
Rich Hornung

www.llnl.gov/CASC/SAMRAI
samrai@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

An Introduction to the SAMRAI
Framework: Parts I-IV

UCRL-PRES-202207

This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National

Laboratory under contract No. W-7405-Eng-48.

Topics covered in Parts I-IV

Part I
— Basic structured AMR (SAMR) concepts
— SAMRAI motivation and design goals
— Summary of SAMRAI library organization

Part II
— SAMRAI “hierarchy” classes

– index space
– box
– patch
– level
– patch hierarchy

Topics covered in Parts I-IV

Part II ctd…
— SAMRAI “variable” and “patchdata” classes

– cell data
– node data
– side data
– face data
– edge data
– index data

Part III
— SAMRAI “Variable Database” motivation & usage

Part IV
— SAMRAI data communcation infrastructure

– design motivation and key concepts
– Refine Algorithm and Refine Schedule
– Coarsen Algorithm and Coarsen Schedule

Part I

Topics covered in Part I

Basic structured AMR (SAMR) concepts
SAMRAI motivation and design goals
Summary of SAMRAI library organization

Basic structure AMR (SAMR) concepts

SAMR employs a dynamic structured
“patch hierarchy”

Basic SAMR ingredients:

problem formulation for
locally-refined meshes

(serial) numerical routines
for individual patches

inter-patch data transfer
operations (copying,
coarsening, refining, ...)

Mesh and data:
• data (e.g., arrays) mapped to
“logically-rectangular” patches
• any mesh system mapping to
logically-rectangular index space
can be used (e.g., Cartesian
coords, cylindrical coords,
general hexahedra, etc.)

Fine local mesh

Intermediate local mesh

Coarse global mesh

Structure of SAMR computational mesh

Hierarchy of levels of mesh resolution

Finer levels are nested within coarser

Cells on each level are clustered to form
logically-rectangular patches

Motivation:
— low overhead mesh description
— bookkeeping for computation and

communication is simple (boxes)
— simple model of data locality
— amortize communication overhead

by computing over a patch
— well-suited to structured solvers,

hierarchical methods, local time
refinement, etc.

Structured mesh hierarchy defined using
“index spaces”

Coarsest Level
global index space …(0,0) - (4,3)
patch ……….………..(0,0) - (4,3)

0

0

1

1

2

2

3

3

4

Each finer level relates to a coarser level by a
“refinement ratio”

Intermediate Level
global index space … (0,0) - (19,7)
patch …………………(8,0) - (19,5)

Refinement ratio = (4,2)

0

1

2

3

4

5

7

6

8 12 16 19.0 . . .

Finest Level
global index space… (0,0) - (19,15)
patch ……...………. (12,4) - (15,7)

Refinement ratio = (1,2)

12 . . . 15 190 . . .

4

5
6
7

0

. .
 .

. .
 .

15
SAMRAI mesh indices

are cell-centered

SAMRAI decomposes each hierarchy
level in parallel individually

General observations about SAMR applications
— most parallelism is found at a single mesh level
— serial numerical operations can be performed on each after

communication of necessary boundary data
SAMRAI assigns each patch and all of its data to one
processor

Processor 0
Processor 1
Processor 2
Processor 3

exchange patch boundary data
forall patches i in level X

call user_update(X(i))
end forall serial code

“parallel” loop

parallel data
communication

SAMRAI motivation and design goals

SAMRAI: Structured Adaptive Mesh
Refinement Application Infrastructure

SAMRAI is an object-oriented (C++) software framework
for adaptive multi-physics applications

Main SAMRAI goals: simplify development and
management of SAMR applications and enable new
algorithm research

Application folks want to do certain things easily:
— quickly focus on numerical methods and solution algorithms
— build numerical algorithms and coordinate variable data between

coupled numerical models
— easily manipulate data on dynamically changing, locally-refined

mesh (data copying, coarsening, refining, time interpolation, …)

