
Introduction to 
SAMRAI VisIt Data Writer

&
VisIt

Peter L. Williams



Outline of Talk

• VisIt  vs. Vizamrai.

• How to create VisIt dump files in SAMRAI.

• Overview of VisIt visualizations.



New SAMRAI VisIt Data Writer 
Capabilities

• Node-centered data as well as cell-centered.

• Deformed AMR meshes (moving grids).

• Variables don’t need to exist on all patches.

• Subsets of processors in parallel runs can dump to 
one file.



New SAMRAI VisIt Data Writer 
Capabilities (cont’d)

• Dumps from parallel runs need no assembly.

• Ghost data can be dumped.

• Material-related data can be dumped.

• 2nd order tensors can be dumped.



SAMRAI’s VisIt Data Writer 
Usage Schema

1. Create Data Writer Object (DWO)
2. [Set default derived data writer]
3. Register variables to be dumped
4. DWO:Write registered items to dump file

Normally, steps 1 - 3 are done once at the beginning of the simulation, and
step 4 repeated as necessary.  However, step 3 can also be repeated, 
allowing new variables to be added to the dump at future time steps. 

There is no provision for de-registering a data item.



SAMRAI
VisItDataWriter

Public Methods



Constructor

• VisItDataWriter(
string& object_name,
string& dump_directory_name,
int number_procs_per_file = 1);

object_name String name for object (for debugging purposes only).
dump_directory_name Name for dump directory, may include a path.
number_procs_per_file Optional. Number processors to share a common 

dump file.



Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of 

Deformed Grids 
– Material Data



• registerPlotScalar(
string& variable_name,
int patch_data_array_index,
int depth_index = 0,
double scale_factor = 1.0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

depth_index Optional integer parameter specifying the component 
of the data to be written as a scalar.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

omit_ghost_data Optional.  If this scalar field has ghost data, and you want
the data writer not to write out the ghost data, set to true.



• registerPlotVector(
string& variable_name,
int patch_data_array_index,
double scale_factor = 1.0,
int start_depth_index = 0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

start_depth_index Optional integer parameter specifying depth index of  first component of
vector to be written.

omit_ghost_data Optional.  If this scalar field has ghost data, and you want the
data writer not to write out the ghost data, set to true.



• registerPlotTensor(
string& variable_name,
int patch_data_array_index,
double scale_factor = 1.0,
int start_depth_index = 0,
bool omit_ghost_data = false);

variable_name String name of variable.

patch_data_array_index Integer patch data array index.

scale_factor Optional parameter specifying double precision scale
factor with which to multiply all data values.

start_depth_index Optional integer parameter specifying depth index of  first component of
tensor to be written.

omit_ghost_data Optional.  If this scalar field has ghost data, and you want the
data writer not to write out the ghost data, set to true.



• resetLevelPlotScalar(
string variable_name,
int level_number,
int patch_data_array_index,
int depth_index = 0);

variable_name String name of variable.
level_number Level number on  which data is being reset.
patch_data_array_index New patch data array index.
depth_index  Optional.  New depth index, (if one component of vector data

being treated as a scalar.)

Use this method when variable lives at different patch data slots on different 
hierarchy levels.



• resetLevelPlotVector(
string variable_name,
int level_number,
int patch_data_array_index,
int start_depth_index = -1);

variable_name String name of variable.
level_number Level number on which data is being reset.
patch_data_array_index New patch data array index.
start_depth_index   Optional.  New start depth index.  

Default is to use original value.



• resetLevelPlotTensor(
string variable_name,
int level_number,
int patch_data_array_index,
int start_depth_index = -1);

variable_name String name of variable.
level_number Level number on which data is being reset.
patch_data_array_index New patch data array index.
start_depth_index   Optional.  New start depth index.  

Default is to use original value.



Writing the Data



Writing the Data

• writePlotData(
tbox_Pointer <   > hierarchy,
int time_step,
double plot_time = 0.0);

hierarchy pointer to patch hierarchy on which data to be plotted is defined.
time_step integer value specifying current time step number.
plot_time Optional argument specifying the double precision plot time.



Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of 

Deformed Grids 
– Material Data



Derived Variable

• Data that does not exist in the simulation, 
but which is derived from state variables 
in the simulation.

