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Abstract

This document describes the Fortran 90 and C user interfeRJMP S/ersion 4.6 We describe in
detail the data structures, parameters, calling sequeand<rror diagnostics. Example programs using
MUMP@re also given.

*Information on how to obtain updated copies of MUMPS can betaiobd from the Web pages
http://lwww.enseeiht.fr/lapo/MUMPS/ and http://graal.ens-lyon.frfMUMPS/ or by sending email to
mumps@cerfacs.fr
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1 Introduction

MUMP&‘MUItifrontal Massively Parallel Solver”) is a packagerfsolving systems of linear equations
of the form Ax = b, whereA is a square sparse matrix that can be either unsymmetriansymic
positive definite, or general symmetriUMPSises a multifrontal technique which is a direct method
based on either th&U or the LDL7 factorization of the matrix. We refer the reader to the paper
[3,4,7,16,17, 21, 20, 8] for full details of the techniquesd.MUMP ®xploits both parallelism arising
from sparsity in the matriA and from dense factorizations kernels.

The main features of thBlUMP$ackage include the solution of the transposed systemt wfpu
the matrix in assembled format (distributed or centraljzadelemental format, error analysis, iterative
refinement, scaling of the original matrix, and return of &Wccomplement matrixMUMP Sffers
several built-in ordering algorithms, a tight interfacestime external ordering packages such as PORD
[23] and METIS [22], and the possibility for the user to inpudiven ordering. FinallMUMP$ available
in various arithmetics (real or complex, single or doublegsion).

The software is written in Fortran 90 although a C interfacavailable (see Section 8). The parallel
version of MUMP$equires MPI [24] for message passing and makes use of theSBIL2, 13], BLACS,
and ScaLAPACK [10] libraries. The sequential version omlljas on BLAS.

MUMPS$s downloaded from the web site almost once a day on averagjéas been run on very
many machines, compilers and operating systems, althougkxperience is really only with UNIX-
based systems. We have tested it extensively on parallgbai@ms from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSlistributes the work tasks among the processors, but arifidenprocessor (the host) is
required to perform most of the analysis phase, to distilhe incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, anadlteat the solution. The systetaix = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based onitimaeatrized patters\ +
AT, and carries out symbolic factorization. A mapping of thdtifrontal computational graph is
then computed, and symbolic information is transferrethfte host to the other processors. Using
this information, the processors estimate the memory sacg$or factorization and solution.

2. Factorization. The original matrix is first distributed to processors thall participate in the
numerical factorization. The numerical factorization acle frontal matrix is conducted by a
masterprocessor (determined by the analysis phase) and one orstaveprocessors (determined
dynamically). Each processor allocates an array for douion blocks and factors; the factors
must be kept for the solution phase.

3. Solution. The right-hand sid® is broadcast from the host to the other processors. Thesegsors
compute the solutios using the (distributed) factors computed during Step 2,taadsolution is
either assembled on the host or kept distributed on the psocs.

Each of these phases can be called separately and seveealces ofMUMPSan be handled
simultaneouslyMUMP@llows the host processor to participate in computatiomgduhe factorization
and solve phases, just like any other processor (see S&c8ipn

For both the symmetric and the unsymmetric algorithms usethé code, we have chosen a
fully asynchronous approach with dynamic scheduling of thenputational tasks. Asynchronous
communication is used to enable overlapping between conwation and computation. Dynamic
scheduling was initially chosen to accommodate numerioaitipg in the factorization. The other
important reason for this choice was that, with dynamic dalieg, the algorithm can adapt itself at
execution time to remap work and data to more appropriategssors. In fact, we combine the main
features of static and dynamic approaches; we use the d¢istmabtained during the analysis to map
some of the main computational tasks; the other tasks arenaigally scheduled at execution time. The
main data structures (the original matrix and the factors)sémilarly partially mapped according to the
analysis phase.



2 Main functionalities of MUMPS 4.6

We describe here the main functionalities of the soM&MPSThe user should refer to Sections 4
and 5 for a complete description of the parameters that meisteb or that are referred to in this
Section. The variables mentioned in this section are coemtsnof a structurenumpspar of type
[SDCZ]MUMPSSTRUC(see Section 3) and for the sake of clarity, we refer to thety by their
component name. For example, we use ICNTL to refentmnpspar%ICNTL .

2.1 Input matrix structure

MUMPSrovides several possibilities for inputting the matrix. heT selection is controlled by the
parameters ICNTL(5) and ICNTL(18).

The input matrix can be supplied glemental formatind must then be input centrally on the host
(ICNTL(5)=1 and ICNTL(18)=0). For full details see Sectidrb. Otherwise, it can be supplied in
assembled formah coordinate form (ICNTL(5)=0), and, in this case, there several possibilities (see
Sections 4.4 and 4.6):

1. the matrix can be input centrally on the host processddIiq18)=0);

2. only the matrix structure is provided on the host for thalgsis phase and the matrix entries are
provided for the numerical factorization, distributedass the processors:

e either according to a mapping supplied by the analysis (10(48)=1),
e or according to a user determined mapping (ICNTL(18)=2);

3. itis also possible to distribute the matrix pattern aralehtries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recoemded option for distributed entry).

By default the input matrix is considered in assembled farfif@NTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Symmetric orderings

A range of orderings to preserve sparsity is available iratiedysis phase. Most of them were introduced
in Release 4.2 of thllUMP®$ackage. The parameter ICNTL(7) is used to determine theriogl

In addition to the approximate minimum degree ordering (AME]), an approximate minimum
degree ordering with automatic quasi-dense row detec@#MD, [1]), an approximate minimum fill-in
ordering (AMF), an ordering where bottom-up strategiesused to build separators by Jurgen Schulze
from University of Paderborn (PORD, [23]), and the METIS kege from Univ. of Minnesota [22] are
possible choices. When using the METIS package, only the IMEIODEND hybrid ordering routine
can be used.

A user-supplied ordering can also be provided and the pie@ranust be set by the user in PERM
(see Section 4.8). Also, it should be noted that the logittthadles this case is different from the built-in
orderings so that, for example, a different performancedifierent internal data structures are created
by a run that generates an ordering and a separate one tHatfet same ordering array in as input.

If ICNTL(7)=7, theMUMP $ackage will automatically choose the ordering dependimiie ordering
packages installed, the type of the matrix (Symmetric oyommsetric), the size of the matrix and the
number of processors available.

The default value of ICNTL(7) is 7.

2.3 Other pre-processing facilities

In addition to the symmetric orderingslUMP $ffers other pre-processing facilities: permuting to zero
free diagonal and prescaling.

Permutations to a zero-free diagonal can be applied to vesymametric matrices and can help reduce
fill-in and arithmetic, see [14, 15]. This functionality isrtrolled by ICNTL(6). For symmetric matrices
this permutation can also be used to constrain the symnperinutation (see ICNTL(12) option).

Prescaling of the input matrix can help reduce fill-in durifagtorization and can improve the
numerical accuracy. A range of classical scalings are geavand can be automatically performed at the



beginning of the numerical factorization phase. This fiomality is controlled by ICNTL(8). For some
values of ICNTL(6) or ICNTL(12) the arrays COLSCA/ROWSCAndae allocated and built during the
analysis phase (see Section 4.7). Symmetric indefiniteiceatpreprocessings, as described in [18], can
be applied and are controlled by ICNTL(12).

2.4 Post-processing facilities

It has been shown [9] that with only two to three steps of tieearefinement the solution can often be
significantly improved. Iterative refinement can be optllynperformed after the solution step using the
parameter ICNTL(10).

MUMPS&lso enables the user to perform classical error analysiedban the residuals (see the
description of ICNTL(11) in Section 5). We calculate an mstie of the sparse backward error using
the theory and metrics developed in [9]. We use the notatior the computed solution and a modulus
sigh on a vector or a matrix to indicate the vector or matritaoted by replacing all entries by their
moduli. The scaled residual

b — Ax],
(ol + AT <D, @
(1o + [A]]x]);

is computed for all equations except those for which the matoe is nonzero and the denominator is

small. For all the exceptional equations,

b — AXx|,
= = &)
(IATD; + Al oo 1%l
is used instead, wher; is row: of A. The largest scaled residual (1) is returnedin RINFOG(d)tar

largest scaled residual (2) is returned in RINFOG(8). Ikglliations are in category (1), zero is returned
in RINFOG(8). The computed solutionis the exact solution of the equation

(A +5A)x = (b +db),

where
6A;; < max(RINFOG(7), RINFOG(8))|A],;,
andob; < max(RINFOG(7)|b|,, RINFOG(8)||A:|| . [IX]|..)- Note thatd A respects the sparsity of
A. An upper bound for the error in the solution is returned iINRDG(9). Finally condition numbers
cond; andconds for the matrix are returned in RINFOG(10) and RINFOG(113pectively, and
llox]| < RINFOG(7) x cond; + RINFOG(8) x conds.

[l

2.5 Solving the transposed system

Given a sparse matriA, the systemAX = B or ATX = B can be solved during the solve stage,
whereA is square of order andX andB are of ordem by nrhs. This is controlled by ICNTL(9).

2.6 Return a specified Schur complement

A Schur complement matrix (centralized or provided as 2xbloyclic matrix) can be returned to the

user (see ICNTL(19) and Section 4.9). The user must spel#ylist of indices of the Schur matrix.

MUMP&hen provides both a partial factorization of the completgrir and returns the assembled Schur

matrix in user memory. The Schur matrix is considered aslanfatrix. The partial factorization that

builds the Schur matrix can also be used to solve linear systssociated with the “interior” variables.
For example, consider the partitioned matrix

A1 A
A= 1AL 3
< Asxq Asp ) (3)

where the variables Ak » are specified by the user. Then the Schur complement, aseetbyMUMPS
is Az o — AQ,IA;}AI,Q, and the solve is performed of;,; only. (Entries in the solution vector



corresponding to indices in the Schur matrix need not be s&ntry and are explicitly set to zero on
output.)

Note that the Schur complement could be considered as aret@ontribution to the interface block
in a domain decomposition and BtUMP8ould be used to solve this interface problem using the eleme
entry functionality.

2.7 Arithmetic versions

Several versions of the packalygJMP&re available:REAL DOUBLE PRECISIONCOMPLEXand
DOUBLE COMPLEX
This document applies to all four precisions. In the follog/ive use the conventions below:

the ternreal is used forREALor DOUBLE PRECISION

the terncomplexis used folCOMPLEXr DOUBLE COMPLEX

real version means eithREALor DOUBLE PRECISIONersion,
complex version means eith eOMPLEXor DOUBLE COMPLEXrsion.

