }
2127: /*@
2128: TSSetSolution - Sets the initial solution vector
2129: for use by the TS routines.
2131: Logically Collective on TS and Vec
2133: Input Parameters:
2134: + ts - the TS context obtained from TSCreate()
2135: - u - the solution vector
2137: Level: beginner
2139: .keywords: TS, timestep, set, solution, initial conditions
2140: @*/
2141: PetscErrorCode TSSetSolution(TS ts,Vec u)
2142: {
2144: DM dm;
2149: PetscObjectReference((PetscObject)u);
2150: VecDestroy(&ts->vec_sol);
2152: ts->vec_sol = u;
2154: TSGetDM(ts,&dm);
2155: DMShellSetGlobalVector(dm,u);
2156: return(0);
2157: }
2161: /*@C
2162: TSSetPreStep - Sets the general-purpose function
2163: called once at the beginning of each time step.
2165: Logically Collective on TS
2167: Input Parameters:
2168: + ts - The TS context obtained from TSCreate()
2169: - func - The function
2171: Calling sequence of func:
2172: . func (TS ts);
2174: Level: intermediate
2176: Note:
2177: If a step is rejected, TSStep() will call this routine again before each attempt.
2178: The last completed time step number can be queried using TSGetTimeStepNumber(), the
2179: size of the step being attempted can be obtained using TSGetTimeStep().
2181: .keywords: TS, timestep
2182: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep()
2183: @*/
2184: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
2185: {
2188: ts->prestep = func;
2189: return(0);
2190: }
2194: /*@
2195: TSPreStep - Runs the user-defined pre-step function.
2197: Collective on TS
2199: Input Parameters:
2200: . ts - The TS context obtained from TSCreate()
2202: Notes:
2203: TSPreStep() is typically used within time stepping implementations,
2204: so most users would not generally call this routine themselves.
2206: Level: developer
2208: .keywords: TS, timestep
2209: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
2210: @*/
2211: PetscErrorCode TSPreStep(TS ts)
2212: {
2217: if (ts->prestep) {
2218: PetscStackCallStandard((*ts->prestep),(ts));
2219: }
2220: return(0);
2221: }
2225: /*@C
2226: TSSetPreStage - Sets the general-purpose function
2227: called once at the beginning of each stage.
2229: Logically Collective on TS
2231: Input Parameters:
2232: + ts - The TS context obtained from TSCreate()
2233: - func - The function
2235: Calling sequence of func:
2236: . PetscErrorCode func(TS ts, PetscReal stagetime);
2238: Level: intermediate
2240: Note:
2241: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2242: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2243: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
2245: .keywords: TS, timestep
2246: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2247: @*/
2248: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
2249: {
2252: ts->prestage = func;
2253: return(0);
2254: }
2258: /*@C
2259: TSSetPostStage - Sets the general-purpose function
2260: called once at the end of each stage.
2262: Logically Collective on TS
2264: Input Parameters:
2265: + ts - The TS context obtained from TSCreate()
2266: - func - The function
2268: Calling sequence of func:
2269: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
2271: Level: intermediate
2273: Note:
2274: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2275: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2276: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
2278: .keywords: TS, timestep
2279: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2280: @*/
2281: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
2282: {
2285: ts->poststage = func;
2286: return(0);
2287: }
2291: /*@
2292: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
2294: Collective on TS
2296: Input Parameters:
2297: . ts - The TS context obtained from TSCreate()
2298: stagetime - The absolute time of the current stage
2300: Notes:
2301: TSPreStage() is typically used within time stepping implementations,
2302: most users would not generally call this routine themselves.
2304: Level: developer
2306: .keywords: TS, timestep
2307: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
2308: @*/
2309: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
2310: {
2315: if (ts->prestage) {
2316: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
2317: }
2318: return(0);
2319: }
2323: /*@
2324: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
2326: Collective on TS
2328: Input Parameters:
2329: . ts - The TS context obtained from TSCreate()
2330: stagetime - The absolute time of the current stage
2331: stageindex - Stage number
2332: Y - Array of vectors (of size = total number
2333: of stages) with the stage solutions
2335: Notes:
2336: TSPostStage() is typically used within time stepping implementations,
2337: most users would not generally call this routine themselves.
2339: Level: developer
2341: .keywords: TS, timestep
2342: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
2343: @*/
2344: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
2345: {
2350: if (ts->prestage) {
2351: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
2352: }
2353: return(0);
2354: }
2358: /*@C
2359: TSSetPostStep - Sets the general-purpose function
2360: called once at the end of each time step.
2362: Logically Collective on TS
2364: Input Parameters:
2365: + ts - The TS context obtained from TSCreate()
2366: - func - The function
2368: Calling sequence of func:
2369: $ func (TS ts);
2371: Level: intermediate
2373: .keywords: TS, timestep
2374: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
2375: @*/
2376: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
2377: {
2380: ts->poststep = func;
2381: return(0);
2382: }
2386: /*@
2387: TSPostStep - Runs the user-defined post-step function.
2389: Collective on TS
2391: Input Parameters:
2392: . ts - The TS context obtained from TSCreate()
2394: Notes:
2395: TSPostStep() is typically used within time stepping implementations,
2396: so most users would not generally call this routine themselves.
2398: Level: developer
2400: .keywords: TS, timestep
2401: @*/
2402: PetscErrorCode TSPostStep(TS ts)
2403: {
2408: if (ts->poststep) {
2409: PetscStackCallStandard((*ts->poststep),(ts));
2410: }
2411: return(0);
2412: }
2414: /* ------------ Routines to set performance monitoring options ----------- */
2418: /*@C
2419: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
2420: timestep to display the iteration's progress.
2422: Logically Collective on TS
2424: Input Parameters:
2425: + ts - the TS context obtained from TSCreate()
2426: . monitor - monitoring routine
2427: . mctx - [optional] user-defined context for private data for the
2428: monitor routine (use NULL if no context is desired)
2429: - monitordestroy - [optional] routine that frees monitor context
2430: (may be NULL)
2432: Calling sequence of monitor:
2433: $ int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
2435: + ts - the TS context
2436: . steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
2437: been interpolated to)
2438: . time - current time
2439: . u - current iterate
2440: - mctx - [optional] monitoring context
2442: Notes:
2443: This routine adds an additional monitor to the list of monitors that
2444: already has been loaded.
2446: Fortran notes: Only a single monitor function can be set for each TS object
2448: Level: intermediate
2450: .keywords: TS, timestep, set, monitor
2452: .seealso: TSMonitorDefault(), TSMonitorCancel()
2453: @*/
2454: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
2455: {
2458: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
2459: ts->monitor[ts->numbermonitors] = monitor;
2460: ts->monitordestroy[ts->numbermonitors] = mdestroy;
2461: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
2462: return(0);
2463: }
2467: /*@C
2468: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
2470: Logically Collective on TS
2472: Input Parameters:
2473: . ts - the TS context obtained from TSCreate()
2475: Notes:
2476: There is no way to remove a single, specific monitor.
2478: Level: intermediate
2480: .keywords: TS, timestep, set, monitor
2482: .seealso: TSMonitorDefault(), TSMonitorSet()
2483: @*/
2484: PetscErrorCode TSMonitorCancel(TS ts)
2485: {
2487: PetscInt i;
2491: for (i=0; i<ts->numbermonitors; i++) {
2492: if (ts->monitordestroy[i]) {
2493: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
2494: }
2495: }
2496: ts->numbermonitors = 0;
2497: return(0);
2498: }
2502: /*@
2503: TSMonitorDefault - Sets the Default monitor
2505: Level: intermediate
2507: .keywords: TS, set, monitor
2509: .seealso: TSMonitorDefault(), TSMonitorSet()
2510: @*/
2511: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
2512: {
2514: PetscViewer viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)ts));
2517: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
2518: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g\n",step,(double)ts->time_step,(double)ptime);
2519: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
2520: return(0);
2521: }
2525: /*@
2526: TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.
