SAMRAI Timing & Instrumentation

Intro

SAMRAI provides atiming package to assist in performance analysis and to guide the user about which
routines are incurring the largest percentage of computation time. The timers report basic statistics about
the time spent in individual routines and can be turned on or off in the input file. The timers can report
exclusive time, provide a calling tree hierarchy, and give estimated statistics on the overhead they take up
in the program. The package also contains links to the VAMPIR parallel performance analysis package for
visual representations of the computation and communication patterns of the application.

Instrumenting an application with the SAMRAI timing package involves wrapping timers around
numerical kernels. A number of commonly used library components already have timers added and
invoking these timers is simply a matter of specifying them through the input file. The first section of this
chapter discusses how to invoke existing timers. The second section discusses how to add timers to your
source code . Finaly, techniques for analyzing performance on multiple processors using the VAMPIR
and Tau instrumentation packages is discussed in the third section. An appendix is attached which listsa
catalog of timers, and what they are timing, included in the library.

Invoking Timers

Management of the different timersin the library is performed through the TimerManager class. All timers
are, by default, turned off. To turn them on, you must add an instance of TimerManager to your
application. In main.C, add invocation of TimerManager:

Ti mer Manager : : cr eat eManager (i nput _db- >get Dat abase(“ Ti ner Manager”));

Note that creation of the manager expects an entry from the input database. The input entriesinclude a
number of options for recording and printing timer values, and alist of timersto turn on. The options for
recording and printing timers are as follows, and their default settingsif not reset in the input, are as
follows:

Input file format:

Ti mer Manager {

print_exclusive = FALSE
Specifies whether to track and print exclusive time. Exclusive time is measured by
turning off the parent timer when a nested timer is called. The parent timer is turned back
on when the nested timer is exited (Fig 1). Thus, the exclusive timeis time spent
exclusively in the routine. This option should be used with some discretion because the
cost of maintaining the timer stack to record exclusive time is between four and seven
times more expensive than simply turning atimer on and off. For thisreason, itisfase
by defauilt.

print_total = TRUE
Specifies whether to track and print total (i.e. non-nested) time. Thisisthe least
expensive way to time parts of the code, with each occurrence of a start/stop operation
incurring approximately 10 millionth of a second.

print_wall = TRUE
Print wallclock time.

nt _user = FALSE
Print user time.

pr

nt _sys = FALSE
Print system time.

pr

nt _processor = TRUE
Prints time measured on individual processors.

pr

nt _sumred = FALSE
Prints time summed across all processors.

pr

print_max = FALSE
Prints maximum time measured across all processors, and the processor 1D that incurred
it.

print_concurrent = FALSE
Prints anested calling tree. For each timer, it prints the names of the timers that were
nested within.
print_percentage = TRUE
Prints percentages of the overall run time along with the measured times.
print_timer_overhead = FALSE
Prints number of times atimer start/stop sequence was accessed, and the estimated
overhead associated. Printsthe total overhead from all timers as a percentage of the total
run time and prints awarning if thisis greater than 5%.
print_threshold = 0.25

Specifies a threshold setting for which timers whose percentage of time isless than the
threshold are not printed. That is, any timers that incur less than (print_threshold)% of
the run time are not printed. Useful for preventing huge volumes of output if alot of
timersare being called. To disable completely, set it to zero.

init_fromrestart = FALSE
Timer values are written to restart with all the other restart information. One hasthe
option to invoke them from restart so that timing information can be maintained over a
series of runs. Set to true to initialize timers with values read from restart.

timer_list = “pkgl::*::*", “pkg2::classA :*", “pkg3::classB::tinmer”
List of timersto beinvoked. Thetimers can be listed individually or the entries may
contain wildcards to turn on an entire set of timersin a specified package or class.
Specifically, one can use the following formats in the timer list:

package::*::* - turns on all timers in package.

package: : class::* - turnson al timersin class.

::class:: - turnson al timersin class

class::* - turnson al timersin class

cl ass - turnson al timersin class

package: : cl ass::timer -turnson specifictimer in the package::class
*.:class::timer - turns on specific timer in the class

class::timer - turns on specific timer in the class

Nested Timers

timerA->start()
timerB->start()

timerC->start()

tijmerC->stop()

ti%merD->stop()

timerD->start()
timerB->stop()

timerA->stop()

Figure 1 Exclusivetimeillustration

Timers can be printed at any point in the code by invoking the TimerManager’s print function:
Ti mer Manager : : get Manager () - >pri nt (pout);

The only argument required is the preferred output stream (e.g. pout, plog, or perr). The values printed are
controlled by input file entries discussed above.

