
Introduction to
SAMRAI VisIt Data Writer

&
VisIt

Peter L. Williams

Outline of Talk

• VisIt vs. Vizamrai.

• How to create VisIt dump files in SAMRAI.

• Overview of VisIt visualizations.

New SAMRAI VisIt Data Writer
Capabilities

• Node-centered data as well as cell-centered.

• Deformed AMR meshes (moving grids).

• Variables don’t need to exist on all patches.

• Subsets of processors in parallel runs can dump to
one file.

New SAMRAI VisIt Data Writer
Capabilities (cont’d)

• Dumps from parallel runs need no assembly.

• Ghost data can be dumped.

• Material-related data can be dumped.

• 2nd order tensors can be dumped.

SAMRAI’s VisIt Data Writer
Usage Schema

1. Create Data Writer Object (DWO)
2. [Set default derived data writer]
3. Register variables to be dumped
4. DWO:Write registered items to dump file

Normally, steps 1 - 3 are done once at the beginning of the simulation, and
step 4 repeated as necessary. However, step 3 can also be repeated,
allowing new variables to be added to the dump at future time steps.

There is no provision for de-registering a data item.

SAMRAI
VisItDataWriter

Public Methods

Constructor

• VisItDataWriter(
string& object_name,
string& dump_directory_name,
int number_procs_per_file = 1);

object_name String name for object (for debugging purposes only).
dump_directory_name Name for dump directory, may include a path.
number_procs_per_file Optional. Number processors to share a common

dump file.

Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of

Deformed Grids
– Material Data

• registerPlotScalar(
string& variable_name,
int patch_data_array_index,
int depth_index = 0,
double scale_factor = 1.0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

depth_index Optional integer parameter specifying the component
of the data to be written as a scalar.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

omit_ghost_data Optional. If this scalar field has ghost data, and you want
the data writer not to write out the ghost data, set to true.

• registerPlotVector(
string& variable_name,
int patch_data_array_index,
double scale_factor = 1.0,
int start_depth_index = 0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

start_depth_index Optional integer parameter specifying depth index of first component of
vector to be written.

omit_ghost_data Optional. If this scalar field has ghost data, and you want the
data writer not to write out the ghost data, set to true.

• registerPlotTensor(
string& variable_name,
int patch_data_array_index,
double scale_factor = 1.0,
int start_depth_index = 0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

start_depth_index Optional integer parameter specifying depth index of first component of
tensor to be written.

omit_ghost_data Optional. If this scalar field has ghost data, and you want the
data writer not to write out the ghost data, set to true.

• resetLevelPlotScalar(
string variable_name,
int level_number,
int patch_data_array_index,
int depth_index = 0);

variable_name String name of variable.
level_number Level number on which data is being reset.
patch_data_array_index New patch data array index.
depth_index Optional. New depth index, (if one component of vector data

being treated as a scalar.)

Use this method when variable lives at different patch data slots on different
hierarchy levels.

• resetLevelPlotVector(
string variable_name,
int level_number,
int patch_data_array_index,
int start_depth_index = -1);

variable_name String name of variable.
level_number Level number on which data is being reset.
patch_data_array_index New patch data array index.
start_depth_index Optional. New start depth index.

Default is to use original value.

• resetLevelPlotTensor(
string variable_name,
int level_number,
int patch_data_array_index,
int start_depth_index = -1);

variable_name String name of variable.
level_number Level number on which data is being reset.
patch_data_array_index New patch data array index.
start_depth_index Optional. New start depth index.

Default is to use original value.

Writing the Data

Writing the Data

• writePlotData(
tbox_Pointer < > hierarchy,
int time_step,
double plot_time = 0.0);

hierarchy pointer to patch hierarchy on which data to be plotted is defined.
time_step integer value specifying current time step number.
plot_time Optional argument specifying the double precision plot time.

Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of

Deformed Grids
– Material Data

Derived Variable

• Data that does not exist in the simulation,
but which is derived from state variables
in the simulation.

