Cdll-centered Poisson Solvers
Brian Gunney

Introduction

SAMRALI provides the classes for solving Poisson's equation on a single level (using hypre) or a hierarchy
(using the fast adaptive composite, or FAC, algorithm). These classes solve the general equation of the

form
C(x)+V-D(x)Vu(x)=f(x)
for u(x) ,where C(x) isascaarfidd, D(x) isthediffusion coefficientand f (x) isthe

source term. The The solver supports the Robin boundary condition, which is any that can be writen in the
form

ou
axu+p—=
B an 7Y
or (using two parameters)
ou
aut(l—-a)—=

(1-a) =

where N isthe coordinate in the direction of the outward normal on the boundary. Note that
o+ o+

au+(1—a)%=g ,where n isthe coordinate aong the outward normal. Thisisa

generalization of the Dirichlet (a=1) and Neumann (a=0) boundary conditions.

The discretization is a standard central-difference, cell-centered finite-volume. Thisimpliesthat
C(x) , f(x) and u(x) arecel-centeredquantities,and D(X) isside-centered.

Simpler forms of the partial differential equation (PDE) can be solved, and different optimizations are
made to take advantage of those cases. For example, C(x) and D(x) may be constantsand
C(x) may bezero.

Theclasssol v_Cel | Poi ssonHypr eSol ver X solvesasingle-level problem, and the class
solv_CellPoissonFACSolverX solvesthe problem on ahierarchy. Thisdocument showsthe
basics of using these classes. It covers the possible settings for specifying the PDE and controlling the
solver algorithm, calling the sol veSyst emmethods to perform the solve, getting data on the solve, and
how to set up an input file. We follow with some examples at the end. The solver classes documented
here references the FAC preconditioner class (solv_FACPrecondi tionerX) and the Robin boundary
condition class (solv_RobinBcCoefStrategyX), which are documented separately.

Providing the Robin Boundary Condition Coefficients

To set up codeto usesolv_Cel lPoissonHypreSolverX or solv_CellPoissonFACSolverX,
you need decide whether to use the internal boundary condition implementation or provide an external one.
For this document to be sufficiently general, we will assume an externa implementation is used. To keep
things simple, we choose the library-provided implementation
solv_LocationIndexRobinBcCoefsX. Inalater section, we will describe the choicesfor
specifying the boundary condition coefficients. Provide a pointer to this implementation using the member
function solv_CellPoissonHypreSolverX: :setBcObject(). You may choose one of the
general implementationsin the library or implement your own.

Thesolv_LocationlndexRobinBcCoefsX implementation is appropriate for problems where the
coefficients are determined compl etely by the location index of the boundary box. This covers, anong
others, the case of parallelpiped domains where each side of the parallelpiped is set to some uniform
boundary condition. For each location index, one may specify uniform Dirichlet boundary values, uniform
Neumann boundary values or uniform values of aand g.

Usage of the Single-level Hypre-Poisson Solver

After setting up your code as described above, solving the Poisson equation is simple.

1. Firg, initialize the solver object to an existing hierarchy using
solv_CellPoissonHypreSolverX::initializeSolverState(). You can specify the
hierarchy and level number (which defaultsto level zero) to solve on

2. Thenusesolv_CellPoissonHypreSolverX: :setBcObject() totell it about the Robin
boundary condition object you have set up.

3. Make sure that ghost cells at the coarse-fine boundaries are initialized with the appropriate values. For
example, refine the coarse grid valuesinto the ghost cells using a refine schedule.

4. Thenusesolv_CellPoissonHypreSolverX: :setMatrixCoefficients() to set up the
matrix coefficients. You can specify the descriptor indicesof C(x) and D(X)

5. Finadly, call solv_CellPoissonHypreSolverX: :solveSystem() to solvethe system. You
have to specify the descriptor indices of the cell-centered solution and the cell-centered source function.
The cell-centered solution data will be modified.

Hypre-Poisson Solver Example

Here is an example following the steps outlined in the previous section, on using
solv_CellPoissonHypreSolverX.

