Writing an FAC Solver

Brian Gunney

Introduction

The SAMRAI library provides high-level abstractions for writing linear equation solvers using on the fast
adaptive composite (FAC) agorithm. The FAC algorithm and all operations common to it are provided in
theclasssol v_FACPr econdi t i oner X, while problem-specific operations are accessed through the
interface of the abstract sol v_FACOper at or St r at egy X class.

Thus, sol v_FACPr econdi ti oner X
» provides the entry point for the solution process.
« controlsthe FAC cycles and parameters such as number of cycles, residua tolerance,
and number of smoothing sweeps
» provide temporary storage for error and residual vectors.

Thesol v_FACOper at or St r at egy X class provides interfaces to these problem-specific operations:
» restricting the solution
* redtricting the residual
» prolonging the error and applying the correction
» solving the coarsest level
« computing the residual norm
These operations require the details of the equation and discretization methods and must be implemented
in the a concrete child class.

To develop a solver using the FAC algorithm, one uses a combination of the preconditioner and a concrete
implementation of the operator strategy abstract class. This document describes the methods contained in
these two classes, how to implement sol v_FACOper at or St r at egy X and how to use the
preconditioner. For an example of an FAC operator class, seesol v_Cel | Poi ssonFACOpsX. For an
example of using the preconditioner, see the higher-level classsol v_Cel | Poi ssonFACSol ver X.

Using sol v_FACPr econdi ti oner X

This section covers the setup and usage of the preconditioner. For users of the solver, thisis the most
important part. The operator strategy methods are called through the FAC preconditioner class. Each
preconditioner object requires one operator strategy implementation, which is registered through the
preconditioner's constructor. This section covers the basic usage of the preconditioner, which involves
setting up the parameters, initiating the solve and getting information on the solution process.

Setting up the preconditioner parameters involves these preconditioner methods and corresponding input
parameters:

Method I nput name Default setting
set Pr esnoot hi ngSweeps(i nt num pr e_sweeps
num pr e_sweeps) 1
set Post snoot hi ngSweeps(i nt num post _sweeps
num post _sweeps) 1
set MaxCycl es(i nt max_cycl es) max_cycl es 10
set Resi dual Tol er ance(doubl e resi dual _tol
residual _tol) 1. OOE- 006
enabl eLoggi ng(bool enabl e) enabl e_I| oggi ng FALSE

These simple functions are self-explanatory.




The method
sol veSyst en{ sol v_SAMRAI Vect or Real X<doubl e> &u,
sol v_SANMRAI Vect or Real X<doubl e> &f);

performs the solve. The unknown u and right-hand-side f are described as vectors so that systems of
equations are handled through the same interface. Vectors can wrap multiple patch data under a single
object. The two vectors must have the same hierarchy, level range and number of components. Further
requirements, such as ghost cell width, may be imposed by the operator object. The method
sol veSyst eminitializes the solver state (set up temporary storage, etc.), performs the FAC cycling
steps according to the above parameters, then deallocate the solver state. For multiple solves, the solver
state can be set up and preserved through out the solve, leading to significant time savings. The methods
void initializeSol verStat e(
const sol v_SAMRAI Vect or Real X<doubl e> &sol ution ,
const sol v_SAMRAI Vect or Real X<doubl e> & hs );
and
voi d deal | ocateSol ver State();
are used set up and remove the solver state manually. If sol veSyst emis entered with an initialized
dtate, that state will be used but left undisturbed. Otherwise, the stateisinitialized using the vector
argumentsto sol veSyst em Notethatiniti ali zeSol ver St at e or
deal | ocat eSol ver St at e call corresponding functionsin the FAC operator object (described below)
to keep that object in a matching state.

After asolve, the number of FAC iterations, the residua norm and the convergence factors can be
retrieved by the functions

i nt getNunberlterations() const
voi d get Conver genceFact or s(doubl e *avg_f act or,

doubl e *final _factor) const
doubl e get Resi dual Nor m() const

The convergence factor is the factor by which the residual is reduced by one FAC iteration. The average
factor isthat which, when applied the number of iterations used gives the same overall reduction, while the
final factor isthat of the last iteration taken. The residual norm isthe RMS norm of the residud.

Implementing sol v_FACOper at or St r at egy X

Critical methods that must be implemented in sol v_FACOper at or St r at egy X are the pure virtual
functions performing essential operationsfor the FAC solver.

 restrictSolution

e restrictResidual

e prol ongError AndCor r ect

» snoot hError

+ sol veCoar sest Level

« conput eConposi t eResi dual OnLevel

« conput eResi dual Nor m
In addition, there are three non-pure virtua functions that are not related to the FAC algorithm but help in
the implementation of the strategy class:

e initializeQperatorState

« deal |l ocateQperator State

e postprocessOeCycl e
This section will make general comments about these methods. The source code documentation of this
abstract class providesthe full description, requirement and allowable assumptions when implementing
the methods.

Aswith the solv_FACPreconditionerX class, patch data are represented through vectors. It isimportant to
know that the vectors are those giventoi ni ti al i zeOper at or St at e, those given to

sol v_FACPr econdi ti oner X: : sol veSyst emor clones of those vectors, leading to some
consistency through out the FAC solve.



Each of the essential operations for the FAC solver, with the exception of conput eResi dual Nor m
operates on just one level. Thelevel number argument in these functions always refers to the level whose
datais being changed. The restrict and prolong operations obvioudy require data from an adjacent level,
but they modify only onelevel. For methods that require data from an adjacent level, you can make
certain assumptions about the state of the data in the adjacent level, and are required to prepare data that
may subsequently be used. Thisisdue to the fact that these functions are only called at appropriate points
in the logical sequence of steps performed in an FAC cycle.

The computation of the residual norm by conput eResi dual Nor mshould only compute the norm of
the data passed in. It should not recompute the residual, which is done by
conput eConposi t eResi dual OnLevel .

Acknowledgements:

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence-Livermore National Laboratory under contract No. W-7405-Eng-48. Document UCRL-TM-
202154,