2528: Logically Collective on TS
2530: Input Argument:
2531: . ts - time stepping context
2533: Output Argument:
2534: . flg - PETSC_TRUE or PETSC_FALSE
2536: Level: intermediate
2538: .keywords: TS, set
2540: .seealso: TSInterpolate(), TSSetPostStep()
2541: @*/
2542: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
2543: {
2546: ts->retain_stages = flg;
2547: return(0);
2548: }
2552: /*@
2553: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
2555: Collective on TS
2557: Input Argument:
2558: + ts - time stepping context
2559: - t - time to interpolate to
2561: Output Argument:
2562: . U - state at given time
2564: Notes:
2565: The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.
2567: Level: intermediate
2569: Developer Notes:
2570: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
2572: .keywords: TS, set
2574: .seealso: TSSetRetainStages(), TSSetPostStep()
2575: @*/
2576: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
2577: {
2583: if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)(ts->ptime-ts->time_step_prev),(double)ts->ptime);
2584: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
2585: (*ts->ops->interpolate)(ts,t,U);
2586: return(0);
2587: }
2591: /*@
2592: TSStep - Steps one time step
2594: Collective on TS
2596: Input Parameter:
2597: . ts - the TS context obtained from TSCreate()
2599: Level: intermediate
2601: Notes:
2602: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
2603: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
2605: This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
2606: time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
2608: .keywords: TS, timestep, solve
2610: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
2611: @*/
2612: PetscErrorCode TSStep(TS ts)
2613: {
2614: PetscReal ptime_prev;
2619: TSSetUp(ts);
2621: ts->reason = TS_CONVERGED_ITERATING;
2622: ptime_prev = ts->ptime;
2624: PetscLogEventBegin(TS_Step,ts,0,0,0);
2625: (*ts->ops->step)(ts);
2626: PetscLogEventEnd(TS_Step,ts,0,0,0);
2628: ts->time_step_prev = ts->ptime - ptime_prev;
2630: if (ts->reason < 0) {
2631: if (ts->errorifstepfailed) {
2632: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
2633: SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
2634: } else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
2635: }
2636: } else if (!ts->reason) {
2637: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
2638: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2639: }
2640: return(0);
2641: }
2645: /*@
2646: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
2648: Collective on TS
2650: Input Arguments:
2651: + ts - time stepping context
2652: . order - desired order of accuracy
2653: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
2655: Output Arguments:
2656: . U - state at the end of the current step
2658: Level: advanced
2660: Notes:
2661: This function cannot be called until all stages have been evaluated.
2662: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
2664: .seealso: TSStep(), TSAdapt
2665: @*/
2666: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
2667: {
2674: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
2675: (*ts->ops->evaluatestep)(ts,order,U,done);
2676: return(0);
2677: }
2681: /*@
2682: TSSolve - Steps the requested number of timesteps.
2684: Collective on TS
2686: Input Parameter:
2687: + ts - the TS context obtained from TSCreate()
2688: - u - the solution vector (can be null if TSSetSolution() was used, otherwise must contain the initial conditions)
2690: Level: beginner
2692: Notes:
2693: The final time returned by this function may be different from the time of the internally
2694: held state accessible by TSGetSolution() and TSGetTime() because the method may have
2695: stepped over the final time.
2697: .keywords: TS, timestep, solve
2699: .seealso: TSCreate(), TSSetSolution(), TSStep()
2700: @*/
2701: PetscErrorCode TSSolve(TS ts,Vec u)
2702: {
2703: Vec solution;
2704: PetscErrorCode ierr;
2709: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
2711: if (!ts->vec_sol || u == ts->vec_sol) {
2712: VecDuplicate(u,&solution);
2713: TSSetSolution(ts,solution);
2714: VecDestroy(&solution); /* grant ownership */
2715: }
2716: VecCopy(u,ts->vec_sol);
2717: } else if (u) {
2718: TSSetSolution(ts,u);
2719: }
2720: TSSetUp(ts);
2721: /* reset time step and iteration counters */
2722: ts->steps = 0;
2723: ts->ksp_its = 0;
2724: ts->snes_its = 0;
2725: ts->num_snes_failures = 0;
2726: ts->reject = 0;
2727: ts->reason = TS_CONVERGED_ITERATING;
2729: TSViewFromOptions(ts,NULL,"-ts_view_pre");
2731: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
2732: (*ts->ops->solve)(ts);
2733: VecCopy(ts->vec_sol,u);
2734: ts->solvetime = ts->ptime;
2735: } else {
2736: /* steps the requested number of timesteps. */
2737: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
2738: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2739: while (!ts->reason) {
2740: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
2741: TSStep(ts);
2742: TSPostStep(ts);
2743: }
2744: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
2745: TSInterpolate(ts,ts->max_time,u);
2746: ts->solvetime = ts->max_time;
2747: solution = u;
2748: } else {
2749: if (u) {VecCopy(ts->vec_sol,u);}
2750: ts->solvetime = ts->ptime;
2751: solution = ts->vec_sol;
2752: }
2753: TSMonitor(ts,ts->steps,ts->solvetime,solution);
2754: }
2755: TSViewFromOptions(ts,NULL,"-ts_view");
2756: PetscObjectSAWsBlock((PetscObject)ts);
2757: return(0);
2758: }
2762: /*@
2763: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
2765: Collective on TS
2767: Input Parameters:
2768: + ts - time stepping context obtained from TSCreate()
2769: . step - step number that has just completed
2770: . ptime - model time of the state
2771: - u - state at the current model time
2773: Notes:
2774: TSMonitor() is typically used within the time stepping implementations.
2775: Users might call this function when using the TSStep() interface instead of TSSolve().
2777: Level: advanced
2779: .keywords: TS, timestep
2780: @*/
2781: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
2782: {
2784: PetscInt i,n = ts->numbermonitors;
2789: for (i=0; i<n; i++) {
2790: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
2791: }
2792: return(0);
2793: }
2795: /* ------------------------------------------------------------------------*/
2798: /*@C
2799: TSMonitorLGCtxCreate - Creates a line graph context for use with
2800: TS to monitor the solution process graphically in various ways
2802: Collective on TS
2804: Input Parameters:
2805: + host - the X display to open, or null for the local machine
2806: . label - the title to put in the title bar
2807: . x, y - the screen coordinates of the upper left coordinate of the window
2808: . m, n - the screen width and height in pixels
2809: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
2811: Output Parameter:
2812: . ctx - the context
2814: Options Database Key:
2815: + -ts_monitor_lg_timestep - automatically sets line graph monitor
2816: . -ts_monitor_lg_solution -
2817: . -ts_monitor_lg_error -
2818: . -ts_monitor_lg_ksp_iterations -
2819: . -ts_monitor_lg_snes_iterations -
2820: - -lg_indicate_data_points <true,false> - indicate the data points (at each time step) on the plot; default is true
2822: Notes:
2823: Use TSMonitorLGCtxDestroy() to destroy.