Adding Timers to New Code

Any code built with SAMRAI can utilize functionality of the TimerManager for timersin new code.
However, the TimerManager assumes a certain naming and invocation format for each of the timers it
manages and these formats should be adhered to for the manager to work properly.

The following is an example of how to invoke atimer in a piece of code:
static tbox_Pointer<tbox Tiner> t nethod nane =
t box_Ti mer Manager : : get Manager () - >
get Ti mer (“ package: : cl ass: : met hodNane() ") ;
t _met hod_nane->start ();

perform function methodName()...

t _met hod_nane- >stop();

The primary features to note in the above invocation are discussed below:

st ati c: We make a static pointer to the timer so that the TimerManager only has to search through its
lists for the timer once, the first time the timer isinvoked. Thetimer is has been requested in the
input, maintained by the TimerManager, this call returns a pointer to the appropriate timer object. If
the timer was not requested, the manager returns a pointer to its so-called “null” timer. The null
timer isasa special case for which all callsto start/stop simply drop through without recording the
time. This provides the capability of hardwiring atimer in the code but preserving the capability to
turn it on or off at will.

t _nmet hod nane: Severa timers may occur in the same region of the code, and it is sometimes difficult
to discern pointersto the different timers. For this reason, we adopt a naming convention that the
pointer to the timer beginswith “t " to designate it as a pointer to atimer object, followed by the
“method_name” to designate the particular timer. This naming format is not a requirement for the
TimerManager so user code can adopt whatever pointer name is most desirable. But for library
code, this convention should be used to maintain consistency.

package: : cl ass: : met hodNane() : All timers should be named in aformat with two “::", asin
package::class::timer. Use of thisformat is expected by the parsing routines in the manager that
allow wildcard entries. That is, use of this format allows the capability to enter “package::*::*” in
theinput file and have package::class::timer be one of the timers turned on. If you do not use this
format, the parser may not work properly.

One other feature that is not required by the TimerManager but is something we found to be a useful
standard is the format of the method name. If the timer istiming an entire method, we specify the
name like above as “methodName()”. If thetimer is placed around a specific part of the method, say
asynchronization call, we name the timer something like “methodName() sync”. This distinguishes
it asapiece of acertain method. If atimer isplaced around a call in the class that is made in several
methods, implying that its pointer is a data member of the class, we simply name the timer like a
variable, such as“fill_data’. The point of thisformatting is to distinguish the different parts of the
classthat are being timed.

A number of timers have already been added to the library. See Appendix A for a catalog of the timer
names and function they time.

Using VAMPIR

VAMPIR isauseful tool for analyzing performance of an application on areasonable (i.e. < 16) number of
processors. VAMPIR works by placing “phase markers’ around what the user deems are important parts of
the code. Most applications require the user to go in by hand to add these phase markersin order to use
VAMPIR. In SAMRAI, however, we have instrumented the timing class to automatically invoke a vampir
trace for every start and stop of atimer. Thus, adding atimer to the code will not only generate timing
dtatistics at the end of the run, it will also allow analysis using the VAMPIR tool.

VAMPIR tracing is left off by default. This document discusses how to invoke it, and provides some
details on how to use it to analyze application performance.

Configuring SAMRAI with VAMPIR

VAMPIR isinstalled and working at Livermore only on blue pacific. Thus, it isthe default location known
to the configure script. When compiling on this machine, add the --with-VAMPIR option to the configure
line. If you happen to be running on a machine other than blue pacific and know where VAMPIR is
installed, you may specify the directory in the configure.

Blue: configure ...--with-vanpir
Other Machines: configure ...--wth-vanpir=<dir>

VAMPIR works with code compiled in optimized mode. That is, it is OK to configure with both
—enabl e- opt and—wi t h- vanpi r.

Once VAMPIR is compiled with the code, tracing will be invoked every time you run the code. Dueto
license issues, there are a few environment variables you must explicitly set or the code will not run. |
usually put these in alittle script, which | invoke whenever | start doing a run with code compiled with
VAMPIR:

setenv PAL_ROOT /usr/local / kppp
setenv PAL_LI CENSEFI LE $PAL_ROOT/ | i cense. dat
set pat h=($PAL_ROCT/ bi n $pat h)

Once these environment variables are set, run the code. It will generate atracefile called <exec>. st f,
where <exec> designates the name of your executable. The trace file contains statistics about code
performance. It can be viewed graphically using the VAMPIR browser, invoked by the command

vampir.

