Generating Vizamrai Data Files
in SAMRALI

Introduction

Vizamrai is afairly extensive visualization and analysis tool for data generated on a structured
AMR patch hierarchy. It isdistributed as part of the SAMRAI library. This document describes
how to use the Vizamrai data writer capabilities in a SAMRAI application. Experienced
SAMRAI users should note that in SAMRAI version 1.3.1, capabilities were added to Vizamrai
and the SAMRAI Vizamra data writer classes to accommodate vector quantities. The
description in this document supercedes any previous versions.

Quedstions and requests for additional information should be sent via emal to
santrai @I nl. gov.

Generating Vizamrai Files in SAMRAI

The primary class used in SAMRAI for Vizamrai data file generation is called
appu_Cartesi anVi zanr ai Dat aWi t er X This class applies when the underlying mesh
geometry is Cartesian; that is, it is managed by ageom Cart esi anG i dGeonet r y X object.
This class supports two kinds of data quantities. The first is data that resides on an AMR patch
hierarchy at the point that Vizamrai files are written. The second is derived data that can be
computed using existing data on an AMR patch hierarchy. Writing data of the type requires no
user intervention when generating a plot filee The second data type requires that a user
implement a concrete class derived from the appu_Vi zanr ai Der i vedDat aSt r at egy X
abstract interface. In an overloaded function of that class, a user computes the derived data
quantity over a given box region on a patch and writes it to a specified file stream.

Both derived and regular plot quantities can be either vectors or scalars.

Before a Vizamrai data writer object can be used to generate Vizamrai data files, it must be
constructed and initialized. Initialization involves things like setting information about the levels
in the AMR hierarchy that will be plotted, setting the type of the data to write out (e.g., double or
float), setting the directory into which data files are written, and registering variable quantities to
send to the plot file. After initialization, the object can be used to generate a series of data files
during the execution of some simulation code.

Typical usage of the Vizamrai data writer object involves severa steps among which there are
dight variations. Here, we list the basic steps. Then, we remark on some of the variations that
aredlowed.

1. Createaappu_Cartesi anVi zanr ai DataW i t er X object.

2. Set the finest level to plot with the member function set Fi nest Level ToPl ot (). This
isthe finest level allowable in any subsequent plot file. Note that anly levels existing in the
hierarchy when a data file is generated and which are coarsen than the finest level will be
written.

For each level numbered one to the finest level number to plot, specify the ratio between the
index space of the level and the next coarser level inthe AMR hierarchy. Thisinformation is
needed to scale the AMR levels properly in Vizamrai. The member function to use is
set Rati oToCoar ser Level ().

Set the type of data to put in the Vizamra file, using either function
set Pl ot Dat aToDoubl e() or set Pl ot Dat aToFl oat ().

Set the directory for the plot files, if desired, using the function set Di r ect or yNane().

If any derived quantities will be generated, one can set the concrete derived data writer object
using function set Deri vedDat aWiter (). Alternatively, one may specify a derived
data writer when registering each derived data quantity. This provides some flexibility in
using different derived data writer objects for different quantities if desired.

Ther eset Level Pl ot Vari abl e() member function is provided to alow a plot quantity
to live at different patch data indices on different levels. Calling this routine redefines the
patch data index for a given variable on a given level that will be written to a plot file. Before
this function is cdled, the variable must be registered wusing the
regi st er Pl ot Vari abl e() function as described earlier. NOTE: This functionality
was added in SAMRAI version 1.2.1.

Register data quantites to plot usng functions regi sterPl ot Scal ar(),
regi sterPl ot Vector(), regi st er Deri vedPl ot Scal ar (), or
regi sterDerivedPl ot Vector(). The registerDerivedPl ot... functions
require a variable name string identifier and a derived data writer if not specified earlier (see
step 5). A derived plot vector aso requires the number of vector components to be written.
The r egi st er Pl ot ...functions require a variable name string identifier and an integer
patch data index on the AMR hierarchy. Other arguments may include an integer depth
index, and a double scale factor. When a scalar plot data item corresponds to a patch data
array object with depth greater than one, the depth index must be specified. When a vector
quantity is registered all data components will be written out. When a scale factor is given,
each data value will be multiplied by this factor before it is written to the file.

After al necessary data writer parameters are initialized, the writer will generate a Vizamrai data
file when the member function wr i t ePl ot Dat a() iscaled. Minimally, ahierarchy and afile
name must be passed to this routine. One can also supply an integer file extension and a plot
time, both of which are useful when generating visualization files for time-dependent
applications. When an integer file extenson is given, the data file name format will be
“filename.extension”. If no extension is given, only the file name is used. Thus, to avoid
overwriting files when generating a series of files, either the file name or the extension must be
different for eech call towr i t ePl ot Dat a().