2825: Level: intermediate
2827: .keywords: TS, monitor, line graph, residual, seealso
2829: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
2831: @*/
2832: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
2833: {
2834: PetscDraw win;
2838: PetscNew(ctx);
2839: PetscDrawCreate(comm,host,label,x,y,m,n,&win);
2840: PetscDrawSetFromOptions(win);
2841: PetscDrawLGCreate(win,1,&(*ctx)->lg);
2842: PetscLogObjectParent((PetscObject)(*ctx)->lg,(PetscObject)win);
2843: PetscDrawLGIndicateDataPoints((*ctx)->lg,PETSC_TRUE);
2844: PetscDrawLGSetFromOptions((*ctx)->lg);
2845: (*ctx)->howoften = howoften;
2846: return(0);
2847: }
2851: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
2852: {
2853: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
2854: PetscReal x = ptime,y;
2858: if (!step) {
2859: PetscDrawAxis axis;
2860: PetscDrawLGGetAxis(ctx->lg,&axis);
2861: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time step");
2862: PetscDrawLGReset(ctx->lg);
2863: PetscDrawLGIndicateDataPoints(ctx->lg,PETSC_TRUE);
2864: }
2865: TSGetTimeStep(ts,&y);
2866: PetscDrawLGAddPoint(ctx->lg,&x,&y);
2867: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
2868: PetscDrawLGDraw(ctx->lg);
2869: }
2870: return(0);
2871: }
2875: /*@C
2876: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
2877: with TSMonitorLGCtxCreate().
2879: Collective on TSMonitorLGCtx
2881: Input Parameter:
2882: . ctx - the monitor context
2884: Level: intermediate
2886: .keywords: TS, monitor, line graph, destroy
2888: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
2889: @*/
2890: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
2891: {
2892: PetscDraw draw;
2896: PetscDrawLGGetDraw((*ctx)->lg,&draw);
2897: PetscDrawDestroy(&draw);
2898: PetscDrawLGDestroy(&(*ctx)->lg);
2899: PetscFree(*ctx);
2900: return(0);
2901: }
2905: /*@
2906: TSGetTime - Gets the time of the most recently completed step.
2908: Not Collective
2910: Input Parameter:
2911: . ts - the TS context obtained from TSCreate()
2913: Output Parameter:
2914: . t - the current time
2916: Level: beginner
2918: Note:
2919: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
2920: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
2922: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2924: .keywords: TS, get, time
2925: @*/
2926: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
2927: {
2931: *t = ts->ptime;
2932: return(0);
2933: }
2937: /*@
2938: TSSetTime - Allows one to reset the time.
2940: Logically Collective on TS
2942: Input Parameters:
2943: + ts - the TS context obtained from TSCreate()
2944: - time - the time
2946: Level: intermediate
2948: .seealso: TSGetTime(), TSSetDuration()
2950: .keywords: TS, set, time
2951: @*/
2952: PetscErrorCode TSSetTime(TS ts, PetscReal t)
2953: {
2957: ts->ptime = t;
2958: return(0);
2959: }
2963: /*@C
2964: TSSetOptionsPrefix - Sets the prefix used for searching for all
2965: TS options in the database.
2967: Logically Collective on TS
2969: Input Parameter:
2970: + ts - The TS context
2971: - prefix - The prefix to prepend to all option names
2973: Notes:
2974: A hyphen (-) must NOT be given at the beginning of the prefix name.
2975: The first character of all runtime options is AUTOMATICALLY the
2976: hyphen.
2978: Level: advanced
2980: .keywords: TS, set, options, prefix, database
2982: .seealso: TSSetFromOptions()
2984: @*/
2985: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
2986: {
2988: SNES snes;
2992: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
2993: TSGetSNES(ts,&snes);
2994: SNESSetOptionsPrefix(snes,prefix);
2995: return(0);
2996: }
3001: /*@C
3002: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
3003: TS options in the database.
3005: Logically Collective on TS
3007: Input Parameter:
3008: + ts - The TS context
3009: - prefix - The prefix to prepend to all option names
3011: Notes:
3012: A hyphen (-) must NOT be given at the beginning of the prefix name.
3013: The first character of all runtime options is AUTOMATICALLY the
3014: hyphen.
3016: Level: advanced
3018: .keywords: TS, append, options, prefix, database
3020: .seealso: TSGetOptionsPrefix()
3022: @*/
3023: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
3024: {
3026: SNES snes;
3030: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
3031: TSGetSNES(ts,&snes);
3032: SNESAppendOptionsPrefix(snes,prefix);
3033: return(0);
3034: }
3038: /*@C
3039: TSGetOptionsPrefix - Sets the prefix used for searching for all
3040: TS options in the database.
3042: Not Collective
3044: Input Parameter:
3045: . ts - The TS context
3047: Output Parameter:
3048: . prefix - A pointer to the prefix string used
3050: Notes: On the fortran side, the user should pass in a string 'prifix' of
3051: sufficient length to hold the prefix.
3053: Level: intermediate
3055: .keywords: TS, get, options, prefix, database
3057: .seealso: TSAppendOptionsPrefix()
3058: @*/
3059: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
3060: {
3066: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
3067: return(0);
3068: }
3072: /*@C
3073: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
3075: Not Collective, but parallel objects are returned if TS is parallel
3077: Input Parameter:
3078: . ts - The TS context obtained from TSCreate()
3080: Output Parameters:
3081: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
3082: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
3083: . func - Function to compute the Jacobian of the RHS (or NULL)
3084: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
3086: Notes: You can pass in NULL for any return argument you do not need.
3088: Level: intermediate
3090: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
3092: .keywords: TS, timestep, get, matrix, Jacobian
3093: @*/
3094: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
3095: {
3097: SNES snes;
3098: DM dm;
3101: TSGetSNES(ts,&snes);
3102: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3103: TSGetDM(ts,&dm);
3104: DMTSGetRHSJacobian(dm,func,ctx);
3105: return(0);
3106: }
3110: /*@C
3111: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
3113: Not Collective, but parallel objects are returned if TS is parallel
3115: Input Parameter:
3116: . ts - The TS context obtained from TSCreate()
3118: Output Parameters:
3119: + Amat - The (approximate) Jacobian of F(t,U,U_t)
3120: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
3121: . f - The function to compute the matrices
3122: - ctx - User-defined context for Jacobian evaluation routine
3124: Notes: You can pass in NULL for any return argument you do not need.
