
Using Richardson Extrapolation in SAMRAI

Introduction

Support for Richardson extrapolation error estimation has been enhanced in SAMRAI version
1.2. Richardson extrapolation may be combined with other cell refinement methods, such as
gradient detection or refining static regions. This document is divided into three sections. The
first section describes class organization for refinement options, the second describes the
implementation of the Richardson extrapolation algorithm, and the last section gives examples of
how to use the various tagging options. Send questions and requests for additional information
via email to samr ai @l l nl . gov .

Class organization

The class Gr i ddi ngAl gor i t hm drives the overall process of creating levels in an AMR
hierarchy as well as regridding individual levels. This class requires operations, supplied through
a Strategy pattern interface called TagAndI ni t i al i zeSt r at egy , that tag cells on a level for
refinement. The class St andar dTagAndI ni t i al i ze is a specific instantiation of that
interface that provides common cell tagging operations for structured AMR. As the name
implies, this class performs two main functions, tagging cells for refinement and initializing data
on a new patch hierarchy level. The class supports three methods for selecting cells for
refinement: gradient detection, Richardson extrapolation, and refining static box regions specified
in an input file. To supply alternative refinement and initialization routines, one can implement a
new subclass of the TagAndI ni t i al i zeSt r at egy interface.

Problem-specific operations needed to select cells for refinement are supplied to the
St andar dTagAndI ni t i al i ze class via the Strategy pattern interface called
St andar dTagAndI ni t St r at egy . This class declares methods used to initialize a level:
i t i al i zeLevel Dat a() and r eset Hi er ar chyConf i gur at i on() and to tag cells for
refinement appl yRi char dsonExt r apol at i on() and appl yGr adi ent Det ect or () .
Several other virtual functions needed for the Richardson extrapolation algorithm also appear in
the interface since Richardson extrapolation needs to interact with integration routines. The
methods are:

• advanceLevel ()
• r eset Ti meDependent Dat a()
• r eset Dat aToPr eadvanceSt at e()
• coar senDat aFor Ri char dsonExt r apol at i on()

Note that several of these methods are shared by the Ti meRef i nement Level St r at egy
interface which declares problem-specific time integration operations needed by the class
Ti meRef i nement Level I nt egr at or . For example, concrete implementations of these
abstract methods are provided in Hyper bol i cLevel I nt egr at or , which is derived from
St andar dTagAndI ni t St r at egy . Figure 2 shows the class layout for the case of the Euler
example application.

Regridding
Algorithm

Standard Tag
And Initialize

Tagged cell
Clustering

…

Load
Balance

…

Euler
Numerical
Routines

Standard
Tag and Init

Strategy

Hyperbolic
Level

Integrator

Hyperbolic
Patch

Strategy

Tag And Initialize
Strategy

“ subclass of”

“uses”

met hod() =0 pure virtual method

Nomenclature

Abstract
class

Concrete
Implementation

Concrete class implements methods
specified in the abstract class

voi d i ni t i al i zeLevel Dat a() = 0
voi d r eset Hi er ar chyConf i g() = 0
voi d appl yGr adi ent Det ect or ()
voi d appl yRi char dsonExt r ap()
voi d coar senDat aFor Ri chExt r ap()
doubl e get Level Dt ()
voi d r eset Ti meDependent Dat a()
doubl e advanceLevel ()
voi d r eset Dat aToPr eadvanceSt at e()

voi d t agGr adi ent Det ect or Cel l s ()
voi d t agRi char dsonExt r apCel l s ()

Note the two methods to initialize a new level are declared pure virtual since they must be
provided in all cases. The rest of the methods are NOT pure virtual and are supplied with default
“empty” implementations that will simply “drop through” when called if no implementation is
provided in a subclass. As a result, users only need to supply operations for the refinement
strategy they want. However, care must be exercised by users to supply all methods required by
the desired refinement strategy since, for example, the compiler will not complain if one does not
supply a needed method. We have tried to add sufficient error checking and warning messages to
help users catch these problems at run-time.

Richardson Extrapolation

This section discusses the use of Richardson extrapolation as it is implemented in the classes
described earlier. We note that there are other ways to implement the Richardson extrapolation
procedure. For concreteness, we discuss the interaction of error estimation and time integration
operations using the Hyper bol i cLevel I nt egr at or c l ass . As it is implemented in

Figure 1. Class structure for Euler application

SAMRAI, Richardson extrapolation can be used easily with any level integration scheme that
couples to the Ti meRef i nement I nt egr at or class.