• For example,
Momentum = Density * Velocity

registerDerivedPlotScalar(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =

(appu_VisDerivedDataStrategyX*)NULL,
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0));

variable_name Name of derived scalar variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering Optional. May specify “NODE_CENTERED”.
scale_factor Optional. Scale factor.
ghost_cell_width Optional. Integer vector of ghost cell widths. Default is no ghost data.

If non-zero ghost cell width, VisIt expects ghost data to be dumped.

registerDerivedPlotVector(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =

(appu_VisDerivedDataStrategyX*)NULL,
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0));

variable_name Name of derived vector variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering Optional. May specify “NODE_CENTERED”.
scale_factor Optional. Scale factor.
ghost_cell_width Optional. Integer vector of ghost cell widths. Default is no ghost data.

registerDerivedPlotTensor(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =

(appu_VisDerivedDataStrategyX*)NULL,
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0));

variable_name Name of derived tensor variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering Optional. May specify “NODE_CENTERED”.
scale_factor Optional. Scale factor.
ghost_cell_width Optional. Integer vector of ghost cell widths. Default is no ghost data.

• SetDefaultDerivedDataWriter(
appu_VisDerivedDataStrategyX*

default_derived_writer);

default_derived_writer Pointer to default derived data strategy object.

The default derived data writer will be used only if
registerDerivedPlotScalar/Vector/Tensor() does not specify
a derived data strategy object to use.

For Derived Data, Ap Class Inherits …

#include “VisDerivedDataStrategy.h”
Class Applic :

public VisDerivedDataStrategy

---- Applic needs to implement this method ----
bool packDerivedDataIntoDoubleBuffer(

double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& variable_name,
int depth_index);

Arguments described on next page.

bool packDerivedDataIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& variable_name,
int depth_index);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region Box region over which to pack data.

variable_name Name previously registered for this derived variable.

depth_index Depth index of data to be packed. For scalar data, always 0. For vector data
this index varies between 0 and NDIM-1, for tensor data index varies between
0 and (NDIM*NDIM)-1.

Return Value Boolean indicating if derived data exists on this patch.

Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of

Deformed Grids
– Material Data

Registering Coordinates of
Deformed Structured AMR Grids

• registerNodeCoordinate(
int coordinate_number,
int patch_data_array_index,
int depth_index = 0,
double scale_factor = 1.0);

coordinate_number Integer indicating which dimension of coordinate is being
registered. 0 <= coordinate_number < NDIM.

patch_data_array_index Integer index of coordinate data.
depth_index If patch_data_array_index refers to a vector, this optional

parameter specifies the component of that vector to be used..
scale_factor May be different for each component.

This method must be called once for each of the NDIM dimensions.

Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of

Deformed Grids
– Material Data

Material-related Data

• Applications with cells containing fractional
amounts of material compounds, e.g. copper,
gold, gas, fluid. Each of these is a material.

• A material may have subcomponents called
species: e.g. gas may be composed of O2, N2 &
methane. We say: O2 is a species of gas.

• Each material may have own set of species.

Materials vs Species

• Materials: heterogeneous mixture of
substances (with distinct boundaries), e.g.
concrete, granite, …

• Species: homogeneously mixed substances,
e.g. seawater, Coke, air, …

• Scalar/Vector data may be defined over set of
materials – referred to as material state
variables.

• e.g. a different temperature may be associated
with each material on a cell by cell basis.

• All material fractions, species fractions and
material state variables must be “cell-centered”.
– (If necessary, can convert node- to cell- centered in

packing routines to be described later.)

• Assumption: Every cell contains fractional
amount mf (0 < mf <= 1.0) of every material
called material fraction. Sum of mf’s over all
materials for a cell must be 1.0.

• Similarly for species, called species fraction. Sum
of sf’s for all species of material m must be 1.0 in
every cell in which m appears.

• Every material state variable must have value for
each cell, for each material m, if m has non-zero
fraction in that cell.