3126: Level: advanced
3128: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
3130: .keywords: TS, timestep, get, matrix, Jacobian
3131: @*/
3132: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
3133: {
3135: SNES snes;
3136: DM dm;
3139: TSGetSNES(ts,&snes);
3140: SNESSetUpMatrices(snes);
3141: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3142: TSGetDM(ts,&dm);
3143: DMTSGetIJacobian(dm,f,ctx);
3144: return(0);
3145: }
3150: /*@C
3151: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
3152: VecView() for the solution at each timestep
3154: Collective on TS
3156: Input Parameters:
3157: + ts - the TS context
3158: . step - current time-step
3159: . ptime - current time
3160: - dummy - either a viewer or NULL
3162: Options Database:
3163: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3165: Notes: the initial solution and current solution are not displayed with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
3166: will look bad
3168: Level: intermediate
3170: .keywords: TS, vector, monitor, view
3172: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3173: @*/
3174: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3175: {
3176: PetscErrorCode ierr;
3177: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3178: PetscDraw draw;
3181: if (!step && ictx->showinitial) {
3182: if (!ictx->initialsolution) {
3183: VecDuplicate(u,&ictx->initialsolution);
3184: }
3185: VecCopy(u,ictx->initialsolution);
3186: }
3187: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
3189: if (ictx->showinitial) {
3190: PetscReal pause;
3191: PetscViewerDrawGetPause(ictx->viewer,&pause);
3192: PetscViewerDrawSetPause(ictx->viewer,0.0);
3193: VecView(ictx->initialsolution,ictx->viewer);
3194: PetscViewerDrawSetPause(ictx->viewer,pause);
3195: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
3196: }
3197: VecView(u,ictx->viewer);
3198: if (ictx->showtimestepandtime) {
3199: PetscReal xl,yl,xr,yr,tw,w,h;
3200: char time[32];
3201: size_t len;
3203: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3204: PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3205: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3206: PetscStrlen(time,&len);
3207: PetscDrawStringGetSize(draw,&tw,NULL);
3208: w = xl + .5*(xr - xl) - .5*len*tw;
3209: h = yl + .95*(yr - yl);
3210: PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3211: PetscDrawFlush(draw);
3212: }
3214: if (ictx->showinitial) {
3215: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
3216: }
3217: return(0);
3218: }
3222: /*@C
3223: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
3225: Collective on TS
3227: Input Parameters:
3228: + ts - the TS context
3229: . step - current time-step
3230: . ptime - current time
3231: - dummy - either a viewer or NULL
3233: Level: intermediate
3235: .keywords: TS, vector, monitor, view
3237: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3238: @*/
3239: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3240: {
3241: PetscErrorCode ierr;
3242: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3243: PetscDraw draw;
3244: MPI_Comm comm;
3245: PetscInt n;
3246: PetscMPIInt size;
3247: PetscReal xl,yl,xr,yr,tw,w,h;
3248: char time[32];
3249: size_t len;
3250: const PetscScalar *U;
3253: PetscObjectGetComm((PetscObject)ts,&comm);
3254: MPI_Comm_size(comm,&size);
3255: if (size != 1) SETERRQ(comm,PETSC_ERR_SUP,"Only allowed for sequential runs");
3256: VecGetSize(u,&n);
3257: if (n != 2) SETERRQ(comm,PETSC_ERR_SUP,"Only for ODEs with two unknowns");
3259: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3261: VecGetArrayRead(u,&U);
3262: PetscDrawAxisGetLimits(ictx->axis,&xl,&xr,&yl,&yr);
3263: if ((PetscRealPart(U[0]) < xl) || (PetscRealPart(U[1]) < yl) || (PetscRealPart(U[0]) > xr) || (PetscRealPart(U[1]) > yr)) {
3264: VecRestoreArrayRead(u,&U);
3265: return(0);
3266: }
3267: if (!step) ictx->color++;
3268: PetscDrawPoint(draw,PetscRealPart(U[0]),PetscRealPart(U[1]),ictx->color);
3269: VecRestoreArrayRead(u,&U);
3271: if (ictx->showtimestepandtime) {
3272: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3273: PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3274: PetscStrlen(time,&len);
3275: PetscDrawStringGetSize(draw,&tw,NULL);
3276: w = xl + .5*(xr - xl) - .5*len*tw;
3277: h = yl + .95*(yr - yl);
3278: PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3279: }
3280: PetscDrawFlush(draw);
3281: return(0);
3282: }
3287: /*@C
3288: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
3290: Collective on TS
3292: Input Parameters:
3293: . ctx - the monitor context
3295: Level: intermediate
3297: .keywords: TS, vector, monitor, view
3299: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
3300: @*/
3301: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
3302: {
3306: PetscDrawAxisDestroy(&(*ictx)->axis);
3307: PetscViewerDestroy(&(*ictx)->viewer);
3308: VecDestroy(&(*ictx)->initialsolution);
3309: PetscFree(*ictx);
3310: return(0);
3311: }
3315: /*@C
3316: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
3318: Collective on TS
3320: Input Parameter:
3321: . ts - time-step context
3323: Output Patameter:
3324: . ctx - the monitor context
3326: Options Database:
3327: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3329: Level: intermediate
3331: .keywords: TS, vector, monitor, view
3333: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
3334: @*/
3335: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
3336: {
3337: PetscErrorCode ierr;
3340: PetscNew(ctx);
3341: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
3342: PetscViewerSetFromOptions((*ctx)->viewer);
3344: (*ctx)->howoften = howoften;
3345: (*ctx)->showinitial = PETSC_FALSE;
3346: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
3348: (*ctx)->showtimestepandtime = PETSC_FALSE;
3349: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
3350: (*ctx)->color = PETSC_DRAW_WHITE;
3351: return(0);
3352: }
3356: /*@C
3357: TSMonitorDrawError - Monitors progress of the TS solvers by calling
3358: VecView() for the error at each timestep
3360: Collective on TS
3362: Input Parameters:
3363: + ts - the TS context
3364: . step - current time-step
3365: . ptime - current time
3366: - dummy - either a viewer or NULL
3368: Level: intermediate
3370: .keywords: TS, vector, monitor, view
3372: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3373: @*/
3374: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3375: {
3376: PetscErrorCode ierr;
3377: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
3378: PetscViewer viewer = ctx->viewer;
3379: Vec work;
3382: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
3383: VecDuplicate(u,&work);
3384: TSComputeSolutionFunction(ts,ptime,work);
3385: VecAXPY(work,-1.0,u);
3386: VecView(work,viewer);
3387: VecDestroy(&work);
3388: return(0);
3389: }
3391: #include <petsc-private/dmimpl.h>
3394: /*@
3395: TSSetDM - Sets the DM that may be used by some preconditioners
3397: Logically Collective on TS and DM
3399: Input Parameters:
3400: + ts - the preconditioner context
3401: - dm - the dm
3403: Level: intermediate
3406: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
3407: @*/
3408: PetscErrorCode TSSetDM(TS ts,DM dm)
3409: {
3411: SNES snes;
3412: DMTS tsdm;
3416: PetscObjectReference((PetscObject)dm);
3417: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
3418: if (ts->dm->dmts && !dm->dmts) {
3419: DMCopyDMTS(ts->dm,dm);
3420: DMGetDMTS(ts->dm,&tsdm);
3421: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
3422: tsdm->originaldm = dm;
3423: }
3424: }
3425: DMDestroy(&ts->dm);
3426: }
3427: ts->dm = dm;
3429: TSGetSNES(ts,&snes);
3430: SNESSetDM(snes,dm);
3431: return(0);
3432: }
3436: /*@
3437: TSGetDM - Gets the DM that may be used by some preconditioners
3439: Not Collective
3441: Input Parameter:
3442: . ts - the preconditioner context
3444: Output Parameter:
3445: . dm - the dm
3447: Level: intermediate
3450: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
3451: @*/
3452: PetscErrorCode TSGetDM(TS ts,DM *dm)
3453: {
3458: if (!ts->dm) {
3459: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
3460: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
3461: }
3462: *dm = ts->dm;
3463: return(0);
3464: }
3468: /*@
3469: SNESTSFormFunction - Function to evaluate nonlinear residual
3471: Logically Collective on SNES
3473: Input Parameter:
3474: + snes - nonlinear solver
3475: . U - the current state at which to evaluate the residual
3476: - ctx - user context, must be a TS
3478: Output Parameter:
3479: . F - the nonlinear residual
3481: Notes:
3482: This function is not normally called by users and is automatically registered with the SNES used by TS.
3483: It is most frequently passed to MatFDColoringSetFunction().
3485: Level: advanced
3487: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
3488: @*/
3489: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
3490: {
3491: TS ts = (TS)ctx;
3499: (ts->ops->snesfunction)(snes,U,F,ts);
3500: return(0);
3501: }
3505: /*@
3506: SNESTSFormJacobian - Function to evaluate the Jacobian
3508: Collective on SNES
3510: Input Parameter:
3511: + snes - nonlinear solver
3512: . U - the current state at which to evaluate the residual
3513: - ctx - user context, must be a TS
3515: Output Parameter:
3516: + A - the Jacobian
3517: . B - the preconditioning matrix (may be the same as A)
3518: - flag - indicates any structure change in the matrix
3520: Notes:
3521: This function is not normally called by users and is automatically registered with the SNES used by TS.
