
Using Richardson Extrapolation in SAMRAI 
 
 
Introduction 
 
Support for Richardson extrapolation error estimation has been enhanced in SAMRAI version 
1.2.  Richardson extrapolation may be combined with other cell refinement methods, such as 
gradient detection or refining static regions.  This document is divided into three sections.  The 
first section describes class organization for refinement options, the second describes the 
implementation of the Richardson extrapolation algorithm, and the last section gives examples of 
how to use the various tagging options.  Send questions and requests for additional information 
via email to samr ai @l l nl . gov . 
 
 
Class organization 
 
The class Gr i ddi ngAl gor i t hm drives the overall process of creating levels in an AMR 
hierarchy as well as regridding individual levels. This class requires operations, supplied through 
a Strategy pattern interface called TagAndI ni t i al i zeSt r at egy , that tag cells on a level for 
refinement. The class St andar dTagAndI ni t i al i ze is a specific instantiation of that 
interface that provides common cell tagging operations for structured AMR.  As the name 
implies, this class performs two main functions, tagging cells for refinement and initializing data 
on a new patch hierarchy level.  The class supports three methods for selecting cells for 
refinement: gradient detection, Richardson extrapolation, and refining static box regions specified 
in an input file.   To supply alternative refinement and initialization routines, one can implement a 
new subclass of the TagAndI ni t i al i zeSt r at egy  interface. 
 
Problem-specific operations needed to select cells for refinement are supplied to the 
St andar dTagAndI ni t i al i ze class via the Strategy pattern interface called 
St andar dTagAndI ni t St r at egy .  This class declares methods used to initialize a level: 
i t i al i zeLevel Dat a( ) and r eset Hi er ar chyConf i gur at i on( )  and to tag cells for 
refinement appl yRi char dsonExt r apol at i on( )  and appl yGr adi ent Det ect or ( ) .  
Several other virtual functions needed for the Richardson extrapolation algorithm also appear in 
the interface since Richardson extrapolation needs to interact with integration routines.  The 
methods are: 

• advanceLevel ( )  
• r eset Ti meDependent Dat a( )  
• r eset Dat aToPr eadvanceSt at e( )  
• coar senDat aFor Ri char dsonExt r apol at i on( )  
 

Note that several of these methods are shared by the Ti meRef i nement Level St r at egy 
interface which declares problem-specific time integration operations needed by the class 
Ti meRef i nement Level I nt egr at or .  For example, concrete implementations of these 
abstract methods are provided in Hyper bol i cLevel I nt egr at or , which is derived from 
St andar dTagAndI ni t St r at egy . Figure 2 shows the class layout for the case of the Euler 
example application. 
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Note the two methods to initialize a new level are declared pure virtual since they must be 
provided in all cases. The rest of the methods are NOT pure virtual and are supplied with default 
“empty”  implementations that will simply “drop through”  when called if no implementation is 
provided in a subclass. As a result, users only need to supply operations for the refinement 
strategy they want.  However, care must be exercised by users to supply all methods required by 
the desired refinement strategy since, for example, the compiler will not complain if one does not 
supply a needed method.  We have tried to add sufficient error checking and warning messages to 
help users catch these problems at run-time. 
 
 
Richardson Extrapolation 
 
This section discusses the use of Richardson extrapolation as it is implemented in the classes  
described earlier.  We note that there are other ways to implement the Richardson extrapolation 
procedure. For concreteness, we discuss the interaction of error estimation and time integration 
operations using the Hyper bol i cLevel I nt egr at or  c l ass .  As it is implemented in 

Figure 1. Class structure for Euler application 



SAMRAI, Richardson extrapolation can be used easily with any level integration scheme that 
couples to the Ti meRef i nement I nt egr at or  class.   
 
During Richardson extrapolation error estimation, the solution is advanced in time in two 
different ways for the hierarchy level under consideration for refinement.  The first advance 
occurs on the level itself.  The second occurs on a coarsened version of that level. These two 
solutions are then compared to determine which cells to refine.  In contrast, gradient detection 
performs no integration of the data. Although Richardson extrapolation is more expensive 
computationally than gradient detection, Richardson extrapolation can be made generic with 
respect to the magnitude of the quantities involved and if less heuristically-based than methods 
that attempt to refine around large gradients. 
 