/*

Initialize the solver.
*/
d_poisson_hypre.initializeSolverState(hierarchy, In);

/*
solv_LocationlndexRobinBcCoefsX is an implementation of the
Robin boundary condition coefficient strategy class. It allows
one to specify a uniform boundary condition for each location

index.

We set Dirichlet values of 0.0 and 10.0 on the min x and max X
sides

and zero slope on the min y and max y sides.
*/

solv_LocationlndexRobinBcCoefX bc_coefs;
bc_coefs.setBoundaryVvValue(0, 0.0);
bc_coefs.setBoundaryVvValue(1, 10.0);
bc_coefs.setBoundarySlope(2, 0.0);
bc_coefs.setBoundarySlope(3, 0.0);
d_poisson_hypre.setBcObject(bc_object);

/*
The solver can now set up the matrix.
The solv_PoissonSpecifications object holds the values of C and D
in Poisson®s equation. By default, C=0 and D=1, leading to
Laplace®s
equation. These values can be changed through the public

interfaces
of solv_PoissonSpecifications.
*/
solv_PoissonSpecifications spec('Laplace™);
d_poisson_hypre.setMatrixCoefficients(spec);

/*
Solve the system.
solution is the patch data index of the solution u.
souce 1s the patch data index of the source f.
*/
int solver_ret = d_poisson_hypre.solveSystem(solution,
source);

Multi-level FAC-Poisson Solver Settings

The solv_CellPoissonFACSolverX class uses the following methods for setting the parameters C and D:
set DConst ant (doubl e val ue)
set DPat chDat al d(i nt id)
set CConst ant (doubl e val ue)
set CPat chDat al d(i nt id)
To set the diffusion coefficient D(X) , usesetDConstant(double value) or setDPatchDatald
(int id), depending on whether it isa constant or spatialy varying and stored on the mesh. Similarly, use
setCConstant(double value) or setCPatchDatald(int id),toset CZ(X)

The methods specifying the algorithm parameters, corresponding input parameter name and the default
settings are:

Methods I nput name Default
Setting

setPresmoothingSweeps(int num_pre_sweeps
num_pre_sweeps) 1
setPostsmoothingSweeps(int num_post_sweeps
num_post_sweeps) 1
setMaxCycles(int max_cycles) max_cycles 10
setResidualTolerance(double residual_tol
residual_tol) 1.00E-006
setCoarseFineDiscretization coarse_fine_discretization “Ewing”

(const string
&coarsefine_method)

setCoarsestLevelSolverChoice coarsest_level_solver_choic | “hypre” or
(const string &choice) e “redblack”
setCoarsestlLevelSolverTolerance |coarsest level _solver_toler| le-10 or
(double tol) ance le-8
setCoarsestlLevelSolverMaxlterat | coarsest level _solver max_i| 20 or 500
ions(int max_iterations) terations

setUseSMG(bool use_smg) use_smg FALSE
setProlongationMethod(const prolongation_method “CONSTANT _

string &prolongation_method) REFINE”

« The pre- and post-smoothing sweeps refer to the amount of smoothing used in the FAC cycle.

« Themax cycles refer to the maximum number of FAC cyclesto take.

« The coarse-fine discretization refersto how the PDE is discretized at the coarse-fine boundary. Other
than one specific exception, the argument must be the name of a refinement operator isused (i.e.,
“LINEAR_REFINE", “ CONSTANT_REFINE”, etc.). The coarse-fine discretization results from
using the specified refinement to get the fine-grid ghost cell, followed by a normal stencil applied
across the fine patch boundary. This may seem reasonable, but it results in a discretization that is
specified implicitly by the refinement operator. These discretizations may have unanticipated, though
usually subtle, numerical behaviors. In the exceptiona case, the string “ Ewing” specifies the coarse-
fine discretization of Ewing, Lazarov and Vassilevski. Thisdiscretization tends to give better accuracy
at the coarse-fine boundaries and is the default.

« Methods beginning with “ setCoarsestLevelSolver. . ." refer to the coarsest level solver. By
default, hypre isused to solve the coarsest level if it is available, otherwise, red-black Gauss-Seidel
iterations are used.