Remarks:

?

?

Since Vizamrai can only handle cell-centered data, the Vizamrai data write class only
appliesto cell-centered data.

In actudity, Vizamrai processes plot data in “float” format. Thus, setting the plot type to
“double’ increases the size of Vizamra data files and adds nothing to the plotting
capabilities. The ahility to save datain double format is included here for future data post-
processing capabilities.

Like other classes, “noprefix” header files are available so that may use the name
Cartesi anVi zanrai DataWiter insgead to avoid the SAMRAI prefix and
dimension qualifiers.

Step 2 above in which the finest plot level is set is optiona. If the function
set Fi nest Level ToPI ot () is not used, the finest level will be set to the finest level
specified in any call to the function set Rati oToCoar ser Level ().

Step 3 above in which the ratio between the index space on each level and the next coarser
level is optiona. If the function set Rati oToCoar ser Level () isnot used, then the
finest level and ratio information will be determined by the state of the hierarchy that is
passed to the first call to the function wr i t ePl ot Dat a() .

If no directory is specified (step 5 above), files will be written into the current directory.
Registering more than one variable with the same string name identifier is not allowed. If
thisis attempted, an error message results and the program will abort.

Example of Vizamrai Data File Writer Usage

We conclude with a brief illustration of how the Vizamrai data writer capabilities are used in the

SAM

/

RAI Euler example application. The relevant portions of the main program are as follows:

*

* Parse input file. Get Vizanrai file dunp interval,
* file name, and directory nane.
*/

Poi nt er <Dat abase> i nput _db = new t box_I nput Dat abase("i nput _db");

nput Manager : : get Manager () - >par sel nput Fi |l e(i nput _fil enane,
i nput _db);

Poi nt er <Dat abase> mai n_db = i nput _db- >get Dat abase(" Mai n");

}

nt viz_dunp_interval = 0;
f (mai n_db->keyExi sts("viz_dunp_interval")){
viz_dunp_interval = main_db->getlnteger("viz_dunp_interval");

string viz_dunp_filenane;
string viz_dunp_dirnane;

}

f (viz_dunp_interval >0) {
if (mai n_db->keyExists("viz_dunp_filenanme")) {
viz_dunp_filenanme = mai n_db->get String("viz_dunp_filename");

i f (main_db->keyExists("viz_dunp_dirnane")) {
vi z_dunp_di rname = mai n_db->get String("viz_dunp_dirnanme");
}

const bool viz_dunp_data = (viz_dunp_interval > 0)

&& ' (viz_dunp_filenane.enpty());

/*
* Create relevant al gorithm objects used in sinmulation.
*/

Poi nter<Cartesi anGi dGeonetry> grid_geonetry = .
Poi nt er <Pat chHi erarchy> patch_hi erarchy = .

Poi nt er <Cart esi anVi zanr ai DataWiter> viz_data_witer =
new CartesianVi zanrai DataWiter("Euler Viz Witer");

Eul er* eul er _nodel = new Eul er("Euler",
i nput _db- >get Dat abase("Eul er"),
grid_geonetry,
viz_data_witer);

Poi nt er <Gri ddi ngAl gori thnme gridding_al gorithm= .

/*
* Set up Vizanrai plot file witer.
*/

if (viz_dunp_data) {
viz_data_witer->setDirectoryNane(viz_dunp_dirnane);
viz_data_writer->setPl ot Dat aToFl oat () ;
viz_data_witer->setFinestLevel ToPl ot (
griddi ng_al gorithm >get MaxLevel s()-1);

for (int In =1; In < gridding_al gorithm>getMaxLevel s(); |n++)

const IntVector& lratio =

griddi ng_al gorithm >get Rati oToCoar ser Level (I n);
viz_data_writer->setRati oToCoarsestlLevel (I n, Iratio);

}
viz_data_writer->setDerivedDataWiter(eul er_nodel);
}
/*
* Time step | oop.
*/

double loop_time = time_integrator->getlntegratorTinme();
double loop_time_end = tinme_integrator->get EndTi me();

while ((loop_time < |loop_tinme_end) &&
ti me_i ntegrator->stepsRemaining()) {

int iteration_num = time_integrator->getlntegratorStep() + 1;

/*

* Advance sol ution data.

*/
/*

* At specified intervals, wite out data files for plotting.