The bulk of the Richardson extrapolation algorithm itself is implemented in two methods in the 
St andar dTagAndI ni t i al i ze class: pr epr ocessRi char dsonExt r apol at i on( )  
and t agCel l sUsi ngRi char dsonExt r apol at i on( ) .  The first of these methods is 
used to integrate the data on a coarsened version of the level.  The second method integrates the 
data on the level itself and calls a user routine to compare the two solutions.   The description 
below summarizes the major steps performed in the algorithm.  Steps 1 – 2 are performed in 
pr epr ocessRi char dsonExt r apol at i on( )  and steps 3 – 7 are performed in 
t agCel l sUsi ngRi char dsonExt r apol at i on( ) . 
 

1. Create a coarser  version of the level on which cells are being selected for  refinement.  
The ratio used to generate the coarser level is called the er r or _coar sen_r at i o.  
This integer is computed as the greatest common divisor of the refinement ratio relating 
the current hierarchy level to its next coarser (for level zero, we use the ratio between it 
and level one).  The current algorithm only allows coarsen ratios of 2 or 3. 

 
Solution data is set on the coarser level by the time integration class in the 
coar senDat aFor Ri char dsonExt r apol at i on( )  method. It is important to be 
aware of the error estimation time and the time associated with the solution data in order 
to apply the algorithm correctly.  For example, the state of the data during this coarsening 
phase in Hyper bol i cLevel I nt egr at or  is represented in Figure 3.  At 
initialization time (i.e., when the AMR hierarchy is constructed initially) all data is at the 
simulation start time (e.g., t = 0).  At other regridding times, solution data will exist at 
two different times indicated with variable contexts “CURRENT” and “NEW” in the 
hyperbolic integrator.  During the data coarsening phase in either case, we coarsen the 
“CURRENT” data on the hierarchy patch level to the “CURRENT” data on the 
coarsened version of this level.  Thus, the data on the coarsened level is in a proper state 
for time integration.  We note that the data coarsening function 
coar senDat aFor Ri char dsonExt r apol at i on( )  is called twice during the 
Richardson extrapolation process.  A boolean flag called “before_advance” in the 
argument list distinguishes the two cases.  The flag is true for the current case in which 
we initialize the data for the coarsened hierarchy level. 
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2. Advance data on the coarser level.  After initializing the data on the coarser level, we 

integrate the coarser level over a single time increment defined by ∆tcoarse = 
(er r or _coar sen_r at i o *  ∆t). Here ∆t is the most recent time increment used to 
advance the solution on the hierarchy level under consideration.  This operation also 
occurs in the method pr epr ocessRi char dsonExt r apol at i on( ) .  At 
initialization time, the solution will be advanced on the coarser level to time tregrid + 
error_coarsen_ratio *  ∆t.  At later times, we advance to  time tregrid + 
(error_coarsen_ratio-1) *  ∆t.  See Figure 4. 
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3. Advance data on the hierarchy level on which er ror  estimation is performed.  So that 

we can compare two different solutions at the same integration time, the solution on 

Figure 3. Coarsen “ current”  data from level being regridded to a coarser version of the level. 

Figure 4. Advance data in time on coarser level 



hierarchy level is integrated to the same time as that on the coarsened version of the level. 
At initialization time, we integrate over er r or _coar sen_r at i o steps of size ∆t. At 
later times, we integrate over er r or _coar sen_r at i o- 1 steps of size ∆t. Note that at 
initialization time, no integration steps have been performed on the level before error 
estimation is called, so we have only “CURRENT” data to advance.  At later times, we 
have both “CURRENT” and “NEW” data.  “CURRENT” data corresponds to the initial 
integration time for the coarser level. “NEW” data corresponds to the regrid time.  Before 
we can advance the data on the hierarchy level, the solution data must be reset. This is 
done by the integrator in the function r eset Ti meDependent Dat a( ) . 