« Thedifferent default tolerance and max iterations for the coarsest level reflect the fact that the hypre
solver converges much faster than the Gauss-Seidel algorithm.

« Theusage of hypre's SMG (semicoarsening multigrid) algorithm is set by the function setUseSMG.
This setting has effect only when hypre is chosen asthe coarsest level solver. If SMG usageisfalse,
hypre's PFM G (parallel semicoarsening multigrid) algorithm is used.

« The prolongation method should be the name of arefine operator, such as“ CONSTANT_REFINE” or
“LINEAR_REFINE". Beawarethat linear refinement (or any refinement that involvesthe creation
and filling of temporary levels) requiresan solv_RobinBcCoefStrategyX implementation that
can fill non-hierarchy data). The default implementation used
(solv_SimpleCel IRobinBcCoeTsX) does not satisfy this requirement.

Multi-level FAC-Poisson Usage

Once the solver object is set up using the above methods, the method
bool sol veSysten{ int solution,

int rhs,

t box_Poi nt er <hi er _Pat chHi er ar chyX> hi er ar chy,

int coarse_ | n=-1,

int fine_In=-1)
performs the solve on the hierarchy and level range specified in the arguments. Theintegerssolution
and rhs are patch data indices for the solution and the right hand side, respectively. The solution data
must have a ghost cell width of at least one. Since the solver isfor ascalar equation, only the first depthis
used. The solver returnstrue if convergence to the specified level isreached.

The above function call is the simplest way to perform asolve. It initialize the solver state, which is
dependent on the hierarchy configuration, level range, boundary condition types, etc. After performing the
solve, it deall ocates the solver state. When performing multiple solves with different right-hand-side
values, efficiency isimproved if you take steps to preserve the solver state between solves. Thisisdone
with two functions:
void initializeSolverState(const int solution,
const int rhs,
t box_Poi nt er <hi er _Pat chHi er ar chyX>
hi er ar chy
const int coarse |evel =1,
const int fine_level=-1)
voi d deal | ocat eSol ver St at e()
In between these two function calls, you can perform any number of solves using
bool sol veSysten{const int solution,
const int rhs)
The solution and rhs used in the solve may be different from those used to initiaize the solver state and
different each time the caller is solved. The solver state initiaizer uses the patch data indices to set up

matching temporary memory.

Note that it isan error to mix up thetwo sol veSyst emmethods, as one expects an uninitiaized state and
one expects an initialized state.

After asolve, the number of FAC iterations, the residua norm and the convergence factors can be retrieved
by the functions

int getNunberlterations() const
voi d get Conver genceFact or s(doubl e &avg_f act or,

doubl e &final _factor) const
doubl e get Resi dual Norm() const

The convergence factor is the factor by which the residua isreduced by one FAC iteration. The average

factor isthat which, when applied the number of iterations used gives the same overall reduction, while the
fina factor isthat of the last iteration taken. The residual norm isthe RMS norm of the fina residual.

Multi-level FAC-Poisson Examples

int In;
for (1n=0; | n<=hierarchy->getFi nestLevel Nunber(); ++In) {
/*
Fill inthe initial guess and Dirichlet boundary condition

data. For this exanple, we want u=0 on all boundaries.
The easiest way to do this is to just wite 0O everywhere,
si mul t aneous setting the boundary values and initial guess.

*/

Poi nt er <Pat chLevel > | evel = hi erarchy->get Pat chLevel (I n);
Pat chLevel : : Iterator ip(level);

for (; ip; ip+t+) {

Poi nt er <Pat ch> patch = | evel - >get Pat ch(*i p);
Poi nt er <Cel | Dat a<doubl e> > data = pat ch->get Pat chDat a
(conp_soln_id);
data->fill (0.0);
}

}

sol ver. setBoundaries("Dirichlet");

/*
Set up sol ver object.
The problem specification is set using the
Poi ssonSpeci ficati ons object then passed to the sol ver
for setting the coefficients.
*/
sol ver. set CConst ant (0. 0);
sol ver. set DConst ant (1. 0) ;
solver.initializeSol verState(conp_soln_id,

rhs_id,
hi er ar chy,
0

hi er ar chy- >get Fi nest Level Nunmber ());

/*
Sol ve the system

*/

pout << "sol ving...

bool sol ver ret;

sol ver _ret = solver.solveSysten(conp_soln_id ,
rhs_id);

<< endl;

/*
Present data on the sol ve.