VAMPIR - Global

1:40.0
W

Wait
el ication

Prooess O
Process 1
Prooess 2
Prooess 3
Prooess 4
Process §
Prooess B
Prooess 7
Prooess 8
Process 3
Prooess 10
Prooess 11
Prooess 12
Prooess 13
Prooess 14
Prooess 15
Prooess 16
Prooess 17
Prooess 18
Prooess 13
Prooess 20
Prooess 21
Proosss 22
Prooess 23
Prooess 24
Prooess 25
Proosss 26
Prooess 27
Prooess 28
Prooess 23
Proosss 30
Prooess 31
Prooess 32

Prooess 33
Prooess 34
Prooess 35
Prooess 36
Prooess 37
Proosss 38
Prooess 33
Prooess 40
Prooess 41
Prooess 42
Prooess 43
Prooess 44
Prooess 45
Prooess 46
Prooess 47
Prooess 48
Prooess 43
Prooess 50
Prooess 51
Prooess 52
Prooess 53
Proosss 54
Prooess 55
Prooess 56
Prooess 57
Prooess 58
Prooess 53
Prooess 60
Prooess 61
Proosss 62
Prooess 63

T

O o i oy o R ey

IIIIIlIIlIIIllIIIIlIlII‘IlIIIIlI‘IIlIII!IlIIIIIII_IHIIIIHIIIII!I
B ot o

P b st b
O T B A O O

| e o o e

Figure2 - VAMPIR Trace analysis on 64 processors

Using TAU

Tauisatool developed at the University of Oregon to analyze code performance. The acronym stands for
Tuning and Analysis Utilities — see http://mww.cs.uoregon.edu/resear ch/paracomp/tau/. Unlike VAMPIR
which generates traces, Tau profiles an application. That is, it does not generate traces for every MPI call
or call to anew method but instead records time for each of these operations and displays these at the end.
Tau is capable of doing automated whole-code analysis, placing timers at the beginning and end of every
method of every class. However, we have integrated Tau with the SAMRALI timers to make the integration
simple. Theonly requirement to invoke Tau isto regquest it when you configure your version of SAMRAL.

Tau has the advantage over VAMPIR that it is freely-available and, unlike tracing which can incur
significant overhead, its overhead is quite small. The Tau team, particularly Sameer Suresh, isvery
responsive and helpful and fixes most problems within aday of being reported.

Thisdiscussion is broken into two sub-sections. The first section discusses the minimal steps required to
link to Tau. The second gives a brief tutorial on different functions that we have found useful. Appendix B
summarizes the steps required to download and install Tau (we maintain a copy of Tau locally so this
section is primarily intended for devel opers who need to update the installation and off-site users who wish
toinstall versions on their own systems).

Configuring SAMRAI with Tau

Tau may be explicitly configured with SAMRAI by adding the— wi t h-t au flag pointing to the tau
Makefile. You must explicitly point to the version of tau that is compatible with the OS/compiler with
which you are configuring SAMRALI:

1386-linux: configure --with-tau=/usr/casc/sanrai/tau/tau-2.12/
i 386_Iinux/lib/Makefile.tau-Iinuxtiners-npi

aps. configure —w th-tau=/usr/local/tool s/tau/al pha/lib/
Makefil e.tau-kcc

frost: configure —wi th-tau=/usr/casc/sanrai/tau/tau-2.12/
rs6000/ 1 i b/ Makefil e.tau-npi-kcc

If Tau becomes used on aregular basis, we will clean up the process so that the SAMRAI configure
operation will automatically pull in the correct tau Makefile, but for now the appropriate version must be
explicitly given in the configure line.

Using Tau to Assess Performance

Once you have configured with Tau, run the code in the way you are used to. Depending on the number of
processors you run on, thefile(s) prof i | e. [node] . [context]. [t hread] will begenerated .
SAMRAI only does node-level parallelism so, unless you invoke threaded code in your application, the
context and thread entries should both be zero.

A graphical tool included with Tau to analyze performanceis called “jracy”. Invokeit' via:

Ly you plan to use tau frequently, you may wish to add the tau /bin to your path to avoid entering thislong line.

<tau-dir>/bin/jracy

where <tau-dir> corresponds to the location where tau isinstalled. See the configure options above for the
installation directory (<tau-dir> is everything before “/lib/Makefile.tau-...").