P wbdpR

2.8 The working host processor

The analysis phase is performed on the host processor. Ttiggsor is the one with rank 0 in the
communicator provided tMUMPSBY setting the variable PAR to 1 (see Section 42)UMPallows the
host to participate in computations during the factormatind solve phases, just like any other processor.
This allowsMUMPSo run on a single processor and prevents the host processay iolle during the
factorization and solve phases (as would be the case for BARMe thus generally recommend using a
working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a lasy@ralized matrix on a purely
distributed architecture with relatively small local menyto PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on tt&. ho

2.9 Sequential version

It is possible to uséMIUMPSequentially by limiting the number of processors to oné the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries ar tuser program needs to make explicit
calls toMPI_INIT andMPI_FINALIZE .

A purely sequential version dMMUMP$s also available. For this, a special library is distrilaliteat
provides all external references neededMiyMPSor a sequential environmentMUMP®an thus be
used in a simple sequential program, ignoring anythingedléeo MPI. Details on how to build a purely
sequential version déflUMP &re available in the fle README available in tMlUMPS8istribution. Note
that for the sequential version, the component PAR must ti® de(see Section 4.2) and that the calling
program should not make use of MPI.

2.10 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a shawedory), a parallel shared memory
BLAS library (also called multithread BLAS) is often proed by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) camghbi#isantly more efficient than running
with only MPI processes. For example on a computer with 2 Skifea and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MRgs

2.11 Main changes between versions

MUMP$ an evolving package and new facilities and algorithmsHhzen added that result in changes
to the version number. Please refeihttp://www.enseeiht.frlapo/MUMPS/fag.html and
http://graal.ens-lyon.frIMUMPS/faq.html to an history of the main modifications where
we also report the most frequently asked question about dkiters The README file with our
distribution can be consulted for more details and for theslaf the releases.



3 Sequence in which routines are called

In the following, we use the notatig8DCZ]MUMPSo refer toDMUMPSMUMPZMUMP8rCMUMPS
for REAL DOUBLE PRECISIONCOMPLEX¥NdDOUBLE COMPLEXrsions, respectively. Similarly
[SDCZ]MUMPSSTRUC refers to either SMUMPSTRUC DMUMPSTRUC CMUMPSTRUG
or ZMUMPSTRUGC and [sdczlmumps _struc.h  to smumpsstruc.h , dmumpsstruc.h
cmumpsstruc.h  orzmumpsstruc.h

In the Fortran 90 interface, there is a single user callahibraitine per precision, called
[SDCZ]MUMPS that has a single parametemumpspar of Fortran 90 derived datatype
[SDCZ]MUMPSSTRUCdefined in [sdczlmumpstruc.h. The interface is the same for the sequential
version, only the compilation process and libraries neednamged. In the case of the parallel version,
MPI must be initialized by the user before the first calf$® CZ]MUMPSs made. The calling sequence
for theDOUBLE PRECISIONersion may look as follows:

INCLUDE ’'mpif.h’
INCLUDE 'dmumps_struc.h’

INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPI_INIT(IERR) I Not needed in purely sequential versi on
CALL DMUMPS( mumps_par )

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other precisions, dmumpsstruc.h should be replaced bysmumpsstruc.h
cmumpsstruc.h  , or zmumpsstruc.h , and the’'D’ in DMUMPSnd DMUMPSTRUC by
'S’ ,'C or'Z

The variablenumpspar of datatypg SDCZ]MUMPSSTRUGCholds all the data for the problem. It
has many components, only some of which are of interest taghe The other components are internal
to the package. Some of the components must only be definedeohost. Others must be defined
on all processors. The filisdczlmumps _struc.h  defines the derived datatype and must always
be included in the program that caMUMPSThe file [sdczlmumps _root.h , which is included in
[sdczlmumps _struc.h , must also be available at compilation time. Componenthefstructure
[SDCZ]MUMPSSTRUGNhat are of interest to the user are shown in Figure 1.

The interface toMUMPSonsists in calling the subroutinDCZ]MUMPSwith the appropriate
parameters set imumpspar .



INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]JMUMPS_STRUC
SEQUENCE
C INPUT PARAMETERS

G Frkkkkkkkkkkkkkkk

Problem definition
Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
Type of parallelism (PAR=1 host working, PAR=0 host not wor king)
INTEGER SYM, PAR, JOB
Control parameters

INTEGER ICNTL(40)

o0 0000

real CNTL(5)

INTEGER N ! Order of input matrix
Assembled input matrix : User interface

[eXe!

INTEGER NZ
real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A _LOC
C Unassembled input matrix: User interface

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/lcomplex, DIMENSION(:), POINTER :: A _ELT
MPI Communicator

INTEGER COMM
Ordering and scaling, if given by user (optional)

o0 00

INTEGER, DIMENSION(:), POINTER :: PERM_IN
real/complex DIMENSION(:), POINTER :: COLSCA, ROWSCA
INPUT/OUTPUT data

*hkkkkkkkkkkkkkkkk
RHS/SOL_loc : on input it holds the right-hand side
on output it always holds the assembled solution

O0000

real/complex DIMENSION(:), POINTER :: RHS
real/lcomplex DIMENSION(:), POINTER :: RHS _SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_LOC

real/lcomplex DIMENSION(:), POINTER :: SOL _LOC

INTEGER, DIMENSION(:), POINTER :: ISOL_LOC

OUTPUT data and Statistics

Khkkkhkhkkkhkhkhkhkhkhkkkk
INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur

(eXe}

INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex DIMENSION(:), POINTER :: SCHUR

C Mapping potentially provided by MUMPS
c
INTEGER, DIMENSION(:), POINTER :: MAPPING
END TYPE [SDCZ]JMUMPS_STRUC
Figure 1: Main components of the structurdSDCZ]JMUMPSSTRUC defined in
[sdczlmumps _struc.h . real/complex qualifies parameters that are real in the real version and

complex in the complex version, wheregsal is used for parameters that are always real, even in the
complex version oMUMPS 8



4 Input and output parameters

In this section, we describe the components of the variablempspar% of datatype
[SDCZ]MUMPSSTRUGChat must be set by the user.

4.1 Control of the three main phases: Analysis, Factorizatin, Solve

mumpspar%JOB (integer) must be initialized by the user on all processefsite a call toMUMPSt
controls the main action taken BYUMPSt is not altered byMUMPS

JOB= -1 initializes an instance of the package. A call with JOB-1 must be performed before
any other call to the package on the same instance. It setaltledlues for other components
of MUMPSSTRUQsuch as ICNTL, see below), which may then be altered befdrseqjuent
calls toMUMPSNote that three components of the structure must alway®tleysthe user
(on all processors) before a call with J@B-1. These are

o mumpspar%COMM,
e mumpspar%SYM, and
e mumpspar%PAR.

Note that, after a call to JOB- —1, the internal component mumpsar%MYID contains
the rank of the calling processor in the communicator predito MUMPSThus, the test
“(mumpspar%MYID == 0)” may be used to identify the host processoe (Section 2.8).

JOB = -2 destroys an instance of the package. All data structwsscated with the instance,
except those provided by the user in munpas, are deallocated. It should be called by the
user only when no further calls tddUMPSvith this instance are required. It should be called
before a further JOB-= -1 call with the same argument mumpar.

JOB=1 performs the analysis. In this phab#JMP&hooses pivots from the diagonal using a
selection criterion to preserve sparsity. It uses the patieA + AT but ignores numerical
values. It subsequently constructs subsidiary informmatéy the numerical factorization (a
JOB=2 call).

An option exists for the user to input the pivotal sequenGN{TL(7)=1, see below) in which
case only the necessary information for a JOB=2 call will beagated.

The numerical values of the original matrix, mumpar%A, must be provided by the user
during the analysis phase only if ICNTL(6) is set to a valueMeen 2 and 7. See ICNTL(6)
in Section 5 for more details.

MUMP@&ses the pattern of the matri input by the user. In the case afcentralized matrix
the following components of the structure defining the matattern must be set by the user
only on the host:

e mumpspar%N, mumpgar%NZ, mumpgar%IRN, and mumppar%JCN if the user
wishes to input the structure of the matrix assembled formaflCNTL(5)=0 and
ICNTL(18) # 3) (see Section 4.4),

e mumpspar%N, mumpgpar%NELT, mumpar%ELTPTR, and mumpgar%ELTVAR
if the user wishes to input the matrix@emental formatl CNTL(5)=1) (see Section 4.5).

These components should be passed unchanged when laitgg tadl factorization (JOB=2)
and solve (JOB=3) phases.
In the case o distributed assembled matrigee Section 4.6 for more details and options),

e If ICNTL(18) = 1 or 2, the previous requirements hold excédpttiRN and JCN are no
longer required and need not be passed unchanged to theZatitm phase.

e If ICNTL(18) = 3, the user should provide
— mumpspar%N on the host

— mumpspar%NZloc, mumpspar%IRNloc and mumpspar%JCNIoc on all slave
processors. Those should be passed unchanged to theZatitori(JOB=2) and solve
(JOB=3) phases.

A call to MUMP®ith JOB=1 must be preceded by a call with J&B-1 on the same instance.



JOB=2 performs the factorization. It uses the numericaleslof the matrixA provided by the

user and the information from the analysis phase (JOB=Jdmfize the matri.
If the matrix is centralizecbn the host (ICNTL(18)=0), the pattern of the matrix should
be passed unchanged since the last call to the analysis feselOB=1); the following
components of the structure define the numerical values arsl be set by the user (on the
host only) before a call with JOB=2:

e mumpspar%A if the matrix is in assembled format (ICNTL(5)=0), or

e mumpspar%AELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed(ICNTL(5)=0 and ICNTL(18)+# 0), then the following
components of the structure must be set by the user on all plcessors before a call with
JOB=2:

e mumpspar%A.loc on all slave processors, and

e mumpspar%NZloc, mumpspar%IRNloc and mumpgar%JCNIoc if ICNTL(18)=1

or 2. (For ICNTL(18)=3, NZloc, IRN_loc and JCNIoc have already been passed to the
analysis step and must be passed unchanged.)

(See Sections 4.4, 4.5, and 4.6.)
The actual pivot sequence used during the factorizationdifter slightly from the sequence
returned by the analysis if the matrix is not diagonally dominant.
An option exists for the user to input scaling vectors orNBiMPSompute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(& 0, see Section 4.7).