time

refinement

le v el

coarsened  level

Regr id
Time (t=0)

initial t ime

time

refinement

le v el

coarsened  level

Regr id
Time

later  t ime

NEW

∆t

∆t

∆t

CURR

NEW CURR

NEW

CURRNEW

CURR

Er ror
Computed

Er r or
Computed

(already computed)

CURR

NEW

CURR

NEW

 
 
 
 

 
4. Coarsen integrated solution data from hierarchy level to the coarsened level. Now 

that we two solutions at the same time, one on the hierarchy level and one on a coarsened 
version of the hierarchy level, we need to move one of these to the level holding the other 
so that we can compare the two on a grid with the same spatial resolution.  This is done 
using the coar senDat aFor Ri char dsonExt r apol at i on( )  routine.  Recall that 
this routine contains a boolean value “before_advance”  in its argument list to indicate 
where in the algorithm it is called.  For the case we are now describing, the boolean is 
false.  In Hyper bol i cLevel I nt egr at or , the data is coarsened from the “NEW” 
context to the “NEW” context. 

Figure 5. Advance data on level. 
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5. Tag cells on the coarser  level.  Comparing the two solutions, we identify cells to tag for 
refinement (or de-refinement).  For example, the Hyper bol i cLevel I nt egr at or  
calls the t agRi char dsonExt r apol at i onCel l s( )  method in hyperbolic patch 
strategy interface for this. 

 
6. Refine tag data from the coarsened level to the hierarchy level subject to er ror  

estimation.  We now have tagged cells for refinement on the coarser level, we need to 
refine the tags to the hierarchy level so that a refinement of that level can be generated.  
We simply copy the tagged cells on the coarsened level to cells covering the same region 
on the hierarchy level. 

 
7. Reset data on the hierarchy level to a state suitable for  the next time integration 

step.  The algorithm calls the method r eset Dat aToPr eadvanceSt at e( )  for this. 
 
In the case of a hyperbolic problem like the Euler example, the Richardson extrapolation 
algorithm calls methods shared by two interfaces  Ti meRef i nement Level St r at egy and 
St andar dTagAndI ni t St r at egy . These are described in the following table: 
 

method name What it does… 
advanceLevel ( )  Advance solution one timestep 
r eset Ti meDependent Dat a( )  Reset data pointers after advance 

 
The advanceLevel ( )  method is used in a number of situations that require different behavior.  
Four booleans in the argument list, f i r st _st ep,  l ast _st ep,  r egr i d_advance,  
l evel _i n_hi er ar chy  ,  help  to distinguish the cases describe next: 
 
 
 
 
 
 
 
 

Figure 6. Coarsen data advanced on level to the coarsened level. 



1. Regular  time integration advance. During the standard integration process (i.e., not 
during regridding), the first and last step flags identify where we are in the timestep 
sequence, where the sequence is defined by the steps taken between consecutive advance 
steps on the next coarser level.  In this case, r egr i d_advance is false and 
l evel _i n_hi er ar chy  is true. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Advance a level at initial time to supply boundary conditions before Richardson 
extrapolation error  estimation on finer  levels. Since Richardson extrapolation 
advances the data, it may require time-dependent boundary values from coarser levels in 
the hierarchy. Thus, coarser levels must be integrated in time during the initial 
construction of the hierarchy when Richardson extrapolation is performed.  Since this 
step is performed at initialization for regridding on a level in the hierarchy,  
f i r st _st ep is true, l ast _st ep is false, r egr i d_advance is true, and 
l evel _i n_hi er ar chy  is true. 
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3. Advance a level at initial time dur ing Richardson extrapolation.  This corresponds to 
step 3 in the sequence of Richardson extrapolation steps above.  Here, 
r egr i d_advance is true, and l evel _i n_hi er ar chy  is true.  The values of the 
first and last step arguments are illustrated below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Advance on coarsened version of the level dur ing regr idding.  This corresponds to 

step 2 in the Richardson extrapolation algorithm described above.  Only a single advance 
step is taken on the coarse level so f i r st _st ep and l ast _st ep are both true in this 
case.  The r egr i d_advance argument is also true, since this advance is applied 
during regridding.  Since this advance is applied to the coarsened version of the level 
being regridded, which is NOT in the hierarchy, l evel _i n_hi er ar chy  is false.  The 
only difference in this case at the initial time and at a later time is the actual regrid time 
with respect to the time of the data during the time integration.  This is illustrated below: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Advance on level being regr idded at later time.  This corresponds to step 3 (at later 

time only) in the Richardson extrapolation algorithm above. Here, f i r st _st ep is false 
when the level is the coarsest level in the hierarchy to synchronize with other levels at the 
regrid time.  Otherwise, it is true.  The l ast _st ep argument is true. The 
r egr i d_advance argument is true.  The l evel _i n_hi er ar chy  argument is true. 
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Richardson extrapolation error criterion 
 