*/

doubl e avg_factor, final_factor;

sol ver. get Conver genceFact ors(&vg_factor, &final_factor);

if (solver_ret) pout << " converged\n";

el se pout << " NOT converged\n";

pout << " iterations: " << solver.getNunberlterations() <<
<< " residual: " << solver. getResi dual Norm() << "\n"
<< " aver age convergence: " << avg _factor << "\n"
<< " final convergence: " << final_factor << "\n"
<< flush;

\n

/*
Deal | ocate state.
*/
sol ver . deal | ocat eSol ver St at e() ;

Boundary Condition Options

As mentioned above, the Robin boundary conditions are supported. These boundary conditions are
specified by two coefficients, aand g. Technically, one provides an implementation of
solv_RobinBcCoefStrategyX through which the solvers obtain the coefficients. But in most cases,
one of the library-provided implementations would suffice. Once you have an implementation, use the
method setBcObject(), described above, to specifiy it.

For the se solvers, there is one additional choice, which isaimed at providing compatibility to codes that
were written for SAMRAI's older Poisson solvers: using the internal boundary condition implementation.
The internal implementation isthe library-provided solv_SimpleCel IRobinBcCoefsX class, whose
primary interface, the setBoundaries() method, isduplicated in the solver classes.

The boundary condition is specified by calling
set Boundari es(const string &boundary_type,
const int fluxes=-1,
const int flags =-1,
int *bdry_types=NULL);

The boundary conditions specified as the string argument "boundary_type." The boundary type argument
canbe"Dirichlet”,"Neumann",or"M xed".

If using Dirichlet boundary conditions, then before the solver is called, the storage for the unknown must
have alayer of ghost cells at least one cell wide that includes the Dirichlet boundary values.

If using Neumann boundary conditions, then before the solver is called, the outerface boundary flux data
must be set for the Neumann conditions. The fluxes argument gives the patch dataindex of thisflux data.

The mixed boundary type isfor a mixture of Dirichlet and Neumann boundary conditions at the physical
domain boundary. Thef | uxes argument gives the patch data index of the outerface data that specifies the
flux datafor the Neumann conditions. Thef | ags array isan outerface data array of integer flags that
specifieswhether Dirichlet (f | ag == zer 0) or Neumann (f| ag == one) conditions are to be used at

aparticular cell boundary face. Note that the flag data must be set before the solver stateisinitialized. The
bdry_t ypes argument can be used if the boundary conditions are mixed but one or more of the faces of
the physical boundary are entirely either Dirichlet or Neumann boundaries. Thebdry_t ypes argument
should be an array of 2*NDIM integers, specifying the boundary conditions on each side of the physical
domain. It should be ordered {x_lo, x_hi, y lo,y_hi, z lo, z_hi}, with the values for each face being O for
Dirichlet conditions, 1 for Neumann conditions, and 2 for mixed boundary conditions. Thebdry_t ype
argument is never required, but if used it can sometimes make the solver more efficient.

As mentioned above, the default boundary condition implementation does not alow linear refinement in
the prolongation of error inits most general usage. If you chose to provide an external implementation of
sol v_Robi nBcCoef St at egy X, the method set Bc(hj ect (const

sol v_Robi nBcCoef St rat egyX *bc_obj ect) isusedto setit. Some relatively easy to use
implementations are available in the library. For example, problems where the coefficients are strictly a
function of the boundary box's location index (see hi er _Boundar yBoxX: : get Locat i onl ndex()),
issupported by the classsol v_Locat i onl ndexRobi nBcCoef sX.

Acknowledgements.

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence-Livermore National Laboratory under contract No. W-7405-Eng-48. Document UCRL-TM-
202156.