A call to MUMP®iith JOB=2 must be preceded by a call with JOB=1 on the santarios.
JOB=3 performs the solution. It uses the right-hand sid(w)ovided by the user and the factors
generated by the factorization (JOB=2) to solve a systengoftionsAX = B or ATX =

B. The pattern and values of the matrix should be passed ugetiaince the last call to the
factorization phase (see JOB=2). The structure componantpapar%eRHS must be set by
the user (on the host only) before a call with JOB=3. (Seei@edt11.)
A call to MUMP$ith JOB=3 must be preceded by a call with JOB=2 (or JOB=4hersame
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. Istne preceded by a call to
MUMP®iith JOB= -1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must beedeetby a call ttMUMP Siith
JOB=1 on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. Istnne¢ preceded by a call to
MUMP®iith JOB= -1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance aslpe.

4.2 Control of parallelism

mumpsparCOMM (integer) must be set by the user on all processors beforaittaization phase
(JOB=-1) and must not be changed. It must be set to a valid MPI coriwaian that will be used
for message passing insidJMPSt is not altered byMUMPSThe processor with rank O in this
communicator is used IMUMP &s thehost processor. Note that only the processors belonging to
the communicator should cafUMPS

mumpsparPAR (integer) must be initialized by the user on all processarbsia accessed iMUMPS
only during the initialization phase (JOB -1). It is not altered byMUMPSnd its value is
communicated internally to the other phases as requiressilBle values for PAR are:
0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problemerform symbolic computations during
the analysis phase, distribute data, and collect reswoits fither processors. If setto 1, the host will
also participate in the factorization and solve phaseddfnitial problem is large and memory is
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an issue, PAR = 1 is not recommended if the matrix is centrdln processor 0 because this can
lead to memory imbalance, with processor 0 having a largenongload than the other processors.
Note that setting PAR to 1, and using only 1 processor, leadssequential code.

4.3 Matrix type

mumpspar¥sSYM (integer) must be initialized by the user on all processotsia accessed IMUMPS
only during the initialization phase (JOB-1). Itis not altered bfMUMP $xcept for the complex
version of MUMPSvhere SYM=1 is replaced by SYM=2 and structural symmetryjdated up
to the root. Its value is communicated internally to the pffteases as required. Possible values for
SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

For the complex version, the value SYM=1 is currently trdae SYM=2. We do not have a version
for Hermitian matrices in this release MUMPS

4.4 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), and muwpg$ocA (eal/complex
array pointer, dimension NZ) hold the matrix in assemblethfit. These components should be set
by the user only on the host and only when ICNTL(5)=0 and ICKB)=0; they are not modified
by the package.

e N is the order of the matriA, N > 0. Itis not altered bMUMPS
e NZis the number of entries being input, NZ0. Itis not altered bjUMPS

e |IRN, JCN are integer arrays of length NZ containing the rodt @slumn indices, respectively,
for the matrix entries.

A is areal (complexin the complex version) array of length NZ. The user must &) £

the value of the entry in row IRN(k) and column JCN(k) of thetrxa A is accessed when
JOB=1 only when ICNTL(6) 0. Duplicate entries are summed and any with IRN(k) or
JCN(K) out-of-range are ignored.

Note that, in the case of the symmetric solver, a diagonakemru;; is held as A(K)=:,
IRN(K)=JCN(k)=, and a pair of off-diagonal nonzeras; = a;; is held as A(k)=;; and
IRN(k)=i, JCN(k)= or vice-versa. Again, duplicate entries are summed andesntvith
IRN(K) or JCN(K) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern ofrtéieix and must be set by the
user before the analysis phase (JOB=1). Component A mudtheefore the factorization phase
(JOB=2).

4.5 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NELT (integer), mumppar%ELTPTR (integer array pointer,
dimension NELT+1), mumppar%ELTVAR (integer array pointer, dimension ELTPTR(NEHI)
— 1), and mumppar%AELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the hoeshgndthen ICNTL(5)=1:

e N is the order of the matriA, N > 0. It is not altered bMUMPS

e NELT is the number of elements being input, NEXTO. It is not altered byMUMPS

e ELTPTRIs an integer array of length NELT+1. ELTPTR(j) paitb the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) mustdat to the position after the
last variable of the last element. Note that ELTPTR(1) sthdnd equal to 1. ELPTR is not
altered byMUMPS
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e ELTVAR is an integer array of length ELTPTR(NELT+1) — 1 and shibe set to the lists
of variables of the elements. It is not altered MyMPSThose for element j are stored in
positions ELTPTR()), ..., ELTPTR(j+1)-1. Out-of-rangeriedles are ignored.

e A_ELT is areal (complexin the complex version) array. [V, denotes ELTPTR(p+1)—
ELTPTR(p), then the values for element j are stored in pws#ti; + 1, ..., Kj + L;, where

- K; =317 Np? andL; = N;? in the unsymmetric case (SYM = 0)

- K =Y (Np - (N +1))/2, and Ly = (Nj - (Nj + 1))/2 in the symmetric case
(SYM #£ 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Valeesesponding to out-of-range
variables are ignored and values corresponding to duplicatiables within an element are
summed. AELT is not accessed when JOB = 1. Note that, although the eliinaatrix may
be symmetric or unsymmetric in value, its structure is asvsymmetric.

The components N, NELT, ELTPTR, and ELTVAR describe thegratof the matrix and must
be set by the user before the analysis phase (JOB=1). ComipAnELT must be set before the
factorization phase (JOB=2). Note that, in the currentasdeof the package, the element entry
must be centralized on the host.

4.6 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)+#0

When the matrix is in assembled form (ICNTL(5)=0), we offereral options, defined by the control
parameter ICNTL(18) described in Section 5. The followirggmponents of the structure define the
distributed assembled matrix input. They are valid for myozvalues of ICNTL(18), otherwise the user
should refer to Section 4.4.

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), murpps%IRNloc (integer array
pointer, dimension NZoc), mumpspar%JCNIoc (integer array pointer, dimension NZc),
mumpspar%A. loc (real/complexarray pointer, dimension Nibc), and mumpgpar%eMAPPING
(integer array, dimension NZ).

e N is the order of the matriA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS

e NZis the number of entries being input in the definitionfofNZ > 0. It must be defined on
the host before analysis if ICNTL(18) = 1, or 2.

e |IRN, JCN are integer arrays of length NZ containing the rodt eslumn indices, respectively,
for the matrix entries. They must be defined on the host befoatysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis

e NZ_loc is the number of entries local to a processor. It must Bimeld on all processors in
the case of the working host model of parallelism (PAR=1} an all processors except the
host in the case of the non-working host model of parallel{®#aR=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.

e IRN_loc, JCNloc are integer arrays of length NiAc containing the row and column indices,
respectively, for the matrix entries. They must be definedbprocessors if PAR=1, and
on all processors except the host if PAR=0, before analydiSNTL(18) = 3, and before
factorization if ICNTL(18) =1 or 2.

e A_loc is areal (complexin the complex version) array of dimension Nac that must be
defined before the factorization phase (JOB=2) on all psmrasif PAR = 1, and on all
processors except the host if PAR = 0. The user must sktck) to the value in row
IRN_loc(k) and column JCNoc(k).

e MAPPING is an integer array of size NZ which is returned MYMPSn the host after
the analysis phase as an indication of a preferred mappilgNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) shoulddrevided on processor with
rank IPROC in thelUMP$ommunicator.
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We recommend the use of options ICNTL(18)= 2 or 3 becauseatethe simplest and most flexible
options. Furthermore, those options (2 or 3) are in gendmabdst as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.

4.7 Scaling

mumpspar%COLSCA, mumpspar¥ROWSCA (double precision array pointers, dimension N) are
optional scaling arrays required only by the host. If a seplis provided by the user
(ICNTL(8) = —1), these arrays must be allocated and initialized by tlee ais the host, before a
call to the factorization phase (JOB=2). They might also lteraatically allocated and computed
by the package during analysis (if ICNTL(6)=5 or 6), in whizdse ICNTL(8)= —2 will be set by
the package during analysis and should be passed unchantfedsolve phase (JOB=3).

4.8 Given ordering: ICNTL(7)=1

mumpspar¥PERM_IN (integer array pointer, dimension N) must be allocated aitéhlized by the
user on the host if ICNTL(7)=1. It is accessed during thesial(JOB=1) and PERNN(i), i=1,
..., N'must hold the position of variable i in the pivot ordbiote that, even when the ordering is
provided by the user, the analysis must still be performédrbenumerical factorization.

4.9 Return a Schur complement: ICNTL(19)£ 0

mumpspar¥%SIZE _SCHUR (integer) must be initialized on the host to the number ofades defining
the Schur complement if ICNTL(19) = 1, 2, or 3. Itis accessadrd) the analysis phase and should
be passed unchanged to the factorization and solve phases.

mumpsparISTVAR _SCHUR (integer array pointer, dimension mumpar%SIZE_SCHUR) must
be allocated and initialized by the user on the host if ICNI®)(= 1, 2 or 3. It is not altered by
MUMPSt is accessed during analysis (JOB=1) and LISTVBRHUR(i), i=1, ..., SIZESCHUR
must hold the‘" variable of the Schur complement matrix.

Centralized Schur complement (ICNTL(19)=1)

mumpspar%SCHUR is areal (complexin the complex version) 1-dimensional pointer array that
should point to size SIZESCHUR x SIZE_.SCHUR locations in memory. It must be allocated
by the user on the host (independently of the value of mupgr86PAR) before the factorization
phase. On exit, it holds the Schur complement matrix. Onuddtpm the factorization phase, and
on the host node, the 1-dimensional pointer array SCHURngjtleSIZESCHUR*SIZESCHUR
holds the (dense) Schur matrix of order SIBEHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the userd8TVAR_SCHUR and that the Schur
matrix is storedy rows. If the matrix is symmetric then only the lower triangulartpaf the Schur
matrix is provided y rows) and the upper part is not significant. (This can also be Weagthe
upper triangular part stored by columns in which case thetqart is not defined.)

Distributed Schur complement (ICNTL(19)=2 or 3)

For symmetric matrices, the value of ICNTL(19) controls e only the lower part (ICNTL(19) =
2) or the complete matrix (ICNTL(19) = 3) is generated. Weals/ provide the complete matrix for
unsymmetric matrices so either value for ICNTL(19) has thae effect.