• VisIt Data Writer allows user to dump: material
fractions, species fractions and material state
variables. In addition, species state variables
(SSV) may be registered.

• VisIt treats SSV’s in unique way. When
displayed, each value of SSV for a cell is
multiplied by sum of species fractions for that
cell for currently selected species.

• (Species selected in VisIt’s subset window.)

• E.g pressure p registered as SSV, if p = 100 for
cell c, and one species selected, say N2, and N2’s
species fraction for c is 0.45, then the partial
pressure for c will be 45.

• VisIt will automatically display partial pressure
field for N2 if pressure registered as SSV.

• Species fractions may also be treated as scalar
field to show “concentrations”.

• VisIt uses material fractions to reconstruct
material boundaries within cells containing
multiple materials.

• VisIt can display material(s) as multiple colored
contiguous regions.

• Material state variables can be displayed over a
material.

• Material fractions can be displayed as scalar field

SAMRAI’s VisIt Data Writer
Usage Schema

1. Create Data Writer Object (DWO)
2. [Set default derived data writer]
3. Register variables to be dumped
4. Register material-related data
5. DWO:Write registered items to dump

file

• registerMaterialNames(
const tbox_Array<string>& material_names,
const hier_IntVectorX& ghost_cell_width =

hier_IntVectorX(0));
material_names String array of the names of all the materials.
ghost_cell_width Optional integer vector of ghost cell widths. Default is no ghost data.

If non-zero ghost cell width specified, VisIt expects ghost data to be
dumped. This ghost cell width applies to all material-related data.

• registerSpeciesNames(
const string& material_name,
const tbox_Array<string>& species_names);

material_name Name of material whose species are being registered.
species_names String array of the names of all the species for this material.

registerMaterialNames() must be called before this method is invoked.

• registerMaterialStateVariable(
const string& state_variable_name,
const int depth = 1,
const double scale_factor = 1.0);

state_variable_name name of cell-centered state variable
depth optional integer depth of state variable;

allowable values: 1, NDIM, NDIM*NDIM
scale_factor optional scale factor.

registerMaterialNames() must be called before this method is invoked

• registerSpeciesStateVariable(
const string& state_variable_name);

state_variable_name name of state variable, can be node or cell centered.

• SetMaterialsDataWriter(
appu_VisMaterialsDataStrategyX*

materials_data_writer);

materials_data_writer Pointer to materials data writer object.

For Material Data, Ap Class Inherits
…

#include “VisMaterialsDataStrategy.h”
Class Applic :

public VisMaterialsDataStrategy

---- Applic needs to implement this method ----
int packMaterialFractionsIntoDoubleBuffer(

double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name);

Arguments described on next page.

int packMaterialFractionsIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region Box region over which to pack data.

material_name Name of the material.

Return Value Enumeration constant:
VisMaterialsDataStrategy::ALL_ZEROS,
VisMaterialsDataStrategy::ALL_ONES, or
VisMaterialsDataStrategy::SOME.

(See documentation)

Material Fractions must be cell-centered.

If species are used, implement
packSpeciesFractionsIntoDoubleBuffer()
described next.

int packSpeciesFractionsIntoDoubleBuffer(
double *buffer,

const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& species_name);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region Box region over which to pack data.

material_name Name of the material which has this species.

species_name Name of the species.

Return Value Enumeration constant:
VisMaterialsDataStrategy::ALL_ZEROS,
VisMaterialsDataStrategy::ALL_ONES, or
VisMaterialsDataStrategy::SOME.

(See documentation)

Species Fractions must be cell-centered --- If necessary convert from
node-centered to cell-centered in this packing routine.

If material state variables are used, implement
packMaterialStateVariableIntoDoubleBuffer()
described next.

void packMaterialStateVariableIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& state_variable_name ,

const int depth_index);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region Box region over which to pack data.

material_name Name of the material.

state_variable_name Name of the state variable.

depth_index Depth index of data to be packed. For scalar data, always 0. For vector
data, index varies from 0 to NDIM-1; for tensor data index varies from 0
to (NDIM*NDIM)-1.

