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Abstract

This document describes the Fortran 90 and C user interface to MUMPSVersion 4.6 We describe in
detail the data structures, parameters, calling sequences, and error diagnostics. Example programs using
MUMPSare also given.

∗Information on how to obtain updated copies of MUMPS can be obtained from the Web pages
http://www.enseeiht.fr/apo/MUMPS/ and http://graal.ens-lyon.fr/MUMPS/ or by sending email to
mumps@cerfacs.fr
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1 Introduction
MUMPS(“MUltifrontal Massively Parallel Solver”) is a package for solving systems of linear equations
of the formAx = b, whereA is a square sparse matrix that can be either unsymmetric, symmetric
positive definite, or general symmetric.MUMPSuses a multifrontal technique which is a direct method
based on either theLU or the LDLT factorization of the matrix. We refer the reader to the papers
[3, 4, 7, 16, 17, 21, 20, 8] for full details of the techniques used.MUMPSexploits both parallelism arising
from sparsity in the matrixA and from dense factorizations kernels.

The main features of theMUMPSpackage include the solution of the transposed system, input of
the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative
refinement, scaling of the original matrix, and return of a Schur complement matrix.MUMPSoffers
several built-in ordering algorithms, a tight interface tosome external ordering packages such as PORD
[23] and METIS [22], and the possibility for the user to inputa given ordering. Finally,MUMPSis available
in various arithmetics (real or complex, single or double precision).

The software is written in Fortran 90 although a C interface is available (see Section 8). The parallel
version ofMUMPSrequires MPI [24] for message passing and makes use of the BLAS [12, 13], BLACS,
and ScaLAPACK [10] libraries. The sequential version only relies on BLAS.

MUMPSis downloaded from the web site almost once a day on average and has been run on very
many machines, compilers and operating systems, although our experience is really only with UNIX-
based systems. We have tested it extensively on parallel computers from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSdistributes the work tasks among the processors, but an identified processor (the host) is
required to perform most of the analysis phase, to distribute the incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, and to collect the solution. The systemAx = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based on the symmetrized patternA +
A

T, and carries out symbolic factorization. A mapping of the multifrontal computational graph is
then computed, and symbolic information is transferred from the host to the other processors. Using
this information, the processors estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will participate in the
numerical factorization. The numerical factorization on each frontal matrix is conducted by a
masterprocessor (determined by the analysis phase) and one or moreslaveprocessors (determined
dynamically). Each processor allocates an array for contribution blocks and factors; the factors
must be kept for the solution phase.

3. Solution. The right-hand sideb is broadcast from the host to the other processors. These processors
compute the solutionx using the (distributed) factors computed during Step 2, andthe solution is
either assembled on the host or kept distributed on the processors.

Each of these phases can be called separately and several instances ofMUMPScan be handled
simultaneously.MUMPSallows the host processor to participate in computations during the factorization
and solve phases, just like any other processor (see Section2.8).

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a
fully asynchronous approach with dynamic scheduling of thecomputational tasks. Asynchronous
communication is used to enable overlapping between communication and computation. Dynamic
scheduling was initially chosen to accommodate numerical pivoting in the factorization. The other
important reason for this choice was that, with dynamic scheduling, the algorithm can adapt itself at
execution time to remap work and data to more appropriate processors. In fact, we combine the main
features of static and dynamic approaches; we use the estimation obtained during the analysis to map
some of the main computational tasks; the other tasks are dynamically scheduled at execution time. The
main data structures (the original matrix and the factors) are similarly partially mapped according to the
analysis phase.
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2 Main functionalities of MUMPS 4.6
We describe here the main functionalities of the solverMUMPS. The user should refer to Sections 4
and 5 for a complete description of the parameters that must be set or that are referred to in this
Section. The variables mentioned in this section are components of a structuremumpspar of type
[SDCZ]MUMPSSTRUC(see Section 3) and for the sake of clarity, we refer to them only by their
component name. For example, we use ICNTL to refer tomumpspar%ICNTL .

2.1 Input matrix structure
MUMPSprovides several possibilities for inputting the matrix. The selection is controlled by the
parameters ICNTL(5) and ICNTL(18).

The input matrix can be supplied inelemental formatand must then be input centrally on the host
(ICNTL(5)=1 and ICNTL(18)=0). For full details see Section4.5. Otherwise, it can be supplied in
assembled formatin coordinate form (ICNTL(5)=0), and, in this case, there are several possibilities (see
Sections 4.4 and 4.6):

1. the matrix can be input centrally on the host processor (ICNTL(18)=0);

2. only the matrix structure is provided on the host for the analysis phase and the matrix entries are
provided for the numerical factorization, distributed across the processors:

• either according to a mapping supplied by the analysis (ICNTL(18)=1),

• or according to a user determined mapping (ICNTL(18)=2);

3. it is also possible to distribute the matrix pattern and the entries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recommended option for distributed entry).

By default the input matrix is considered in assembled format (ICNTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Symmetric orderings
A range of orderings to preserve sparsity is available in theanalysis phase. Most of them were introduced
in Release 4.2 of theMUMPSpackage. The parameter ICNTL(7) is used to determine the ordering.

In addition to the approximate minimum degree ordering (AMD, [2]), an approximate minimum
degree ordering with automatic quasi-dense row detection (QAMD, [1]), an approximate minimum fill-in
ordering (AMF), an ordering where bottom-up strategies areused to build separators by Jürgen Schulze
from University of Paderborn (PORD, [23]), and the METIS package from Univ. of Minnesota [22] are
possible choices. When using the METIS package, only the METIS NODEND hybrid ordering routine
can be used.

A user-supplied ordering can also be provided and the pivot order must be set by the user in PERMIN
(see Section 4.8). Also, it should be noted that the logic that handles this case is different from the built-in
orderings so that, for example, a different performance anddifferent internal data structures are created
by a run that generates an ordering and a separate one that feeds that same ordering array in as input.

If ICNTL(7)=7, theMUMPSpackage will automatically choose the ordering depending on the ordering
packages installed, the type of the matrix (symmetric or unsymmetric), the size of the matrix and the
number of processors available.

The default value of ICNTL(7) is 7.

2.3 Other pre-processing facilities
In addition to the symmetric orderings,MUMPSoffers other pre-processing facilities: permuting to zero-
free diagonal and prescaling.

Permutations to a zero-free diagonal can be applied to very unsymmetric matrices and can help reduce
fill-in and arithmetic, see [14, 15]. This functionality is controlled by ICNTL(6). For symmetric matrices
this permutation can also be used to constrain the symmetricpermutation (see ICNTL(12) option).

Prescaling of the input matrix can help reduce fill-in duringfactorization and can improve the
numerical accuracy. A range of classical scalings are provided and can be automatically performed at the
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beginning of the numerical factorization phase. This functionality is controlled by ICNTL(8). For some
values of ICNTL(6) or ICNTL(12) the arrays COLSCA/ROWSCA can be allocated and built during the
analysis phase (see Section 4.7). Symmetric indefinite matrices preprocessings, as described in [18], can
be applied and are controlled by ICNTL(12).

2.4 Post-processing facilities
It has been shown [9] that with only two to three steps of iterative refinement the solution can often be
significantly improved. Iterative refinement can be optionally performed after the solution step using the
parameter ICNTL(10).

MUMPSalso enables the user to perform classical error analysis based on the residuals (see the
description of ICNTL(11) in Section 5). We calculate an estimate of the sparse backward error using
the theory and metrics developed in [9]. We use the notationx̄ for the computed solution and a modulus
sign on a vector or a matrix to indicate the vector or matrix obtained by replacing all entries by their
moduli. The scaled residual

|b −Ax̄|
i

(|b| + |A| |x̄|)
i

(1)

is computed for all equations except those for which the numerator is nonzero and the denominator is
small. For all the exceptional equations,

|b −Ax̄|
i

(|A| |x̄|)
i
+ ‖Ai‖∞‖x̄‖∞

(2)

is used instead, whereAi is row i of A. The largest scaled residual (1) is returnedin RINFOG(7) and the
largest scaled residual (2) is returned in RINFOG(8). If allequations are in category (1), zero is returned
in RINFOG(8). The computed solution̄x is the exact solution of the equation

(A + δA)x = (b + δb),

where

δAij ≤ max(RINFOG(7), RINFOG(8))|A|
ij

,

andδbi ≤ max(RINFOG(7)|b|
i
, RINFOG(8)‖Ai‖∞‖x̄‖∞). Note thatδA respects the sparsity of

A. An upper bound for the error in the solution is returned in RINFOG(9). Finally condition numbers
cond1 andcond2 for the matrix are returned in RINFOG(10) and RINFOG(11), respectively, and

‖δx‖
‖x‖ ≤ RINFOG(7) × cond1 + RINFOG(8) × cond2.

2.5 Solving the transposed system
Given a sparse matrixA, the systemAX = B or A

T
X = B can be solved during the solve stage,

whereA is square of ordern andX andB are of ordern by nrhs. This is controlled by ICNTL(9).

2.6 Return a specified Schur complement
A Schur complement matrix (centralized or provided as 2D block cyclic matrix) can be returned to the
user (see ICNTL(19) and Section 4.9). The user must specify the list of indices of the Schur matrix.
MUMPSthen provides both a partial factorization of the complete matrix and returns the assembled Schur
matrix in user memory. The Schur matrix is considered as a full matrix. The partial factorization that
builds the Schur matrix can also be used to solve linear systems associated with the “interior” variables.

For example, consider the partitioned matrix

A =

(

A1,1 A1,2

A2,1 A2,2

)

(3)

where the variables ofA2,2 are specified by the user. Then the Schur complement, as returned byMUMPS,
is A2,2 − A2,1A

−1
1,1A1,2, and the solve is performed onA1,1 only. (Entries in the solution vector

5



corresponding to indices in the Schur matrix need not be set on entry and are explicitly set to zero on
output.)

Note that the Schur complement could be considered as an element contribution to the interface block
in a domain decomposition and soMUMPScould be used to solve this interface problem using the element
entry functionality.

2.7 Arithmetic versions
Several versions of the packageMUMPSare available:REAL, DOUBLE PRECISION, COMPLEX, and
DOUBLE COMPLEX.

This document applies to all four precisions. In the following we use the conventions below:

1. the termreal is used forREALor DOUBLE PRECISION,

2. the termcomplex is used forCOMPLEXor DOUBLE COMPLEX,

3. real version means eitherREALor DOUBLE PRECISIONversion,

4. complex version means eitherCOMPLEX, or DOUBLE COMPLEXversion.