If ICNTL(19)=2 or 3, the following parameters should be defin on the host on
‘ entry to the analysis pha#e

mumpsparyNPROW, mumpspar¥NPCOL, mumpspar¥dMBLOCK , and mumpgpar¥dNBLOCK
are integers corresponding to the characteristics of a 2Bkbtyclic grid of processors. They
should be defined on the host before a call to the analysieplfamy of these quantities is smaller
than or equal to zero or has not been defined by the user, orRIONPx NPCOL is larger than
the number of slave processors available (total numberasfgssors if mumppar%PAR=1, total
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number of processors minus 1 if mumpar%PAR=0), then a grid shape will be computed by the
analysis phase dlUMP&nd NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exit
from the analysis phase. Please refer to [10] (for examplenbre details on the notion of grid of
processors and on 2D block cyclic distributions. We briefigatibe the meaning of the four above
parameters here:

e NPROW is the number of processors in a row of the process grid,

e NPCOL is the number of processors in a column of the proceds gr

e MBLOCK is the blocking factor used to distribute the rows le¢ tSchur complement,

e NBLOCK is the blocking factor used to distribute the colunafishe Schur complement.

As in ScaLAPACK, we use a row-major process grid of processtirat is, process ranks (as
provided toMUMPSn the MPI communicator) are consecutive in a row of the psecerid.
NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchanget the analysis phase
to the factorization phase.

On exit from the analysis pha#;ethe following two components are set BJUMPSn the first
NPROW x NPCOL slave processors (the host is excluded if PAR=0 anctbeessors with largest
MPI ranks in the communicator provided MiUMP $ay not be part of the grid of processors).

mumpspar%SCHUR_MLOC is an integer giving the number of rows of the local Schur cement
matrix on the concerned processor. It is equal to NUMROCESECHUR, MBLOCK, myrow; 0,
NPROW), where

e NUMROC is an INTEGER function defined in most ScaLAPACK impkntations (also used
internally by theMUMP$ackage),
e SIZE SCHUR, MBLOCK, NPROW have been defined earlier, and

e myrowis defined as follows:
Let myid be the rank of the calling process in the communicator COMMipled toMUMPS
(myidcan be returned by the MPI routihdPI_COMMRANK)

— if PAR = 1 myrowis equal tomyid/ NPCOL,

— if PAR = 0 myrowis equal to(myid— 1) / NPCOL.
Note that an upperbound of the minimum value of leading dsi@n(SCHURLLD defined below)
is equal to ((SIZESCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.

mumpspar¥sSCHUR_NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equaNtMROC(SIZESCHUR,
NBLOCK, mycol| 0, NPCOL), where
e SIZE SCHUR, NBLOCK, NPCOL have been defined earlier, and

e mycolis defined as follows:
Let myid be the rank of the calling process in the communicator COMMipled toMUMPS
(myidcan be returned by the MPI routihdPI_COMMRANK)

— if PAR = 1 myrowis equal to MODfnyid NPCOL),
— if PAR = 0 myrowis equal to MODfnyid— 1, NPCOL).

On entry to the factorization pha#(a]OB = 2), SCHURLLD should be defined by the user and
SCHUR should be allocated by the user on the NPRQWPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI rankfié communicator provided tdUMPS
may not be part of the grid of processors).

mumpspar¥sSCHUR_LLD is an integer defining the leading dimension of the local Ecbmplement
matrix. It should be larger or equal to the local number ofsaf that matrix, SCHURMLOC
(as returned bMUMP®n exit from the analysis phase on the processors that ipaticin the
computation of the Schur). SCHURLD is not modified byMUMPS

mumpspar%SCHUR is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factiwizgphase. Its size should be at
least equal to SCHURLD x (SCHURNLOC - 1) + SCHURMLOC, where SCHURMLOC,
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SCHURNLOC, and SCHURLLD have been defined above. On exit to the factorization @has
the pointer array SCHUR contains the Schur complementedtby columns, in the format
corresponding to the 2D cyclic grid of NPROWNPCOL processors, with block sizes MBLOCK
and NBLOCK, and local leading dimensions SCHWRD.

The Schur complement is stored by columns. Note that seftiR€OL x NPROW = 1
will centralize the Schur complement matrigtored by columnginstead of by rows as in the
ICNTL(19)=1 option). It will then be available on the hostd®if PAR=1, and on the node with
MPI identifier 1 (first working slave processor) if PAR=0.

If ICNTL(19)=2 and the Schur is symmetric (SYM=1 or 2), only the lower trignig provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetric (SYM=1 or 2), then both the lowed apper
triangles are provided, stored by columns. Note that if ICKB)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices, ICNTL(19)=2 and ICNTL(19)=3%&dhe same effect.)

4.10 Workspace parameters

mumpspar¥MAXIS and mumpgpar¥MAXS (integers) are defined, for each processor, as the size
of the integer and the real (complex for the complex versiwnjkspaces respectively required for
factorization and/or solve. On return from analysis (JOB,3#MFO(7) and INFO(8) return the minimum
values for MAXIS and MAXS, respectively, to the user. If theeen has reason to believe that significant
numerical pivoting will be required, it may be desirable kmose a higher value for MAXIS (or MAXS)
than output from the analysis, or to increase the value oflilq14). At the beginning of the factorization,
MAXIS and MAXS are set to the maximum of estimates based ofysisgphase data (but including the
memory relaxation resulting from the value of ICNTL(14) yided to the factorization) and the values
supplied by the user. An integer array IS of size MAXIS anda (eomplex in the complex version)
array S of size MAXS are then dynamically allocated and usethd the factorization and solve phases
to hold the factors and contribution blocks.

4.11 Right-hand side and solution vectors/matrices

The formats of the right-hand side and of the solution arerotied by ICNTL(20) and ICNTL(21),
respectively.

Centralized dense right-hand side (ICNTL(20)=0) and/or catralized dense solution
(ICNTL(21)=0)

If ICNTL(20)=0 or ICNTL(21)=0, the following should be defd on the host.

mumpspar¥RHS (real/complex array pointer, dimension NRHE&_RHS) is areal (complexin the
complex version) array that should be allocated by the usén@host before a call tdUMP Sith
JOB=3, 5, or 6.
On entry, if ICNTL(20)=0, RHS(i+(k-1XLRHS) must hold the i-th component &th right-hand
side vector of the equations being solved.
On exit, if ICNTL(21)=0, then RHS(i+(k-2YLRHS) will hold the i-th component of théth
solution vector.

mumpspar¥®NRHS (integer) is an optional parameter that is significant onhtbst before a call to
MUMPSvith JOB = 3, 5, or 6. If set, it should hold the number of rigfatad side vectors. If not
set, the value 1 is assumed to ensure backward compatititihe MUMP $hterface with versions
prior to 4.3.3. Note that if NRHS> 1, then functionalities related to iterative refinement anar
analysis (see ICNTL(10) and ICNTL(11) are currently disabl

mumpspardRHS (integer) is an optional parameter that is significant onttbst before a call to
MUMP3®vith JOB=3, 5, or 6. If NRHS is provided, LRHS should then htiid leading dimension
of the array RHS. Note that in that case, LRHS should be grédze or equal to N.
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Sparse right-hand side (ICNTL(20)=1)

If ICNTL(20)=1, the following input parameters should bdided on the host only before a callMUMPS
with JOB=3, 5, or 6:

mumpspariNZ_RHS (integer) should hold the number of non-zeros in all thetriggnd side vectors.

mumpspar¥8NRHS (integer), if set, should hold the number of right-hand sidetors. If not set, the
value 1 is assumed.

mumpspar¥KRHS_SPARSE (real/complex array pointer, dimension NRHS) should hold the
numerical values of the non-zero inputs of each right-haael wector. See also IRHBTR below.

mumpspardRHS _SPARSE((integer array pointer, dimension NRHS should hold the indices of the
variables of the non-zero inputs of each right-hand sidéovec

mumpspardRHS_PTR is an integer array pointer of dimension NRHS+1. IRABR
is such that the i-th right-hand side vector is defined by i@n-rero row indices
IRHS_SPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1) and the corresponding  numerical
values RHSSPARSE(IRHSPTR())...IRHSPTR(i+1)-1). Note that IRH$TR(1)=1 and
IRHS_.PTR(NRHS+1)=NZRHS+1.

Distributed solution (ICNTL(21)=1)

On some networks with low bandwidth, and especially whemettzge many right-hand side vectors,
centralizing the solution on the host processor might bestlycoperation in the solution phase from
MUMPS. If this is critical to the user, this functionalitylalvs the solution to be left distributed over the
processors. The solution should then be exploited in itsibiged form by the user application.

mumpspar%SOL_LOC is areal/complex array pointer, of dimension LSQLOCxNRHS (where
NRHS corresponds to the value provided in mumpps%NRHS on the host), that should be
allocated by the user before the solve phase (JOB=3) onakpsors in the case of the working
host model of parallelism (PAR=1), and on all processorepithe host in the case of the non-
working host model of parallelism (PAR=0). Its leading dim®n LSOLLOC should be larger
than or equal to INFO(23), where INFO(23) has the value netiroy MUMP®n exit from the
factorization phase. On exit from the solve phase, S@IC(i+(k-1)x LSOL_LOC) will contain
the value corresponding to variable IS@DC(i) in the k*" solution vector.

mumpspar?d.SOL _LOC (integer). LSOLLOC must be set to the leading dimension of SODC
(see above) and should be larger than or equal to INFO(23renNFO(23) has the value returned
by MUMP®n exit from the factorization phase.

mumpspardSOL _LOC (integer array pointer, dimension INFO(23)) ISQIOC should be allocated
by the user before the solve phase (JOB=3) on all processtiis case of the working host model
of parallelism (PAR=1), and on all processors except the inahe case of the non-working host
model of parallelism (PAR=0). ISQLOC should be of size at least INFO(23), where INFO(23)
has the value returned BYUMP®n exit from the factorization phase. On exit from the solkage,
ISOL_LOC(i) contains the index of the variables for which the siolu (in SOLLOC) is available
on the local processor. Note that if successive calls todhe phase (JOB=3) are performed for a
given matrix, ISOLLOC will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functbties related to error analysis and iterative
refinement (see ICNTL(10) and ICNTL(11)) are currently neikable.

5 Control parameters

On exit from the initialization call (JOB= —1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the pon@img entries in mumppar%ICNTL and
mumpspar%CNTL should be reset after this initial call and befdre ¢all in which they are used.

mumpspar?dCNTL is an integer array of dimension 40.
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ICNTL(2) is the output stream for error messages. If it isai®@ or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, &#ts, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is

ICNTL(3) is the output stream for global information, called on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diaostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possialaes are
e < 0: No messages output.
e 1: Only error messages printed.
: Errors and warnings printed.
: Errors and warnings and terse diagnostics (only first tdries of arrays) printed.
: Errors and warnings and all information on input and otijgrameters printed.