Jracy is a Java application and sometimes the default version of javainstalled on the blue/frost and gps/tc2k
systemsat LLNL istoo dated to runit. Current versions of java exist on these systems but they may not be
in your path by default. If you get an error when invoking jracy, try updating your version of javato
something more current by setting your path as:

bluee set path=(/usr/javal30/bin $path)
aps. set pat h=(/usr/opt/javal22/bin $path)

Jracy will invoke a timeline window showing an aggregate of various timers from largest to smallest time
on the different processors, and a mean from all processors. Click on the bars of any of the timersand a
window will pop up showing atimeline for only that timer (Fig. 3).

Clicking on the “n,c,t” on the left side of each bar of the timeline will provide a breakdown of time spent in
each routine on that particular processor (Fig. 4).

File Options ‘Windows Help
Rima _CILICRK J E——
nct 000 eliek =]
i Al —. ~ —RmmBa)
nct 2,00 [I |
nect 300 [] apps::Euler:initializeDataOnPatch{ I 1E)
net 4,00 e —————————— — -
net 500 ‘]
e — e [e
nct 700 []
nct 800 ['
nect 800 =] apps: Euler: computeF luxesOnPatch() apps - Euler ‘initislizeDataOnPatchl)
nect 1000 =]
net 11,00 - 1 N o oay el e 10.86% [mean
net 1200 —1 so.ez, NN .. 000 1088% I nct 000
net 13,00 - 81. 18, NN . c.! 1.0.0 10.81% @M n.ct 1,00
net 1400] 66 00%, N .c.! 2.0.0 11.06% Bl n.ct 2,00
net 1500 — 0,50 I ... 300 1081% EMnct 3,00
ST 62,657 N .. 40,0 1085% EMlnct 400
62.08% N .c.! 5,00 10.96% EMn.ct 500
63.52% N .c.! 6,0.0 10.82% @l nct 600
65,67 N .\ 7,0,0 109% EMnct 7,00
\ &1.36% I . c.. 60,0 1089% @Ml nct 800
62.00%, NN nc.! 9,0,0 10.01% EEEIn.ct 900
63.26v I ..\ 10.0,0 0e% EMllnct 1000
£0.47% I 1.1 11,0,0 106 WlMlnct 1100
60,06, (NN . c . 12.0,0 1076% EMnct 1200
e e, I . | 13,00 10.65% Mllnct 13,00
62 97 I r.c.\ 14,0,0 foex EMnct 1400
£0.50%, N .c\ 15.0,0 1077y Ellnct 1600
&
2 T E \ | - — 1

Figure 3 - Main window of tau's jracy tool

1500

(left click) (right click)

total asec soall usec/call
o0 62, I o Euler: computeF laxesOnPaich(100.0 9:17.413 1 1 §57413911 main{) int (int, char *%)
15.50% N clgs: Hypa ok cLovalintagputon?: advance_tuty_fisorm sz w07 s o 526094 apps: iBuler: scomputeFlucesonacchi]
10.86% Il apps: Euler: initializeDataOnPatch(189 1145354 1 0 §779552 nesh: {GriddingAlgorithaz: find boxes_cd
& 00% [Japps: Euler: conservativeDifferanc eOnPatch() 124 1:00.033 6z 0 saens Hyperbol icLevel Integrator2: : adva
3.20% Wapps: Euler: computeStableDCrnPateh() 7.4 41,060 7 1 519900 Hyperboliclevel Integrator2: : advan]
2.28% BMPI_Allreduced 2.9 16,364 383) amr Buler::conservativeDifferencelnPy
222% laigs:: HyperbolicLevellntegrator? advanceLevel() 2.9 16,284 2 8 602202 g
| 26 14,519 4 0 60496 algs: ihyperboliclevellntegratord:icosrs
AN e gy v R
2.0 10,674 13 o ssesss HyperbolicLevel Integrator2: : advar
074 | alge::Hyparbol cLavuingmia-eaymice_pury._fiLsrecta L5 6,599 21 0 4D66ST algs: shyperbolicievelIntegratorz::
0.06% ' apps: Euler.: setPhysicalBoundaryConditions(L4 7,618 21 0 362809 HyperboliclevelIntegrator
0.02% | gt HyPe ool cLevel ntegrator: it izeL evelDats) 13 7,456 1 0 573556 ales: tRyperbolicLevelTntegracorz: 11l
0.02% | mesh - GriddingAlgonthm?: Ioad_talance_boxes =y 7,186 21) saz212
0.01% | mesh::GriddingAlgorithm2:: makeCoars estLevel) 4.4 6,898 82 1163 3290185 algs: i HyperbolicLevelInteqrator?: i adva)
0.01% | MPI_aime(Lo 5,389 6 o 8s8zs9
0.0% | MPI_Bcasty 0.9 5,250 13 0 400922 algs: :HyperboliclevelInteqratorz: ifill |
QDN | M G0 0.8 a,s:z 12 0 Am:a algs: tRyperbolicLevelIntegrator: erron
0.8 a5 12 0 a0 " a
A NELN 0.4 2,373 344 0 €900 apps: :Fuler::computeStablebtinParch()
00% | MPI_Test))