2.8 The working host processor
The analysis phase is performed on the host processor. This processor is the one with rank 0 in the
communicator provided toMUMPS. By setting the variable PAR to 1 (see Section 4.2),MUMPSallows the
host to participate in computations during the factorization and solve phases, just like any other processor.
This allowsMUMPSto run on a single processor and prevents the host processor being idle during the
factorization and solve phases (as would be the case for PAR=0). We thus generally recommend using a
working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a large centralized matrix on a purely
distributed architecture with relatively small local memory: PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on the host.

2.9 Sequential version
It is possible to useMUMPSsequentially by limiting the number of processors to one, but the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries and the user program needs to make explicit
calls toMPI INIT andMPI FINALIZE .

A purely sequential version ofMUMPSis also available. For this, a special library is distributed that
provides all external references needed byMUMPSfor a sequential environment.MUMPScan thus be
used in a simple sequential program, ignoring anything related to MPI. Details on how to build a purely
sequential version ofMUMPSare available in the file README available in theMUMPSdistribution. Note
that for the sequential version, the component PAR must be set to 1 (see Section 4.2) and that the calling
program should not make use of MPI.

2.10 Shared memory version
On networks of SMP nodes (multiprocessor nodes with a sharedmemory), a parallel shared memory
BLAS library (also called multithread BLAS) is often provided by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) can be significantly more efficient than running
with only MPI processes. For example on a computer with 2 SMP nodes and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MPI process.

2.11 Main changes between versions
MUMPSis an evolving package and new facilities and algorithms have been added that result in changes
to the version number. Please refer tohttp://www.enseeiht.fr/apo/MUMPS/faq.html and
http://graal.ens-lyon.fr/MUMPS/faq.html to an history of the main modifications where
we also report the most frequently asked question about the sovler. The README file with our
distribution can be consulted for more details and for the dates of the releases.
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3 Sequence in which routines are called
In the following, we use the notation[SDCZ]MUMPSto refer toDMUMPS, SMUMPS, ZMUMPSor CMUMPS
for REAL, DOUBLE PRECISION, COMPLEXandDOUBLE COMPLEXversions, respectively. Similarly
[SDCZ]MUMPSSTRUC refers to either SMUMPSSTRUC, DMUMPSSTRUC, CMUMPSSTRUC,
or ZMUMPSSTRUC, and [sdcz]mumps struc.h to smumps struc.h , dmumpsstruc.h ,
cmumps struc.h or zmumps struc.h .

In the Fortran 90 interface, there is a single user callable subroutine per precision, called
[SDCZ]MUMPS, that has a single parametermumpspar of Fortran 90 derived datatype
[SDCZ]MUMPSSTRUCdefined in [sdcz]mumpsstruc.h. The interface is the same for the sequential
version, only the compilation process and libraries need bechanged. In the case of the parallel version,
MPI must be initialized by the user before the first call to[SDCZ]MUMPSis made. The calling sequence
for theDOUBLE PRECISIONversion may look as follows:

INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
...
INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par
...
CALL MPI_INIT(IERR) ! Not needed in purely sequential versi on
...
CALL DMUMPS( mumps_par )
...
CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other precisions, dmumpsstruc.h should be replaced bysmumps struc.h ,
cmumps struc.h , or zmumps struc.h , and the ’D’ in DMUMPSand DMUMPSSTRUCby
’S’ , ’C’ or ’Z’ .

The variablemumpspar of datatype[SDCZ]MUMPSSTRUCholds all the data for the problem. It
has many components, only some of which are of interest to theuser. The other components are internal
to the package. Some of the components must only be defined on the host. Others must be defined
on all processors. The file[sdcz]mumps struc.h defines the derived datatype and must always
be included in the program that callsMUMPS. The file [sdcz]mumps root.h , which is included in
[sdcz]mumps struc.h , must also be available at compilation time. Components of the structure
[SDCZ]MUMPSSTRUCthat are of interest to the user are shown in Figure 1.

The interface toMUMPSconsists in calling the subroutine[SDCZ]MUMPSwith the appropriate
parameters set inmumpspar .
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INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC

SEQUENCE
C INPUT PARAMETERS
C *****************
C Problem definition
C ------------------
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not wor king)

INTEGER SYM, PAR, JOB
C Control parameters
C ------------------

INTEGER ICNTL(40)

real CNTL(5)

INTEGER N ! Order of input matrix
C Assembled input matrix : User interface
C ----------------------------------------

INTEGER NZ

real/complex , DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry
C --------------------------------

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex , DIMENSION(:), POINTER :: A LOC

C Unassembled input matrix: User interface
C ----------------------------------------

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex , DIMENSION(:), POINTER :: A ELT

C MPI Communicator
C -----------------

INTEGER COMM
C Ordering and scaling, if given by user (optional)
C -------------------------------------------------

INTEGER, DIMENSION(:), POINTER :: PERM_IN

real/complex, DIMENSION(:), POINTER :: COLSCA, ROWSCA

C INPUT/OUTPUT data
C ******************
C RHS/SOL_loc : on input it holds the right-hand side
C on output it always holds the assembled solution
C -------------------------------------------------- -----

real/complex, DIMENSION(:), POINTER :: RHS
real/complex, DIMENSION(:), POINTER :: RHS SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_LOC

real/complex, DIMENSION(:), POINTER :: SOL LOC

INTEGER, DIMENSION(:), POINTER :: ISOL_LOC
C OUTPUT data and Statistics
C **************************

INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur
C ------

INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex, DIMENSION(:), POINTER :: SCHUR

C Mapping potentially provided by MUMPS
C -------------------------------------

INTEGER, DIMENSION(:), POINTER :: MAPPING
END TYPE [SDCZ]MUMPS_STRUC

Figure 1: Main components of the structure[SDCZ]MUMPSSTRUC defined in
[sdcz]mumps struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, whereasreal is used for parameters that are always real, even in the
complex version ofMUMPS. 8



4 Input and output parameters
In this section, we describe the components of the variable mumpspar% of datatype
[SDCZ]MUMPSSTRUCthat must be set by the user.

4.1 Control of the three main phases: Analysis, Factorization, Solve
mumpspar%JOB (integer) must be initialized by the user on all processors before a call toMUMPS. It

controls the main action taken byMUMPS. It is not altered byMUMPS.

JOB= –1 initializes an instance of the package. A call with JOB= –1 must be performed before
any other call to the package on the same instance. It sets default values for other components
of MUMPSSTRUC(such as ICNTL, see below), which may then be altered before subsequent
calls toMUMPS. Note that three components of the structure must always be set by the user
(on all processors) before a call with JOB= –1. These are

• mumpspar%COMM,

• mumpspar%SYM, and

• mumpspar%PAR.

Note that, after a call to JOB= –1, the internal component mumpspar%MYID contains
the rank of the calling processor in the communicator provided to MUMPS. Thus, the test
“(mumps par%MYID == 0)” may be used to identify the host processor (see Section 2.8).

JOB= –2 destroys an instance of the package. All data structures associated with the instance,
except those provided by the user in mumpspar, are deallocated. It should be called by the
user only when no further calls toMUMPSwith this instance are required. It should be called
before a further JOB= –1 call with the same argument mumpspar.

JOB=1 performs the analysis. In this phase,MUMPSchooses pivots from the diagonal using a
selection criterion to preserve sparsity. It uses the pattern of A + A

T but ignores numerical
values. It subsequently constructs subsidiary information for the numerical factorization (a
JOB=2 call).
An option exists for the user to input the pivotal sequence (ICNTL(7)=1, see below) in which
case only the necessary information for a JOB=2 call will be generated.
The numerical values of the original matrix, mumpspar%A, must be provided by the user
during the analysis phase only if ICNTL(6) is set to a value between 2 and 7. See ICNTL(6)
in Section 5 for more details.
MUMPSuses the pattern of the matrixA input by the user. In the case ofa centralized matrix,
the following components of the structure defining the matrix pattern must be set by the user
only on the host:

• mumpspar%N, mumpspar%NZ, mumpspar%IRN, and mumpspar%JCN if the user
wishes to input the structure of the matrix inassembled format(ICNTL(5)=0 and
ICNTL(18) 6= 3) (see Section 4.4),

• mumpspar%N, mumpspar%NELT, mumpspar%ELTPTR, and mumpspar%ELTVAR
if the user wishes to input the matrix inelemental format(ICNTL(5)=1) (see Section 4.5).

These components should be passed unchanged when later calling the factorization (JOB=2)
and solve (JOB=3) phases.
In the case ofa distributed assembled matrix(see Section 4.6 for more details and options),

• If ICNTL(18) = 1 or 2, the previous requirements hold except that IRN and JCN are no
longer required and need not be passed unchanged to the factorization phase.

• If ICNTL(18) = 3, the user should provide

– mumpspar%N on the host

– mumpspar%NZ loc, mumpspar%IRN loc and mumpspar%JCNloc on all slave
processors. Those should be passed unchanged to the factorization (JOB=2) and solve
(JOB=3) phases.

A call to MUMPSwith JOB=1 must be preceded by a call with JOB= –1 on the same instance.
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JOB=2 performs the factorization. It uses the numerical values of the matrixA provided by the
user and the information from the analysis phase (JOB=1) to factorize the matrixA.
If the matrix is centralizedon the host (ICNTL(18)=0), the pattern of the matrix should
be passed unchanged since the last call to the analysis phase(see JOB=1); the following
components of the structure define the numerical values and must be set by the user (on the
host only) before a call with JOB=2:

• mumpspar%A if the matrix is in assembled format (ICNTL(5)=0), or

• mumpspar%A ELT if the matrix is in elemental format (ICNTL(5)=1).

If the initial matrix is distributed(ICNTL(5)=0 and ICNTL(18) 6= 0), then the following
components of the structure must be set by the user on all slave processors before a call with
JOB=2:

• mumpspar%A loc on all slave processors, and

• mumpspar%NZ loc, mumpspar%IRN loc and mumpspar%JCNloc if ICNTL(18)=1
or 2. (For ICNTL(18)=3, NZloc, IRN loc and JCNloc have already been passed to the
analysis step and must be passed unchanged.)

(See Sections 4.4, 4.5, and 4.6.)
The actual pivot sequence used during the factorization maydiffer slightly from the sequence
returned by the analysis if the matrixA is not diagonally dominant.
An option exists for the user to input scaling vectors or letMUMPScompute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(8)6= 0, see Section 4.7).
A call to MUMPSwith JOB=2 must be preceded by a call with JOB=1 on the same instance.