During Richardson extrapolation error estimation, the solution is advanced in time in two
different ways for the hierarchy level under consideration for refinement. The first advance
occurs on the level itself. The second occurs on a coarsened version of that level. These two
solutions are then compared to determine which cells to refine. In contrast, gradient detection
performs no integration of the data. Although Richardson extrapolation is more expensive
computationally than gradient detection, Richardson extrapolation can be made generic with
respect to the magnitude of the quantities involved and if less heuristically-based than methods
that attempt to refine around large gradients.

The bulk of the Richardson extrapolation algorithm itself is implemented in two methods in the
St andar dTagAndI ni t i al i ze class: pr epr ocessRi char dsonExt r apol at i on()
and t agCel l sUsi ngRi char dsonExt r apol at i on() . The first of these methods is
used to integrate the data on a coarsened version of the level. The second method integrates the
data on the level itself and calls a user routine to compare the two solutions. The description
below summarizes the major steps performed in the algorithm. Steps 1 – 2 are performed in
pr epr ocessRi char dsonExt r apol at i on() and steps 3 – 7 are performed in
t agCel l sUsi ngRi char dsonExt r apol at i on() .

1. Create a coarser version of the level on which cells are being selected for refinement.
The ratio used to generate the coarser level is called the er r or _coar sen_r at i o.
This integer is computed as the greatest common divisor of the refinement ratio relating
the current hierarchy level to its next coarser (for level zero, we use the ratio between it
and level one). The current algorithm only allows coarsen ratios of 2 or 3.

Solution data is set on the coarser level by the time integration class in the
coar senDat aFor Ri char dsonExt r apol at i on() method. It is important to be
aware of the error estimation time and the time associated with the solution data in order
to apply the algorithm correctly. For example, the state of the data during this coarsening
phase in Hyper bol i cLevel I nt egr at or is represented in Figure 3. At
initialization time (i.e., when the AMR hierarchy is constructed initially) all data is at the
simulation start time (e.g., t = 0). At other regridding times, solution data will exist at
two different times indicated with variable contexts “CURRENT” and “NEW” in the
hyperbolic integrator. During the data coarsening phase in either case, we coarsen the
“CURRENT” data on the hierarchy patch level to the “CURRENT” data on the
coarsened version of this level. Thus, the data on the coarsened level is in a proper state
for time integration. We note that the data coarsening function
coar senDat aFor Ri char dsonExt r apol at i on() is called twice during the
Richardson extrapolation process. A boolean flag called “before_advance” in the
argument list distinguishes the two cases. The flag is true for the current case in which
we initialize the data for the coarsened hierarchy level.

time

ref inement

le ve l

coarsened level

Regr id
T ime (t=0)

ini t ial t ime

time

ref inement
le ve l

coarsened level

Regr id
T ime

∆ t

later t ime

CURR

NEW

CURR

CURR

CURR

2. Advance data on the coarser level. After initializing the data on the coarser level, we

integrate the coarser level over a single time increment defined by ∆tcoarse =
(er r or _coar sen_r at i o * ∆t). Here ∆t is the most recent time increment used to
advance the solution on the hierarchy level under consideration. This operation also
occurs in the method pr epr ocessRi char dsonExt r apol at i on() . At
initialization time, the solution will be advanced on the coarser level to time tregrid +
error_coarsen_ratio * ∆t. At later times, we advance to time tregrid +
(error_coarsen_ratio-1) * ∆t. See Figure 4.

time

refinement

lev el

coarsened level

Regr id
Time (t=0)

initial time

time

refinement

lev el

coarsened level

Regr id
Time

2∆t

later time

CURR

NEW

NEW

CURR

CURR

NEW

∆t

∆t

Error
Computed

Error
Computed

3. Advance data on the hierarchy level on which er ror estimation is performed. So that

we can compare two different solutions at the same integration time, the solution on

Figure 3. Coarsen “ current” data from level being regridded to a coarser version of the level.