SAMRAI evolves with understanding of
application and numerical issues

SAMRAI research and development focus:
— multi-scale applications, algorithms, and numerical methods
— adaptive algorithms on massively parallel computing platforms
— modern software approaches for complicated numerical codes

SAMRAI software design goals:
— robust code base shared by diverse, complex applications

(“infrastructure” common across apps. factored into framework)
— flexible algorithmic framework to explore new solution methods
— extensible parallel support for general dynamic data configurations

(extensity without recompilation; e.g. via inheritance)

For information about SAMRAI research and application development,
visit our web page at www.llnl.gov/CASC/SAMRAI/

SAMRAI library organization

User view of SAMRAI is a “toolbox” of
classes for application development

“depends on”

all depend on
Hierarchy &

Toolbox

Mesh
Management

Tool Box Patch Hierarchy Data Transfer

Patch Data

Grid Geometry Integration
Algorithms

Linear/Nonlinear
Solvers

Application
Utilities

Math Ops Multiblock

Summary of SAMRAI packages I

Toolbox -- basic, general utilities used throughout library
— smart pointers/containers; memory arenas; MPI classes; input & restart

tools; event logging, tracing, statistics, timers

Hierarchy -- abstract index spaces and patch hierarchy objects
— index; box & box containers; patch, patch level, patch hierarchy; interfaces

for variable, patch data types; variable database

Transfer -- inter-patch data movement
— communication algorithms & schedules, spatial refine/coarsen and time

interpolation operators

PatchData -- concrete patch data types
— variable & patch data classes for array-based data (cell-centered, node-

centered, side-centered, …) and data defined on irregular “index” sets

Math Ops -- basic arithmetic and other operations needed for
vector kernels (norms, dot product, etc.)

— operationss apply to single patch, single level, or entire hierarchy

Summary of SAMRAI packages II

Mesh -- adaptive meshing & patch hierarchy construction support
— AMR hierarchy contruction/regridding; load balancing

Multiblock – support data on multiple patch hierarchies
— data management and communication between different index spaces

Algorithm -- solution algorithms for certain PDE problems
— local time stepping; method of lines; hyperbolic conservation laws; basic

implicit time integration support

Solvers -- support for linear and nonlinear solvers
— vector classes; interfaces and wrappers for PETSc, KINSOL, PVODE; AMR

Poisson solver (using hypre)

Geometry -- support for coordinate systems on AMR hierarchy
— grid geometry; patch geometry; spatial refine/coarsen operators

App Utils – utilities helpful in application construction
— simple boundary conditions; visualization file generation

Part II

Topics covered in Part II

SAMRAI “hierarchy” classes
— index space
— box
— patch
— level
— patch hierarchy

SAMRAI “variable” and “patchdata” classes
— cell data
— node data
— side data
— face data
— edge data
— Index data

SAMRAI “hierarchy” classes

Basic concepts to keep in mind…

PatchHierarchy maintains array of PatchLevels

PatchLevel maintains array of Patches
— patches are distributed
— index space information (boxes) is global

Patch objects hold all PatchData objects on a Box

Patch
Box Array<PatchData>

All data operations rely on Index spaces and Boxes

SAMRAI “hierarchy” classes: Index, Box

Indices, boxes, box collections (box list, box array)
— all data manipulation (comp & comm) relies on index information
— available for 1, 2, or 3 spatial dimensions

Box
key data
Index lower
Index upper

key methods
lower()
upper()
grow()
refine()
coarsen()
shift()
intersect()
...

Note: All box semantics in SAMRAI
assume cell-centered index spaces

Index
int data[NDIM]

(0,0)

(4,3)

e.g.,

Any Box object may be coarsened or
refined in index space

Note:
• Coarsened box may cover

larger region.
• Refined box will always
cover same region.