3523: Level: developer
3525: .seealso: SNESSetJacobian()
3526: @*/
3527: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat *A,Mat *B,MatStructure *flag,void *ctx)
3528: {
3529: TS ts = (TS)ctx;
3541: (ts->ops->snesjacobian)(snes,U,A,B,flag,ts);
3542: return(0);
3543: }
3547: /*@C
3548: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only
3550: Collective on TS
3552: Input Arguments:
3553: + ts - time stepping context
3554: . t - time at which to evaluate
3555: . U - state at which to evaluate
3556: - ctx - context
3558: Output Arguments:
3559: . F - right hand side
3561: Level: intermediate
3563: Notes:
3564: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
3565: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
3567: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
3568: @*/
3569: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
3570: {
3572: Mat Arhs,Brhs;
3573: MatStructure flg2;
3576: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
3577: TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
3578: MatMult(Arhs,U,F);
3579: return(0);
3580: }
3584: /*@C
3585: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
3587: Collective on TS
3589: Input Arguments:
3590: + ts - time stepping context
3591: . t - time at which to evaluate
3592: . U - state at which to evaluate
3593: - ctx - context
3595: Output Arguments:
3596: + A - pointer to operator
3597: . B - pointer to preconditioning matrix
3598: - flg - matrix structure flag
3600: Level: intermediate
3602: Notes:
3603: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
3605: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
3606: @*/
3607: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3608: {
3610: *flg = SAME_PRECONDITIONER;
3611: return(0);
3612: }
3616: /*@C
3617: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
3619: Collective on TS
3621: Input Arguments:
3622: + ts - time stepping context
3623: . t - time at which to evaluate
3624: . U - state at which to evaluate
3625: . Udot - time derivative of state vector
3626: - ctx - context
3628: Output Arguments:
3629: . F - left hand side
3631: Level: intermediate
3633: Notes:
3634: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
3635: user is required to write their own TSComputeIFunction.
3636: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
3637: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
3639: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
3640: @*/
3641: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
3642: {
3644: Mat A,B;
3645: MatStructure flg2;
3648: TSGetIJacobian(ts,&A,&B,NULL,NULL);
3649: TSComputeIJacobian(ts,t,U,Udot,1.0,&A,&B,&flg2,PETSC_TRUE);
3650: MatMult(A,Udot,F);
3651: return(0);
3652: }
3656: /*@C
3657: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
3659: Collective on TS
3661: Input Arguments:
3662: + ts - time stepping context
3663: . t - time at which to evaluate
3664: . U - state at which to evaluate
3665: . Udot - time derivative of state vector
3666: . shift - shift to apply
3667: - ctx - context
3669: Output Arguments:
3670: + A - pointer to operator
3671: . B - pointer to preconditioning matrix
3672: - flg - matrix structure flag
3674: Level: advanced
3676: Notes:
3677: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
3679: It is only appropriate for problems of the form
3681: $ M Udot = F(U,t)
3683: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
3684: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
3685: an implicit operator of the form
3687: $ shift*M + J
3689: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
3690: a copy of M or reassemble it when requested.
3692: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
3693: @*/
3694: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3695: {
3699: MatScale(*A, shift / ts->ijacobian.shift);
3700: ts->ijacobian.shift = shift;
3701: *flg = SAME_PRECONDITIONER;
3702: return(0);
3703: }
3707: /*@
3708: TSGetEquationType - Gets the type of the equation that TS is solving.
3710: Not Collective
3712: Input Parameter:
3713: . ts - the TS context
3715: Output Parameter:
3716: . equation_type - see TSEquationType
3718: Level: beginner
3720: .keywords: TS, equation type
3722: .seealso: TSSetEquationType(), TSEquationType
3723: @*/
3724: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
3725: {
3729: *equation_type = ts->equation_type;
3730: return(0);
3731: }
3735: /*@
3736: TSSetEquationType - Sets the type of the equation that TS is solving.
3738: Not Collective
3740: Input Parameter:
3741: + ts - the TS context
3742: . equation_type - see TSEquationType
3744: Level: advanced
3746: .keywords: TS, equation type
3748: .seealso: TSGetEquationType(), TSEquationType
3749: @*/
3750: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
3751: {
3754: ts->equation_type = equation_type;
3755: return(0);
3756: }
3760: /*@
3761: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
3763: Not Collective
3765: Input Parameter:
3766: . ts - the TS context
3768: Output Parameter:
3769: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3770: manual pages for the individual convergence tests for complete lists
3772: Level: beginner
3774: Notes:
3775: Can only be called after the call to TSSolve() is complete.
3777: .keywords: TS, nonlinear, set, convergence, test
3779: .seealso: TSSetConvergenceTest(), TSConvergedReason
3780: @*/
3781: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
3782: {
3786: *reason = ts->reason;
3787: return(0);
3788: }
3792: /*@
3793: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
3795: Not Collective
3797: Input Parameter:
3798: + ts - the TS context
3799: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3800: manual pages for the individual convergence tests for complete lists
3802: Level: advanced
3804: Notes:
3805: Can only be called during TSSolve() is active.
3807: .keywords: TS, nonlinear, set, convergence, test
3809: .seealso: TSConvergedReason
3810: @*/
3811: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
3812: {
3815: ts->reason = reason;
3816: return(0);
3817: }
3821: /*@
3822: TSGetSolveTime - Gets the time after a call to TSSolve()
3824: Not Collective
3826: Input Parameter:
3827: . ts - the TS context
3829: Output Parameter:
3830: . ftime - the final time. This time should correspond to the final time set with TSSetDuration()
3832: Level: beginner
3834: Notes:
3835: Can only be called after the call to TSSolve() is complete.
3837: .keywords: TS, nonlinear, set, convergence, test
3839: .seealso: TSSetConvergenceTest(), TSConvergedReason
3840: @*/
3841: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
3842: {
3846: *ftime = ts->solvetime;
3847: return(0);
3848: }
3852: /*@
3853: TSGetSNESIterations - Gets the total number of nonlinear iterations
3854: used by the time integrator.
3856: Not Collective
3858: Input Parameter:
3859: . ts - TS context
3861: Output Parameter:
3862: . nits - number of nonlinear iterations
3864: Notes:
3865: This counter is reset to zero for each successive call to TSSolve().
3867: Level: intermediate
3869: .keywords: TS, get, number, nonlinear, iterations
3871: .seealso: TSGetKSPIterations()
3872: @*/
3873: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
3874: {
3878: *nits = ts->snes_its;
3879: return(0);
3880: }
3884: /*@
3885: TSGetKSPIterations - Gets the total number of linear iterations
3886: used by the time integrator.
3888: Not Collective
3890: Input Parameter:
3891: . ts - TS context
3893: Output Parameter:
3894: . lits - number of linear iterations
3896: Notes:
3897: This counter is reset to zero for each successive call to TSSolve().
3899: Level: intermediate
3901: .keywords: TS, get, number, linear, iterations
3903: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
3904: @*/
3905: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
3906: {
3910: *lits = ts->ksp_its;
3911: return(0);
3912: }
3916: /*@
3917: TSGetStepRejections - Gets the total number of rejected steps.
3919: Not Collective
3921: Input Parameter:
3922: . ts - TS context
3924: Output Parameter:
3925: . rejects - number of steps rejected
3927: Notes:
3928: This counter is reset to zero for each successive call to TSSolve().