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Document UCRL-TM-202188.

Appendix A

Catalog of Available Timers

Algorithms package: (algs::*::*)
TimeRefinementIntegrator (ags::TimeRefinementintegrator::*)

algs:: TimeRefinementl ntegrator : :initializeHierarchy() — times creation of hierarchy and
initialization of data on the levels (initialization data may be invoked from scratch or read from
restart).

algs.: TimeRefinementl ntegrator : : advanceHierarchy() — times recursive advance of data as it steps
thru each level in the hierarchy.

HyperbolicLevelIntegrator (algs.:HyperbolicLevel Integrator::*)

algs.:HyperbolicLevelIntegrator::initializeLevel Data() — time taken to set data on the hierarchy
when hierarchy isinitialized (not from restart).

algs.: HyperbolicLevel Integrator:: applyGradientDetector () — time required for application of error
estimator, or gradient detector.

algs.: HyperbolicLevel Integrator::advancelevel () — time integration on the level.

algs.: HyperbolicLevel Integrator:: resetHierarchyConfiguration() — time to reset hierarchy after a
re-grid.

algs::HyperbolicLevelIntegrator::bdry fill_comm —time to fill boundaries, using schedule created
in the resetHierarchyConfiguration() routine.
algs::HyperbolicLevelIntegrator::fill_new_level_create —time to create schedule used tofill a
newly-created level.

algs::HyperbolicLevel Integrator::fill_new_level _comm —time to communicate data to the new
level.

algs.: HyperbolicLevel Integrator::coarsen_fluxsum create — time to create communication
schedule for the fluxsum coarsen operation.

algs::HyperbolicLevel Integrator:: coarsen_fluxsum_comm —time to communicate datain the
coarsen fluxsum operation.

algs::HyperbolicLevel Integrator::coarsen_sync_create —time to generate schedule for the time
synchronization step during coarsening.

algs::HyperbolicLevel Integrator::coarsen_sync_comm— time to communicate data for the time
synchronization step.

algs::HyperbolicLevel Integrator::patch_numerical_routines time to perform numerical routines -
compute fluxes and conservative difference — on patches of the level.

algs.:HyperbolicLevel Integrator::sync_initial_create —time to generate schedule for initialization
of the time synchronization step.

algs.: HyperbolicLevel Integrator::sync_initial_comm —time to communicate during initialization
of time synchronization.

algs.: HyperbolicLevel Integrator:: getLevel Dt()_sync —time for the MPI min reduction performed
in the getLevel Dt() function across all processesto determine the timestep. Thisismainly a
measure of load imbalance. Whilethereis some MPI cost incurred in this operation, studies we
have conducted show that the MPI cost is actually quite small compared to load imbalance costs.
algs::HyperbolicLevel Integrator::advancelLevel()_sync —timefor an MPI reduction performed in
advancelevel(). Thisisamainly a measure of load imbalance. While thereis some MPI cost

incurred in this operation, studies we have conducted show that the MPI cost is actually quite
small compared to load imbalance costs.

Mesh package: (mesh::*::*)
GriddingAlgorithm (mesh::GriddingAlgorithm::*)

mesh: : GriddingAlgorithm:: makeCoarsestLevel () —time to construct coarsest level in hierarchy.
mesh:: GriddingAlgorithm:: makeFinerLevel () —time to construct finer level from coarser.
mesh:: GriddingAlgorithm::regridAllFinerLevels() —timeto do error estimation, generate and
load balance boxes on new level, and regrid all levelsin the hierarchy finer than the current one.
mesh:: GriddingAlgorithm::regridFinerLevel () —time to regrid just one finer level.

mesh:: GriddingAlgorithm::setTagsOnLevel () — time to set the error tags on the level.

mesh:: GriddingAlgorithm:: buffer TagsOnLevel () —time to add a buffer layer around the tags on
the level.