JOB=3 performs the solution. It uses the right-hand side(s)B provided by the user and the factors
generated by the factorization (JOB=2) to solve a system of equationsAX = B or AT

X =
B. The pattern and values of the matrix should be passed unchanged since the last call to the
factorization phase (see JOB=2). The structure component mumpspar%RHS must be set by
the user (on the host only) before a call with JOB=3. (See Section 4.11.)
A call to MUMPSwith JOB=3 must be preceded by a call with JOB=2 (or JOB=4) on the same
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. It must be preceded by a call to
MUMPSwith JOB= –1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must be preceded by a call toMUMPSwith
JOB=1 on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. It must be preceded by a call to
MUMPSwith JOB= –1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance are possible.

4.2 Control of parallelism
mumpspar%COMM (integer) must be set by the user on all processors before theinitialization phase

(JOB= –1) and must not be changed. It must be set to a valid MPI communicator that will be used
for message passing insideMUMPS. It is not altered byMUMPS. The processor with rank 0 in this
communicator is used byMUMPSas thehost processor. Note that only the processors belonging to
the communicator should callMUMPS.

mumpspar%PAR (integer) must be initialized by the user on all processors and is accessed byMUMPS
only during the initialization phase (JOB= –1). It is not altered byMUMPSand its value is
communicated internally to the other phases as required. Possible values for PAR are:

0 host is not involved in factorization/solve phases

1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problem,perform symbolic computations during
the analysis phase, distribute data, and collect results from other processors. If set to 1, the host will
also participate in the factorization and solve phases. If the initial problem is large and memory is
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an issue, PAR = 1 is not recommended if the matrix is centralized on processor 0 because this can
lead to memory imbalance, with processor 0 having a larger memory load than the other processors.
Note that setting PAR to 1, and using only 1 processor, leads to a sequential code.

4.3 Matrix type
mumpspar%SYM (integer) must be initialized by the user on all processors and is accessed byMUMPS

only during the initialization phase (JOB= –1). It is not altered byMUMPSexcept for the complex
version ofMUMPSwhere SYM=1 is replaced by SYM=2 and structural symmetry is exploited up
to the root. Its value is communicated internally to the other phases as required. Possible values for
SYM are:

0 A is unsymmetric

1 A is symmetric positive definite

2 A is general symmetric

For the complex version, the value SYM=1 is currently treated as SYM=2. We do not have a version
for Hermitian matrices in this release ofMUMPS.

4.4 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0
mumpspar%N (integer), mumpspar%NZ (integer), mumpspar%IRN (integer array pointer, dimension

NZ), mumpspar%JCN (integer array pointer, dimension NZ), and mumpspar%A (real/complex
array pointer, dimension NZ) hold the matrix in assembled format. These components should be set
by the user only on the host and only when ICNTL(5)=0 and ICNTL(18)=0; they are not modified
by the package.

• N is the order of the matrixA, N > 0. It is not altered byMUMPS.

• NZ is the number of entries being input, NZ> 0. It is not altered byMUMPS.

• IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries.

• A is a real (complex in the complex version) array of length NZ. The user must set A(k) to
the value of the entry in row IRN(k) and column JCN(k) of the matrix. A is accessed when
JOB=1 only when ICNTL(6)6= 0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonal nonzeroaii is held as A(k)=aii,
IRN(k)=JCN(k)=i, and a pair of off-diagonal nonzerosaij = aji is held as A(k)=aij and
IRN(k)=i, JCN(k)=j or vice-versa. Again, duplicate entries are summed and entries with
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern of thematrix and must be set by the
user before the analysis phase (JOB=1). Component A must be set before the factorization phase
(JOB=2).

4.5 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0
mumpspar%N (integer), mumpspar%NELT (integer), mumpspar%ELTPTR (integer array pointer,

dimension NELT+1), mumpspar%ELTVAR (integer array pointer, dimension ELTPTR(NELT+1)
– 1), and mumpspar%A ELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the host andonly when ICNTL(5)=1:

• N is the order of the matrixA, N > 0. It is not altered byMUMPS.

• NELT is the number of elements being input, NELT> 0. It is not altered byMUMPS.

• ELTPTR is an integer array of length NELT+1. ELTPTR(j) points to the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) must beset to the position after the
last variable of the last element. Note that ELTPTR(1) should be equal to 1. ELPTR is not
altered byMUMPS.
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• ELTVAR is an integer array of length ELTPTR(NELT+1) – 1 and must be set to the lists
of variables of the elements. It is not altered byMUMPS. Those for element j are stored in
positions ELTPTR(j), . . . , ELTPTR(j+1)–1. Out-of-range variables are ignored.

• A ELT is a real (complex in the complex version) array. IfNp denotes ELTPTR(p+1)–
ELTPTR(p), then the values for element j are stored in positionsKj + 1, . . . ,Kj + Lj, where

– Kj =
∑j−1

p=1
Np

2, andLj = Nj
2 in the unsymmetric case (SYM = 0)

– Kj =
∑j−1

p=1
(Np · (Np + 1))/2, andLj = (Nj · (Nj + 1))/2 in the symmetric case

(SYM 6= 0). Only the lower triangular part is stored.

Values within each element are stored column-wise. Values corresponding to out-of-range
variables are ignored and values corresponding to duplicate variables within an element are
summed. AELT is not accessed when JOB = 1. Note that, although the elemental matrix may
be symmetric or unsymmetric in value, its structure is always symmetric.

The components N, NELT, ELTPTR, and ELTVAR describe the pattern of the matrix and must
be set by the user before the analysis phase (JOB=1). Component A ELT must be set before the
factorization phase (JOB=2). Note that, in the current release of the package, the element entry
must be centralized on the host.

4.6 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18) 6=0
When the matrix is in assembled form (ICNTL(5)=0), we offer several options, defined by the control
parameter ICNTL(18) described in Section 5. The following components of the structure define the
distributed assembled matrix input. They are valid for nonzero values of ICNTL(18), otherwise the user
should refer to Section 4.4.

mumpspar%N (integer), mumpspar%NZ (integer), mumpspar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), mumpspar%IRN loc (integer array
pointer, dimension NZloc), mumpspar%JCNloc (integer array pointer, dimension NZloc),
mumpspar%A loc (real/complexarray pointer, dimension NZloc), and mumpspar%MAPPING
(integer array, dimension NZ).

• N is the order of the matrixA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS.

• NZ is the number of entries being input in the definition ofA, NZ > 0. It must be defined on
the host before analysis if ICNTL(18) = 1, or 2.

• IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively,
for the matrix entries. They must be defined on the host beforeanalysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis.

• NZ loc is the number of entries local to a processor. It must be defined on all processors in
the case of the working host model of parallelism (PAR=1), and on all processors except the
host in the case of the non-working host model of parallelism(PAR=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.

• IRN loc, JCNloc are integer arrays of length NZloc containing the row and column indices,
respectively, for the matrix entries. They must be defined onall processors if PAR=1, and
on all processors except the host if PAR=0, before analysis if ICNTL(18) = 3, and before
factorization if ICNTL(18) = 1 or 2.

• A loc is a real (complex in the complex version) array of dimension NZloc that must be
defined before the factorization phase (JOB=2) on all processors if PAR = 1, and on all
processors except the host if PAR = 0. The user must set Aloc(k) to the value in row
IRN loc(k) and column JCNloc(k).

• MAPPING is an integer array of size NZ which is returned byMUMPSon the host after
the analysis phase as an indication of a preferred mapping ifICNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) should beprovided on processor with
rank IPROC in theMUMPScommunicator.
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We recommend the use of options ICNTL(18)= 2 or 3 because theyare the simplest and most flexible
options. Furthermore, those options (2 or 3) are in general almost as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.

4.7 Scaling
mumpspar%COLSCA, mumpspar%ROWSCA (double precision array pointers, dimension N) are

optional scaling arrays required only by the host. If a scaling is provided by the user
(ICNTL(8) = –1), these arrays must be allocated and initialized by the user on the host, before a
call to the factorization phase (JOB=2). They might also be automatically allocated and computed
by the package during analysis (if ICNTL(6)=5 or 6), in whichcase ICNTL(8)= –2 will be set by
the package during analysis and should be passed unchanged to the solve phase (JOB=3).

4.8 Given ordering: ICNTL(7)=1
mumpspar%PERM IN (integer array pointer, dimension N) must be allocated and initialized by the

user on the host if ICNTL(7)=1. It is accessed during the analysis (JOB=1) and PERMIN(i), i=1,
. . . , N must hold the position of variable i in the pivot order.Note that, even when the ordering is
provided by the user, the analysis must still be performed before numerical factorization.

4.9 Return a Schur complement: ICNTL(19)6= 0
mumpspar%SIZE SCHUR (integer) must be initialized on the host to the number of variables defining

the Schur complement if ICNTL(19) = 1, 2, or 3. It is accessed during the analysis phase and should
be passed unchanged to the factorization and solve phases.

mumpspar%LISTVAR SCHUR (integer array pointer, dimension mumpspar%SIZE SCHUR) must
be allocated and initialized by the user on the host if ICNTL(19) = 1, 2 or 3. It is not altered by
MUMPS. It is accessed during analysis (JOB=1) and LISTVARSCHUR(i), i=1, . . . , SIZESCHUR
must hold theith variable of the Schur complement matrix.

Centralized Schur complement (ICNTL(19)=1)

mumpspar%SCHUR is a real (complex in the complex version) 1-dimensional pointer array that
should point to size SIZESCHUR× SIZE SCHUR locations in memory. It must be allocated
by the user on the host (independently of the value of mumpspar%PAR) before the factorization
phase. On exit, it holds the Schur complement matrix. On output from the factorization phase, and
on the host node, the 1-dimensional pointer array SCHUR of length SIZESCHUR*SIZESCHUR
holds the (dense) Schur matrix of order SIZESCHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the user inLISTVAR SCHUR and that the Schur
matrix is storedby rows. If the matrix is symmetric then only the lower triangular part of the Schur
matrix is provided (by rows) and the upper part is not significant. (This can also be viewed as the
upper triangular part stored by columns in which case the lower part is not defined.)

Distributed Schur complement (ICNTL(19)=2 or 3)

For symmetric matrices, the value of ICNTL(19) controls whether only the lower part (ICNTL(19) =
2) or the complete matrix (ICNTL(19) = 3) is generated. We always provide the complete matrix for
unsymmetric matrices so either value for ICNTL(19) has the same effect.