3930: Level: intermediate
3932: .keywords: TS, get, number
3934: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
3935: @*/
3936: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
3937: {
3941: *rejects = ts->reject;
3942: return(0);
3943: }
3947: /*@
3948: TSGetSNESFailures - Gets the total number of failed SNES solves
3950: Not Collective
3952: Input Parameter:
3953: . ts - TS context
3955: Output Parameter:
3956: . fails - number of failed nonlinear solves
3958: Notes:
3959: This counter is reset to zero for each successive call to TSSolve().
3961: Level: intermediate
3963: .keywords: TS, get, number
3965: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
3966: @*/
3967: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
3968: {
3972: *fails = ts->num_snes_failures;
3973: return(0);
3974: }
3978: /*@
3979: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
3981: Not Collective
3983: Input Parameter:
3984: + ts - TS context
3985: - rejects - maximum number of rejected steps, pass -1 for unlimited
3987: Notes:
3988: The counter is reset to zero for each step
3990: Options Database Key:
3991: . -ts_max_reject - Maximum number of step rejections before a step fails
3993: Level: intermediate
3995: .keywords: TS, set, maximum, number
3997: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3998: @*/
3999: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
4000: {
4003: ts->max_reject = rejects;
4004: return(0);
4005: }
4009: /*@
4010: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
4012: Not Collective
4014: Input Parameter:
4015: + ts - TS context
4016: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
4018: Notes:
4019: The counter is reset to zero for each successive call to TSSolve().
4021: Options Database Key:
4022: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
4024: Level: intermediate
4026: .keywords: TS, set, maximum, number
4028: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
4029: @*/
4030: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
4031: {
4034: ts->max_snes_failures = fails;
4035: return(0);
4036: }
4040: /*@
4041: TSSetErrorIfStepFails - Error if no step succeeds
4043: Not Collective
4045: Input Parameter:
4046: + ts - TS context
4047: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
4049: Options Database Key:
4050: . -ts_error_if_step_fails - Error if no step succeeds
4052: Level: intermediate
4054: .keywords: TS, set, error
4056: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
4057: @*/
4058: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
4059: {
4062: ts->errorifstepfailed = err;
4063: return(0);
4064: }
4068: /*@C
4069: TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file
4071: Collective on TS
4073: Input Parameters:
4074: + ts - the TS context
4075: . step - current time-step
4076: . ptime - current time
4077: . u - current state
4078: - viewer - binary viewer
4080: Level: intermediate
4082: .keywords: TS, vector, monitor, view
4084: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4085: @*/
4086: PetscErrorCode TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec u,void *viewer)
4087: {
4089: PetscViewer v = (PetscViewer)viewer;
4092: VecView(u,v);
4093: return(0);
4094: }
4098: /*@C
4099: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
4101: Collective on TS
4103: Input Parameters:
4104: + ts - the TS context
4105: . step - current time-step
4106: . ptime - current time
4107: . u - current state
4108: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
4110: Level: intermediate
4112: Notes:
4113: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
4114: These are named according to the file name template.
4116: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
4118: .keywords: TS, vector, monitor, view
4120: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4121: @*/
4122: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
4123: {
4125: char filename[PETSC_MAX_PATH_LEN];
4126: PetscViewer viewer;
4129: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
4130: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
4131: VecView(u,viewer);
4132: PetscViewerDestroy(&viewer);
4133: return(0);
4134: }
4138: /*@C
4139: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
4141: Collective on TS
4143: Input Parameters:
4144: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
4146: Level: intermediate
4148: Note:
4149: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
4151: .keywords: TS, vector, monitor, view
4153: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
4154: @*/
4155: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
4156: {
4160: PetscFree(*(char**)filenametemplate);
4161: return(0);
4162: }
4166: /*@
4167: TSGetAdapt - Get the adaptive controller context for the current method
4169: Collective on TS if controller has not been created yet
4171: Input Arguments:
4172: . ts - time stepping context
4174: Output Arguments:
4175: . adapt - adaptive controller
4177: Level: intermediate
4179: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
4180: @*/
4181: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
4182: {
4188: if (!ts->adapt) {
4189: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
4190: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
4191: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
4192: }
4193: *adapt = ts->adapt;
4194: return(0);
4195: }
4199: /*@
4200: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
4202: Logically Collective
4204: Input Arguments:
4205: + ts - time integration context
4206: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
4207: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
4208: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
4209: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
4211: Level: beginner
4213: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
4214: @*/
4215: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
4216: {
4220: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
4221: if (vatol) {
4222: PetscObjectReference((PetscObject)vatol);
4223: VecDestroy(&ts->vatol);
4225: ts->vatol = vatol;
4226: }
4227: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
4228: if (vrtol) {
4229: PetscObjectReference((PetscObject)vrtol);
4230: VecDestroy(&ts->vrtol);
4232: ts->vrtol = vrtol;
4233: }
4234: return(0);
4235: }
4239: /*@
4240: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
4242: Logically Collective
4244: Input Arguments:
4245: . ts - time integration context
4247: Output Arguments:
4248: + atol - scalar absolute tolerances, NULL to ignore
4249: . vatol - vector of absolute tolerances, NULL to ignore
4250: . rtol - scalar relative tolerances, NULL to ignore
4251: - vrtol - vector of relative tolerances, NULL to ignore
4253: Level: beginner
4255: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
4256: @*/
4257: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
4258: {
4260: if (atol) *atol = ts->atol;
4261: if (vatol) *vatol = ts->vatol;
4262: if (rtol) *rtol = ts->rtol;
4263: if (vrtol) *vrtol = ts->vrtol;
4264: return(0);
4265: }
4269: /*@
4270: TSErrorNormWRMS - compute a weighted norm of the difference between a vector and the current state
4272: Collective on TS
4274: Input Arguments:
4275: + ts - time stepping context
4276: - Y - state vector to be compared to ts->vec_sol
4278: Output Arguments:
4279: . norm - weighted norm, a value of 1.0 is considered small
4281: Level: developer
4283: .seealso: TSSetTolerances()
4284: @*/
4285: PetscErrorCode TSErrorNormWRMS(TS ts,Vec Y,PetscReal *norm)
4286: {
4287: PetscErrorCode ierr;
4288: PetscInt i,n,N;
4289: const PetscScalar *u,*y;
4290: Vec U;
4291: PetscReal sum,gsum;
4297: U = ts->vec_sol;
4299: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"Y cannot be the TS solution vector");
4301: VecGetSize(U,&N);
4302: VecGetLocalSize(U,&n);
4303: VecGetArrayRead(U,&u);
4304: VecGetArrayRead(Y,&y);
4305: sum = 0.;
4306: if (ts->vatol && ts->vrtol) {
4307: const PetscScalar *atol,*rtol;
4308: VecGetArrayRead(ts->vatol,&atol);
4309: VecGetArrayRead(ts->vrtol,&rtol);
4310: for (i=0; i<n; i++) {
4311: PetscReal tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4312: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4313: }
4314: VecRestoreArrayRead(ts->vatol,&atol);
4315: VecRestoreArrayRead(ts->vrtol,&rtol);
4316: } else if (ts->vatol) { /* vector atol, scalar rtol */
4317: const PetscScalar *atol;
4318: VecGetArrayRead(ts->vatol,&atol);
4319: for (i=0; i<n; i++) {
4320: PetscReal tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4321: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4322: }
4323: VecRestoreArrayRead(ts->vatol,&atol);
4324: } else if (ts->vrtol) { /* scalar atol, vector rtol */
4325: const PetscScalar *rtol;
4326: VecGetArrayRead(ts->vrtol,&rtol);
4327: for (i=0; i<n; i++) {
4328: PetscReal tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4329: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4330: }
4331: VecRestoreArrayRead(ts->vrtol,&rtol);
4332: } else { /* scalar atol, scalar rtol */
4333: for (i=0; i<n; i++) {
4334: PetscReal tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4335: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4336: }
4337: }
4338: VecRestoreArrayRead(U,&u);
4339: VecRestoreArrayRead(Y,&y);
4341: MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
4342: *norm = PetscSqrtReal(gsum / N);
4343: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
4344: return(0);
4345: }
4349: /*@
4350: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
4352: Logically Collective on TS
4354: Input Arguments:
4355: + ts - time stepping context
4356: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
4358: Note:
4359: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
4361: Level: intermediate
4363: .seealso: TSGetCFLTime(), TSADAPTCFL
4364: @*/
4365: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
4366: {
4369: ts->cfltime_local = cfltime;
4370: ts->cfltime = -1.;
4371: return(0);
4372: }
4376: /*@
4377: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
4379: Collective on TS
4381: Input Arguments:
4382: . ts - time stepping context
4384: Output Arguments:
4385: . cfltime - maximum stable time step for forward Euler
4387: Level: advanced
4389: .seealso: TSSetCFLTimeLocal()
4390: @*/
4391: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
4392: {
4396: if (ts->cfltime < 0) {
4397: MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
4398: }
4399: *cfltime = ts->cfltime;
4400: return(0);
4401: }
4405: /*@
4406: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
4408: Input Parameters:
4409: . ts - the TS context.