*/

if (viz_dunp_data && (iteration_num % viz_dunp_interval) == 0) {

viz_data_witer->witePl ot Dat a(pat ch_hi erarchy,
viz_dunp_fil enane,
iteration_num
| oop_tine);

In this example, we first parse the input file and read information defining the plot file sequence
and data file names from the input file. Second, we create the objects needed to run our
smulation. Note that we pass a pointer to the Car t esi anVi zanr ai Dat aWi t er object to
the Euler class. We cache this pointer so that we can register plot variables with the writer at the
same time we register variables with the integrator class. This is described later. Third, we
initialize the state of the Vizamrai data writer object. The operations presented illustrate the use
of al functions in the Vizamra data writer interface. Note that not all of these cals are
necessary in every circumstance. Please see the remark section above for more information.
Fourth, we loop over timesteps in the simulation and write out plot files at the desired intervals.
We pass the step iteration count to the wr i t ePl ot Dat a() routine so that each plot file has a
suffix associated with the proper timestep number.

The Euler routine, r egi st er Model Var i abl es(), contains the registration of plot variables:

voi d Eul er::registerMdel Vari abl es(
Hyper bol i cLevel I ntegrator* integrator)
{

/*
* Register variables with the Hyperbolic Level integrator
*/

Poi nt er <Vari abl eCont ext > pl ot _context =
i nt egr at or - >get Pl ot Context () ;

Var i abl eDat abase* vardb = Vari abl eDat abase: : get Dat abase() ;

d viz_witer->registerPlotScal ar(
"Density",
var db- >mapVar i abl eAndCont ext Tol ndex(
d_density, plot_context));

d viz witer->registerPlotVector(
“Vel ocity",
var db- >mapVari abl eAndCont ext Tol ndex(
d_velocity, plot_context));

d viz_ witer->registerPlotVariabl g(
"Pressure",
var db- >mapVar i abl eAndCont ext Tol ndex(
d_pressure, plot_context));

d_ viz_witer->regi sterDerivedPl ot Scal ar (" Total Energy");

d viz_ witer->registerDerivedPl ot Vect or (" Monent unt') ;

In this routine, we register the Euler state variables, density, velocity, and pressure, for plotting.
These data quantities exist on the hierarchy at all times. So we give their name and patch data
index. The index is determined by mapping the variable and plot context to the index in the
variable database. Density and pressure are scalar quantities and velocity is avector. Since these
variables exist on the AMR patch hierarchy when a data file is written. So no additional user
interaction is required to generate the Vizamrai datafiles. Lastly, we register “Total Energy” and
“Momentum” as derived quantitities. Since these quantities do not reside on the AMR patch
hiecarchy al the time, the Euler cass must supply the routine
writeDerivedDat aToSt rean() that computes the total energy and the momentum and
writes them to the given file stream. For more details, please consult the source code in the Euler
sample application.

void Euler::witeDerivedDataToStream
Abstract Stream& stream
const Patché& patch,
const Box& region,
const string& vari abl e_nane,
i nt data_depth,

int plot_type)

{
if (variable_name == “Total Energy”) {
/-k
* Conpute total energy on the box “region” using the Euler
* state data on the patch and wite it to the given stream
*/
}
if (variable_nane == “NMonentuni) {
/-k
* Conpute each conponent of momentum on the box “region”
usi ng

* the Euler state data on the patch and wite it to the given

* stream
*/

We end with one final note about Vizamrai data files generated in parallel When running an
application in parald, a different Vizamra file will be generated for each processor. Each file
will contain the data from the patches that are loca to the processor. Each file will have a suffix
“ xxxx” indicating the MPI process number. Before the data can be viewed using Vizamrai, the
data files need to be concatenated into one file. There are scripts for doing this in the directory

/ISAMRAI/toolg/scripts. That directory also contains a short README file describing how to use
the scripts.

Changes to Vizamrai file generation after SAMRAI Version 1.2

The member function r eset Level Pl ot Vari abl e() was added to alow a single plot
quantity to live at different locations in the patch data array on different levelsin and AMR patch
hierarchy. Calling this routine redefines the patch data index for a given variable on a given
level. Before this function is caled, the variable must be registered using the
regi sterPl otVari abl e() function.

Although it is not used in the Euler example application, we can illustrate how this new function
is used by recalling the Euler routine, r egi st er Model Vari abl es():

voi d Eul er::registerMdel Vari abl es(
Hyper bol i cLevel I ntegrator* integrator)
{

Poi nt er <Vari abl eCont ext > pl ot _context =
i nt egrat or->get Pl ot Context ();

Var i abl eDat abase* vardb = Vari abl eDat abase: : get Dat abase() ;

d viz_ witer->registerPl ot Scal ar (
"Density",
var db- >mapVar i abl eAndCont ext Tol ndex(
d_density, plot_context));

/-k
* Reset density plot data index on |evel 5.
*/
d viz witer->resetlLevel Pl ot Vari abl e(
“Density”,
5

var db- >mapVar i abl eAndCont ext Tol ndex(
d_density, new_plot_context);

} :
Here, we changed the data index for plotting density on level 5 to that which corresponds to some

new plot context. On al other levels, the plotted density will correspond to the previoudy-
registered index.