Material State Variables must be cell-centered --- If necessary convert from
node-centered to cell-centered in this packing routine.

GOTCHA’s

• Dumping data not in floating point range.
– Since VisIt only works with float data, data >

FLT_MAX will be clamped to FLT_MAX.
– Use scale_factor to keep data in range and avoid this.

• Not initializing all ghost cells (nodes).
– Be sure all ghost cells (nodes) have a value, not just

the ones your application uses.
– Can use SAMRAI method fillAll(0.)

Documentation

“Generating VisIt Visualization
Data Files in SAMRAI”

• More details on what we covered today.

• Complete set of example VisIt Data Writer
calls in an application code.

• Brief introduction to use of VisIt with SAMRAI
data, and pointers to VisIt documentation.

• Available in SAMRAI distribution at:
docs/userdocs/VisIt-writer.pdf

Brief Overview of VisIt

New Capabilities with VisIt
• Scalable rendering --- order of magnitude faster for

large data sets if parallel compute engine available.

• VisIt can be extended with new plot & operator plugins.

• VisIt allows mathematical expressions involving
variables to be defined at vis time (thus offering a
similar capability to SAMRAI’s derived data).

• Special material-related viewing capabilities.

• Stereo viewing.

VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
(see examples on next 3 slides)

• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

Boundary Plot of Material

(not SAMRAI data)

Another View of Boundary Plot

Boundary Example

Note Material Boundary
Calculated within Cells.

VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces

(see examples next 2 slides)
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..

(see example on next slide)
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

VisIt Plot Types
• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.

(This is very useful tool!! To access, use pull-
down Controls menu at top – see next 3 slides)

• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

Pull down Controls Menu

Select Subset

Select material / species you want.

VisIt Plot Types
• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.

(see example next slide)
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.

VisIt Operators: filters applied to variable

• Box – clip cells outside axis-aligned box,
individual cells not clipped.

• Clip – clip box / sphere shaped regions, individual
cells clipped, arbitrary aligned boxes.

• Index Select – select subset based on range of
cell indices or patch numbers.

• Cone – slice 3D data with cone.
(see example next slide)

VisIt Operators: filters applied to variable

• Isosurface: isosurface colored by different var.

• Lineout: extract 1D data from 2D or 3D plots.

• Onion Peel: grow image outwards in layers
from seed cell.

• Reflect: reflect geometry across axes.
(next three slides)

• Slice: 3D data mapped to 2D surface.

Reflection of Data in
Previous Slide

Box Clip of Region

VisIt Operators: filters applied to variable

• Isosurface: isosurface colored by different var.

• Lineout: extract 1D data from 2D or 3D plots.

• Onion Peel: grow image outwards in layers
from seed cell.

• Reflect: reflect geometry across axes.

• Slice: 3D data mapped to 2D surface.

VisIt Operators: filters applied to variable

• Spherical Slice: slice with sphere.

• Three Slice: 3 mutually perpendicular slices.
(next 2 slides)

• Threshold: remove all cells not in specified
data range.

• Roll Your Own: create your own operator
plugin.

VisIt Operators: filters applied to variable

• Spherical Slice: slice with sphere.

• Three Slice: 3 mutually perpendicular slices.

• Threshold: remove all cells not in specified
data range.

• Roll Your Own: create your own operator
plugin.

Other VisIt Features

• Animation
• Box, Sphere, Plane, Line & Point Tools
• Quantitative analysis
• Pick & Query – useful for finding

numeric data value in specific cell. Gives
cell number, coordinates, and data value.

(see next slide)

Pick window
Shows (x,y,z) coords,
level & patch number
cell (i,j,k) indices
and indices of nodes.

If a variable is being
visualized, also shows
value of variable.

This work was performed under the auspices
of the U.S. Department of Energy by
University of California Lawrence
Livermore National Laboratory under
contract No. W-7405-Eng-48.