A WDN

ICNTL(5) has default value 0 and is only accessed by the hu$toaly during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled fatin the structure components N,
NZ, IRN, JCN, and A (or NZloc, IRN_loc, JCNloc, A_loc, see Section 4.6). If ICNTL(5) = 1, the
input matrix must be given

N, NELT, ELTPTR, ELTVAR, and AELT.

ICNTL(6) has default value 7 (automatic choice done by thekpge) and is used to control an option
for permuting and scaling the matrix. It is only accessedheyttost and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, & 6olumn permutation (based on
weighted bipartite matching algorithms described in [13]) 1s applied to the original matrix to
get a zero-free diagonal. For symmetric matrices, if ICNA)JE(, 2, 3, 4, 5, 6 a set of recommended
1x1 and2x2 pivots is computed (see [18] for more details) from the corageolumn permutation.
Possible values of ICNTL(6) are:

e 0: No column permutation is computed.

e 1 : The permuted matrix has as many entries on its diagonalitdes The values on the
diagonal are of arbitrary size.

e 2: The smallest value on the diagonal of the permuted matmxaximized.
e 3: Variant of option 2 with different performance.
e 4: The sum of the diagonal entries of the permuted matrix isimized.

e 5: The product of the diagonal entries of the permuted madrixaximized. Vectors are
also computed (and stored in COLSCA and ROWSCA, only if ICKB]Lis set to 7) to scale
the permuted matrix so that the nonzero diagonal entrieseérpermuted matrix are one in
absolute value and all the off-diagonal entries are legs éh@qual to one in absolute value.
6 : Similar to 5 but with a different algorithm.

7 : Based on the structural symmetry of the input matrix andthen availability of the
numerical values, the value of ICNTL(6) is automaticallypsén by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the angi matrix, mumpspar%A, must be
provided by the user during the analysis phase. If the marsymmetric positive definite (SYM
= 1), orin elemental format (ICNTL(5)=1), or the ordering i®pided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19)= 1, 2, or 3) is required, or the matrix is initially distribate
(ICNTL(18) # 0), then ICNTL(6) is treated as 7.

‘ On unsymmetric matric#s(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On outpatf the analysis phase, when the
column permutation is not the identity, the pointer mumpps%UNSPERM (internal data valid
until a call toMUMP 8vith JOB=-2) provides access to the permutation. (The colpermutation

is such that entry,; ,,....,(;) is on the diagonal of the permuted matrix.) Otherwise, thatpois
unassociated.
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‘ On general symmetric matrice§SYM = 2), we advise either to lelUMPSelect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagtwwk). On output from the analysis
the pointer mumpgpar%UNSPERM is unassociated.

On output from the analysis phase, INFOG(23) holds the vafuUENTL(6) that was effectively
used.

ICNTL(7) has default value 7 and is only accessed by the hudtoaly during the analysis phase. It
determines the pivot order to be used for the factorizatidote that, even when the ordering is
provided by the user, the analysis must be performed beforerical factorization. In exceptional
cases, ICNTL(7) may be modified BUMPSvhen the ordering is not compatible with the value
of ICNTL(12). Possible values are:

0 : Approximate Minimum Degree (AMD) [2] is used,

1 : the pivot order should be set by the user in PERMIn this case, PERMN(i), (i=1, ...
N) holds the position of variable i in the pivot order.

: Approximate Minimum Fill (AMF) is used,

: Not available in the current version (treated as 7).
: PORD [23] is used,

: the METIS [22] routine METISNODEND is used,

. Approximate Minimum Degree with automatic quasi-dens& detection (QAMD) is
used.

e 7 : Automatic choice by the software during analysis phashis Thoice will depend on
the ordering packages made available, on the matrix (typesae), and on the number of
processors.

[ ]
D 01 A WDN

Other values are treated as 7. Currently, options 4 and 5rdyeawailable if the corresponding
packages are installed (see comments in the Makefiles tdUBP&now about them). If the
packages are not installed then options 4 and 5 are treatéd Hshe problem is in elemental
format (ICNTL(5)=1), then only options 0, 1, 5 and 7 are aaklié, with option 7 leading to an
automatic choice between AMD and METIS (options 0 or 5); ptfedues are treated as 7. If the
user asks for a Schur complement matrix, only options 0, 17aace currently available, Other
options are treated as 7 which will (currently) necessdmiltreated as 0 (AMD).

Generally, with the automatic choice corresponding to IC{)=7, the option chosen by
the package depends on the ordering packages installedtypleeof matrix (symmetric or
unsymmetric), the size of the matrix and the number of pramss

For matrices with relatively dense rows, we highly recomecheption 6 which may significantly
reduce the time for analysis.

On output, the pointer mumgsar%SYMPERM provides access to the symmetric permutation
that is effectively used by the MUMPS package, and INFOGg§7he ordering option that was
effectively used. (mumppar%SYMPERM(i), (i=1, ... N) holds the position of variable i in the
pivot order.)

ICNTL(8) has default value 7. It is used to describe the sgaditrategy and is only accessed by the
host.
‘ On entry to the analysis phaFda‘ ICNTL(8) = 7, then an automatic choice of the scaling optis

performed during the analysis and ICNTL(8) is modified adoagly. In particular, if ICNTL(8) is
set to -2 by the user or reset to -2 by the package during tHgsas\ascaling arrays are computed
internally and will be ready to be used by the factorizatibage.

‘On entry to the factorization pha#seif ICNTL(8) = -1, scaling vectors must be provided in
COLSCA and ROWSCA by the user, who is then responsible focating and freeing them, if
ICNTL(8) = -2, scaling vectors must be provided in COLSCA and ROWSCAbypackage (see
previous paragraph). If ICNTL(8) = 0, no scaling is perfodnand arrays COLSCA/ROWSCA

1Distributed within MUMPS by permission of J. Schulze (Unisigy of Paderborn).
2See http://www-users.cs.umn.edikarypis/metis/ to obtain a copy.
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are not used. If ICNTL(8)> 0O, the scaling arrays COLSCA/ROWSCA are allocated and ctadpu
by the package during the factorization phase.
Possible values of ICNTL(8) are listed below:

e -2: Scaling computed during analysis (see [14, 15] for theyammetric case and [18] for the
symmetric case).

e -1: Scaling provided on entry to the numerical factorizatihase,

: No scaling applied/computed.

: Diagonal scaling,

: Scaling based on [11],

: Column scaling,

: Row and column scaling,

: Scaling based on [11] followed by column scaling,

: Scaling based on [11] followed by row and column scaling.

e 7 (analysis only) : Automatic choice of scaling value doneryanalysis.

If the input matrix is symmetric (SYM£ 0), then only options -2, -1, 0, 1 and 7 are allowed and
other options are treated as O; if ICNTL@)-1, the user should ensure that the array ROWSCA is
equal to the array COLSCA. If the input matrix is in elemeritamat (ICNTL(5) = 1), then only
options —1 and 0 are allowed and other options are treated Hsh@ initial matrix is distributed
(ICNTL(18) # 0 and ICNTL(5) = 0) then the value of ICNTL(8) is ignored and swaling is
applied. If ICNTL(8)= -2 then the user has to provide the numerical value (in mupagsA) on
entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the hagtgl the solve phase. If ICNTL(9) =1,
Ax = bis solved, otherwiseAx = b is solved.

ICNTL(10) has default value 0 and is only accessed by the #ioshg the solve phase. If NRHS
=1, then ICNTL(10) corresponds to the maximum number ofswfpiterative refinement. If
ICNTL(10) < 0, iterative refinement is not performed.

In the current version, if ICNTL(21)=1 (solution kept disuited) or NRHS> 1, then iterative
refinement is not performed and ICNTL(10) is treated as 0.

ICNTL(11) has default value 0 and is only accessed by the d&odtonly during the solve phase. A
positive value will return statistics related to the linegstem solvedAx = bor ATx = b
depending on the value of ICNTL(9)): the infinite norm of thpuit matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respelti a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in thesoh in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). See &sction 2.4. Note that if
performance is important, ICNTL(11) should be left set toRnally, note that, in the current
version, if NRHS> 1 or if ICNTL(21)=1 (solution vector kept distributed) themror analysis is
not performed and ICNTL(11) is treated as O.

ICNTL(12) is meaningful only on general symmetric matri¢€¥M = 2) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) ansyetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing epnit is only accessed by the host
and only during the analysis phase. It defines the orderiagesty (see [18] for more details) and
is used, in conjunction with ICNTL(6), to add constraintsthhe ordering algorithm. (ICNTL(7)
option). Possible values of ICNTL(12) are :

[ ]
o U1~ WN P O

e 0: automatic choice

e 1: usual ordering (nothing done)

e 2: ordering on the compressed graph associated with théxmatr

e 3: constrained ordering, only available WAMF(ICNTL(7)=2).
Other values are treated as 0. ICNTL(12), ICNTL(6), ICNTL{alues are strongly related.
Therefore, as for ICNTL(6), if the matrix is in elemental fioat (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur optionNM.(19) # 0) is required, or the
matrix is initially distributed (ICNTL(18)~ 0) then ICNTL(12) is treated as one.
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If MUMPSletects some incompatibility between control parametees it uses the following
rules to automatically reset the control parameters. IFIt&INTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is né&MFthen ICNTL(12)
is internally treated as 2. Secondly ICNTL(12) has a higheoripy than ICNTL(6) and
ICNTL(8). Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6)
is automatically reset (treated as ICNTL(6)=7). Furthemmd ICNTL(12) = 3 then ICNTL(6) is
automatically set to 5 and ICNTL(8) is set to -2.

On output from the analysis phase, INFOG(24) holds the vVafuENTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of TCN) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by thedwritg the analysis phase. If ICNTL(13)
= 0, ScaLAPACK will be used for the root node if the size of thetrnode of the assembly tree
is larger than a machine-dependent minimum size. Othenwhgeroot node of the tree will be
processed sequentially. Note that, although ICNTL(13}rads the efficiency of the factorization
and solve phases, preprocessing work is performed durialysie and this option must be set on
entry to the analysis phase.

ICNTL(14) is accessed by the host both during the analysisttaa factorization phases. It corresponds
to the percentage increase in the estimated working spaben\ignificant extra fill-in is caused
by numerical pivoting, larger values of ICNTL(14) may helpeuthe real working space more
efficiently. The default value is 20 % except for symmetrisifive definite matrices (SYM=1)
where the default value is 15 %.