Box box(Index(1,1), Index(4,3))

1 2 3 4

1

2

3e.g.,

coarse lower = (lower+1)/ratio-1, lower < 0
= lower/ratio , otherwise

coarse upper = (upper+1)/ratio-1, upper < 0
= upper/ratio , otherwise

0 2

0

1

1

Box::coarsen(box, IntVector(2))

fine lower = lower * ratio
fine upper = upper * ratio + ratio - 1

2 . . . 9

2

7

. . .

Box::refine(IntVector(2))

SAMRAI “hierarchy” classes:
PatchHierarchy, PatchLevel, Patch

PatchHierarchy
key data
Array<PatchLevel>levels

key methods
getNumberLevels()

getLevel()

makeNewPatchLevel()

removePatchLevel()

...

PatchLevel
key data
BoxArray phys_domain

BoxArray boxes

Array<Patch> patches

key methods
getPhysicalDomain()

getBoxes()

getRatio()

getPatch()

allocatePatchData()

dealloatePatchData()

...

Patch
key data
Box box
Array<PatchData> data

key methods
getBox()

getPatchData()

allocatePatchData()

deallocatePatchData()

...

“PatchHierarchy” holds an array of “PatchLevel”s

“Patch” holds an array of “PatchData”

“PatchLevel” holds an array of “Patch”es

Each PatchLevel object owns “local”
Patches and all “global” Box information

Pointer<PatchLevel> level0 = hierarchy.getLevel(0)

e.g.,
PatchHierarchy hierarchy

Pointer<PatchLevel> level1 = hierarchy.getLevel(1)

level0 -> getBoxes() level1 -> getBoxes()

index space covered by patches

Global (i.e., shared) box information

level0 -> getPhysicalDomain() level1 -> getPhysicalDomain()

global index space of each level

Note: Patches (and thus
data) are distributed
across processors, but
each processor knows all
domain and box
information

SAMRAI “variable” and
“patch data” classes

Variable
— defines a data quantity; type,

(centering), (depth)
— abstract base class (interface)

attributes:
– name (string)
– unique instance id (int)
– way to create data storage

— creates data object instances
(abstract factory)

— Variable objects usually persist
throughout computation

PatchData
— represents data on a “box”
— abstract base class (interface)

attributes:
– interior box (Box)
– exterior box (Box)
– ghost cell width (IntVector)

— interface for all data
communication (strategy)

— (usually) created by factory
associated with variable

— PatchData objects are created
and destroyed as mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

SAMRAI Variable and PatchData objects
separate “static” and “dynamic” concepts

A SAMRAI Patch contains all data living in
a box region in a level in the mesh

Patch
Box Array<PatchData>

PatchData
getBox()
getGhostBox()
getGhostCellWidth()
copy(...)
packStream(...)
unpackStream(...)
. . .

All Patchdata
objects

obey the same
interface

NodeCell Face Outerface

User-defined
types

Outernode IndexSet Particles

SAMRAI “patch data”: cell data

CellVariable and CellData provide “cell-centered”
arrays (int, float, double, dcomplex, bool, char)

3D cell data array
Box(lower, upper)

[lower0 : upper0 ,
lower1 : upper1 ,
lower2 : upper2 , d]

2D ex. CellData<double> cdat(patch.getBox(),
depth = 1, ghosts = (1,1))

(1,2)

(3,3)

(0,1)

(4,4)

patch.getBox() (1,2) - (3,3)
cdat.getBox() (1,2) - (3,3)

cdat.getGhostBox() (0,1) - (4,4)
Note: data is allocated
over “ghost box”

double* arr = cdat.getPointer()

column-major (FORTRAN) ordering
lower array indices same as “ghost box”

Cell data array
(5 X 4 X d)

[0 : 4 ,
1 : 4 , d]

SAMRAI “patch data”: node data

NodeVariable and NodeData provide “node-centered”
arrays (int, float, double, dcomplex, bool, char)

3D node data array
Box(lower, upper)

[lower0 : upper0 + 1 ,
lower1 : upper1 + 1 ,
lower2 : upper2 + 1 , d]