• For example, 
Momentum = Density * Velocity



registerDerivedPlotScalar(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =    

(appu_VisDerivedDataStrategyX*)NULL,    
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0));

variable_name Name of derived scalar variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering        Optional.  May specify “NODE_CENTERED”.
scale_factor        Optional.  Scale factor.
ghost_cell_width        Optional.  Integer vector of ghost cell widths. Default is no ghost data. 

If non-zero ghost cell width, VisIt expects ghost data to be dumped.



registerDerivedPlotVector(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =    

(appu_VisDerivedDataStrategyX*)NULL,    
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0)); 

variable_name Name of derived vector variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering        Optional.  May specify “NODE_CENTERED”.
scale_factor        Optional.  Scale factor.
ghost_cell_width        Optional.  Integer vector of ghost cell widths. Default is no ghost data.



registerDerivedPlotTensor(
string& variable_name,
appu_VisDerivedDataStrategyX* derived_writer =    

(appu_VisDerivedDataStrategyX*)NULL,    
const string& centering = “CELL_CENTERED”,
double scale_factor = 1.0,
const hier_IntVectorX& ghost_cell_width = hier_IntVectorX(0)); 

variable_name Name of derived tensor variable
derived_writer Optional derived data strategy object to use to calculate the data..
centering        Optional.  May specify “NODE_CENTERED”.
scale_factor        Optional.  Scale factor.
ghost_cell_width        Optional.  Integer vector of ghost cell widths. Default is no ghost data.



• SetDefaultDerivedDataWriter(
appu_VisDerivedDataStrategyX*          

default_derived_writer);

default_derived_writer Pointer to default derived data strategy object.

The default derived data writer will be used only if 
registerDerivedPlotScalar/Vector/Tensor() does not specify 
a derived data strategy object to use.



For Derived Data, Ap Class Inherits …

#include “VisDerivedDataStrategy.h”
Class Applic :

public VisDerivedDataStrategy

---- Applic needs to implement this method ----
bool packDerivedDataIntoDoubleBuffer(

double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& variable_name,
int depth_index);

Arguments described on next page.



bool packDerivedDataIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& variable_name,
int depth_index);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region        Box region over which to pack data.

variable_name Name previously registered for this derived variable.

depth_index    Depth index of data to be packed.  For scalar data, always 0.  For vector data
this index varies between 0 and NDIM-1, for tensor data index varies between
0 and (NDIM*NDIM)-1.    

Return Value Boolean indicating if derived data exists on this patch.



Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of 

Deformed Grids 
– Material Data



Registering Coordinates of
Deformed Structured AMR Grids

• registerNodeCoordinate(
int coordinate_number,
int patch_data_array_index,
int depth_index = 0,
double scale_factor = 1.0);

coordinate_number Integer indicating which dimension of coordinate is being
registered.  0 <= coordinate_number < NDIM.

patch_data_array_index Integer index of coordinate data.
depth_index If patch_data_array_index refers to a vector, this optional  

parameter specifies the component of that vector to be used..
scale_factor May be different for each component.

This method must be called once for each of the NDIM dimensions. 



Registering Data

• State Variables
• Optionally:

– Derived Data
– Coordinates of 

Deformed Grids 
– Material Data



Material-related Data

• Applications with cells containing fractional 
amounts of material compounds, e.g. copper, 
gold, gas, fluid.  Each of these is a material.

• A material may have subcomponents called 
species: e.g. gas may be composed of O2, N2 & 
methane.  We say: O2 is a species of gas.

• Each material may have own set of species.



Materials vs Species

• Materials:  heterogeneous mixture of 
substances (with distinct boundaries), e.g.
concrete, granite, …

• Species: homogeneously mixed substances,
e.g. seawater, Coke, air, …



• Scalar/Vector data may be defined over set of 
materials – referred to as material state 
variables.

• e.g. a different temperature may be associated 
with each material on a cell by cell basis.

• All material fractions, species fractions and 
material state variables must be “cell-centered”.
– (If necessary, can convert node- to cell- centered in 

packing routines to be described later.)



• Assumption: Every cell contains fractional 
amount mf (0 < mf <= 1.0) of every material 
called material fraction.  Sum of mf’s over all 
materials for a cell must be 1.0.

• Similarly for species, called species fraction. Sum 
of sf’s for all species of material m must be 1.0 in 
every cell in which m appears.

• Every material state variable must have value for 
each cell, for each material m, if m has non-zero 
fraction in that cell.



