
SAMRAI Timing & Instrumentation

Intro
SAMRAI provides a timing package to assist in performance analysis and to guide the user about which
routines are incurring the largest percentage of computation time. The timers report basic statistics about
the time spent in individual routines and can be turned on or off in the input file. The timers can report
exclusive time, provide a calling tree hierarchy, and give estimated statistics on the overhead they take up
in the program. The package also contains links to the VAMPIR parallel performance analysis package for
visual representations of the computation and communication patterns of the application.

Instrumenting an application with the SAMRAI timing package involves wrapping timers around
numerical kernels. A number of commonly used library components already have timers added and
invoking these timers is simply a matter of specifying them through the input file. The first section of this
chapter discusses how to invoke existing timers. The second section discusses how to add timers to your
source code . Finally, techniques for analyzing performance on multiple processors using the VAMPIR
and Tau instrumentation packages is discussed in the third section. An appendix is attached which lists a
catalog of timers, and what they are timing, included in the library.

Invoking Timers
Management of the different timers in the library is performed through the TimerManager class. All timers
are, by default, turned off. To turn them on, you must add an instance of TimerManager to your
application. In main.C, add invocation of TimerManager:

 Ti mer Manager : : cr eat eManager (i nput _db- >get Dat abase(“ Ti mer Manager ”)) ;

Note that creation of the manager expects an entry from the input database. The input entries include a
number of options for recording and printing timer values, and a list of timers to turn on. The options for
recording and printing timers are as follows, and their default settings if not reset in the input, are as
follows:

Input file format:

Ti mer Manager {

pr i nt _excl usi ve = FALSE
Specifies whether to track and print exclusive time. Exclusive time is measured by
turning off the parent timer when a nested timer is called. The parent timer is turned back
on when the nested timer is exited (Fig 1). Thus, the exclusive time is time spent
exclusively in the routine. This option should be used with some discretion because the
cost of maintaining the timer stack to record exclusive time is between four and seven
times more expensive than simply turning a timer on and off. For this reason, it is false
by default.

pr i nt _t ot al = TRUE

Specifies whether to track and print total (i.e. non-nested) time. This is the least
expensive way to time parts of the code, with each occurrence of a start/stop operation
incurring approximately 10 millionth of a second.

pr i nt _wal l = TRUE

Print wallclock time.

pr i nt _user = FALSE
Print user time.

pr i nt _sys = FALSE

Print system time.

pr i nt _pr ocessor = TRUE

Prints time measured on individual processors.

pr i nt _summed = FALSE

Prints time summed across all processors.

pr i nt _max = FALSE

Prints maximum time measured across all processors, and the processor ID that incurred
it.

pr i nt _concur r ent = FALSE

Prints a nested calling tree. For each timer, it prints the names of the timers that were
nested within.

pr i nt _per cent age = TRUE

Prints percentages of the overall run time along with the measured times.

pr i nt _t i mer _over head = FALSE

Prints number of times a timer start/stop sequence was accessed, and the estimated
overhead associated. Prints the total overhead from all timers as a percentage of the total
run time and prints a warning if this is greater than 5%.

pr i nt _t hr eshol d = 0. 25

Specifies a threshold setting for which timers whose percentage of time is less than the
threshold are not printed. That is, any timers that incur less than (print_threshold)% of
the run time are not printed. Useful for preventing huge volumes of output if a lot of
timers are being called. To disable completely, set it to zero.

i ni t _f r om_r est ar t = FALSE
Timer values are written to restart with all the other restart information. One has the
option to invoke them from restart so that timing information can be maintained over a
series of runs. Set to true to initialize timers with values read from restart.

t i mer _l i s t = “ pkg1: : * : : * ” , “ pkg2: : c l assA: : * ” , “ pkg3: : c l assB: : t i mer ”
List of timers to be invoked. The timers can be listed individually or the entries may
contain wildcards to turn on an entire set of timers in a specified package or class.
Specifically, one can use the following formats in the timer list:

package: : * : : * - turns on all timers in package.
package: : c l ass: : * - turns on all timers in class.
* : : c l ass: : * - turns on all timers in class
cl ass: : * - turns on all timers in class
cl ass - turns on all timers in class
package: : c l ass: : t i mer - turns on specific timer in the package::class
* : : c l ass: : t i mer - turns on specific timer in the class
cl ass: : t i mer - turns on specific timer in the class

}

Figure 1 Exclusive time illustration

Timers can be printed at any point in the code by invoking the TimerManager’s print function:

 Ti mer Manager : : get Manager () - >pr i nt (pout) ;

The only argument required is the preferred output stream (e.g. pout, plog, or perr). The values printed are
controlled by input file entries discussed above.