If ICNTL(19)=2 or 3, the following parameters should be defined on the host on
entry to the analysis phase:

mumpspar%NPROW, mumpspar%NPCOL, mumpspar%MBLOCK , and mumpspar%NBLOCK
are integers corresponding to the characteristics of a 2D block cyclic grid of processors. They
should be defined on the host before a call to the analysis phase. If any of these quantities is smaller
than or equal to zero or has not been defined by the user, or if NPROW× NPCOL is larger than
the number of slave processors available (total number of processors if mumpspar%PAR=1, total
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number of processors minus 1 if mumpspar%PAR=0), then a grid shape will be computed by the
analysis phase ofMUMPSand NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exit
from the analysis phase. Please refer to [10] (for example) for more details on the notion of grid of
processors and on 2D block cyclic distributions. We briefly describe the meaning of the four above
parameters here:

• NPROW is the number of processors in a row of the process grid,

• NPCOL is the number of processors in a column of the process grid,

• MBLOCK is the blocking factor used to distribute the rows of the Schur complement,

• NBLOCK is the blocking factor used to distribute the columnsof the Schur complement.

As in ScaLAPACK, we use a row-major process grid of processors, that is, process ranks (as
provided toMUMPSin the MPI communicator) are consecutive in a row of the process grid.
NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchanged from the analysis phase
to the factorization phase.

On exit from the analysis phase, the following two components are set byMUMPSon the first
NPROW× NPCOL slave processors (the host is excluded if PAR=0 and theprocessors with largest
MPI ranks in the communicator provided toMUMPSmay not be part of the grid of processors).

mumpspar%SCHUR MLOC is an integer giving the number of rows of the local Schur complement
matrix on the concerned processor. It is equal to NUMROC(SIZE SCHUR, MBLOCK,myrow, 0,
NPROW), where

• NUMROC is an INTEGER function defined in most ScaLAPACK implementations (also used
internally by theMUMPSpackage),

• SIZE SCHUR, MBLOCK, NPROW have been defined earlier, and

• myrowis defined as follows:
Let myidbe the rank of the calling process in the communicator COMM provided toMUMPS.
(myidcan be returned by the MPI routineMPI COMMRANK.)

– if PAR = 1 myrowis equal tomyid/ NPCOL,

– if PAR = 0 myrowis equal to(myid− 1) / NPCOL.

Note that an upperbound of the minimum value of leading dimension (SCHURLLD defined below)
is equal to ((SIZESCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.

mumpspar%SCHUR NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equal toNUMROC(SIZESCHUR,
NBLOCK, mycol, 0, NPCOL), where

• SIZE SCHUR, NBLOCK, NPCOL have been defined earlier, and

• mycolis defined as follows:
Let myidbe the rank of the calling process in the communicator COMM provided toMUMPS.
(myidcan be returned by the MPI routineMPI COMMRANK.)

– if PAR = 1 myrowis equal to MOD(myid, NPCOL),

– if PAR = 0 myrowis equal to MOD(myid− 1, NPCOL).

On entry to the factorization phase(JOB = 2), SCHURLLD should be defined by the user and
SCHUR should be allocated by the user on the NPROW× NPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI ranks in the communicator provided toMUMPS
may not be part of the grid of processors).

mumpspar%SCHUR LLD is an integer defining the leading dimension of the local Schur complement
matrix. It should be larger or equal to the local number of rows of that matrix, SCHURMLOC
(as returned byMUMPSon exit from the analysis phase on the processors that participate in the
computation of the Schur). SCHURLLD is not modified byMUMPS.

mumpspar%SCHUR is a real (complex in the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factorization phase. Its size should be at
least equal to SCHURLLD × (SCHURNLOC - 1) + SCHURMLOC, where SCHURMLOC,
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SCHURNLOC, and SCHURLLD have been defined above. On exit to the factorization phase,
the pointer array SCHUR contains the Schur complement, stored by columns, in the format
corresponding to the 2D cyclic grid of NPROW× NPCOL processors, with block sizes MBLOCK
and NBLOCK, and local leading dimensions SCHURLLD.

The Schur complement is stored by columns. Note that settingNPCOL × NPROW = 1
will centralize the Schur complement matrix,stored by columns(instead of by rows as in the
ICNTL(19)=1 option). It will then be available on the host node if PAR=1, and on the node with
MPI identifier 1 (first working slave processor) if PAR=0.

If ICNTL(19)=2 and the Schur is symmetric (SYM=1 or 2), only the lower triangle is provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetric (SYM=1 or 2), then both the lower and upper
triangles are provided, stored by columns. Note that if ICNTL(19)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices, ICNTL(19)=2 and ICNTL(19)=3 have the same effect.)

4.10 Workspace parameters
mumpspar%MAXIS and mumpspar%MAXS (integers) are defined, for each processor, as the size
of the integer and the real (complex for the complex version)workspaces respectively required for
factorization and/or solve. On return from analysis (JOB = 1), INFO(7) and INFO(8) return the minimum
values for MAXIS and MAXS, respectively, to the user. If the user has reason to believe that significant
numerical pivoting will be required, it may be desirable to choose a higher value for MAXIS (or MAXS)
than output from the analysis, or to increase the value of ICNTL(14). At the beginning of the factorization,
MAXIS and MAXS are set to the maximum of estimates based on analysis phase data (but including the
memory relaxation resulting from the value of ICNTL(14) provided to the factorization) and the values
supplied by the user. An integer array IS of size MAXIS and a real (complex in the complex version)
array S of size MAXS are then dynamically allocated and used during the factorization and solve phases
to hold the factors and contribution blocks.

4.11 Right-hand side and solution vectors/matrices
The formats of the right-hand side and of the solution are controlled by ICNTL(20) and ICNTL(21),
respectively.

Centralized dense right-hand side (ICNTL(20)=0) and/or centralized dense solution
(ICNTL(21)=0)

If ICNTL(20)=0 or ICNTL(21)=0, the following should be defined on the host.

mumpspar%RHS (real/complex array pointer, dimension NRHS×LRHS) is areal (complex in the
complex version) array that should be allocated by the user on the host before a call toMUMPSwith
JOB= 3, 5, or 6.

On entry, if ICNTL(20)=0, RHS(i+(k-1)×LRHS) must hold the i-th component ofkth right-hand
side vector of the equations being solved.

On exit, if ICNTL(21)=0, then RHS(i+(k-1)×LRHS) will hold the i-th component of thekth
solution vector.

mumpspar%NRHS (integer) is an optional parameter that is significant on thehost before a call to
MUMPSwith JOB = 3, 5, or 6. If set, it should hold the number of right-hand side vectors. If not
set, the value 1 is assumed to ensure backward compatibilityof theMUMPSinterface with versions
prior to 4.3.3. Note that if NRHS> 1, then functionalities related to iterative refinement anderror
analysis (see ICNTL(10) and ICNTL(11) are currently disabled.

mumpspar%LRHS (integer) is an optional parameter that is significant on thehost before a call to
MUMPSwith JOB=3, 5, or 6. If NRHS is provided, LRHS should then holdthe leading dimension
of the array RHS. Note that in that case, LRHS should be greater than or equal to N.
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Sparse right-hand side (ICNTL(20)=1)

If ICNTL(20)=1, the following input parameters should be defined on the host only before a call toMUMPS
with JOB=3, 5, or 6:

mumpspar%NZ RHS (integer) should hold the number of non-zeros in all the right-hand side vectors.

mumpspar%NRHS (integer), if set, should hold the number of right-hand sidevectors. If not set, the
value 1 is assumed.

mumpspar%RHS SPARSE (real/complex array pointer, dimension NZRHS) should hold the
numerical values of the non-zero inputs of each right-hand side vector. See also IRHSPTR below.

mumpspar%IRHS SPARSE(integer array pointer, dimension NZRHS should hold the indices of the
variables of the non-zero inputs of each right-hand side vector.

mumpspar%IRHS PTR is an integer array pointer of dimension NRHS+1. IRHSPTR
is such that the i-th right-hand side vector is defined by its non-zero row indices
IRHS SPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1) and the corresponding numerical
values RHSSPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1). Note that IRHSPTR(1)=1 and
IRHS PTR(NRHS+1)=NZRHS+1.

Distributed solution (ICNTL(21)=1)

On some networks with low bandwidth, and especially when there are many right-hand side vectors,
centralizing the solution on the host processor might be a costly operation in the solution phase from
MUMPS. If this is critical to the user, this functionality allows the solution to be left distributed over the
processors. The solution should then be exploited in its distributed form by the user application.

mumpspar%SOL LOC is a real/complex array pointer, of dimension LSOLLOC×NRHS (where
NRHS corresponds to the value provided in mumpspar%NRHS on the host), that should be
allocated by the user before the solve phase (JOB=3) on all processors in the case of the working
host model of parallelism (PAR=1), and on all processors except the host in the case of the non-
working host model of parallelism (PAR=0). Its leading dimension LSOLLOC should be larger
than or equal to INFO(23), where INFO(23) has the value returned byMUMPSon exit from the
factorization phase. On exit from the solve phase, SOLLOC(i+(k-1)×LSOL LOC) will contain
the value corresponding to variable ISOLLOC(i) in thekth solution vector.

mumpspar%LSOL LOC (integer). LSOLLOC must be set to the leading dimension of SOLLOC
(see above) and should be larger than or equal to INFO(23), where INFO(23) has the value returned
by MUMPSon exit from the factorization phase.

mumpspar%ISOL LOC (integer array pointer, dimension INFO(23)) ISOLLOC should be allocated
by the user before the solve phase (JOB=3) on all processors in the case of the working host model
of parallelism (PAR=1), and on all processors except the host in the case of the non-working host
model of parallelism (PAR=0). ISOLLOC should be of size at least INFO(23), where INFO(23)
has the value returned byMUMPSon exit from the factorization phase. On exit from the solve phase,
ISOL LOC(i) contains the index of the variables for which the solution (in SOL LOC) is available
on the local processor. Note that if successive calls to the solve phase (JOB=3) are performed for a
given matrix, ISOLLOC will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functionalities related to error analysis and iterative
refinement (see ICNTL(10) and ICNTL(11)) are currently not available.

5 Control parameters
On exit from the initialization call (JOB= –1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the corresponding entries in mumpspar%ICNTL and
mumpspar%CNTL should be reset after this initial call and before the call in which they are used.

mumpspar%ICNTL is an integer array of dimension 40.
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ICNTL(1) is the output stream for error messages. If it is negative or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, statistics, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is0.

ICNTL(3) is the output stream for global information, collected on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possible values are

• ≤ 0: No messages output.