• VisIt Data Writer allows user to dump: material 
fractions, species fractions and material state 
variables.  In addition, species state variables
(SSV) may be registered.

• VisIt treats SSV’s in unique way.  When 
displayed, each value of SSV for a cell is 
multiplied by sum of species fractions for that 
cell for currently selected species.

• (Species selected in VisIt’s subset window.)



• E.g  pressure p registered as SSV, if p = 100 for 
cell c, and one species selected, say N2, and N2’s 
species fraction for c is 0.45, then the partial 
pressure for c will be 45.

• VisIt will automatically display partial pressure
field for N2 if pressure registered as SSV.

• Species fractions may also be treated as scalar 
field to show “concentrations”.



• VisIt uses material fractions to reconstruct 
material boundaries within cells containing 
multiple materials.

• VisIt can display material(s) as multiple colored 
contiguous regions.

• Material state variables can be displayed over a 
material.

• Material fractions can be displayed as scalar field



SAMRAI’s VisIt Data Writer 
Usage Schema

1. Create Data Writer Object (DWO)
2. [Set default derived data writer]
3. Register variables to be dumped
4. Register material-related data
5. DWO:Write registered items to dump 

file



• registerMaterialNames(
const tbox_Array<string>& material_names,
const hier_IntVectorX& ghost_cell_width = 

hier_IntVectorX(0));
material_names String array of the names of all the materials. 
ghost_cell_width    Optional integer vector of ghost cell widths. Default is no ghost data.  

If non-zero ghost cell width specified, VisIt expects ghost data to be 
dumped.  This ghost cell width applies to all material-related data.

• registerSpeciesNames(
const string& material_name,
const tbox_Array<string>& species_names);

material_name Name of material whose species are being registered. 
species_names String array of the names of all the species for this material. 

registerMaterialNames() must be called before this method is invoked.



• registerMaterialStateVariable(
const string& state_variable_name,
const int depth = 1,
const double scale_factor = 1.0);

state_variable_name name of cell-centered state variable 
depth optional integer depth of state variable; 

allowable values: 1, NDIM, NDIM*NDIM 
scale_factor optional scale factor.

registerMaterialNames() must be called before this method is invoked

• registerSpeciesStateVariable(
const string& state_variable_name);

state_variable_name name of  state variable, can be node or cell centered.



• SetMaterialsDataWriter(
appu_VisMaterialsDataStrategyX*     

materials_data_writer);

materials_data_writer Pointer to materials data writer object.



For Material Data, Ap Class Inherits 
…

#include “VisMaterialsDataStrategy.h”
Class Applic :

public VisMaterialsDataStrategy

---- Applic needs to implement this method ----
int packMaterialFractionsIntoDoubleBuffer(

double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name);

Arguments described on next page.



int packMaterialFractionsIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region        Box region over which to pack data.

material_name Name of the material.

Return Value Enumeration constant: 
VisMaterialsDataStrategy::ALL_ZEROS, 
VisMaterialsDataStrategy::ALL_ONES, or 
VisMaterialsDataStrategy::SOME.

(See documentation)

Material Fractions must be cell-centered.



If species are used, implement
packSpeciesFractionsIntoDoubleBuffer()
described next.



int packSpeciesFractionsIntoDoubleBuffer(
double *buffer,

const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& species_name);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region        Box region over which to pack data.

material_name Name of the material which has this species.

species_name Name of the species.

Return Value Enumeration constant:
VisMaterialsDataStrategy::ALL_ZEROS,
VisMaterialsDataStrategy::ALL_ONES, or
VisMaterialsDataStrategy::SOME.

(See documentation)

Species Fractions must be cell-centered --- If necessary convert from 
node-centered to cell-centered in this packing routine.



If material state variables are used, implement
packMaterialStateVariableIntoDoubleBuffer()
described next.



void packMaterialStateVariableIntoDoubleBuffer(
double *buffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& state_variable_name ,

const int depth_index);

buffer Double precision buffer, already allocated to correct size.

patch Patch on which data exists.

region        Box region over which to pack data.

material_name Name of the material.

state_variable_name Name of the state variable.

depth_index Depth index of data to be packed.  For scalar data, always 0.  For vector             
data, index varies from 0 to NDIM-1; for tensor data index varies from 0
to (NDIM*NDIM)-1.

Material State Variables must be cell-centered --- If necessary convert from 
node-centered to cell-centered in this packing routine.