2D ex. NodeData<double> ndat(patch.getBox(),
depth = 1, ghosts = (1,1))

(1,2)

(4,4)

(0,1)

(5,5)

patch.getBox() (1,2) - (3,3)
ndat.getBox() (1,2) - (3,3)

ndat.getGhostBox() (0,1) - (4,4) Note: member functions
return “cell-centered” boxes

double* arr = ndat.getPointer()

Node data array
(6 X 5 X d)

[0 : 5 ,
1 : 5 , d]

column-major (FORTRAN) ordering
lower array indices same as “ghost box”

Note: index scheme for node
data adds 1 to upper box index
in each dimension

SideVariable and SideData provide “side-centered”
arrays (int, float, double, dcomplex, bool, char)

SAMRAI “patch data”: side data

2D ex. SideData<double> sdat(patch.getBox(),
depth = 1, ghosts = (1,1))

sdat.getPointer(0)

patch.getBox() (1,2) - (3,3)
sdat.getBox() (1,2) - (3,3)

sdat.getGhostBox() (0,1) - (4,4) Note: member functions return
cell-centered boxes

sdat.getPointer(1)
0-dir array
(6 X 4 X d)
[0 : 5 ,
1 : 4 , d]

1-dir array
(5 X 5 X d)
[0 : 4 ,
1 : 5 , d]

(0,1)

(1,2)

(4,5)

(3,4)

(1,2)

(0,1)

(4,3)

(5,4)

column-major (FORTRAN) ordering
lower array indices same as “ghost box”

Note: data adds 1 to upper box
index in data dimension

SAMRAI “patch data”: side & face data

FaceVariable and FaceData arrays are similar to side

[lower0 : upper0 + 1 ,
lower1 : upper1 ,
lower2 : upper2, d]

[lower1 : upper1 + 1 ,
lower2 : upper2 ,
lower0 : upper0 , d]

[lower2 : upper2 + 1 ,
lower0 : upper0 ,
lower1 : upper1 , d]

3D face data arrays
Box(lower, upper)

3D side data arrays
Box(lower, upper)

[lower0 : upper0 + 1 ,
lower1 : upper1 ,
lower2 : upper2, d]

[lower0 : upper0 ,
lower1 : upper1 ,
lower2 : upper2 + 1 , d]

[lower0 : upper0 ,
lower1 : upper1 + 1,
lower2 : upper2 , d]

0-direction (or “x”)

1-direction (or “y”)

2-direction (or “z”)

Note: FaceData permutes (0,1,2); leading array dimension is spatial dimension

SAMRAI “patch data”: other face/side data

SideData can be managed in single directions
SideData<double> sdat(patch.getBox(),

depth = 1, ghosts = (0,0)
direction = 1)

For example

sdat.getPointer(1)

gives

sdat.getPointer(0)

(NULL pointer)

OuterfaceVariable / OuterfaceData and OutersideVariable /
OutersideData provide arrays on patch boundaries
osdat.getPointer(0,0)

osdat.getPointer(1,0)

direction
osdat.getPointer(0, 1)

osdat.getPointer(1, 1)

lower/upper

SAMRAI “patch data”: edge array data

EdgeVariable and EdgeData provide edge-centered arrays
— like side & face data, edge data uses NDIM arrays; axis corresponds to edges

parallel to axis direction (recall side/face axis corresponds to side/face with
normal in axis direction)

— in 3D :
3D edge data arrays
Box(lower, upper)

[lower0 : upper0 ,
lower1 : upper1 + 1 ,
lower2 : upper2 + 1 , d]

[lower0 : upper0 + 1,
lower1 : upper1 + 1,
lower2 : upper2 , d]

[lower0 : upper0 + 1 ,
lower1 : upper1 ,
lower2 : upper2 + 1 , d]

IndexVariable and IndexData are template classes to
manage quantities on irregular cell-centered index sets

SAMRAI “patch data”: index data

IndexVariable<TYPE> ivar(“name”)
IndexData<TYPE> idata(Box& box, ghosts)

“TYPE”

Required methods
TYPE()
TYPE& operator=(const TYPE&)
getDataStreamSize(Box&)
packStream(...)
unpackStream(...)