• 1 : Only error messages printed.

• 2 : Errors and warnings printed.

• 3 : Errors and warnings and terse diagnostics (only first ten entries of arrays) printed.

• 4 : Errors and warnings and all information on input and output parameters printed.

ICNTL(5) has default value 0 and is only accessed by the host and only during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled format in the structure components N,
NZ, IRN, JCN, and A (or NZloc, IRN loc, JCNloc, A loc, see Section 4.6). If ICNTL(5) = 1, the
input matrix must be given

N, NELT, ELTPTR, ELTVAR, and AELT.

ICNTL(6) has default value 7 (automatic choice done by the package) and is used to control an option
for permuting and scaling the matrix. It is only accessed by the host and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, 5, 6a column permutation (based on
weighted bipartite matching algorithms described in [14, 15]) is applied to the original matrix to
get a zero-free diagonal. For symmetric matrices, if ICNTL(6)=1, 2, 3, 4, 5, 6 a set of recommended
1×1 and2×2 pivots is computed (see [18] for more details) from the computed column permutation.

Possible values of ICNTL(6) are:

• 0 : No column permutation is computed.

• 1 : The permuted matrix has as many entries on its diagonal possible. The values on the
diagonal are of arbitrary size.

• 2 : The smallest value on the diagonal of the permuted matrix is maximized.

• 3 : Variant of option 2 with different performance.

• 4 : The sum of the diagonal entries of the permuted matrix is maximized.

• 5 : The product of the diagonal entries of the permuted matrixis maximized. Vectors are
also computed (and stored in COLSCA and ROWSCA, only if ICNTL(8) is set to 7) to scale
the permuted matrix so that the nonzero diagonal entries in the permuted matrix are one in
absolute value and all the off-diagonal entries are less than or equal to one in absolute value.

• 6 : Similar to 5 but with a different algorithm.

• 7 : Based on the structural symmetry of the input matrix and onthe availability of the
numerical values, the value of ICNTL(6) is automatically chosen by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the original matrix, mumpspar%A, must be
provided by the user during the analysis phase. If the matrixis symmetric positive definite (SYM
= 1), or in elemental format (ICNTL(5)=1), or the ordering is provided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19)= 1, 2, or 3) is required, or the matrix is initially distributed
(ICNTL(18) 6= 0), then ICNTL(6) is treated as 7.

On unsymmetric matrices(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On output from the analysis phase, when the
column permutation is not the identity, the pointer mumpspar%UNSPERM (internal data valid
until a call toMUMPSwith JOB=-2) provides access to the permutation. (The column permutation
is such that entryai,perm(i) is on the diagonal of the permuted matrix.) Otherwise, the pointer is
unassociated.
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On general symmetric matrices(SYM = 2), we advise either to letMUMPSselect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagonal block). On output from the analysis
the pointer mumpspar%UNSPERM is unassociated.

On output from the analysis phase, INFOG(23) holds the valueof ICNTL(6) that was effectively
used.

ICNTL(7) has default value 7 and is only accessed by the host and only during the analysis phase. It
determines the pivot order to be used for the factorization.Note that, even when the ordering is
provided by the user, the analysis must be performed before numerical factorization. In exceptional
cases, ICNTL(7) may be modified byMUMPSwhen the ordering is not compatible with the value
of ICNTL(12). Possible values are:

• 0 : Approximate Minimum Degree (AMD) [2] is used,

• 1 : the pivot order should be set by the user in PERMIN. In this case, PERMIN(i), (i=1, ...
N) holds the position of variable i in the pivot order.

• 2 : Approximate Minimum Fill (AMF) is used,

• 3 : Not available in the current version (treated as 7).

• 4 : PORD1 [23] is used,

• 5 : the METIS2 [22] routine METISNODEND is used,

• 6 : Approximate Minimum Degree with automatic quasi-dense row detection (QAMD) is
used.

• 7 : Automatic choice by the software during analysis phase. This choice will depend on
the ordering packages made available, on the matrix (type and size), and on the number of
processors.

Other values are treated as 7. Currently, options 4 and 5 are only available if the corresponding
packages are installed (see comments in the Makefiles to letMUMPSknow about them). If the
packages are not installed then options 4 and 5 are treated as7. If the problem is in elemental
format (ICNTL(5)=1), then only options 0, 1, 5 and 7 are available, with option 7 leading to an
automatic choice between AMD and METIS (options 0 or 5); other values are treated as 7. If the
user asks for a Schur complement matrix, only options 0, 1 and7 are currently available, Other
options are treated as 7 which will (currently) necessarilybe treated as 0 (AMD).

Generally, with the automatic choice corresponding to ICNTL(7)=7, the option chosen by
the package depends on the ordering packages installed, thetype of matrix (symmetric or
unsymmetric), the size of the matrix and the number of processors.

For matrices with relatively dense rows, we highly recommend option 6 which may significantly
reduce the time for analysis.

On output, the pointer mumpspar%SYM PERM provides access to the symmetric permutation
that is effectively used by the MUMPS package, and INFOG(7) to the ordering option that was
effectively used. (mumpspar%SYM PERM(i), (i=1, ... N) holds the position of variable i in the
pivot order.)

ICNTL(8) has default value 7. It is used to describe the scaling strategy and is only accessed by the
host.

On entry to the analysis phase, if ICNTL(8) = 7, then an automatic choice of the scaling option is
performed during the analysis and ICNTL(8) is modified accordingly. In particular, if ICNTL(8) is
set to -2 by the user or reset to -2 by the package during the analysis, scaling arrays are computed
internally and will be ready to be used by the factorization phase.

On entry to the factorization phase, if ICNTL(8) = –1, scaling vectors must be provided in
COLSCA and ROWSCA by the user, who is then responsible for allocating and freeing them, if
ICNTL(8) = –2, scaling vectors must be provided in COLSCA and ROWSCA by the package (see
previous paragraph). If ICNTL(8) = 0, no scaling is performed, and arrays COLSCA/ROWSCA

1Distributed within MUMPS by permission of J. Schulze (University of Paderborn).
2See http://www-users.cs.umn.edu/∼karypis/metis/ to obtain a copy.
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are not used. If ICNTL(8)> 0, the scaling arrays COLSCA/ROWSCA are allocated and computed
by the package during the factorization phase.

Possible values of ICNTL(8) are listed below:

• -2: Scaling computed during analysis (see [14, 15] for the unsymmetric case and [18] for the
symmetric case).

• -1: Scaling provided on entry to the numerical factorization phase,

• 0 : No scaling applied/computed.

• 1 : Diagonal scaling,

• 2 : Scaling based on [11],

• 3 : Column scaling,

• 4 : Row and column scaling,

• 5 : Scaling based on [11] followed by column scaling,

• 6 : Scaling based on [11] followed by row and column scaling.

• 7 (analysis only) : Automatic choice of scaling value done during analysis.

If the input matrix is symmetric (SYM6= 0), then only options –2, –1, 0, 1 and 7 are allowed and
other options are treated as 0; if ICNTL(8)= –1, the user should ensure that the array ROWSCA is
equal to the array COLSCA. If the input matrix is in elementalformat (ICNTL(5) = 1), then only
options –1 and 0 are allowed and other options are treated as 0. If the initial matrix is distributed
(ICNTL(18) 6= 0 and ICNTL(5) = 0) then the value of ICNTL(8) is ignored and noscaling is
applied. If ICNTL(8)= –2 then the user has to provide the numerical value (in mumpspar%A) on
entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the host during the solve phase. If ICNTL(9) = 1,
Ax = b is solved, otherwise,AT

x = b is solved.

ICNTL(10) has default value 0 and is only accessed by the hostduring the solve phase. If NRHS
= 1, then ICNTL(10) corresponds to the maximum number of steps of iterative refinement. If
ICNTL(10) ≤ 0, iterative refinement is not performed.

In the current version, if ICNTL(21)=1 (solution kept distributed) or NRHS> 1, then iterative
refinement is not performed and ICNTL(10) is treated as 0.

ICNTL(11) has default value 0 and is only accessed by the hostand only during the solve phase. A
positive value will return statistics related to the linearsystem solved (Ax = b or A

T
x = b

depending on the value of ICNTL(9)): the infinite norm of the input matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respectively, a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in the solution in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). See also Section 2.4. Note that if
performance is important, ICNTL(11) should be left set to 0.Finally, note that, in the current
version, if NRHS> 1 or if ICNTL(21)=1 (solution vector kept distributed) thenerror analysis is
not performed and ICNTL(11) is treated as 0.

ICNTL(12) is meaningful only on general symmetric matrices(SYM = 2) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) or symmetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing done). It is only accessed by the host
and only during the analysis phase. It defines the ordering strategy (see [18] for more details) and
is used, in conjunction with ICNTL(6), to add constraints tothe ordering algorithm. (ICNTL(7)
option). Possible values of ICNTL(12) are :

• 0 : automatic choice

• 1 : usual ordering (nothing done)

• 2 : ordering on the compressed graph associated with the matrix.

• 3 : constrained ordering, only available withAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(12), ICNTL(6), ICNTL(7) values are strongly related.
Therefore, as for ICNTL(6), if the matrix is in elemental format (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur option (ICNTL(19) 6= 0) is required, or the
matrix is initially distributed (ICNTL(18)6= 0) then ICNTL(12) is treated as one.
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If MUMPSdetects some incompatibility between control parameters then it uses the following
rules to automatically reset the control parameters. Firstly ICNTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12) = 3 and the ordering required is notAMF then ICNTL(12)
is internally treated as 2. Secondly ICNTL(12) has a higher priority than ICNTL(6) and
ICNTL(8). Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6)
is automatically reset (treated as ICNTL(6)=7). Furthermore, if ICNTL(12) = 3 then ICNTL(6) is
automatically set to 5 and ICNTL(8) is set to -2.
On output from the analysis phase, INFOG(24) holds the valueof ICNTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of ICNTL(7) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by the hostduring the analysis phase. If ICNTL(13)
= 0, ScaLAPACK will be used for the root node if the size of the root node of the assembly tree
is larger than a machine-dependent minimum size. Otherwise, the root node of the tree will be
processed sequentially. Note that, although ICNTL(13) controls the efficiency of the factorization
and solve phases, preprocessing work is performed during analysis and this option must be set on
entry to the analysis phase.

ICNTL(14) is accessed by the host both during the analysis and the factorization phases. It corresponds
to the percentage increase in the estimated working space. When significant extra fill-in is caused
by numerical pivoting, larger values of ICNTL(14) may help use the real working space more
efficiently. The default value is 20 % except for symmetric positive definite matrices (SYM=1)
where the default value is 15 %.