If your application code employs the Gr i ddi ngAl gor i t hm and 
Hyper bol i cLevel I nt egr at or  classes in SAMRAI and you wish to use Richardson 
extrapolation, the only method you need to add to your code is 
t agCel l sFor Ri char dsonExt r apol at i on() method in you concrete hyperbolic patch 
strategy subclass.  In this method, you will compare the solution advanced on the coarser level 
and the solution advanced on the finer level and then coarsened to the coarser level and tag cells 
where this comparison indicates a sufficiently high truncation error. 
 
Note that standard usage of Richardson extrapolation for error estimation in SAMR for time 
dependent problems assumes that the spatial and temporal truncation error of the numerical 
methods is the same order.  When this is the case, we can assume that the local truncation error of 
the time integration scheme is 
 

1+∆= ntCε       (1) 
 
where n is the global order in time of the scheme and C is some (generally unknown) constant.  If 
we take r steps of size ∆t on a fine level, and one step of size r∆t on a coarser level, the truncation 
errors on the coarse and fine levels will be: 
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The local truncation error may therefore be estimated as  

rr
tC

n

fcn

−
−

=∆= +
+

1
1 εε

ε       (2) 

 
Usually, we wish to tag where the global error – the error accumulated over the course of the 
simulation – is greater than some specified tolerance.  To estimate the global error we multiply 
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the local truncation error by an estimate of the total number of timesteps we will take in the 
simulation.  We can estimate the number of advance steps using a simple formula 
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where L is a characteristic length scale associated with the problem domain, and s is some 
characteristic propagation speed (i.e., wave speed), and ∆t is the current timestep.  This implies 
that we should tag cells for which: 
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where ω is the quantity being monitored for errors.  
 
See the source code for either the Euler or linear advection sample problem for a specific example 
that uses Richardson extrapolation.     
 
 
Specifying tagging options and other users issues 
 
The St andar dTagAndI ni t i al i ze class allows one to use a combination of static refine 
regions, gradient detection, and Richardson extrapolation.   This section summarizes the different 
ways in which these options may be invoked.   
 
To specify tagging options through input, pass an input database to the constructor to 
St andar dTagAndI ni t i al i ze.  The input key t aggi ng_met hod allows one to indicate 
the tagging criteria using an array of strings.  Valid string  choices are 
“GRADIENT_DETECTOR”, “RICHARDSON_EXTRAPOLATION”, and “REFINE_BOXES”.  
You may use combinations of the gradient detector, Richardson extrapolation, and static refine 
boxes.  If refine boxes are chosen, you must supply a Ref i neBoxes{  } database entry which 
specifies the prescribed regions where refinement is to occur.  Note that the entries specify 
regions to refine on a given level; they do not specify the level itself. The following example 
shows how to use an input file to combine a gradient detector with static refine boxes defined on 
the first two levels in a hierarchy. 
 
f oo. C 
 

Poi nt er <St andar dTagAndI ni t i al i ze> t aggi ng_al g =  
new St andar dTagAndI ni t i al i ze(  

  “ St andar dTagAndI ni t i al i ze” ,          
    hyp_l evel _i nt egr at or ,   

i nput _db- > 
get Dat abase( “ St andar dTagAndI ni t i al i ze” ) ) ;  

 
 
 

i nput . f i l e 
 

St andar dTagAndI ni t i al i ze{  
 t aggi ng_met hod = “ GRADI ENT_DETECTOR” ,  “ REFI NE_BOXES”  
 Ref i neBoxes{  



  l evel _0 = [ ( 15, 0) , ( 29, 14) ] ,  [ ( 18, 15) , ( 29, 20) ]  
  l evel _1 = [ ( 65, 10) , ( 114, 40) ]  
 }  
 