Adding Timers to New Code
Any code built with SAMRAI can utilize functionality of the TimerManager for timers in new code.
However, the TimerManager assumes a certain naming and invocation format for each of the timers it
manages and these formats should be adhered to for the manager to work properly.

The following is an example of how to invoke a timer in a piece of code:

st at i c t box_Poi nt er <t box_Ti mer > t _met hod_name =
t box_Ti mer Manager : : get Manager () - >
get Ti mer (“ package: : c l ass: : met hodName() ”) ;

t _met hod_name- >st ar t () ;

 perform function methodName()…

t _met hod_name- >st op() ;

The primary features to note in the above invocation are discussed below:

st at i c : We make a static pointer to the timer so that the TimerManager only has to search through its

lists for the timer once, the first time the timer is invoked. The timer is has been requested in the
input, maintained by the TimerManager, this call returns a pointer to the appropriate timer object. If
the timer was not requested, the manager returns a pointer to its so-called “null” timer. The null
timer is as a special case for which all calls to start/stop simply drop through without recording the
time. This provides the capability of hardwiring a timer in the code but preserving the capability to
turn it on or off at will.

t _met hod_name: Several timers may occur in the same region of the code, and it is sometimes difficult

to discern pointers to the different timers. For this reason, we adopt a naming convention that the
pointer to the timer begins with “ t_” to designate it as a pointer to a timer object, followed by the
“method_name” to designate the particular timer. This naming format is not a requirement for the
TimerManager so user code can adopt whatever pointer name is most desirable. But for library
code, this convention should be used to maintain consistency.

package: : c l ass: : met hodName() : All timers should be named in a format with two “ ::” , as in

package::class::timer. Use of this format is expected by the parsing routines in the manager that
allow wildcard entries. That is, use of this format allows the capability to enter “package::* ::* ” in
the input file and have package::class::timer be one of the timers turned on. If you do not use this
format, the parser may not work properly.

One other feature that is not required by the TimerManager but is something we found to be a useful
standard is the format of the method name. If the timer is timing an entire method, we specify the
name like above as “methodName()” . If the timer is placed around a specific part of the method, say
a synchronization call, we name the timer something like “methodName()_sync” . This distinguishes
it as a piece of a certain method. If a timer is placed around a call in the class that is made in several
methods, implying that its pointer is a data member of the class, we simply name the timer like a
variable, such as “ fill_data” . The point of this formatting is to distinguish the different parts of the
class that are being timed.

A number of timers have already been added to the library. See Appendix A for a catalog of the timer
names and function they time.

Using VAMPIR

VAMPIR is a useful tool for analyzing performance of an application on a reasonable (i.e. < 16) number of
processors. VAMPIR works by placing “phase markers” around what the user deems are important parts of
the code. Most applications require the user to go in by hand to add these phase markers in order to use
VAMPIR. In SAMRAI, however, we have instrumented the timing class to automatically invoke a vampir
trace for every start and stop of a timer. Thus, adding a timer to the code will not only generate timing
statistics at the end of the run, it will also allow analysis using the VAMPIR tool.

VAMPIR tracing is left off by default. This document discusses how to invoke it, and provides some
details on how to use it to analyze application performance.

Configuring SAMRAI with VAMPIR
VAMPIR is installed and working at Livermore only on blue pacific. Thus, it is the default location known
to the configure script. When compiling on this machine, add the --with-VAMPIR option to the configure
line. If you happen to be running on a machine other than blue pacific and know where VAMPIR is
installed, you may specify the directory in the configure.

Blue: conf i gur e … - - wi t h- vampi r
 Other Machines: conf i gur e … - - wi t h- vampi r =<di r >

VAMPIR works with code compiled in optimized mode. That is, it is OK to configure with both
–enabl e- opt and –wi t h- vampi r .