4410: . xl - lower bound.
4411: . xu - upper bound.
4413: Notes:
4414: If this routine is not called then the lower and upper bounds are set to
4415: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
4417: Level: advanced
4419: @*/
4420: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
4421: {
4423: SNES snes;
4426: TSGetSNES(ts,&snes);
4427: SNESVISetVariableBounds(snes,xl,xu);
4428: return(0);
4429: }
4431: #if defined(PETSC_HAVE_MATLAB_ENGINE)
4432: #include <mex.h>
4434: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
4438: /*
4439: TSComputeFunction_Matlab - Calls the function that has been set with
4440: TSSetFunctionMatlab().
4442: Collective on TS
4444: Input Parameters:
4445: + snes - the TS context
4446: - u - input vector
4448: Output Parameter:
4449: . y - function vector, as set by TSSetFunction()
4451: Notes:
4452: TSComputeFunction() is typically used within nonlinear solvers
4453: implementations, so most users would not generally call this routine
4454: themselves.
4456: Level: developer
4458: .keywords: TS, nonlinear, compute, function
4460: .seealso: TSSetFunction(), TSGetFunction()
4461: */
4462: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
4463: {
4464: PetscErrorCode ierr;
4465: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4466: int nlhs = 1,nrhs = 7;
4467: mxArray *plhs[1],*prhs[7];
4468: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
4478: PetscMemcpy(&ls,&snes,sizeof(snes));
4479: PetscMemcpy(&lx,&u,sizeof(u));
4480: PetscMemcpy(&lxdot,&udot,sizeof(udot));
4481: PetscMemcpy(&ly,&y,sizeof(u));
4483: prhs[0] = mxCreateDoubleScalar((double)ls);
4484: prhs[1] = mxCreateDoubleScalar(time);
4485: prhs[2] = mxCreateDoubleScalar((double)lx);
4486: prhs[3] = mxCreateDoubleScalar((double)lxdot);
4487: prhs[4] = mxCreateDoubleScalar((double)ly);
4488: prhs[5] = mxCreateString(sctx->funcname);
4489: prhs[6] = sctx->ctx;
4490: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
4491: mxGetScalar(plhs[0]);
4492: mxDestroyArray(prhs[0]);
4493: mxDestroyArray(prhs[1]);
4494: mxDestroyArray(prhs[2]);
4495: mxDestroyArray(prhs[3]);
4496: mxDestroyArray(prhs[4]);
4497: mxDestroyArray(prhs[5]);
4498: mxDestroyArray(plhs[0]);
4499: return(0);
4500: }
4505: /*
4506: TSSetFunctionMatlab - Sets the function evaluation routine and function
4507: vector for use by the TS routines in solving ODEs
4508: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
4510: Logically Collective on TS
4512: Input Parameters:
4513: + ts - the TS context
4514: - func - function evaluation routine
4516: Calling sequence of func:
4517: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
4519: Level: beginner
4521: .keywords: TS, nonlinear, set, function
4523: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4524: */
4525: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
4526: {
4527: PetscErrorCode ierr;
4528: TSMatlabContext *sctx;
4531: /* currently sctx is memory bleed */
4532: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4533: PetscStrallocpy(func,&sctx->funcname);
4534: /*
4535: This should work, but it doesn't
4536: sctx->ctx = ctx;
4537: mexMakeArrayPersistent(sctx->ctx);
4538: */
4539: sctx->ctx = mxDuplicateArray(ctx);
4541: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
4542: return(0);
4543: }
4547: /*
4548: TSComputeJacobian_Matlab - Calls the function that has been set with
4549: TSSetJacobianMatlab().
4551: Collective on TS
4553: Input Parameters:
4554: + ts - the TS context
4555: . u - input vector
4556: . A, B - the matrices
4557: - ctx - user context
4559: Output Parameter:
4560: . flag - structure of the matrix
4562: Level: developer
4564: .keywords: TS, nonlinear, compute, function
4566: .seealso: TSSetFunction(), TSGetFunction()
4567: @*/
4568: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flag, void *ctx)
4569: {
4570: PetscErrorCode ierr;
4571: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4572: int nlhs = 2,nrhs = 9;
4573: mxArray *plhs[2],*prhs[9];
4574: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
4580: /* call Matlab function in ctx with arguments u and y */
4582: PetscMemcpy(&ls,&ts,sizeof(ts));
4583: PetscMemcpy(&lx,&u,sizeof(u));
4584: PetscMemcpy(&lxdot,&udot,sizeof(u));
4585: PetscMemcpy(&lA,A,sizeof(u));
4586: PetscMemcpy(&lB,B,sizeof(u));
4588: prhs[0] = mxCreateDoubleScalar((double)ls);
4589: prhs[1] = mxCreateDoubleScalar((double)time);
4590: prhs[2] = mxCreateDoubleScalar((double)lx);
4591: prhs[3] = mxCreateDoubleScalar((double)lxdot);
4592: prhs[4] = mxCreateDoubleScalar((double)shift);
4593: prhs[5] = mxCreateDoubleScalar((double)lA);
4594: prhs[6] = mxCreateDoubleScalar((double)lB);
4595: prhs[7] = mxCreateString(sctx->funcname);
4596: prhs[8] = sctx->ctx;
4597: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
4598: mxGetScalar(plhs[0]);
4599: *flag = (MatStructure) mxGetScalar(plhs[1]);
4600: mxDestroyArray(prhs[0]);
4601: mxDestroyArray(prhs[1]);
4602: mxDestroyArray(prhs[2]);
4603: mxDestroyArray(prhs[3]);
4604: mxDestroyArray(prhs[4]);
4605: mxDestroyArray(prhs[5]);
4606: mxDestroyArray(prhs[6]);
4607: mxDestroyArray(prhs[7]);
4608: mxDestroyArray(plhs[0]);
4609: mxDestroyArray(plhs[1]);
4610: return(0);
4611: }
4616: /*
4617: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
4618: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
4620: Logically Collective on TS
4622: Input Parameters:
4623: + ts - the TS context
4624: . A,B - Jacobian matrices
4625: . func - function evaluation routine
4626: - ctx - user context
4628: Calling sequence of func:
4629: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
4632: Level: developer
4634: .keywords: TS, nonlinear, set, function
4636: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4637: */
4638: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
4639: {
4640: PetscErrorCode ierr;
4641: TSMatlabContext *sctx;
4644: /* currently sctx is memory bleed */
4645: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4646: PetscStrallocpy(func,&sctx->funcname);
4647: /*
4648: This should work, but it doesn't
4649: sctx->ctx = ctx;
4650: mexMakeArrayPersistent(sctx->ctx);
4651: */
4652: sctx->ctx = mxDuplicateArray(ctx);
4654: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
4655: return(0);
4656: }
4660: /*
4661: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
4663: Collective on TS
4665: .seealso: TSSetFunction(), TSGetFunction()
4666: @*/
4667: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
4668: {
4669: PetscErrorCode ierr;
4670: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4671: int nlhs = 1,nrhs = 6;
4672: mxArray *plhs[1],*prhs[6];
4673: long long int lx = 0,ls = 0;