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by thedurihg the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines theastgy for the distributed input
matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is theadif see Section 4.4.

e 1: the user provides the structure of the matrix on the hosinatysis, MUMPSeturns a
mapping and the user should then provide the matrix digetbaccording to the mapping on
entry to the numerical factorization phase.

e 2: the user provides the structure of the matrix on the hoshatysis, and the distributed
matrix on all slave processors at factorization. Any digttion is allowed.

e 3: user directly provides the distributed matrix input bfithanalysis and factorization.

For options 1, 2, 3, see Section 4.6 for more details on thetfoptput parameters tdUMPSFor
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the Hasihg the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be rekedl to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schilt be returned to the user on the
slave processors in the form of a 2D block cyclic distributeatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals ar 3, the user must set on entry to
the analysis phase, on the host node:

e the integer variable SIZESCHUR to the size of the Schur matrix,

e the integer array pointer LISTVARBCHUR to the list of indices of the Schur matrix.
For a distributed Schur complement (ICNTL(19)=2 or 3), thiger variables NPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the aislyphase (default
values will otherwise be provided). Furthermore, workgpabould be allocated by the user
before the factorization phase in order MdiUMP$o0 store the Schur complement (see SCHUR,
SCHURMLOC, SCHURNLOC, and SCHURLLD in Section 4.9).
Note that the partial factorization of the interior variedlcan then be exploited to perform a solve
phase (transposed matrix or not, see ICNTL(9)). Note thatitiht-hand side (RHS) provided on
input must still be of size N (or Nk NRHS in case of multiple right-hand sides) even if only the
N-SIZE_.SCHUR indices will be considered and if only N-SIZECHUR indices of the solution
will be relevant to the user.
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Finally note that since the Schur complement can be viewedpastial factorization of the global
matrix (with partial ordering of the variables provided I tuser) the following options ailUMPS

are incompatible with the Schur option: maximum transJegezaling, iterative refinement, error
analysis. Note that if the ordering is given (ICNTL(7)=1gththe following property should hold:
PERM.IN(LISTVAR _SCHUR(i)) = N-SIZESCHURH+i, for i=1,SIZESCHUR.

ICNTL(20) has default value 0 and is only accessed by the Wdosing the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense forthme structure component RHS. If
ICNTL(20)=1, then the right-hand side must be given in sp&osm using the structure components
IRHS_.SPARSE, RHSSPARSE, IRHSPTR and NZRHS. Values different from 0 and 1 are treated
as 0. (See Section 4.11).

ICNTL(21) has default value 0 and is only accessed by thechositg the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the straccomponent RHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the Botuvector is kept distributed at the
end of the solve phase, and will be available on each slav@psor in the structure components
ISOL_loc and SOLloc. ISOLloc and SOLloc must then have been allocated by the user and
must be of size at least INFO(23), where INFO(23) has beemmed by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different fromifdal are currently treated as 0.

Note that if the solution is kept distributed, error anadyand iterative refinement (controlled by
ICNTL(10) and ICNTL(11)) are not applied.

ICNTL(22-40) are not used in the current version.

mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivotingt forms a trade-off between preserving
sparsity and ensuring numerical stability during the feztdion. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate fézapion. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, rsuch pivoting will be performed
and the subroutine will fail if a zero pivot is encounteredithie matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorizatione while still providing a stable
decomposition. If the code is called for unsymmetric or gaheymmetric matrices, CNTL(1)
has default value 0.01. For symmetric positive definite imm@¢rand if the Schur complement is
asked to be returned (ICNTL(12)0), numerical pivoting is suppressed and the default vadue i
0.0. Values less than 0.0 are treated as 0.0. In the unsymroage (respectively symmetric case),
values greater than 1.0 (respectively 0.5) are treatedasekpectively 0.5).

CNTL(2) is the stopping criterion for iterative refinememidais only accessed by the host during the
solve phase. LeBerr = max; w [9]. Iterative refinement will stop when either the
required accuracy is reacheBdrr < CNTL(2) ) or the convergence rate is too sloB®drr does
not decrease by at least a factor of 5). Default valugds

CNTL(3) determines the absolute threshold-es for numerical pivoting. It has default value -1.0 and
is only accessed by the host during the numerical factdoizathase. If CNTL(3)x 0 (default),
thresis determined automaticallyhres = €||A|| if SYM=2 in the case of node level parallelism;
thres = 0 otherwise. If CNTL(3)> 0, then the valughres = CNTL(3) is used. During the
numerical factorization, a potential pivot has to be lathanthres to be accepted.

CNTL(4) determines the value for static pivoting. It hasalgf value 0.0 in symmetric indefinite case
and -1.0 otherwise. If CNTL(4x 0.0 static pivoting is not activated. If CNTL(4} 0.0 an
automatic choice between numerical and static pivotingréopmed during analysis. If CNTL(4)
> 0.0 static pivoting is activated and the magnitude of smiadits will be set to CNTL(4).

CNTL(5) is not used in the current version.

6 Information parameters

The parameters described in this section are returnedlBiiP&nd hold information that may be of
interest to the user. Some of the information is local to gacicessor and some only on the host. If an
error is detected (see Section 7), the information may beniptete.
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6.1 Information local to each processor

The arrays mumpparRINFO and mumpspar?dNFO are local to each process.

mumpspar¥RINFO is a double precision array of dimension 20. It contains thiéowing local
information on the execution dIUMPS

RINFO(1) - after analysis: The estimated number of floappgit operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-poimperations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-poimperations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar?dNFO is an integer array of dimension 40. It contains the follayiacal information on
the execution oMUMPS

INFO(1) is O if the call toMUMPSvas successful, negative if an error occurred (see Secjioar7
positive if a warning is returned.

INFO(2) holds additional information about the error or t@rning. If INFO(1)= -1, INFO(2) is the
processor number (in communicator mungas%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed oprtieessor for the factors.
INFO(4) - after analysis: Estimated integer space needeteprocessor for factors.
INFO(5) - after analysis: Estimated maximum front size amphocessor.

INFO(6) - after analysis: Number of nodes in the complete.tr&he same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated the analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimatedtby analysis phase to run the numerical
factorization successfully.

INFO(9) - after factorization: Size of the real space usethemprocessor to store the factors.
INFO(10) - after factorization: Size of the integer spacedusn the processor to store the factors.
INFO(11) - after factorization: Order of the largest frdntsatrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pte selected on the processor if SYM=0 or
number of negative pivots on the processor if SYM=1 or 2. INTZ (13)=0 (the default), this
excludes pivots from the parallel root node treated by SEA@K. (This means that the user
should set ICNTL(13)=1 or use a single processor in ordeetdhge exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that iM&Y or 2, INFO(12) will be O for
complex symmetric matrices.

INFO(13) - after factorization: The number of uneliminatedtiables, corresponding to delayed pivots,
sent to the father. If a delayed pivot is subsequently passttk father of the father, it is counted
a second time.

INFO(14) - after factorization: Number of memory compresse the processor.

INFO(15) - after analysis: estimated total size (in milkoof bytes) of allIMUMPSnternal data for
running numerical factorization.

INFO(16) - after factorization: total size (in millions of/tes) of allMUMP$ternal data used during
numerical factorization.

INFO(18) - INFO(22) are not used in the current version. Agete zero.
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INFO(23) - after factorization: total number of pivots elitated on the processor. In the case of a
distributed solution (see ICNTL(21)), this should be usgdhe user to allocate solution vectors
ISOL_loc and SOLloc of appropriate dimensions (ISALOC of size INFO(23), SOLLOC of size
LSOL_LOC x NRHS where LSOLLOC > INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - INFO(40) are not used in the current version.

6.2 Information available on all processors
The arrays mumppar%RINFOG and mumppar%INFOG :

mumpspar¥RINFOG is a double precision array of dimension 20. It contains tiioing global
information on the execution a1IUMPS

RINFOG(1) - after analysis: The estimated number of floafioint operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of flogtipoint operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of flogtipoint operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysisnl®returned if ICNTL(11)# 0. See
description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumpspar?dNFOG is an integer array of dimension 40. It contains the follayvjiobal information on
the execution oMUMPS

INFOG(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Secjioor 7
positive if a warning is returned.

INFOG(2) holds additional information about the error a thiarning.
The difference between INFOG(1:2) and INFO(1:2) is that@@G{1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returneti thie most negative INFO(1) value. For
example, if processagy returns with INFO(1)=-13, and INFO(2)=10000, then all atpeocessors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still IBEL)=-1 and INFO(2)».

INFOG(3) - after analysis: Total estimated real workspamedctors on all processors.

INFOG(4) - after analysis: Total estimated integer workspfor factors on all processors.

INFOG(5) - after analysis: Estimated maximum front sizeni@a tomplete tree.

INFOG(6) - after analysis: Number of nodes in the complete.tr

INFOG(7) - after analysis: ordering option effectively dgsee ICNTL(7)).

INFOG(8) - after analysis: structural symmetry in perc&®t((: symmetric, O : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structurahsetry was not computed which will be
the case if the input matrix is in elemental form.)

INFOG(9) - after factorization: Total real space to store thJ factors.
INFOG(10) - after factorization: Total integer space tastihe LU factors.
INFOG(11) - after factorization: Order of largest frontahtrix.

INFOG(12) - after factorization: Total number of off-diagg pivots if SYM=0 or total number of
negative pivots (real arithmetic) if SYM=1 or 2. If ICNTL(}:0 (the default) this excludes
pivots from the parallel root node treated by ScaLAPACK.i§Timeans that the user should set
ICNTL(13)=1 or use a single processor in order to get thetaxamber of off-diagonal or negative
pivots rather than a lower bound.) Note that if SYM=1 or 2, DE(12) will be 0 for complex
symmetric matrices.
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INFOG(13) - after factorization: Total number of delayedqts.
INFOG(14) - after factorization: Total number of memory quesses.
INFOG(15) - after solution: Number of steps of iterative mefnent.

INFOG(16) - after analysis: Estimated size (in million oftéy) of allMUMP $hternal data for running
factorization (value on the most memory consuming proagsso

INFOG(17) - after analysis: Estimated size (in millions gfés) of allMUMP$ternal data for running
factorization (sum over all processors).

INFOG(18) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: value on the most memory consuming progesso

INFOG(19) - after factorization: Size in millions of bytesal MUMP$ternal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entriehimfactors. If negative the absolute value
corresponds taillions of entries in the factors.