Figure 4. Advance data in time on coarser level

hierarchy level is integrated to the same time as that on the coarsened version of the level.
At initialization time, we integrate over er r or _coar sen_r at i o steps of size ∆t. At
later times, we integrate over er r or _coar sen_r at i o- 1 steps of size ∆t. Note that at
initialization time, no integration steps have been performed on the level before error
estimation is called, so we have only “CURRENT” data to advance. At later times, we
have both “CURRENT” and “NEW” data. “CURRENT” data corresponds to the initial
integration time for the coarser level. “NEW” data corresponds to the regrid time. Before
we can advance the data on the hierarchy level, the solution data must be reset. This is
done by the integrator in the function r eset Ti meDependent Dat a() .

time

refinement

le v el

coarsened level

Regr id
Time (t=0)

initial t ime

time

refinement

le v el

coarsened level

Regr id
Time

later t ime

NEW

∆t

∆t

∆t

CURR

NEW CURR

NEW

CURRNEW

CURR

Er ror
Computed

Er r or
Computed

(already computed)

CURR

NEW

CURR

NEW

4. Coarsen integrated solution data from hierarchy level to the coarsened level. Now

that we two solutions at the same time, one on the hierarchy level and one on a coarsened
version of the hierarchy level, we need to move one of these to the level holding the other
so that we can compare the two on a grid with the same spatial resolution. This is done
using the coar senDat aFor Ri char dsonExt r apol at i on() routine. Recall that
this routine contains a boolean value “before_advance” in its argument list to indicate
where in the algorithm it is called. For the case we are now describing, the boolean is
false. In Hyper bol i cLevel I nt egr at or , the data is coarsened from the “NEW”
context to the “NEW” context.

Figure 5. Advance data on level.

time

refinement

lev el

coarsened level

NEW NEWEr ror
Computed

5. Tag cells on the coarser level. Comparing the two solutions, we identify cells to tag for
refinement (or de-refinement). For example, the Hyper bol i cLevel I nt egr at or
calls the t agRi char dsonExt r apol at i onCel l s() method in hyperbolic patch
strategy interface for this.

6. Refine tag data from the coarsened level to the hierarchy level subject to er ror

estimation. We now have tagged cells for refinement on the coarser level, we need to
refine the tags to the hierarchy level so that a refinement of that level can be generated.
We simply copy the tagged cells on the coarsened level to cells covering the same region
on the hierarchy level.

7. Reset data on the hierarchy level to a state suitable for the next time integration

step. The algorithm calls the method r eset Dat aToPr eadvanceSt at e() for this.

In the case of a hyperbolic problem like the Euler example, the Richardson extrapolation
algorithm calls methods shared by two interfaces Ti meRef i nement Level St r at egy and
St andar dTagAndI ni t St r at egy . These are described in the following table:

method name What it does…
advanceLevel () Advance solution one timestep
r eset Ti meDependent Dat a() Reset data pointers after advance

The advanceLevel () method is used in a number of situations that require different behavior.
Four booleans in the argument list, f i r st _st ep, l ast _st ep, r egr i d_advance,
l evel _i n_hi er ar chy , help to distinguish the cases describe next:

Figure 6. Coarsen data advanced on level to the coarsened level.

1. Regular time integration advance. During the standard integration process (i.e., not
during regridding), the first and last step flags identify where we are in the timestep
sequence, where the sequence is defined by the steps taken between consecutive advance
steps on the next coarser level. In this case, r egr i d_advance is false and
l evel _i n_hi er ar chy is true.

2. Advance a level at initial time to supply boundary conditions before Richardson
extrapolation error estimation on finer levels. Since Richardson extrapolation
advances the data, it may require time-dependent boundary values from coarser levels in
the hierarchy. Thus, coarser levels must be integrated in time during the initial
construction of the hierarchy when Richardson extrapolation is performed. Since this
step is performed at initialization for regridding on a level in the hierarchy,
f i r st _st ep is true, l ast _st ep is false, r egr i d_advance is true, and
l evel _i n_hi er ar chy is true.