CutCell type describes internal boundary and
state information along boundary

e.g.

SAMRAI supports new patch data types
via inheritance without recompilation

Create a MyData subclass and provide virtual functions
class MyData : public PatchData
{

void copy(...);
void packStream(...);
int getDataStreamSize(...)
. . .

};

Create a MyFactory subclass to allocate MyData objects
class MyFactory : public PatchDataFactory
{

Pointer<PatchData> allocate(...);
. . .

};

Create MyVariable subclass to create MyFactory objects
class MyVariable : public Variable
{

Pointer<PatchDataFactory> getPatchDataFactory(...);
. . .

};

Part III

Topics covered in Part III

SAMRAI “Variable Database”
— motivation
— usage

Important note: VariableDatabase is not
needed for nearly all SAMRAI functionality
Basic model for SAMRAI data management: one-to-one correspondence between
PatchData objects (owned by patches) and PatchDataFactory objects
(owned by PatchDescriptor). One PatchDescriptor instance shared by all patches.

Patch
Box Array<PatchData*>

PatchDescriptor

Array<PatchDataFactory*> Array<string>

“null”

CellData

SideData

ParticleData
NodeData

CellDataFactory

NodeDataFactory

SideDataFactory

NodeDataFactory

ParticleDataFactory

Factory creates PatchData

Names of Factories

The VariableDatabase helps to manage
variables and data on patch hierarchy

Recall: a Patch contains all data on a Box region
Patch

Box Array<PatchData>

— Variables define mesh quantities; used to create PatchData
— each patch data item lives at the same patch data array index on

every patch

“pressure”

“particles”

VariableDatabase holds variable-patch data mappings
— Singleton object; one instance, accessible everywhere in code
— provides variable “contexts” multiple storage locations/variable
— provides access to shared patch descriptor object (consistency)
— Important: database contents are defined and set by user

“Variable database” motivation

VariableDatabase motivation I: setting
data slots for variables on patches

After creating a variable, we need to establish storage
slot(s) for variable data on each patch

CellVariable<double> density(“density”, depth = 1)
NodeVariable<double> pressure(“pressure”, depth = 1)
. . .

Application code

Patch

Box Array<PatchData>

Patch Hierarchy density data

pressure data

CellData<double> densdat =
patch.getPatchData(??)

Problem: what is the
data array index?

VariableDatabase motivation II: using
multiple data entries for one variable

Integration algorithms may require multiple data
“contexts” for each variable

CellVariable<double> density(“density”, depth = 1)
. . .

Application code

Patch
Array<PatchData>“old”

“new”

Problem: how do we implement a general algorithm that manages an
arbitrary set of time dependent variables with “old” and “new” storage?

Pointer<Variable>

“registration” operation

Time Integration Algorithm
patch.allocatePatchData(...)

CellData<double>

CellData<double>

VariableDatabase motivation III: sharing
variables between different algorithms

A variable may be used differently in different parts of
the solution procedure

CellVariable<double> density(“density”, depth = 1)
. . .

e.g., Application code

Problem: how can solvers share
variables and data and manage

data independently?

Note: Each CellData<double>
object may have different storage

needs (e.g., ghost cell width)

Patch
Array<PatchData>

density is a “time-dependent”
solution variable

Solver A Solver B
density is a “source term”

variable

“new”

“old”

“source”

“Variable database” usage

Conceptual view of VariableDatabase and
VariableContext

-1

-1

-1

3

-1

0 1 2

4 5

6

7

PatchData
array indices

Note: In general, more than one
data slot per variable

Patch
Array<PatchData>

0
1
2
3

Variable-context
pair undefined

Core function of
VariableDatabase…

Mapping between
variable-context pairs
and patch data array

slots
Va

ria
bl

es

Variable Contexts
“old”

“new”

“scratch”

“density”

“momentum”

“velocity”

“pressure”

VariableContext
labels storage

VariableDatabase usage I: setting storage
slot for patch data (no VariableContext)

VariableDatabase* vdb = VariableDatabase::getDatabase()
// get pointer to Singleton VariableDatabase object

Pointer< CellVariable<double> > density = . . .