Once VAMPIR is compiled with the code, tracing will be invoked every time you run the code. Due to
license issues, there are a few environment variables you must explicitly set or the code will not run. I
usually put these in a little script, which I invoke whenever I start doing a run with code compiled with
VAMPIR:

 set env PAL_ROOT / usr / l ocal / kppp
 set env PAL_LI CENSEFI LE $PAL_ROOT/ l i cense. dat
 set pat h=($PAL_ROOT/ bi n $pat h)

Once these environment variables are set, run the code. It will generate a trace file called <exec>. st f ,
where <exec> designates the name of your executable. The trace file contains statistics about code
performance. It can be viewed graphically using the VAMPIR browser, invoked by the command
vampi r .

Figure 2 – VAMPIR Trace analysis on 64 processors

Using TAU

Tau is a tool developed at the University of Oregon to analyze code performance. The acronym stands for
Tuning and Analysis Utilities – see http://www.cs.uoregon.edu/research/paracomp/tau/. Unlike VAMPIR
which generates traces, Tau profiles an application. That is, it does not generate traces for every MPI call
or call to a new method but instead records time for each of these operations and displays these at the end.
Tau is capable of doing automated whole-code analysis, placing timers at the beginning and end of every
method of every class. However, we have integrated Tau with the SAMRAI timers to make the integration
simple. The only requirement to invoke Tau is to request it when you configure your version of SAMRAI.

Tau has the advantage over VAMPIR that it is freely-available and, unlike tracing which can incur
significant overhead, its overhead is quite small. The Tau team, particularly Sameer Suresh, is very
responsive and helpful and fixes most problems within a day of being reported.

This discussion is broken into two sub-sections. The first section discusses the minimal steps required to
link to Tau. The second gives a brief tutorial on different functions that we have found useful. Appendix B
summarizes the steps required to download and install Tau (we maintain a copy of Tau locally so this
section is primarily intended for developers who need to update the installation and off-site users who wish
to install versions on their own systems).

Configuring SAMRAI with Tau
Tau may be explicitly configured with SAMRAI by adding the –- wi t h- t au flag pointing to the tau
Makefile. You must explicitly point to the version of tau that is compatible with the OS/compiler with
which you are configuring SAMRAI:

I386-linux: conf i gur e - - wi t h- t au=/ usr / casc/ samr ai / t au/ t au- 2. 12/

i 386_l i nux/ l i b/ Makef i l e. t au- l i nuxt i mer s- mpi

gps: conf i gur e –- wi t h- t au=/ usr / l ocal / t ool s/ t au/ al pha/ l i b/
 Makef i l e. t au- kcc

frost: conf i gur e –- wi t h- t au=/ usr / casc/ samr ai / t au/ t au- 2. 12/
 r s6000/ l i b/ Makef i l e. t au- mpi - kcc

If Tau becomes used on a regular basis, we will clean up the process so that the SAMRAI configure
operation will automatically pull in the correct tau Makefile, but for now the appropriate version must be
explicitly given in the configure line.

Using Tau to Assess Performance
Once you have configured with Tau, run the code in the way you are used to. Depending on the number of
processors you run on, the file(s) pr of i l e. [node] . [cont ext] . [t hr ead] will be generated .
SAMRAI only does node-level parallelism so, unless you invoke threaded code in your application, the
context and thread entries should both be zero.

A graphical tool included with Tau to analyze performance is called “ jracy” . Invoke it1 via:

1 If you plan to use tau frequently, you may wish to add the tau /bin to your path to avoid entering this long line.

 <t au- di r >/ bi n/ j r acy

where <tau-dir> corresponds to the location where tau is installed. See the configure options above for the
installation directory (<tau-dir> is everything before “ /lib/Makefile.tau-…”).

Jracy is a Java application and sometimes the default version of java installed on the blue/frost and gps/tc2k
systems at LLNL is too dated to run it. Current versions of java exist on these systems but they may not be
in your path by default. If you get an error when invoking jracy, try updating your version of java to
something more current by setting your path as:

 blue: set pat h=(/ usr / j ava130/ bi n $pat h)
 gps: set pat h=(/ usr / opt / j ava122/ bi n $pat h)

Jracy will invoke a timeline window showing an aggregate of various timers from largest to smallest time
on the different processors, and a mean from all processors. Click on the bars of any of the timers and a
window will pop up showing a timeline for only that timer (Fig. 3).