GOTCHA’s

• Dumping data not in floating point range.
– Since VisIt only works with float data, data  > 

FLT_MAX will be clamped to FLT_MAX.
– Use scale_factor to keep data in range and avoid this.

• Not initializing all ghost cells (nodes).
– Be sure all ghost cells (nodes) have a value, not just 

the ones your application uses.
– Can use SAMRAI method fillAll(0.)



Documentation



“Generating VisIt Visualization 
Data Files in SAMRAI”

• More details on what we covered today.

• Complete set of example VisIt Data Writer
calls in an application code.

• Brief introduction to use of VisIt with SAMRAI 
data, and pointers to VisIt documentation.

• Available in SAMRAI distribution at:
docs/userdocs/VisIt-writer.pdf



Brief Overview of VisIt



New Capabilities with VisIt
• Scalable rendering --- order of magnitude faster for 

large data sets if parallel compute engine available.

• VisIt can be extended with new plot & operator plugins.

• VisIt allows mathematical expressions involving 
variables to be defined at vis time (thus offering a 
similar capability to SAMRAI’s derived data).

• Special material-related viewing capabilities.

• Stereo viewing.



VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
(see examples on next 3 slides)

• Contours:  multiple semitransparent isosurfaces
• Mesh:  line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset:  select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.



Boundary Plot of Material

(not SAMRAI data)



Another View of Boundary Plot



Boundary Example

Note Material Boundary
Calculated within Cells.



VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces

(see examples next 2 slides)
• Mesh:  line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset:  select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.







VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..

(see example on next slide)
• Subset:  select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.





VisIt Plot Types
• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.              

(This is very useful tool!! To access, use pull-
down Controls menu at top – see next 3 slides)

• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.



Pull down Controls Menu



Select Subset



Select material / species you want.



VisIt Plot Types
• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc. 
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.

(see example next slide)
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.





VisIt Plot Types

• Boundary: show bnds. between materials, patches, ..
• Contours: multiple semitransparent isosurfaces
• Mesh: line smoothing available
• Pseudocolor: paint variable value onto surface
• Streamlines: multiple sources - point, line, plane, ..
• Subset: select specific materials, levels, patches, etc.
• Surface: height field, for 2D only.
• Vector: glyphs indicating direction & magnitude.
• Volume visualization
• Roll your own plot: create a VisIt plot plugin.



VisIt Operators: filters applied to variable

• Box – clip cells outside axis-aligned box,  
individual cells not clipped.

• Clip – clip box / sphere shaped regions, individual   
cells clipped, arbitrary aligned boxes.

• Index Select – select subset based on range of 
cell indices or patch numbers.

• Cone – slice 3D data with cone. 
(see example next slide)





VisIt Operators: filters applied to variable

• Isosurface: isosurface colored by different var.

• Lineout: extract 1D data from 2D or 3D plots.

• Onion Peel: grow image outwards in layers 
from seed cell.

• Reflect: reflect geometry across axes.
(next three slides)

• Slice: 3D data mapped to 2D surface.





Reflection of Data in 
Previous Slide



Box Clip of  Region



VisIt Operators: filters applied to variable

• Isosurface: isosurface colored by different var.

• Lineout: extract 1D data from 2D or 3D plots.

• Onion Peel: grow image outwards in layers 
from seed cell.

• Reflect: reflect geometry across axes.

• Slice: 3D data mapped to 2D surface.



VisIt Operators: filters applied to variable

• Spherical Slice: slice with sphere.

• Three Slice: 3 mutually perpendicular slices.
(next 2 slides)

• Threshold: remove all cells not in specified 
data range.

• Roll Your Own: create your own operator 
plugin.







VisIt Operators: filters applied to variable

• Spherical Slice: slice with sphere.

• Three Slice: 3 mutually perpendicular slices.

• Threshold: remove all cells not in specified 
data range.

• Roll Your Own: create your own operator 
plugin.



Other VisIt Features

• Animation
• Box, Sphere, Plane, Line & Point Tools
• Quantitative analysis
• Pick & Query – useful for finding 

numeric data value in specific cell. Gives
cell number, coordinates, and data value.                       

(see next slide)



Pick window
Shows (x,y,z) coords,
level & patch number
cell (i,j,k) indices
and indices of nodes.

If a variable is being
visualized, also shows
value of variable.
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