// get pointer to cell-centered density variable

Patch
Array<PatchData>

int dens_id = vdb->registerPatchDataIndex(density)
// get array index for density data (default factory)

Pointer< CellData<double> > dens_data = patch.getPatchData(dens_id)
// get density data on patch

density data

VariableDatabase usage II: multiple
storage slots via VariableContexts

Pointer<Variable> var = . . .
VariableDatabase* vdb = VariableDatabase::getDatabase()

// pointer to some variable and Singleton VariableDatabase

Pointer<VariableContext> old_ctxt = vdb->getContext(“OLD”)

Pointer<VariableContext> new_ctxt = vdb_>getContext(“NEW”)

// get pointers to “OLD” and “NEW” VariableContext objects

int old_var_id = vdb->registerVariableAndContext(var, old_ctxt,
IntVector(1))

int new_var_id = vdb->registerVariableAndContext(var, new_ctxt,
IntVector(0))

// set “OLD” and “NEW” patch data locations

Patch
Array<PatchData>

“new data” (0 ghost cells)

“old data” (1 ghost cell)

VariableDatabase usage III: sharing
variables and data in different algorithms

(density is “time-dependent”)Solver A
VariableDatabase* vdb = ...
int dens_old_id = vdb->registerVariableAndContex(vdb->getVariable(“density”),

vdb->getContext(“OLD”),
IntVector(2))

int dens_new_id = vdb->registerVariableAndContex(vdb->getVariable(“density”),
vdb->getContext(“NEW”),
IntVector(0))

Solver B (ndensity is a “source term”)

VariableDatabase* vdb = ...
int dens_src_id = vdb->registerVariableAndContex(vdb->getVariable(“density”),

vdb->getContext(“SOURCE”),
IntVector(1))

vdb->addVariable(density)

CellVariable<double> density(“density”, depth = 1)

VariableDatabase* vdb = ...
VariableDatabase

allows global access
to Variable

Using variables and data indices only (no contexts)
1 add variable: addVariable(Pointer<Variable>)
2 Define/undefine variable mapping to data index:

int registerPatchDataIndex(Pointer<Variable>, int data_id = -1)
int registerClonedPatchDataIndex(Pointer<Variable>, int old_id)

void removePatchDataIndex(int data_id)

3 Map data index to variable: mapIndexToVariable(int)

Summary of VariableDatabase usage

Using variables and variable contexts
1 Add variable: addVariable(Pointer<Variable>)
2 Get variable context: getContext(string&)
3 Define variable-context pair mapping to data index:

int registerVariableAndContext(Pointer<Variable>,
Pointer<VariableContext>,
IntVector& ghost_width)

registration also
adds variable

4 Map between variable-context pairs and data indices:
mapVariableAndContextToIndex(), mapIndexToVariableAndContext()

VariableDatabase helps to maintain
consistent variable-data management

VariableDatabase
key methods
getContext(string&)
checkContextExists(string&)

addVariable()
getVariable(string&)
checkVariableExists(string&)

registerVariableAndContext()
registerPatchDataIndex()
registerClonedPatchDataIndex()
removePatchDataIndex()
checkVariablePatchDataIndex()

mapIndexToVariable(int)
mapVariableAndContextToIndex()
mapIndexToVariableAndContext()

printClassData()

Variable has string name, unique
integer instance identifier

VariableContext has string name,
unique integer instance

Contents of database can be
printed to file, screen, etc.