mesh: : GriddingAlgorithm:: findRefinementBoxes() — time to construct refinement boxes from the
buffered tags.

mesh:: GriddingAlgorithm::findProper NestingBoxes() — once refinement boxes are constructed,
must determine proper nesting to insure valid interpolations.

mesh:: GriddingAlgorithm::remove_intersections_make finer —time required to remove box
intersections (call to BoxList::removel ntersections()) within makeFinerLevel().

mesh:: GriddingAlgorithm::remove_intersections_regrid_all —time required to remove box
intersections within regridAllFinerLevel s().

mesh:: GriddingAlgorithm::remove_intersections_find_proper —time required to remove box
intersections within findProperNestingBoxes().

mesh:: GriddingAlgorithm::intersect_boxes find_proper —time required to determine box
intersections (call to BoxList::intersectBoxes()) within findProperNestingBoxes.

mesh: : GriddingAlgorithm::intersect_boxes find_refinement —time to determine box intersections
within findRefinementBoxes().

mesh: : GriddingAlgorithm::find_boxes_containing_tags — time in the box generator strategy to
determine tagged cells.

mesh:: GriddingAlgorithm::load_balance boxes —time to load balance the boxes once they have
been generated.

mesh:: GriddingAlgorithm::make_new_level —time to generate a new patch level (call to
PatchHierarchy::makeNewPatchLevel() routine).

mesh:: GriddingAlgorithm::bdry_fill_tags create —time to build communication schedule for
communication of tags.

mesh: : GriddingAlgorithm::bdry_fill_tags comm — time to communicate tag data.

Transfer package: (xfer::*:.:*)
CoarsenSchedule (xfer::CoarsenSchedule::*)
xfer:: CoarsenSchedule:: coarsenData() — time to perform communication during coarsening.
RefineSchedule (xfer::RefineSchedule::*)
xfer::RefineSchedule::fillData() — time to perform communication during refine operation.
xfer:: RefineSchedule:: generate_comm_schedule — time to build a schedule between patches on a

patch level that have like refinement. For example, to exchange data between patches on the same
level.

xfer:: RefineSchedule:: finish_schedule_const —time to build a schedule between patches that have
different refinement. For example, to move data from a coarser to afiner level.

Applications package: (apps::*::*)
Euler (apps::Euler::*)

apps::Euler::initializeDataOnPatch() — time to set data on patch when started at time zero.
apps:: Euler:: computeStableDtOnPatch() — time to step thru data on the patch, computing
timestep.

apps: : Euler:: computeFluxesOnPatch() — time to compute fluxes by performing the flux
calculation routine (either Corner-Transport-Upwind scheme of Colella or scheme by
Trangenstein).

apps. : Euler:: conservativeDifferenceOnPatch() — time to apply conservative difference, once
fluxes have been calculated.

apps. : Euler:: setPhysi cal BoundaryConditions() — time to apply boundary conditions.
apps:.:Euler::findErrorCells() — time to apply error detector and tag cells.

Appendix B
Installation of Tau and PDT

Installing Tau

1. Download the latest release of Tau from http://www.acl.lanl.gov/tau
2. Uncompress and go into the directory tau-x.x.xx. Configure using the following:
KCC:. configure —c++=KCC
—npi i nc=<npi di r>/include —npilib=<mpidir>/lib
—pdt =<pdt di r >/ pdt ool ki t-2. x

g++: configure —c++=g++ -cc=gcc
—npi i nc=<npi di r>/include —npilib=<mpidir>/lib
—pdt =<pdt di r >/ pdt ool ki t-2. x

The italicized arguments listed above are optional:

-mpiinc -mpilib: If the location of MPI is specified, Tau will compile an MPI “wrapper”
that tracks message traffic in your application. |f SAMRAI was compiled
without MPI, there is ho need to configure Tau with MPI.

-pdt: Specifies location of PDT installation — only necessary if using the PDT to do
automatic instrumentation of source files.

3. Run make install

Installing PDT

The Program Database Toolkit (PDT) is used for doing whole-code instrumentation. It isamore
heavyweight instrumentation option and may be non-trivial to configure but may be useful for codes with
little instrumentation by SAMRAI timers. The steps below describe how to install it.

1. Download the Program Database Toolkit (PDT) from http://www.acl.lanl.gov/pdtoolkit

2. Uncompress and go into the directory pdt ool ki t - 2. x. Configure using the following:
KCC: configure —KAI
g++: configure -G\U

3. Run make followedby make install