4679: PetscMemcpy(&ls,&ts,sizeof(ts));
4680: PetscMemcpy(&lx,&u,sizeof(u));
4682: prhs[0] = mxCreateDoubleScalar((double)ls);
4683: prhs[1] = mxCreateDoubleScalar((double)it);
4684: prhs[2] = mxCreateDoubleScalar((double)time);
4685: prhs[3] = mxCreateDoubleScalar((double)lx);
4686: prhs[4] = mxCreateString(sctx->funcname);
4687: prhs[5] = sctx->ctx;
4688: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
4689: mxGetScalar(plhs[0]);
4690: mxDestroyArray(prhs[0]);
4691: mxDestroyArray(prhs[1]);
4692: mxDestroyArray(prhs[2]);
4693: mxDestroyArray(prhs[3]);
4694: mxDestroyArray(prhs[4]);
4695: mxDestroyArray(plhs[0]);
4696: return(0);
4697: }
4702: /*
4703: TSMonitorSetMatlab - Sets the monitor function from Matlab
4705: Level: developer
4707: .keywords: TS, nonlinear, set, function
4709: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4710: */
4711: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
4712: {
4713: PetscErrorCode ierr;
4714: TSMatlabContext *sctx;
4717: /* currently sctx is memory bleed */
4718: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4719: PetscStrallocpy(func,&sctx->funcname);
4720: /*
4721: This should work, but it doesn't
4722: sctx->ctx = ctx;
4723: mexMakeArrayPersistent(sctx->ctx);
4724: */
4725: sctx->ctx = mxDuplicateArray(ctx);
4727: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
4728: return(0);
4729: }
4730: #endif
4736: /*@C
4737: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
4738: in a time based line graph
4740: Collective on TS
4742: Input Parameters:
4743: + ts - the TS context
4744: . step - current time-step
4745: . ptime - current time
4746: - lg - a line graph object
4748: Level: intermediate
4750: Notes: each process in a parallel run displays its component solutions in a separate window
4752: .keywords: TS, vector, monitor, view
4754: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4755: @*/
4756: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4757: {
4758: PetscErrorCode ierr;
4759: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
4760: const PetscScalar *yy;
4761: PetscInt dim;
4764: if (!step) {
4765: PetscDrawAxis axis;
4766: PetscDrawLGGetAxis(ctx->lg,&axis);
4767: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
4768: VecGetLocalSize(u,&dim);
4769: PetscDrawLGSetDimension(ctx->lg,dim);
4770: PetscDrawLGReset(ctx->lg);
4771: }
4772: VecGetArrayRead(u,&yy);
4773: #if defined(PETSC_USE_COMPLEX)
4774: {
4775: PetscReal *yreal;
4776: PetscInt i,n;
4777: VecGetLocalSize(u,&n);
4778: PetscMalloc1(n,&yreal);
4779: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4780: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4781: PetscFree(yreal);
4782: }
4783: #else
4784: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4785: #endif
4786: VecRestoreArrayRead(u,&yy);
4787: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4788: PetscDrawLGDraw(ctx->lg);
4789: }
4790: return(0);
4791: }
4795: /*@C
4796: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
4797: in a time based line graph
4799: Collective on TS
4801: Input Parameters:
4802: + ts - the TS context
4803: . step - current time-step
4804: . ptime - current time
4805: - lg - a line graph object
4807: Level: intermediate
4809: Notes:
4810: Only for sequential solves.
4812: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
4814: Options Database Keys:
4815: . -ts_monitor_lg_error - create a graphical monitor of error history
4817: .keywords: TS, vector, monitor, view
4819: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4820: @*/
4821: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4822: {
4823: PetscErrorCode ierr;
4824: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
4825: const PetscScalar *yy;
4826: Vec y;
4827: PetscInt dim;
4830: if (!step) {
4831: PetscDrawAxis axis;
4832: PetscDrawLGGetAxis(ctx->lg,&axis);
4833: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
4834: VecGetLocalSize(u,&dim);
4835: PetscDrawLGSetDimension(ctx->lg,dim);
4836: PetscDrawLGReset(ctx->lg);
4837: }
4838: VecDuplicate(u,&y);
4839: TSComputeSolutionFunction(ts,ptime,y);
4840: VecAXPY(y,-1.0,u);
4841: VecGetArrayRead(y,&yy);
4842: #if defined(PETSC_USE_COMPLEX)
4843: {
4844: PetscReal *yreal;
4845: PetscInt i,n;
4846: VecGetLocalSize(y,&n);
4847: PetscMalloc1(n,&yreal);
4848: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4849: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4850: PetscFree(yreal);
4851: }
4852: #else
4853: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4854: #endif
4855: VecRestoreArrayRead(y,&yy);
4856: VecDestroy(&y);
4857: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4858: PetscDrawLGDraw(ctx->lg);
4859: }
4860: return(0);
4861: }
4865: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4866: {
4867: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4868: PetscReal x = ptime,y;
4870: PetscInt its;
4873: if (!n) {
4874: PetscDrawAxis axis;
4876: PetscDrawLGGetAxis(ctx->lg,&axis);
4877: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
4878: PetscDrawLGReset(ctx->lg);
4880: ctx->snes_its = 0;
4881: }
4882: TSGetSNESIterations(ts,&its);
4883: y = its - ctx->snes_its;
4884: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4885: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4886: PetscDrawLGDraw(ctx->lg);
4887: }
4888: ctx->snes_its = its;
4889: return(0);
4890: }
4894: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4895: {
4896: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4897: PetscReal x = ptime,y;
4899: PetscInt its;
4902: if (!n) {
4903: PetscDrawAxis axis;
4905: PetscDrawLGGetAxis(ctx->lg,&axis);
4906: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
4907: PetscDrawLGReset(ctx->lg);
4909: ctx->ksp_its = 0;
4910: }
4911: TSGetKSPIterations(ts,&its);
4912: y = its - ctx->ksp_its;
4913: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4914: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4915: PetscDrawLGDraw(ctx->lg);
4916: }
4917: ctx->ksp_its = its;
4918: return(0);
4919: }
4923: /*@
4924: TSComputeLinearStability - computes the linear stability function at a point
4926: Collective on TS and Vec
4928: Input Parameters:
4929: + ts - the TS context
4930: - xr,xi - real and imaginary part of input arguments
4932: Output Parameters:
4933: . yr,yi - real and imaginary part of function value
4935: Level: developer
4937: .keywords: TS, compute
4939: .seealso: TSSetRHSFunction(), TSComputeIFunction()
4940: @*/
4941: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
4942: {
4947: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
4948: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
4949: return(0);
4950: }