Clicking on the “n,c,t” on the left side of each bar of the timeline will provide a breakdown of time spent in
each routine on that particular processor (Fig. 4).

Figure 3 - Main window of tau's jracy tool

click click

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Document UCRL-TM-202188.

click

(left click) (right click)

Appendix A

Catalog of Available Timers

Algorithms package: (algs::*::*)

TimeRefinementIntegrator (algs::TimeRefinementIntegrator::*)

algs::TimeRefinementIntegrator::initializeHierarchy() – times creation of hierarchy and
initialization of data on the levels (initialization data may be invoked from scratch or read from
restart).
algs::TimeRefinementIntegrator::advanceHierarchy() – times recursive advance of data as it steps
thru each level in the hierarchy.

HyperbolicLevelIntegrator (algs::HyperbolicLevelIntegrator::*)

algs::HyperbolicLevelIntegrator::initializeLevelData() – time taken to set data on the hierarchy
when hierarchy is initialized (not from restart).
algs::HyperbolicLevelIntegrator::applyGradientDetector() – time required for application of error
estimator, or gradient detector.
algs::HyperbolicLevelIntegrator::advanceLevel() – time integration on the level.
algs::HyperbolicLevelIntegrator::resetHierarchyConfiguration() – time to reset hierarchy after a
re-grid.
algs::HyperbolicLevelIntegrator::bdry_fill_comm – time to fill boundaries, using schedule created
in the resetHierarchyConfiguration() routine.
algs::HyperbolicLevelIntegrator::fill_new_level_create – time to create schedule used to fill a
newly-created level.
algs::HyperbolicLevelIntegrator::fill_new_level_comm – time to communicate data to the new
level.
algs::HyperbolicLevelIntegrator::coarsen_fluxsum_create – time to create communication
schedule for the fluxsum coarsen operation.
algs::HyperbolicLevelIntegrator::coarsen_fluxsum_comm – time to communicate data in the
coarsen fluxsum operation.
algs::HyperbolicLevelIntegrator::coarsen_sync_create – time to generate schedule for the time
synchronization step during coarsening.
algs::HyperbolicLevelIntegrator::coarsen_sync_comm – time to communicate data for the time
synchronization step.
algs::HyperbolicLevelIntegrator::patch_numerical_routines time to perform numerical routines -
compute fluxes and conservative difference – on patches of the level.
algs::HyperbolicLevelIntegrator::sync_initial_create – time to generate schedule for initialization
of the time synchronization step.
algs::HyperbolicLevelIntegrator::sync_initial_comm – time to communicate during initialization
of time synchronization.
algs::HyperbolicLevelIntegrator::getLevelDt()_sync – time for the MPI min reduction performed
in the getLevelDt() function across all processes to determine the timestep. This is mainly a
measure of load imbalance. While there is some MPI cost incurred in this operation, studies we
have conducted show that the MPI cost is actually quite small compared to load imbalance costs.
algs::HyperbolicLevelIntegrator::advanceLevel()_sync – time for an MPI reduction performed in
advanceLevel(). This is a mainly a measure of load imbalance. While there is some MPI cost

incurred in this operation, studies we have conducted show that the MPI cost is actually quite
small compared to load imbalance costs.

Mesh package: (mesh::*::*)

GriddingAlgorithm (mesh::GriddingAlgorithm::*)