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by the hostduring the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines the strategy for the distributed input
matrix. Possible values are:

• 0: the input matrix is centralized on the host. This is the default, see Section 4.4.

• 1: the user provides the structure of the matrix on the host atanalysis,MUMPSreturns a
mapping and the user should then provide the matrix distributed according to the mapping on
entry to the numerical factorization phase.

• 2: the user provides the structure of the matrix on the host atanalysis, and the distributed
matrix on all slave processors at factorization. Any distribution is allowed.

• 3: user directly provides the distributed matrix input bothfor analysis and factorization.

For options 1, 2, 3, see Section 4.6 for more details on the input/output parameters toMUMPS. For
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the hostduring the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be returned to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schurwill be returned to the user on the
slave processors in the form of a 2D block cyclic distributedmatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals 1, 2,or 3, the user must set on entry to
the analysis phase, on the host node:

• the integer variable SIZESCHUR to the size of the Schur matrix,

• the integer array pointer LISTVARSCHUR to the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), the integer variables NPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the analysis phase (default
values will otherwise be provided). Furthermore, workspace should be allocated by the user
before the factorization phase in order forMUMPSto store the Schur complement (see SCHUR,
SCHURMLOC, SCHURNLOC, and SCHURLLD in Section 4.9).

Note that the partial factorization of the interior variables can then be exploited to perform a solve
phase (transposed matrix or not, see ICNTL(9)). Note that the right-hand side (RHS) provided on
input must still be of size N (or N× NRHS in case of multiple right-hand sides) even if only the
N-SIZE SCHUR indices will be considered and if only N-SIZESCHUR indices of the solution
will be relevant to the user.
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Finally note that since the Schur complement can be viewed asa partial factorization of the global
matrix (with partial ordering of the variables provided by the user) the following options ofMUMPS
are incompatible with the Schur option: maximum transversal, scaling, iterative refinement, error
analysis. Note that if the ordering is given (ICNTL(7)=1) then the following property should hold:
PERM IN(LISTVAR SCHUR(i)) = N-SIZESCHUR+i, for i=1,SIZESCHUR.

ICNTL(20) has default value 0 and is only accessed by the hostduring the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense formin the structure component RHS. If
ICNTL(20)=1, then the right-hand side must be given in sparse form using the structure components
IRHS SPARSE, RHSSPARSE, IRHSPTR and NZRHS. Values different from 0 and 1 are treated
as 0. (See Section 4.11).

ICNTL(21) has default value 0 and is only accessed by the hostduring the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the structure component RHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the solution vector is kept distributed at the
end of the solve phase, and will be available on each slave processor in the structure components
ISOL loc and SOLloc. ISOL loc and SOLloc must then have been allocated by the user and
must be of size at least INFO(23), where INFO(23) has been returned by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different from 0 and 1 are currently treated as 0.
Note that if the solution is kept distributed, error analysis and iterative refinement (controlled by
ICNTL(10) and ICNTL(11)) are not applied.

ICNTL(22-40) are not used in the current version.

mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivoting. It forms a trade-off between preserving
sparsity and ensuring numerical stability during the factorization. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate factorization. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, nosuch pivoting will be performed
and the subroutine will fail if a zero pivot is encountered. If the matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorization time while still providing a stable
decomposition. If the code is called for unsymmetric or general symmetric matrices, CNTL(1)
has default value 0.01. For symmetric positive definite matrices and if the Schur complement is
asked to be returned (ICNTL(19)6= 0), numerical pivoting is suppressed and the default value is
0.0. Values less than 0.0 are treated as 0.0. In the unsymmetric case (respectively symmetric case),
values greater than 1.0 (respectively 0.5) are treated as 1.0 (respectively 0.5).

CNTL(2) is the stopping criterion for iterative refinement and is only accessed by the host during the
solve phase. LetBerr = maxi

|r|i
(|A|·|x|+|b|)i

[9]. Iterative refinement will stop when either the
required accuracy is reached (Berr < CNTL(2) ) or the convergence rate is too slow (Berr does
not decrease by at least a factor of 5). Default value is

√
ε.

CNTL(3) determines the absolute thresholdthres for numerical pivoting. It has default value -1.0 and
is only accessed by the host during the numerical factorization phase. If CNTL(3)< 0 (default),
thres is determined automatically:thres = ǫ‖A‖ if SYM=2 in the case of node level parallelism;
thres = 0 otherwise. If CNTL(3)≥ 0, then the valuethres = CNTL(3) is used. During the
numerical factorization, a potential pivot has to be largerthanthres to be accepted.

CNTL(4) determines the value for static pivoting. It has default value 0.0 in symmetric indefinite case
and -1.0 otherwise. If CNTL(4)< 0.0 static pivoting is not activated. If CNTL(4)= 0.0 an
automatic choice between numerical and static pivoting is performed during analysis. If CNTL(4)
> 0.0 static pivoting is activated and the magnitude of small pivots will be set to CNTL(4).

CNTL(5) is not used in the current version.

6 Information parameters
The parameters described in this section are returned byMUMPSand hold information that may be of
interest to the user. Some of the information is local to eachprocessor and some only on the host. If an
error is detected (see Section 7), the information may be incomplete.
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6.1 Information local to each processor
The arrays mumpspar%RINFO and mumpspar%INFO are local to each process.

mumpspar%RINFO is a double precision array of dimension 20. It contains the following local
information on the execution ofMUMPS:

RINFO(1) - after analysis: The estimated number of floating-point operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-point operations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-point operations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar%INFO is an integer array of dimension 40. It contains the following local information on
the execution ofMUMPS:

INFO(1) is 0 if the call toMUMPSwas successful, negative if an error occurred (see Section 7), or
positive if a warning is returned.

INFO(2) holds additional information about the error or thewarning. If INFO(1)= –1, INFO(2) is the
processor number (in communicator mumpspar%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed on theprocessor for the factors.

INFO(4) - after analysis: Estimated integer space needed onthe processor for factors.

INFO(5) - after analysis: Estimated maximum front size on the processor.

INFO(6) - after analysis: Number of nodes in the complete tree. The same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated by the analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimated bythe analysis phase to run the numerical
factorization successfully.

INFO(9) - after factorization: Size of the real space used onthe processor to store the factors.

INFO(10) - after factorization: Size of the integer space used on the processor to store the factors.

INFO(11) - after factorization: Order of the largest frontal matrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pivots selected on the processor if SYM=0 or
number of negative pivots on the processor if SYM=1 or 2. If ICNTL(13)=0 (the default), this
excludes pivots from the parallel root node treated by ScaLAPACK. (This means that the user
should set ICNTL(13)=1 or use a single processor in order to get the exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that if SYM=1 or 2, INFO(12) will be 0 for
complex symmetric matrices.

INFO(13) - after factorization: The number of uneliminatedvariables, corresponding to delayed pivots,
sent to the father. If a delayed pivot is subsequently passedto the father of the father, it is counted
a second time.

INFO(14) - after factorization: Number of memory compresses on the processor.

INFO(15) - after analysis: estimated total size (in millions of bytes) of allMUMPSinternal data for
running numerical factorization.

INFO(16) - after factorization: total size (in millions of bytes) of allMUMPSinternal data used during
numerical factorization.

INFO(18) - INFO(22) are not used in the current version. Are set to zero.

22



INFO(23) - after factorization: total number of pivots eliminated on the processor. In the case of a
distributed solution (see ICNTL(21)), this should be used by the user to allocate solution vectors
ISOL loc and SOLloc of appropriate dimensions (ISOLLOC of size INFO(23), SOLLOC of size
LSOL LOC× NRHS where LSOLLOC≥ INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - INFO(40) are not used in the current version.

6.2 Information available on all processors
The arrays mumpspar%RINFOG and mumpspar%INFOG :

mumpspar%RINFOG is a double precision array of dimension 20. It contains the following global
information on the execution ofMUMPS:

RINFOG(1) - after analysis: The estimated number of floating-point operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of floating-point operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of floating-point operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysis: Only returned if ICNTL(11)6= 0. See
description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumpspar%INFOG is an integer array of dimension 40. It contains the following global information on
the execution ofMUMPS:

INFOG(1) is 0 if the call toMUMPSwas successful, negative if an error occurred (see Section 7), or
positive if a warning is returned.

INFOG(2) holds additional information about the error or the warning.

The difference between INFOG(1:2) and INFO(1:2) is that INFOG(1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returned with the most negative INFO(1) value. For
example, if processorp returns with INFO(1)=-13, and INFO(2)=10000, then all other processors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still INFO(1)=-1 and INFO(2)=p.

INFOG(3) - after analysis: Total estimated real workspace for factors on all processors.

INFOG(4) - after analysis: Total estimated integer workspace for factors on all processors.

INFOG(5) - after analysis: Estimated maximum front size in the complete tree.

INFOG(6) - after analysis: Number of nodes in the complete tree.

INFOG(7) - after analysis: ordering option effectively used (see ICNTL(7)).

INFOG(8) - after analysis: structural symmetry in percent (100 : symmetric, 0 : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structural symmetry was not computed which will be
the case if the input matrix is in elemental form.)

INFOG(9) - after factorization: Total real space to store the LU factors.

INFOG(10) - after factorization: Total integer space to store the LU factors.

INFOG(11) - after factorization: Order of largest frontal matrix.

INFOG(12) - after factorization: Total number of off-diagonal pivots if SYM=0 or total number of
negative pivots (real arithmetic) if SYM=1 or 2. If ICNTL(13)=0 (the default) this excludes
pivots from the parallel root node treated by ScaLAPACK. (This means that the user should set
ICNTL(13)=1 or use a single processor in order to get the exact number of off-diagonal or negative
pivots rather than a lower bound.) Note that if SYM=1 or 2, INFOG(12) will be 0 for complex
symmetric matrices.
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INFOG(13) - after factorization: Total number of delayed pivots.

INFOG(14) - after factorization: Total number of memory compresses.

INFOG(15) - after solution: Number of steps of iterative refinement.

INFOG(16) - after analysis: Estimated size (in million of bytes) of allMUMPSinternal data for running
factorization (value on the most memory consuming processor).

INFOG(17) - after analysis: Estimated size (in millions of bytes) of allMUMPSinternal data for running
factorization (sum over all processors).

INFOG(18) - after factorization: Size in millions of bytes of all MUMPSinternal data allocated during
factorization: value on the most memory consuming processor.