∆tf

∆tc

∆tf

∆tf

∆tf

first_step =
T

first_step = F

last_step = F

last_step = T

first_step = T
last_step = F

initial time error estimation on finer levels…

3. Advance a level at initial time dur ing Richardson extrapolation. This corresponds to
step 3 in the sequence of Richardson extrapolation steps above. Here,
r egr i d_advance is true, and l evel _i n_hi er ar chy is true. The values of the
first and last step arguments are illustrated below:

4. Advance on coarsened version of the level dur ing regr idding. This corresponds to

step 2 in the Richardson extrapolation algorithm described above. Only a single advance
step is taken on the coarse level so f i r st _st ep and l ast _st ep are both true in this
case. The r egr i d_advance argument is also true, since this advance is applied
during regridding. Since this advance is applied to the coarsened version of the level
being regridded, which is NOT in the hierarchy, l evel _i n_hi er ar chy is false. The
only difference in this case at the initial time and at a later time is the actual regrid time
with respect to the time of the data during the time integration. This is illustrated below:

5. Advance on level being regr idded at later time. This corresponds to step 3 (at later

time only) in the Richardson extrapolation algorithm above. Here, f i r st _st ep is false
when the level is the coarsest level in the hierarchy to synchronize with other levels at the
regrid time. Otherwise, it is true. The l ast _st ep argument is true. The
r egr i d_advance argument is true. The l evel _i n_hi er ar chy argument is true.

∆t

first_step = T
last_step = F

first_step = T
last_step = T

initial time

 ∆t

last_step = T
2∆t

first_step = T

regrid time at initial time

regrid time at later time

Richardson extrapolation error criterion

If your application code employs the Gr i ddi ngAl gor i t hm and
Hyper bol i cLevel I nt egr at or classes in SAMRAI and you wish to use Richardson
extrapolation, the only method you need to add to your code is
t agCel l sFor Ri char dsonExt r apol at i on() method in you concrete hyperbolic patch
strategy subclass. In this method, you will compare the solution advanced on the coarser level
and the solution advanced on the finer level and then coarsened to the coarser level and tag cells
where this comparison indicates a sufficiently high truncation error.

Note that standard usage of Richardson extrapolation for error estimation in SAMR for time
dependent problems assumes that the spatial and temporal truncation error of the numerical
methods is the same order. When this is the case, we can assume that the local truncation error of
the time integration scheme is

1+∆= ntCε (1)

where n is the global order in time of the scheme and C is some (generally unknown) constant. If
we take r steps of size ∆t on a fine level, and one step of size r∆t on a coarser level, the truncation
errors on the coarse and fine levels will be:

1+∆⋅= n
f trCε 111)(+++ ∆=∆= nnn

c tCrtrCε

The local truncation error may therefore be estimated as

rr
tC

n

fcn

−
−

=∆= +
+

1
1 εε

ε (2)

Usually, we wish to tag where the global error – the error accumulated over the course of the
simulation – is greater than some specified tolerance. To estimate the global error we multiply

∆t first_step =!coarsest_sync_level
last_step = T

regrid time

the local truncation error by an estimate of the total number of timesteps we will take in the
simulation. We can estimate the number of advance steps using a simple formula

ts

L
steps

∆
=#

where L is a characteristic length scale associated with the problem domain, and s is some
characteristic propagation speed (i.e., wave speed), and ∆t is the current timestep. This implies
that we should tag cells for which:

tol
ts

L

rrrr n

fc

n

fc >
∆−

−
≈

−
−

++ 11

ϖϖεε
 (3)

where ω is the quantity being monitored for errors.

See the source code for either the Euler or linear advection sample problem for a specific example
that uses Richardson extrapolation.

Specifying tagging options and other users issues

The St andar dTagAndI ni t i al i ze class allows one to use a combination of static refine
regions, gradient detection, and Richardson extrapolation. This section summarizes the different
ways in which these options may be invoked.

To specify tagging options through input, pass an input database to the constructor to
St andar dTagAndI ni t i al i ze. The input key t aggi ng_met hod allows one to indicate
the tagging criteria using an array of strings. Valid string choices are
“GRADIENT_DETECTOR”, “RICHARDSON_EXTRAPOLATION”, and “REFINE_BOXES”.
You may use combinations of the gradient detector, Richardson extrapolation, and static refine
boxes. If refine boxes are chosen, you must supply a Ref i neBoxes{ } database entry which
specifies the prescribed regions where refinement is to occur. Note that the entries specify
regions to refine on a given level; they do not specify the level itself. The following example
shows how to use an input file to combine a gradient detector with static refine boxes defined on
the first two levels in a hierarchy.