INFOG(21) - after factorization: Size in millions of byted memory effectively used during
factorization: value on the most memory consuming progesso

INFOG(22) - after factorization: Size in millions of byted memory effectively used during
factorization: sum over all processors.

INFOG(23) - After analysis: value of ICNTL(6) effectivelysad.

INFOG(24) - After analysis: value of ICNTL(12) effectivelsed.

INFOG(25) - After factorization : number of tiny pivots (nio@r of pivots modified by static pivoting)
INFOG(26) - INFOG(40) are not used in the current version.

7 Error diagnostics

MUMP&ises the following mechanism to process errors that mayrattaing the parallel execution of
the code. If, during a call tMUMPSan error occurs on a processor, this processor informbheabther
processors before they return from the call. In parts of tteavhere messages are sent asynchronously
(for example the factorization and solve phases), the gsmeon which the error occurs sends a message
to the other processors with a specific error tag. On the tidued, if the error occurs in a subroutine that
does not use asynchronous communication, the procesqmgates the error to the other processors.

On successful completion, a callMIUMP$ill exit with the parameter mumppar%INFOG(1) set to
zero. A negative value for mumgmar%INFOG(1) indicates that an error has been detected @ofahe
processors. For example, if processaeturns with INFO(1)= -8 and INFO(2)=1000, then processor
s ran out of integer workspace during the factorization amdsifae of the workspace MAXIS should be
increased by 1000 at least. The other processors are inflabwit this error and return with INFO(H
-1 (i.e., an error occurred on another processor) and INEQ(2e., the error occurred on processr
Processors that detected a local error, do not overwrit©i(d}; i.e., only processors that did not produce
an error will set INFO(1) to —1 and INFO(2) to the processaiitigthe most negative error code.

The behaviour is slightly different for INFOG(1) and INFQZ( in the previous example, all
processors would return with INFOG(3 -8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOG{&yk the following meaning:

—1 An error occurred on processor INFO(2).
—2 Nz is out of range. INFO(2)=NZ.

-3 MUMPSwas called with an invalid value for JOB. This may happen fearmaple if the analysis
(JOB=1) was not performed before the factorization (JOB=®) the factorization was not
performed before the solve (JOB=3), or the initializatitrage (JOB=-1) was performed a second
time on an instance not freed (JOB=-2). See description BfilBection 3. This error also occurs
if JOB does not contain the same value on all processes onterttUMPS
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—4 Error in user-provided permutation array PERN!in position INFO(2). This error occurs on the
host only.

-5 Problem of REAL workspace allocation of size INFO(2) duramlysis.

—6 Matrix is singular in structure.

—7 Problem of INTEGER workspace allocation of size INFO(2)idgranalysis.

—8 MAXIS too small for factorization. This may happen, for exam if numerical pivoting leads to

significantly more fill-in than was predicted by the analySike user should increase the value of
ICNTL(14) or the value of MAXIS before recalling the factmaition (JOB=2).

-9 MAXS too small for factorization. The user should incredsevalue of ICNTL(14) or MAXS before
recalling the factorization (JOB=2).

—10 Numerically singular matrix.

—11 MAXS too small for solution. See error INFO(H -9.

—12 MAXS too small for iterative refinement. See error INFO&)-9.

—13 Error in a Fortran ALLOCATE statement. INFO(2) contains $iiee that the package requested.
—14 MAXIS too small for solution. See error INFO(H —8.

—15 MAXIS too small for iterative refinement and/or error anddysSee error INFO(1} —8.

—16 N is out of range. INFO(2)=N.

—17 The internal send buffer that was allocated dynamicallyMiyMP$n the processor is too small.
The user should increase the value of ICNTL(14) before liacgthe analysis (JOB=1).

—18 MAXIS too small to process root node. See error INFO£138.
—19 MAXS too small to process root node. See error INFG£H9.

—20 The internal reception buffer that was allocated dynarjicay MUMPSn the processor is too
small. INFO(2) holds the minimum size of the reception bufégjuired (in bytes). The user should
increase the value of ICNTL(14) before recalling the anal¢30B=1).

—21 Value of PAR=0 is not allowed because only one processomitadle; INFO(2) is set to the number
of processors, 1. RunninglUMPS3n host-node mode (the host is not a slave processor itself)
requires at least two processors. The user should eithéAgetto 1 or increase the number of
processors.

—22 A pointer array is provided by the user that is either

e not associated, or
e has insufficient size, or
e is associated and should not be associated (for example o0RIH8n-host processors).

INFO(2) points to the pointer array having the wrong fornmethie table below:
INFO(2) array
IRN or ELTPTR
JCN or ELTVAR
PERM.IN
Aor ALELT
ROWSCA
COLSCA
RHS
LISTVAR_SCHUR
SCHUR
RHS SPARSE
IRHS_SPARSE
IRHS.PTR
ISOL_LOC
SOLLOC

B
SREhEBowo~N~ouobrwnr

B
AW
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—23 MPI was not initialized by the user prior to a callMUMP&ith JOB= —1.
—24 NELT is out of range. INFO(2)=NELT.

—25 A problem has occurred in the initialization of the BLACS.iFmay be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instea

—26 LRHS is out of range. INFO(2) = LRHS.

—27 NZ_RHS and IRHSPTR(NRHS+1) do not match. INFO(2) = IRHSTR(NRHS+1).
—28 IRHS_PTR(1) is not equal to 1. INFO(2) = IRHBTR(1).

—29 LSOL_LOC is smaller than KEEP(89). INFO(2)=LSALOC.

—30 SCHURLLD is out of range. INFO(2) = SCHURLD.

—-31 A 2D block cyclic Schur complement is required with the optidCNTL(19)=3, but the
user has provided a process grid that does not satisfy thstragit MBLOCK=NBLOCK.
INFO(2)=MBLOCK-NBLOCK.

A positive value of INFO(1) is associated with a warning naggswhich will be output on unit
ICNTL(2) when ICNTL(4)> 2.

+1 Index (in IRN or JCN) out of range. Action taken by subroutise¢o ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. dilstof the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solutvas found to be zero.
+4 User data JCN has been corrupted.
+8 Warning return from the iterative refinement routine. Mdrart ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to sungntihe constituent warnings.

8 Calling MUMPS from C

MUMPSs a Fortran 90 library, designed to be used from Fortran @ferahan C. However a basic C
interface is provided that allows users to ddlUMP8lirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose compongatch those in thelUMPStructure for
Fortran (Figure 1). Thus the description of the paramete8eictions 4 and 5 applies. Figure 2 shows the
C structurd SDCZ]MUMPSSTRUCC. This structure is defined in the include fisglczlmumps _c.h

and there is one main routine per available precision wighfaflowing prototype:

void [sdczlmumps_c(MUMPS_STRUC_C * idptr);

An example of callingdUMP&om C for a complex assembled problem is given in SectioB.1Dhe
following subsections discuss some technical issues thaeashould be aware of before using the C
interface toMUMPS

In the following, we suppose that has been declared of typ@DCZ]MUMPSSTRUCC.

8.1 Array indices

Arrays in C start atindex 0 whereas they normally start atBoiriran. Therefore, care must be taken when
providing arrays to the C structure. For example, the roviceslof the matrixd, stored iNRN(1:NZ)

in the Fortran version should be storedirin[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One saldtialeal with this is to define macros:

#define ICNTL( i ) icntl[ (i) - 1 ]
#define A( i) a[ (i) -1 ]
#define IRN( i ) ir[ (i) -1 ]
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typedef struct
{
int sym, par, job;
int comm _fortran; /* Fortran communicator */
int icntl[40];
real cntl[5];
int n;
/* Assembled entry */
int nz; int *irn; int *jcn; real/complex *a;
/* Distributed entry */
int nz _loc; int *irn Joc; int *jcn Jloc; real/complex *a _loc;
/* Element entry */
int nelt; int *eltptr; int *eltvar; real/complex *a _elt;
/* Ordering, if given by user */
int *perm _in;
/* Scaling (input only in this version) */
real/complex *colsca; real/complex *rowsca;
/* RHS, solution, output data and statistics */

real/complex *rhs, *rhs  _sparse, *sol  _loc;
int *irhs  _sparse, *irhs _ptr, *isol _oc;
int nrhs, Irhs, nz _rhs, Isol _loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int *sym _perm, *uns _perm;

/* Null space (not maintained) */

int deficiency; real/complex * nullspace; int * mapping;

/* Schur */ int size _schur; int *listvar _schur;  real/complex *schur;
int nprow, npcol, mblock, nblock, schur _id, schur _mloc,schur _nloc;

/* Internal parameters */

int instance _number;

} [SDCZ]MUMPSSTRUCC;

Figure 2: Definition of the C structuf&DCZ]MUMPSSTRUCC. real/complexis used for data that can
be either real or complexeal for data that stays reall¢at  or double ) in the complex version.
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and then use the uppercase notation with parenthesisgthsfelowercase/brackets). In that case, the
notationid.IRN(l)  , wherel isin{ 1, 2, ... NZ can be used instead wf.irn[I-1] ; this notation
then matches exactly with the description in Sections 4 anehBre arrays are supposed to start at 1.

This can be slightly more confusing for element matrix infage Section 4.5), where some arrays
are used to index other arrays. For instance, the first valdtptr , eltptr[O] , pointing into
the list of variables of the first element mitvar , should be equal to 1. Effectively, using the
notation above, the list of variables for element= 1 starts at locatiorELTVAR(ELTPTR())) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1]

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a differerdtgla¢ and are not directly compatible.
For the C interfaceMUMPSequires a Fortran communicator to be provideddimomm _fortran

If, however, this field is initialized to the special value87®54, the Fortran communicator
MPI_COMMVORLIX used by default. If you need to cMlUMP8ased on a smaller number of processors
defined by a C subcommunicator, then you should convert yazor@municator to a Fortran one. This
has not been included MUMP8ecause itis dependent on @1 implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that FLINT is defined in[sdczlmumps _c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators the same integer representation

id.comm_fortran = (F_INT) comm_c;

should work.
For some MPI implementations, check if id.comm _fortran =
MPIR_FromPointer(comm _c) can be used.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlleddiyTL(1:4) /icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichresponds tetdout . For a more
general usage with specific file names from C, passing a C fildlaais not currently possible. One
solution would be to use a Fortran subroutine along the liidlse model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT

CHARACTER*(*) NAME

OPEN(UNIT, file=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile _( &mumps_par.ICNTL(1), name, name _length _byval)
(or slightly different depending on the C-Fortran callir@neentions); something similar could be done
to close the file.