INFOG(19) - after factorization: Size in millions of bytes of all MUMPSinternal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entries in the factors. If negative the absolute value
corresponds tomillionsof entries in the factors.

INFOG(21) - after factorization: Size in millions of bytes of memory effectively used during
factorization: value on the most memory consuming processor.

INFOG(22) - after factorization: Size in millions of bytes of memory effectively used during
factorization: sum over all processors.

INFOG(23) - After analysis: value of ICNTL(6) effectively used.

INFOG(24) - After analysis: value of ICNTL(12) effectivelyused.

INFOG(25) - After factorization : number of tiny pivots (number of pivots modified by static pivoting)

INFOG(26) - INFOG(40) are not used in the current version.

7 Error diagnostics
MUMPSuses the following mechanism to process errors that may occur during the parallel execution of
the code. If, during a call toMUMPS, an error occurs on a processor, this processor informs all the other
processors before they return from the call. In parts of the code where messages are sent asynchronously
(for example the factorization and solve phases), the processor on which the error occurs sends a message
to the other processors with a specific error tag. On the otherhand, if the error occurs in a subroutine that
does not use asynchronous communication, the processor propagates the error to the other processors.

On successful completion, a call toMUMPSwill exit with the parameter mumpspar%INFOG(1) set to
zero. A negative value for mumpspar%INFOG(1) indicates that an error has been detected on one of the
processors. For example, if processors returns with INFO(1)= –8 and INFO(2)=1000, then processor
s ran out of integer workspace during the factorization and the size of the workspace MAXIS should be
increased by 1000 at least. The other processors are informed about this error and return with INFO(1)=
–1 (i.e., an error occurred on another processor) and INFO(2)=s (i.e., the error occurred on processors).
Processors that detected a local error, do not overwrite INFO(1), i.e., only processors that did not produce
an error will set INFO(1) to –1 and INFO(2) to the processor having the most negative error code.

The behaviour is slightly different for INFOG(1) and INFOG(2): in the previous example, all
processors would return with INFOG(1)= –8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOG(1))have the following meaning:

–1 An error occurred on processor INFO(2).

–2 NZ is out of range. INFO(2)=NZ.

–3 MUMPSwas called with an invalid value for JOB. This may happen for example if the analysis
(JOB=1) was not performed before the factorization (JOB=2), or the factorization was not
performed before the solve (JOB=3), or the initialization phase (JOB=-1) was performed a second
time on an instance not freed (JOB=-2). See description of JOB in Section 3. This error also occurs
if JOB does not contain the same value on all processes on entry to MUMPS.
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–4 Error in user-provided permutation array PERMIN in position INFO(2). This error occurs on the
host only.

–5 Problem of REAL workspace allocation of size INFO(2) duringanalysis.

–6 Matrix is singular in structure.

–7 Problem of INTEGER workspace allocation of size INFO(2) during analysis.

–8 MAXIS too small for factorization. This may happen, for example, if numerical pivoting leads to
significantly more fill-in than was predicted by the analysis. The user should increase the value of
ICNTL(14) or the value of MAXIS before recalling the factorization (JOB=2).

–9 MAXS too small for factorization. The user should increase the value of ICNTL(14) or MAXS before
recalling the factorization (JOB=2).

–10 Numerically singular matrix.

–11 MAXS too small for solution. See error INFO(1)= –9.

–12 MAXS too small for iterative refinement. See error INFO(1)= –9.

–13 Error in a Fortran ALLOCATE statement. INFO(2) contains thesize that the package requested.

–14 MAXIS too small for solution. See error INFO(1)= –8.

–15 MAXIS too small for iterative refinement and/or error analysis. See error INFO(1)= –8.

–16 N is out of range. INFO(2)=N.

–17 The internal send buffer that was allocated dynamically byMUMPSon the processor is too small.
The user should increase the value of ICNTL(14) before recalling the analysis (JOB=1).

–18 MAXIS too small to process root node. See error INFO(1)= –8.

–19 MAXS too small to process root node. See error INFO(1)= –9.

–20 The internal reception buffer that was allocated dynamically by MUMPSon the processor is too
small. INFO(2) holds the minimum size of the reception buffer required (in bytes). The user should
increase the value of ICNTL(14) before recalling the analysis (JOB=1).

–21 Value of PAR=0 is not allowed because only one processor is available; INFO(2) is set to the number
of processors, 1. RunningMUMPSin host-node mode (the host is not a slave processor itself)
requires at least two processors. The user should either setPAR to 1 or increase the number of
processors.

–22 A pointer array is provided by the user that is either

• not associated, or

• has insufficient size, or

• is associated and should not be associated (for example, RHSon non-host processors).

INFO(2) points to the pointer array having the wrong format in the table below:
INFO(2) array

1 IRN or ELTPTR
2 JCN or ELTVAR
3 PERM IN
4 A or A ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR SCHUR
9 SCHUR
10 RHS SPARSE
11 IRHS SPARSE
12 IRHS PTR
13 ISOL LOC
14 SOL LOC
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–23 MPI was not initialized by the user prior to a call toMUMPSwith JOB= –1.

–24 NELT is out of range. INFO(2)=NELT.

–25 A problem has occurred in the initialization of the BLACS. This may be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instead.

–26 LRHS is out of range. INFO(2) = LRHS.

–27 NZ RHS and IRHSPTR(NRHS+1) do not match. INFO(2) = IRHSPTR(NRHS+1).

–28 IRHS PTR(1) is not equal to 1. INFO(2) = IRHSPTR(1).

–29 LSOL LOC is smaller than KEEP(89). INFO(2)=LSOLLOC.

–30 SCHURLLD is out of range. INFO(2) = SCHURLLD.

–31 A 2D block cyclic Schur complement is required with the option ICNTL(19)=3, but the
user has provided a process grid that does not satisfy the constraint MBLOCK=NBLOCK.
INFO(2)=MBLOCK-NBLOCK.

A positive value of INFO(1) is associated with a warning message which will be output on unit
ICNTL(2) when ICNTL(4)≥ 2.

+1 Index (in IRN or JCN) out of range. Action taken by subroutineis to ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. Details of the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solutionwas found to be zero.

+4 User data JCN has been corrupted.

+8 Warning return from the iterative refinement routine. More than ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to summing the constituent warnings.

8 Calling MUMPS from C
MUMPSis a Fortran 90 library, designed to be used from Fortran 90 rather than C. However a basic C
interface is provided that allows users to callMUMPSdirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose components match those in theMUMPSstructure for
Fortran (Figure 1). Thus the description of the parameters in Sections 4 and 5 applies. Figure 2 shows the
C structure[SDCZ]MUMPSSTRUCC. This structure is defined in the include file[sdcz]mumps c.h
and there is one main routine per available precision with the following prototype:

void [sdcz]mumps_c(MUMPS_STRUC_C * idptr);

An example of callingMUMPSfrom C for a complex assembled problem is given in Section 10.3. The
following subsections discuss some technical issues that auser should be aware of before using the C
interface toMUMPS.

In the following, we suppose thatid has been declared of type[SDCZ]MUMPSSTRUCC.

8.1 Array indices
Arrays in C start at index 0 whereas they normally start at 1 inFortran. Therefore, care must be taken when
providing arrays to the C structure. For example, the row indices of the matrixA, stored inIRN(1:NZ)
in the Fortran version should be stored inirn[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One solution to deal with this is to define macros:

#define ICNTL( i ) icntl[ (i) - 1 ]
#define A( i ) a[ (i) -1 ]
#define IRN( i ) irn[ (i) -1 ]
...
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typedef struct

{
int sym, par, job;

int comm fortran; /* Fortran communicator */

int icntl[40];

real cntl[5];

int n;

/* Assembled entry */

int nz; int *irn; int *jcn; real/complex *a;

/* Distributed entry */

int nz loc; int *irn loc; int *jcn loc; real/complex *a loc;

/* Element entry */

int nelt; int *eltptr; int *eltvar; real/complex *a elt;

/* Ordering, if given by user */

int *perm in;

/* Scaling (input only in this version) */

real/complex *colsca; real/complex *rowsca;

/* RHS, solution, output data and statistics */

real/complex *rhs, *rhs sparse, *sol loc;

int *irhs sparse, *irhs ptr, *isol loc;

int nrhs, lrhs, nz rhs, lsol loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int *sym perm, *uns perm;

/* Null space (not maintained) */

int deficiency; real/complex * nullspace; int * mapping;

/* Schur */ int size schur; int *listvar schur; real/complex *schur;

int nprow, npcol, mblock, nblock, schur lld, schur mloc,schur nloc;

/* Internal parameters */

int instance number;

} [SDCZ]MUMPSSTRUCC;

Figure 2: Definition of the C structure[SDCZ]MUMPSSTRUCC. real/complex is used for data that can
be either real or complex,real for data that stays real (float or double ) in the complex version.
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and then use the uppercase notation with parenthesis (instead of lowercase/brackets). In that case, the
notationid.IRN(I) , whereI is in { 1, 2, ... NZ} can be used instead ofid.irn[I-1] ; this notation
then matches exactly with the description in Sections 4 and 5, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix input(see Section 4.5), where some arrays
are used to index other arrays. For instance, the first value in eltptr , eltptr[0] , pointing into
the list of variables of the first element ineltvar , should be equal to 1. Effectively, using the
notation above, the list of variables for elementj = 1 starts at locationELTVAR(ELTPTR(j)) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1] .

8.2 Issues related to the C and Fortran communicators
In general, C and Fortran communicators have a different datatype and are not directly compatible.
For the C interface,MUMPSrequires a Fortran communicator to be provided inid.comm fortran .
If, however, this field is initialized to the special value -987654, the Fortran communicator
MPI COMMWORLDis used by default. If you need to callMUMPSbased on a smaller number of processors
defined by a C subcommunicator, then you should convert your Ccommunicator to a Fortran one. This
has not been included inMUMPSbecause it is dependent on theMPI implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that F INT is defined in [sdcz]mumps c.h and normally is an int.) For MPI
implementations where the Fortran and the C communicators have the same integer representation

id.comm_fortran = (F_INT) comm_c;

should work.
For some MPI implementations, check if id.comm fortran =

MPIR FromPointer(comm c) can be used.