Mapping functions will return undefined
data if request not found in database

Variable-context pair can be
registered with only one ghost width

Variable-context registration should
only use contexts from database

Two variables with same name, or
two contexts with same name, are not
allowed in database

Part IV

Topics covered in Part IV

Communicating data on an AMR patch hierarchy
using SAMRAI
— SAMRAI design motivation and concepts
— Refine Algorithm and Refine Schedule
— Coarsen Algorithm and Coarsen Schedule

SAMRAI parallel data communication
motivation and concepts

SAMRAI data transfer model captures
general AMR communication patterns

Communication “phases” defined by AMR algorithm

fill patch boundaries
before advance

exchange patch
boundary data during

solver iteration

fill new patches
after re-meshing

synchronize data
between levels

• Each scenario involves a set of variables and operations
• Operations (spatial coarsen/refine, time interpolation, boundary

conditions) depend on mesh geometry, data centering, data type

In SAMRAI, the goal is
to express

communication as a
complete data

movement “phase”
of an algorithm

involving all relevant
variables rather than
moving data for one

variable at a time

Data manipulation is dictated by solution
algorithm and application needs

physical
boundary
conditions

space, time
interpolate

coarser data

copy data from
adjacent fine patch

destination
patch

For example, before performing numerical operations on a patch,
“ghost cell” data values are set

SAMRAI framework view: SAMR data movement involves
arbitrary combinations of variable quantities and operations

SAMRAI communication framework
centers around three abstractions

Communication Algorithm supports high-level description of data transfer
phases of numerical solution algorithms
— expressed using variables, coarsen/refine operators, etc.
— independent of AMR mesh configuration

Communication Schedule manages transactions to execute data transfers
— automatically treats complexity of different data types (e.g., centerings)
— depends on AMR mesh configuration

“Patch Strategy” is interface to user-supplied coarsen/refine operations and
boundary conditions

coarse mesh

fine
destination

patch

Data interpolated
in space and time

Physical boundary
conditions applied

Compare with...
Variable
— defines a data quantity

independent of mesh
— usually persists throughout

computation

PatchData
— represents data on a “box”
— created and destroyed as

mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

Communication Algorithm and Schedule
separate “static” and “dynamic” concepts

Communication Algorithm
— describes data transfer

phase of computation
— expressed using variables,

operators, …
— independent of mesh
— typically persists throughout

computation

Communication Schedule
— manages details of data

movement on mesh
— created by communication

algorithm
— depends on mesh
— re-created when mesh

changes

SAMRAI “Refine Algorithm”
and “Refine Schedule”

physical
boundary
conditions

space, time
interpolate

coarser data

copy data from
adjacent fine patch

destination
patch

For example, before performing numerical operations on a patch,
“ghost cell” data values are set

SAMRAI framework supports data refinement involving arbitrary
combinations of variable quantities and operations within a single
data transfer.

Refine Algorithm manages a data
refinement phase of computation

Patch data quantities to be transferred
are registered with Refine Algorithm

copy particles

fill continuum
data

For example, integration of particle
regions requires both continuum and
particle boundary data for each patch

• Create algorithm to fill data
RefineAlgorithm fill_alg;

• Register variable operations with algorithm:
• density refined from coarser, copied from fine, BCs set

fill_alg.registerRefine(rho_old, // destination
rho_old, rho_new, // sources
..., “CONSERVATIVE_INTERP”);

• particles copied from neighboring patches
fill_alg.registerRefine(particles, // destination

particles, // source
...);

Schedule creation constructs and stores data source and
destination information needed to communicate data

Refine Algorithm creates Refine Schedule
which computes & stores data dependencies

Send Set Receive Set

Particles

message buffer

single
MPI sendCell Data (double)

packStream(...);

packStream(...);

After schedule is created, it is used to communicate data

• Create schedule to fill data
RefineSchedule fill_sched =

fill_alg.createSchedule(
hierarchy, level, ...);