8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the cormpiked to compildMUMP$s required at the
link stage. One way to provide it is to perform the link phasththe Fortran compiler (instead of the C
compiler orld ).
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8.5 Integer, real and complex datatypes in C and Fortran

We assume that thiet , float anddouble types are compatible with the FortrtNTEGER REAL
andDOUBLE PRECISIONlatatypes. If this were not the case, the flésczlmumps _prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define tikemplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortr&©OMPLEXndDOUBLE COMPLEYpes:

typedef struct {float r,i; } mumpscomplex; for simple precisiondmumps), and
typedef struct {double r,i; } mumpsdouble _complex; for double precision
(zmumps).

Types for complex data from the user program should be cdbipatith those above.

8.6 Sequential version

The C interface ttMUMP$ compatible with the sequential version; see Section 2.9.

9 Scilab and MATLAB interfaces

The main callable functions are
id initmumps;
id = dmumps(id [,mat] );
id = zmumps(id [,mat] );

We have designed these interfaces such that their usagsimita as possible to the existing C and
Fortran interfaces to MUMPS, and where only the parametdedad to the sequential code are used.
The main differences and characteristics are:

e The existence of a functionitmumps (usageid=initmumps ) that builds an initial structure
id inwhichid.JOB issetto-1andd.SYM is setto O (unsymmetric solver by default).

e Only the double precision and double complex versions of MR8Vare interfaced, since they
correspond to the arithmetic precisions used in MATLABI&zi

o the sparse matrid is passed to the interface functiamumpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, ... are thus iexglnt).

e the right-hand side vector or matrix, possibly sparse, ssed to the interface functiosnumps
and/orzmumpsin the argumentd.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, ... are thus irrelevant).

e The Schur complement matrix, if required, is allocated imitthe interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parametdZESSCHUR and ICNTL(19) need
not be set by the user; they are set automatically dependitigecavailability and size of the list of
Schur variablesd.VAR _SCHUR

e We have chosen to use a new varialleéSOL to store the solution, instead of overwriting
id.RHS .

Please refer to the report [19] for a more detailed desonipif these interfaces. Please also refer to the
README file in directories MATLAB or Scilab of the main MUMP Sstribution for more information
on installation. For example, one important thing to notéhat at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the céeddIUMP$ackage. This can be done in
the makefile for the MATLAB interface (filemake.inc ) and in the builder for the Scilab interface (file
builder.sce ).

Finally, note that examples of usage of the MATLAB and thelecinterfaces are provided in
directoriesMATLABand Scilab/examples  , respectively. In the following, we describe the input
and output parameters of the functijgizlmumps , that are relevant in the context of this interface to the
sequential version of MUMPS.
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Input Parameters

mat : sparse matrix which has to be provided as the second arguwheimumps if id.JOB is
strictly larger than O.

id.SYM : controls the matrix type (symmetric positive definite, syetric indefinite or
unsymmetric) and it has do be initialized by the user befbeeinitialization phase oMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps

id.JOB : defines the action that will be realized MUMPSinitialize, analyze and/or factorize
and/or solve and release mumps internal C/Fortran datasltdibe set by the user before any call
to MUMP $except after a call to initmumps, which sets its value to -1)

id.ICNTL and id.CNTL : define control parameters that can be set after the iziéitiin call
(id.JOB = -1). See Section “Control parameters” for moreilet If the user does not modify an
entry in id.ICNTL thenMUMPSIses the default parameter. For example, if the user wantseto
the AMD ordering, he/she should set id.ICNTL(7) = 0. Notetttiee following parameters are
inhibited because they are automatically set within therfate: id.ICNTL(19) which controls the
Schur complement option and id.ICNTL(20) which controks thrmat of the right-hand side.

id.PERM_IN : corresponds to the given ordering option (see Sectionftiapd output parameters”
for more details). Note that this permutation is only acedssthe parameter id.ICNTL(7) is set to
1.

id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

id.RHS : defines the right-hand side. The parameter id.ICNTL(2@}ee to its format (sparse or
dense) is automatically set within the interface. Note iti&®HS is not modified (as iIMUMPS
the solution is returned in id.SOL.

id.VAR _SCHUR : corresponds to the list of variables that appear in the Sotmplement matrix
(see Section “Input and output parameters” for more d@tails

Output Parameters

id.SCHUR : ifid.VAR _SCHUR is provided of size SIZECHUR, then id. SCHUR corresponds to
a dense array of size (SIZECHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more detailske Wiker does not have to initialize it.
id.INFO and id.RINFO : information parameters (see Section “Information partensg ).

id.SYM_PERM : corresponds to a symmetric permutation of the variableg @iscussion
regarding ICNTL(7) in Section “Control parameters” ). Tipisrmutation is computed during the
analysis and is followed by the numerical factorizationeptavhen numerical pivoting occurs.

id.UNS_PERM : column permutation (if any) on exit from the analysis phaseéMUMP $see
discussion regarding ICNTL(6) in Section “Control paraenst ).

id.SOL : dense vector or matrix containing the solution aft®dMPSolution phase.

Internal Parameters

10

id.INST: (mumps reserved component) mumps internal pateme
id. TYPE: (mumps reserved component) defines the arithrfegimplex or double precision).

Examples of use of MUMPS

10.1 An assembled problem

An example program illustrating a possible use MUMPSon assembledOUBLE PRECISION
problems is given Figure 3. Two files must be included in thegpam: mpif.h  for MPI and
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mumpsstruc.h  for MUMPSThe filemumpsroot.h  must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performedtli@ user program via the
calls toMPI_INIT andMPI_FINALIZE .

The MUMP®ackage is initialized by callinylUMPSvith JOB= -1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and thetism is computed in RHS with a
call on all processors tMUMPSvith JOB=6. Finally, a call taMUMPSvith JOB= -2 is performed to
deallocate the data structures used by the instance of thagea.

Thus for the assembléedx 5 matrix and right-hand side

[\
w
>~
[\)
o

we could have as input

3.0
-3.0
2.0
1.0
3.0
2.0
4.0
2.0
6.0
-1.0
4.0
1.0 A

wpwl\)wmv—\r\)mhmpsm

WWNOAOBEARNRFRPPFRPOOWWN

20.0

24.0

9.0

6.0

13.0 :RHS

and we obtain the solution RHS(i) =i,i=1, ..., 5.

10.2 An elemental problem

An example of a driver to uSIlUMP $or elemenDOUBLE PRECISIONroblems is given in Figure 4.
The calling sequence is similar to that for the assemblebienoin Section 10.1 but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, LT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matidbeays have a symmetric structure. For
the two-element matrix and right-hand side

1 -1 2 3 3

2 2 1 1 |, 4

3 1 1 1 5
we could have as input

5
2
6
18

12

2 -1 3 7
1 2 -1, 23
3 2 1 6

22
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PROGRAM MUMPS_EXAMPLE
INCLUDE 'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, |
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,%) ( id%IRN() ,1=1, id%NZ )
READ(5,*) ( id%JCN(l) ,I=1, id%NZ )
READ(5,%) ( id%A(l),I=1, id%NZ )
READ(5,*) ( id%RHS(l) ,I=1, id%N )

END IF
Call package for solution
id%JOB = 6

CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ",(id%RHS(I),I=1,id%N)
END IF
Deallocate user data
IF ( id%MYID .eq. 0 )THEN
DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 3: Example program usidgUMP®n an assembledOUBLE PRECISIONyroblem
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147
12

3345
-1.0 20 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i) =i,i=1, ..., 5.

10.3 An example of calling MUMPS from C

An example of a driver to uselUMP®&om C is given in Figure 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN
READ(5,*) id%N
READ(5,*) id%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%ELTPTR(I) ,I=1, id%NELT+1 )
READ(5,*) ( id%ELTVAR(l) ,I=1, LELTVAR )
READ(5,*) ( id%A_ELT(l),I=1, NA_ELT )
READ(5,*) ( id%RHS(l) ,I=1, id%N )
END IF
Specify element entry
id%ICNTL(5) = 1
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(l),I=1,id%N)
Deallocate user data
DEALLOCATE( id%ELTPTR )
DEALLOCATE( Id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 4: Example program usidgUMP®n an elementdDOUBLE PRECISIONbroblem.
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/* Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]'T
* Solution is [1 2]'T */

#include <stdio.h>

#include "mpi.h"

#include "dmumps_c.h"

#define JOB_INIT -1

#define JOB_END -2

#define USE_COMM_WORLD -987654

int main(int argc, char ** argv) {

DMUMPS_STRUC_C id;
int n = 2;

int nz = 2;

int irn[] = {1,2};

int jen[] = {1,2};

double a[2];

double rhs[2];

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/* Define A and rhs */

rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

[* Initialize a MUMPS instance. Use MPI_COMM_WORLD.

id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U
dmumps_c(&id);
/* Define the problem on the host */
if (myid == 0) {
id.n n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a a; id.rhs = rhs;

}
#define ICNTL(I) icntl[()-1] /* macro s.t. indices match d
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN
/* Call the MUMPS package. */

id.job=6;

dmumps_c(&id);

id.job=JOB_END; dmumps_c(&id); /* Terminate instance */

if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}

return O;

%
SE_COMM_WORLD;

ocumentation */

TL(4)=0;

Figure 5: Example program usiddUMP&om C on an assembled problem.
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10.4 Notes on MUMPS distribution

This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999) by CERFACS, ENSEEIHT -IRIT and RAL.
Since this first public domain version in 1999, the developm ents are
supported by the following institutions: CERFACS, ENSEEIH T-IRIT, and
INRIA Rhone-Alpes.

Main contributors are Patrick Amestoy, lain Duff, Abdou Gue rmouche,

Jacko Koster, Jean-Yves L'Excellent, and Stephane Pralet.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages http://www.enseeiht.frlapo/MUMPS/
or http://graal.ens-lyon.frfMUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can

include this complete notice. You can acknowledge (using

references [1], [2], and [3] the contribution of this packag e
in any scientific publication dependent upon the use of the

package. You shall use reasonable endeavours to notify

the authors of the package of this publication.

[1] P. R. Amestoy, I. S. Duff and J.-Y. L'Excellent (1998),

Multifrontal parallel distributed symmetric and unsymmet ric solvers,
in Comput. Methods in Appl. Mech. Eng., 184, 501-520 (2000).

[2] P. R. Amestoy, |. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic

scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,
Vol 23, No 1, pp 15-41 (2001).

[3] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet (2005), Hybrid scheduling for the parallel soluti on
of linear systems. Accepted to Parallel Computing.
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