The user-specified refine boxes can also be modified to change over course of the the simulation.  
This functionality requires the user to supply a specified time interval along with the set of refine 
boxes for each time interval.  For example, to change refine boxes from a first to second set at 
time 1.0, supply the following for the “RefineBoxes”  input entry 
 

 Ref i neBoxes{  
  Level 0{  
   t i mes = 0. 0,  1. 0 
   boxes_0=[ ( 15, 0) , ( 29, 14) ] ,  [ ( 18, 15) , ( 29, 20) ]  
   boxes_1=[ ( 18, 3) , ( 32, 17) ] ,  [ ( 21, 18) , ( 32, 23) ]  
  }  
  Level 1{  
   t i mes = 0. 0,  1. 0 

boxes_0 = [ ( 65, 10) , ( 114, 40) ]  
boxes_1 = [ ( 68, 13) , ( 117, 43) ]  

}  
 

 }  
 
See comments in the header file for the TagAndI ni t i al i zeSt r at egy  class for  further 
information on ways to specify adaptive refinement through input over designated time or cycle 
intervals in the simulation. 
 
Input files in the Euler and linear advection sample problems provide additional examples of cell 
tagging options specified via input.  Also, see the header file comments in the 
St andar dTagAndI ni t i al i ze class for more details about input file options for regridding. 
 
It is important to note that the St andar dTagAndI ni t i al i ze class manages only the 
algorithms used for selecting cells for refinement.  The actual tagging of cells for a gradient 
detector or Richardson extrapolation must be implemented by the user. These operations are 
supplied through the interface methods in the St andar dTagAndI ni t St r at egy  class.  The 
Euler and linear advection sample problems illustrate how this is done when using the 
Hyper bol i cLevel I nt egr at or  class.  No user routines are needed when static refine boxes 
are used. 

  
Some users problems may wish to change the tagging criteria at different points in the simulation 
(e.g. start the simulation with static refine boxes but turn them off at some point).  For these 
instances, the St andar dTagAndI ni t i al i ze class provides methods to turn refinement 
options on and off.   For example, the default state of a St andar dTagAndI ni t i al i ze 
object (no input database provided), will set the tagging type to be gradient detector.  We can add 
to the gradient detector a set of static refine boxes using the calls: 
 
 t aggi ng_al g- >t ur nOnRef i neBoxes( ) ;  
 BoxAr r ay l 0_r boxes = …             // refine boxes for  level 0 
 t aggi ng_al g- >r eset Ref i neBoxes( l 0_r boxes,  0) ;    
 
At a later time, the boxes can be reset to something else, or the refine boxes may be turned off: 
 
 t aggi ng_al g- >t ur nOf f Ref i neBoxes( ) ;  



 
Similar methods are available to turn on/off gradient detectors and Richardson extrapolation.  See 
the St andar dTagAndI ni t i al i ze class header documentation for more details. 
 

Regridding Boxes I/O 
 
The Gr i ddi ngAl gor i t hm class allows one to read and write regrid boxes to/from a data file.  
For example, the following input entry: 
 

Gr i ddi ngAl gor i t hm {  
 … 

  wr i t e_r egr i d_boxes = TRUE 
  r egr i d_boxes_f i l ename = “ r egr i d_boxes”  
 }  
 
 
will output the level boxes constructed during the regridding process each time a hierarchy level 
is constructed to the file names “ regrid_boxes” . If we switch “write_regrid_boxes=TRUE” to 
“ read_regrid_boxes = TRUE”, the gridding algorithm will read the set of level boxes from the 
file.  Then, rather than performing the usual tag operations to generate levels in the hierarchy, the 
boxes read from the file will be used.  We find this useful for testing the performance of the 
library in certain circumstances.  However, this capability is not designed for general 
consumption and requires some care to use.  For more information about this feature, please 
consult the SAMRAI team (samr ai @l l nl . gov). 
 
 
This work was performed under the auspices of the U.S. Department of Energy by University of 
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
Document UCRL-TM-202188. 
 