• Invoke data fill operations
fill_sched.fillData(time, ...);

Using RefineAlgorithm, RefineSchedule
to refine data on a patch hierarchy

1 Create a RefineAlgorithm object
2 Register data transfer and refinement operations with

RefineAlgorithm
− specify source and destination patch data indices
− specify nec. spatial refinement and time interpolation operators

3 After all transfer operations are registered, create a
RefineSchedule object
− RefineSchedule depends on RefineAlgorithm object and patch

hierarchy configuration
− a RefinePatchStrategy object is needed for user-defined

refinement operations and physical boundary conditions

4 Invoke the RefineSchedule to perform data refinement
and transfer operations

Notes on using refine algorithms and
refine schedules I

RefineAlgorithm/Schedule objects are used to refine data in AMR
hierarchy and to copy data between patches on two levels (may or may
not be part of same hierarchy). Note that we consider copy operations
to be a special case of refine operations.
RefineAlgorithm has two registerRefine(…) functions
— one supports time interpolation, the other does not
— ops using time interpolation can be mixed with those that do not

RefineAlgorithm has several createSchedule(…) functions
— these are distinguished by level and hierarchy arguments
— a RefineAlgorithm object can be used in different ways by creating

different RefineSchedules

Notes on using refine algorithms and
refine schedules II

User-defined data refinement operations and physical boundary
conditions are supported by passing a RefinePatchStrategy object to a
createSchedule(…) function

A RefineSchedule can be used repeatedly to transfer data as long as
the patches involved in data movement are unchanged. Once patches
change, the schedule must be regenerated.

SAMRAI “Coarsen Algorithm”
and “Coarsen Schedule”

coarse
destination

patches

For example, fine mesh values may be averaged to a coarser level
mesh for numerical consistency.

Coarsen Algorithm manages a data
coarsen phase of computation

SAMRAI framework supports data coarsening involving arbitrary
combinations of variable quantities and operations within a single
data transfer.

fine
source
patches

= regions
where

coarsening
occurs

Using CoarsenAlgorithm, CoarsenSchedule
to coarsen data on a patch hierarchy

1 Create a CoarsenAlgorithm object
2 Register data coarsen operations with CoarsenAlgorithm

− specify source and destination patch data indices
− specify spatial coarsening operators

3 After all transfer operations are registered, create a
RefineSchedule object
− CoarsenSchedule depends on CoarsenAlgorithm object and

patch hierarchy configuration
− a CoarsenPatchStrategy object is needed for user-defined

coarsening operations

4 Invoke the CoarsenSchedule to perform data coarsening
operations

Notes on using coarsen algorithms and
coarsen schedules

CoarsenAlgorithm/Schedule objects are used only to coarsen data
between two levels (fine to coarse) that may or may not reside in the
same patch hierarchy.

Typical coarsen operations do not involve data outside of the domain
of the finer level. However, SAMRAI supports more complex
operations when a larger “stencil” is required.
CoarsenAlgorithm has registerRefine(…) function

CoarsenAlgorithm has one createSchedule(…) function

User-defined data coarsening operations are supported by passing a
CoarsenPatchStrategy object to a createSchedule(…) function

Once a CoarsenSchedule is created, it can be used repeatedly to
coarsen data as long as the patches involved in the data movement
are unchanged. Once patches change, schedule must be
regenerated.

Topics to be covered in future

Grid Geometry and Patch Geometry (Index space
operations vs. coordinate system operations)
Adaptive meshing operations
—patch hierarchy construction and remeshing
—error estimation
— load balancing

Input files and input database
Restart files and restart manager
Algorithm capabilities
Solver interfaces
—SAMRAI vector
—vector interfaces to solver libraries
—C++ wrappers for solver libraries

Topics to be covered in future ctd…

Visualization files and tools
—Vizamrai
—VisIt

Specialization and enhancement of SAMRAI
capabilities

– adding new patch data types
– adding new grid geometry
– etc.