8.3 Fortran I/O
Diagnostic, warning and error messages (controlled byICNTL(1:4) / icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichcorresponds tostdout . For a more
general usage with specific file names from C, passing a C file handler is not currently possible. One
solution would be to use a Fortran subroutine along the linesof the model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT
CHARACTER*(*) NAME
OPEN(UNIT, file=NAME)
RETURN
END

and have (in the C user code) a statement like
openfile ( &mumps par.ICNTL(1), name, name length byval)

(or slightly different depending on the C-Fortran calling conventions); something similar could be done
to close the file.

8.4 Runtime libraries
The Fortran 90 runtime library corresponding to the compiler used to compileMUMPSis required at the
link stage. One way to provide it is to perform the link phase with the Fortran compiler (instead of the C
compiler orld ).
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8.5 Integer, real and complex datatypes in C and Fortran
We assume that theint , float anddouble types are compatible with the FortranINTEGER, REAL
andDOUBLE PRECISIONdatatypes. If this were not the case, the files[dscz]mumps prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define thecomplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the FortranCOMPLEXandDOUBLE COMPLEXtypes:

typedef struct {float r,i; } mumpscomplex; for simple precision (cmumps), and
typedef struct {double r,i; } mumpsdouble complex; for double precision

(zmumps).
Types for complex data from the user program should be compatible with those above.

8.6 Sequential version
The C interface toMUMPSis compatible with the sequential version; see Section 2.9.

9 Scilab and MATLAB interfaces
The main callable functions are

id = initmumps;
id = dmumps(id [,mat] );
id = zmumps(id [,mat] );

We have designed these interfaces such that their usage is assimilar as possible to the existing C and
Fortran interfaces to MUMPS, and where only the parameters related to the sequential code are used.
The main differences and characteristics are:

• The existence of a functioninitmumps (usage:id=initmumps ) that builds an initial structure
id in which id.JOB is set to -1 andid.SYM is set to 0 (unsymmetric solver by default).

• Only the double precision and double complex versions of MUMPS are interfaced, since they
correspond to the arithmetic precisions used in MATLAB/Scilab.

• the sparse matrixA is passed to the interface functionsdmumpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, . . . are thus irrelevant).

• the right-hand side vector or matrix, possibly sparse, is passed to the interface functionsdmumps
and/orzmumps in the argumentid.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, . . . are thus irrelevant).

• The Schur complement matrix, if required, is allocated within the interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parameters SIZE SCHUR and ICNTL(19) need
not be set by the user; they are set automatically depending on the availability and size of the list of
Schur variables,id.VAR SCHUR.

• We have chosen to use a new variableid.SOL to store the solution, instead of overwriting
id.RHS .

Please refer to the report [19] for a more detailed description of these interfaces. Please also refer to the
README file in directories MATLAB or Scilab of the main MUMPS distribution for more information
on installation. For example, one important thing to note isthat at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the compiled MUMPSpackage. This can be done in
the makefile for the MATLAB interface (filemake.inc ) and in the builder for the Scilab interface (file
builder.sce ).

Finally, note that examples of usage of the MATLAB and the Scilab interfaces are provided in
directoriesMATLABand Scilab/examples , respectively. In the following, we describe the input
and output parameters of the function[dz]mumps , that are relevant in the context of this interface to the
sequential version of MUMPS.
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Input Parameters
• mat : sparse matrix which has to be provided as the second argument of dmumps if id.JOB is

strictly larger than 0.

• id.SYM : controls the matrix type (symmetric positive definite, symmetric indefinite or
unsymmetric) and it has do be initialized by the user before the initialization phase ofMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps.

• id.JOB : defines the action that will be realized byMUMPS: initialize, analyze and/or factorize
and/or solve and release mumps internal C/Fortran data. It has to be set by the user before any call
to MUMPS(except after a call to initmumps, which sets its value to -1).

• id.ICNTL and id.CNTL : define control parameters that can be set after the initialization call
(id.JOB = -1). See Section “Control parameters” for more details. If the user does not modify an
entry in id.ICNTL thenMUMPSuses the default parameter. For example, if the user wants touse
the AMD ordering, he/she should set id.ICNTL(7) = 0. Note that the following parameters are
inhibited because they are automatically set within the interface: id.ICNTL(19) which controls the
Schur complement option and id.ICNTL(20) which controls the format of the right-hand side.

• id.PERM IN : corresponds to the given ordering option (see Section “Input and output parameters”
for more details). Note that this permutation is only accessed if the parameter id.ICNTL(7) is set to
1.

• id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

• id.RHS : defines the right-hand side. The parameter id.ICNTL(20) related to its format (sparse or
dense) is automatically set within the interface. Note thatid.RHS is not modified (as inMUMPS),
the solution is returned in id.SOL.

• id.VAR SCHUR : corresponds to the list of variables that appear in the Schur complement matrix
(see Section “Input and output parameters” for more details).

Output Parameters
• id.SCHUR : if id.VAR SCHUR is provided of size SIZESCHUR, then id.SCHUR corresponds to

a dense array of size (SIZESCHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more details). The user does not have to initialize it.

• id.INFO and id.RINFO : information parameters (see Section “Information parameters” ).

• id.SYM PERM : corresponds to a symmetric permutation of the variables (see discussion
regarding ICNTL(7) in Section “Control parameters” ). Thispermutation is computed during the
analysis and is followed by the numerical factorization except when numerical pivoting occurs.

• id.UNS PERM : column permutation (if any) on exit from the analysis phaseof MUMPS(see
discussion regarding ICNTL(6) in Section “Control parameters” ).

• id.SOL : dense vector or matrix containing the solution afterMUMPSsolution phase.

Internal Parameters
• id.INST: (mumps reserved component) mumps internal parameter.

• id.TYPE: (mumps reserved component) defines the arithmetic(complex or double precision).

10 Examples of use of MUMPS

10.1 An assembled problem
An example program illustrating a possible use ofMUMPSon assembledDOUBLE PRECISION
problems is given Figure 3. Two files must be included in the program: mpif.h for MPI and
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mumpsstruc.h for MUMPS. The filemumpsroot.h must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performed inthe user program via the
calls toMPI INIT andMPI FINALIZE .

The MUMPSpackage is initialized by callingMUMPSwith JOB= –1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and the solution is computed in RHS with a
call on all processors toMUMPSwith JOB=6. Finally, a call toMUMPSwith JOB= –2 is performed to
deallocate the data structures used by the instance of the package.

Thus for the assembled5 × 5 matrix and right-hand side

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we could have as input

5 : N
12 : NZ
1 2 3.0
2 3 -3.0
4 3 2.0
5 5 1.0
2 1 3.0
1 1 2.0
5 2 4.0
3 4 2.0
2 5 6.0
3 2 -1.0
1 3 4.0
3 3 1.0 : A
20.0
24.0
9.0
6.0
13.0 :RHS

and we obtain the solution RHS(i) = i, i = 1, . . . , 5.

10.2 An elemental problem
An example of a driver to useMUMPSfor elementDOUBLE PRECISIONproblems is given in Figure 4.
The calling sequence is similar to that for the assembled problem in Section 10.1 but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, AELT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matrices always have a symmetric structure. For
the two-element matrix and right-hand side
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, I
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%IRN(I) ,I=1, id%NZ )
READ(5,*) ( id%JCN(I) ,I=1, id%NZ )
READ(5,*) ( id%A(I),I=1, id%NZ )
READ(5,*) ( id%RHS(I) ,I=1, id%N )

END IF
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
END IF

C Deallocate user data
IF ( id%MYID .eq. 0 )THEN

DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
C Destroy the instance (deallocate internal data structure s)

id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 3: Example program usingMUMPSon an assembledDOUBLE PRECISIONproblem
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1 4 7
1 2 3 3 4 5
-1.0 2.0 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0

and we obtain the solution RHS(i) = i, i = 1, . . . , 5.

10.3 An example of calling MUMPS from C
An example of a driver to useMUMPSfrom C is given in Figure 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%ELTPTR(I) ,I=1, id%NELT+1 )
READ(5,*) ( id%ELTVAR(I) ,I=1, LELTVAR )
READ(5,*) ( id%A_ELT(I),I=1, NA_ELT )
READ(5,*) ( id%RHS(I) ,I=1, id%N )

END IF
C Specify element entry

id%ICNTL(5) = 1
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
C Deallocate user data

DEALLOCATE( id%ELTPTR )
DEALLOCATE( id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
C Destroy the instance (deallocate internal data structure s)

id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 4: Example program usingMUMPSon an elementalDOUBLE PRECISIONproblem.
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/* Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]ˆT
* Solution is [1 2]ˆT */

#include <stdio.h>
#include "mpi.h"
#include "dmumps_c.h"
#define JOB_INIT -1
#define JOB_END -2
#define USE_COMM_WORLD -987654
int main(int argc, char ** argv) {

DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jcn[] = {1,2};
double a[2];
double rhs[2];

int myid, ierr;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/* Define A and rhs */
rhs[0]=1.0;rhs[1]=4.0;
a[0]=1.0;a[1]=2.0;

/* Initialize a MUMPS instance. Use MPI_COMM_WORLD. */
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U SE_COMM_WORLD;
dmumps_c(&id);
/* Define the problem on the host */
if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

}
#define ICNTL(I) icntl[(I)-1] /* macro s.t. indices match d ocumentation */
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN TL(4)=0;
/* Call the MUMPS package. */

id.job=6;
dmumps_c(&id);
id.job=JOB_END; dmumps_c(&id); /* Terminate instance */
if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}
return 0;

}

Figure 5: Example program usingMUMPSfrom C on an assembled problem.
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10.4 Notes on MUMPS distribution
This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999) by CERFACS, ENSEEIHT -IRIT and RAL.
Since this first public domain version in 1999, the developm ents are
supported by the following institutions: CERFACS, ENSEEIH T-IRIT, and
INRIA Rhone-Alpes.

Main contributors are Patrick Amestoy, Iain Duff, Abdou Gue rmouche,
Jacko Koster, Jean-Yves L’Excellent, and Stephane Pralet.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages http://www.enseeiht.fr/apo/MUMPS/
or http://graal.ens-lyon.fr/MUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can
include this complete notice. You can acknowledge (using
references [1], [2], and [3] the contribution of this packag e
in any scientific publication dependent upon the use of the
package. You shall use reasonable endeavours to notify
the authors of the package of this publication.

[1] P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent (1998),
Multifrontal parallel distributed symmetric and unsymmet ric solvers,
in Comput. Methods in Appl. Mech. Eng., 184, 501-520 (2000).

[2] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic
scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,
Vol 23, No 1, pp 15-41 (2001).

[3] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet (2005), Hybrid scheduling for the parallel soluti on
of linear systems. Accepted to Parallel Computing.
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