mesh::GriddingAlgorithm::makeCoarsestLevel() – time to construct coarsest level in hierarchy.
mesh::GriddingAlgorithm::makeFinerLevel() – time to construct finer level from coarser.
mesh::GriddingAlgorithm::regridAllFinerLevels() – time to do error estimation, generate and
load balance boxes on new level, and regrid all levels in the hierarchy finer than the current one.
mesh::GriddingAlgorithm::regridFinerLevel() – time to regrid just one finer level.
mesh::GriddingAlgorithm::setTagsOnLevel() – time to set the error tags on the level.
mesh::GriddingAlgorithm::bufferTagsOnLevel() – time to add a buffer layer around the tags on
the level.
mesh::GriddingAlgorithm::findRefinementBoxes() – time to construct refinement boxes from the
buffered tags.
mesh::GriddingAlgorithm::findProperNestingBoxes() – once refinement boxes are constructed,
must determine proper nesting to insure valid interpolations.
mesh::GriddingAlgorithm::remove_intersections_make_finer – time required to remove box
intersections (call to BoxList::removeIntersections()) within makeFinerLevel().
mesh::GriddingAlgorithm::remove_intersections_regrid_all – time required to remove box
intersections within regridAllFinerLevels().
mesh::GriddingAlgorithm::remove_intersections_find_proper – time required to remove box
intersections within findProperNestingBoxes().
mesh::GriddingAlgorithm::intersect_boxes_find_proper – time required to determine box
intersections (call to BoxList::intersectBoxes()) within findProperNestingBoxes.
mesh::GriddingAlgorithm::intersect_boxes_find_refinement – time to determine box intersections
within findRefinementBoxes().
mesh::GriddingAlgorithm::find_boxes_containing_tags – time in the box generator strategy to
determine tagged cells.
mesh::GriddingAlgorithm::load_balance_boxes – time to load balance the boxes once they have
been generated.
mesh::GriddingAlgorithm::make_new_level – time to generate a new patch level (call to
PatchHierarchy::makeNewPatchLevel() routine).
mesh::GriddingAlgorithm::bdry_fill_tags_create – time to build communication schedule for
communication of tags.
mesh::GriddingAlgorithm::bdry_fill_tags_comm – time to communicate tag data.
.

Transfer package: (xfer::*::*)

CoarsenSchedule (xfer::CoarsenSchedule::*)

xfer::CoarsenSchedule::coarsenData() – time to perform communication during coarsening.

RefineSchedule (xfer::RefineSchedule::*)

xfer::RefineSchedule::fillData() – time to perform communication during refine operation.
xfer::RefineSchedule::generate_comm_schedule – time to build a schedule between patches on a
patch level that have like refinement. For example, to exchange data between patches on the same
level.

xfer::RefineSchedule::finish_schedule_const – time to build a schedule between patches that have
different refinement. For example, to move data from a coarser to a finer level.

Applications package: (apps::*::*)

Euler (apps::Euler::*)

apps::Euler::initializeDataOnPatch() – time to set data on patch when started at time zero.
apps::Euler::computeStableDtOnPatch() – time to step thru data on the patch, computing
timestep.
apps::Euler::computeFluxesOnPatch() – time to compute fluxes by performing the flux
calculation routine (either Corner-Transport-Upwind scheme of Colella or scheme by
Trangenstein).
apps::Euler::conservativeDifferenceOnPatch() – time to apply conservative difference, once
fluxes have been calculated.
apps::Euler::setPhysicalBoundaryConditions() – time to apply boundary conditions.
apps::Euler::findErrorCells() – time to apply error detector and tag cells.

Appendix B
Installation of Tau and PDT

Installing Tau

1. Download the latest release of Tau from http://www.acl.lanl.gov/tau
2. Uncompress and go into the directory tau-x.x.xx. Configure using the following:

KCC: conf i gur e –c++=KCC
–mpi i nc=<mpi di r >/ i ncl ude –mpi l i b=<mpi di r >/ l i b
–pdt =<pdt di r >/ pdt ool k i t - 2. x

g++: conf i gur e –c++=g++ - cc=gcc

–mpi i nc=<mpi di r >/ i ncl ude –mpi l i b=<mpi di r >/ l i b
–pdt =<pdt di r >/ pdt ool k i t - 2. x

The italicized arguments listed above are optional:
-mpiinc -mpilib: If the location of MPI is specified, Tau will compile an MPI “wrapper”

that tracks message traffic in your application. If SAMRAI was compiled
without MPI, there is no need to configure Tau with MPI.

-pdt: Specifies location of PDT installation – only necessary if using the PDT to do
automatic instrumentation of source files.

3. Run make install

Installing PDT
The Program Database Toolkit (PDT) is used for doing whole-code instrumentation. It is a more
heavyweight instrumentation option and may be non-trivial to configure but may be useful for codes with
little instrumentation by SAMRAI timers. The steps below describe how to install it.

1. Download the Program Database Toolkit (PDT) from http://www.acl.lanl.gov/pdtoolkit
2. Uncompress and go into the directory pdt ool k i t - 2. x . Configure using the following:

KCC: conf i gur e –KAI
g++: conf i gur e - GNU

3. Run make followed by make install