f oo. C

Poi nt er <St andar dTagAndI ni t i al i ze> t aggi ng_al g =
new St andar dTagAndI ni t i al i ze(

 “ St andar dTagAndI ni t i al i ze” ,
 hyp_l evel _i nt egr at or ,

i nput _db- >
get Dat abase(“ St andar dTagAndI ni t i al i ze”)) ;

i nput . f i l e

St andar dTagAndI ni t i al i ze{
 t aggi ng_met hod = “ GRADI ENT_DETECTOR” , “ REFI NE_BOXES”
 Ref i neBoxes{

 l evel _0 = [(15, 0) , (29, 14)] , [(18, 15) , (29, 20)]
 l evel _1 = [(65, 10) , (114, 40)]
 }

The user-specified refine boxes can also be modified to change over course of the the simulation.
This functionality requires the user to supply a specified time interval along with the set of refine
boxes for each time interval. For example, to change refine boxes from a first to second set at
time 1.0, supply the following for the “RefineBoxes” input entry

 Ref i neBoxes{
 Level 0{
 t i mes = 0. 0, 1. 0
 boxes_0=[(15, 0) , (29, 14)] , [(18, 15) , (29, 20)]
 boxes_1=[(18, 3) , (32, 17)] , [(21, 18) , (32, 23)]
 }
 Level 1{
 t i mes = 0. 0, 1. 0

boxes_0 = [(65, 10) , (114, 40)]
boxes_1 = [(68, 13) , (117, 43)]

}

 }

See comments in the header file for the TagAndI ni t i al i zeSt r at egy class for further
information on ways to specify adaptive refinement through input over designated time or cycle
intervals in the simulation.

Input files in the Euler and linear advection sample problems provide additional examples of cell
tagging options specified via input. Also, see the header file comments in the
St andar dTagAndI ni t i al i ze class for more details about input file options for regridding.

It is important to note that the St andar dTagAndI ni t i al i ze class manages only the
algorithms used for selecting cells for refinement. The actual tagging of cells for a gradient
detector or Richardson extrapolation must be implemented by the user. These operations are
supplied through the interface methods in the St andar dTagAndI ni t St r at egy class. The
Euler and linear advection sample problems illustrate how this is done when using the
Hyper bol i cLevel I nt egr at or class. No user routines are needed when static refine boxes
are used.

Some users problems may wish to change the tagging criteria at different points in the simulation
(e.g. start the simulation with static refine boxes but turn them off at some point). For these
instances, the St andar dTagAndI ni t i al i ze class provides methods to turn refinement
options on and off. For example, the default state of a St andar dTagAndI ni t i al i ze
object (no input database provided), will set the tagging type to be gradient detector. We can add
to the gradient detector a set of static refine boxes using the calls:

 t aggi ng_al g- >t ur nOnRef i neBoxes() ;
 BoxAr r ay l 0_r boxes = … // refine boxes for level 0
 t aggi ng_al g- >r eset Ref i neBoxes(l 0_r boxes, 0) ;

At a later time, the boxes can be reset to something else, or the refine boxes may be turned off:

 t aggi ng_al g- >t ur nOf f Ref i neBoxes() ;

Similar methods are available to turn on/off gradient detectors and Richardson extrapolation. See
the St andar dTagAndI ni t i al i ze class header documentation for more details.

Regridding Boxes I/O

The Gr i ddi ngAl gor i t hm class allows one to read and write regrid boxes to/from a data file.
For example, the following input entry:

Gr i ddi ngAl gor i t hm {
 …

 wr i t e_r egr i d_boxes = TRUE
 r egr i d_boxes_f i l ename = “ r egr i d_boxes”
 }

will output the level boxes constructed during the regridding process each time a hierarchy level
is constructed to the file names “ regrid_boxes” . If we switch “write_regrid_boxes=TRUE” to
“ read_regrid_boxes = TRUE”, the gridding algorithm will read the set of level boxes from the
file. Then, rather than performing the usual tag operations to generate levels in the hierarchy, the
boxes read from the file will be used. We find this useful for testing the performance of the
library in certain circumstances. However, this capability is not designed for general
consumption and requires some care to use. For more information about this feature, please
consult the SAMRAI team (samr ai @l l nl . gov).

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Document UCRL-TM-202188.

