
Communication Algorithms and Boundary Conditions
in SAMRAI

Introduction

The purpose of this document is to provide a brief description of parallel AMR data
communication support in the SAMRAI library. It provides an outline of the main software
abstractions involved, where they can be found in the library, and how one may use them in the
context of an AMR application. Questions and requests for additional information should be sent
via email to samr ai @l l nl . gov .

Structured Adaptive Mesh Refinement

The goal of adaptive mesh refinement (AMR) is to focus computational resources in a numerical
simulation by dynamically placing a finer spatial and/or temporal mesh near solution features
requiring higher resolution.
Structured adaptive mesh refinement
(SAMR) is a particular AMR
methodology in which the
computational mesh is implemented
as a collection of structured mesh
components. The mesh consists of a
hierarchy of levels, each of which
corresponds to a single uniform
degree of mesh spacing. See Figure
1. Also, the levels are nested; that
is, the coarsest level covers the
entire computational domain and
each successively finer level covers
a portion of the interior of the next
coarser level. Computational cells
on each level are clustered to form a
set of logically rectangular regions,
or patches.

SAMR solution methods share certain characteristics with parallel uniform structured grid
methods. In either case, simulation data are represented by arrays (typically) that represent the
numerical solution on logically rectangular regions. A computation is usually comprised of a set
of numerical routines that operate on those data regions and communication operations that pass
information between regions; for example, to fill ghost cells. Additional considerations arise
when a mesh is refined locally so that SAMR solution methods can be substantially more
complicated than those for uniform meshes. In particular, the solution must be constructed on
multiple levels of mesh resolution, where the domain of each level is described by a collection of
rectangular regions whose union may be complicated and which may change often. Correct
solution algorithms must treat internal mesh boundaries between coarse and fine levels properly
to maintain a consistent solution state.

Fine local mesh

Intermediate local mesh

Coarse global mesh

Figure 1. Simple SAMR hierarchy with two levels of local refinement.
On a level, cells are clustered to form logically rectangular “ patches” .

A general observation about SAMR applications is that most parallelism occurs on individual
refinement levels. Patches are distributed to different processors and once boundary data is
exchanged among them, patches are essentially uncoupled for parallel processing. Thus, the
basic ingredients for the vast majority of SAMR applications, beyond a proper numerical problem
formulation for an SAMR hierarchy, are numerical routines for patches and inter-patch data
transfer operations. Essentially, communication operations involve data copying, data refining,
and data coarsening. For example, data may be copied from patch interiors to neighboring patch
ghost regions on a single mesh level to uncouple the patches so that they may be processed in
parallel. Also, data may be spatially interpolated from coarser levels into ghost regions around a
finer level to supply boundary data before integrating that fine level. Lastly, solution values may
be coarsened from a fine level into the interior of a coarser level so that the coarser level sees the
more accurate solution. This document describes how to perform inter-patch data transfer
operations like these using SAMRAI.

SAMRAI Parallel Communication Classes

Before we delve into examples that demonstrate how one moves data around on an AMR patch
hierarchy in SAMRAI, we present some basic concepts and terminology that appear in the
following discussion. The framework in SAMRAI for transferring data between patches in an
SAMR patch hierarchy revolves around three basic abstractions: a communication algorithm, a
communication schedule, and a patch strategy. Each of these abstractions appears in one of two
forms; they are distinguished by they way in which they are used in hierarchy data
communication operations. These and other related classes reside in the Transfer package. There
is a coarsen algorithm, a coarsen schedule, and a coarsen patch strategy. These classes manage
data coarsening from a finer mesh level to some coarser level. There is also a refine algorithm, a
refine schedule, and a refine patch strategy. These classes manage data transfers among patches
on the same hierarchy level (a special case of refinement) and data refinement from coarser
meshes to some finer level.

A communication algorithm supports an algorithm-level description of a data transfer phase in
a computation. For example, an algorithm may represent the filling of ghost cell data for a
collection of variables before integrating the numerical solution on a mesh level. An algorithm
depends on variables and operators that interpolate those quantities in space and time on an
SAMR mesh. An algorithm may be used to manage data movement for any number of variables
on any subset of levels in an AMR patch hierarchy. The state of a communication algorithm
object is defined after it is created through a set of registration operations. Each registration
specifies source and destination patch data information and associated spatial refinement and
temporal interpolation operators needed to move the data. It is important to note that each
algorithm object is independent of the SAMR patch hierarchy configuration. Usually, the state of
an algorithm is established once (via the registration process) during a problem setup phase and is
maintained throughout an entire computation.

A communication schedule manages the set of data transfer operations, specific to a particular
configuration of an SAMR patch hierarchy, required to perform the data communication
described by an algorithm. Thus, a schedule depends on an algorithm and a particular layout of
patches and levels in a hierarchy. An algorithm is used to build a different schedule for each
instantiation of the communication pattern that it describes. For example, a single algorithm may
be used to interpolate a set of variable quantities between all consecutive pairs of mesh levels in
the hierarchy. But, a separate schedule is needed to move the data between each pair of levels.
When a schedule is constructed, descriptions of data send and receive sets are computed and
stored in the schedule. As a result, a schedule may be invoked to communicate data any number

of times on the same patch hierarchy configuration. However, when the patch configuration
changes (e.g., via mesh adaptation), the schedule is no longer valid and must be regenerated.

A patch strategy is an abstract class defining an interface for user-defined routines invoked
during data communication procedures. Specifically, the interface is used to provide data
refining or coarsening operations that are problem-specific and to supply boundary conditions for
the physical domain.

Generality, flexibility, and efficiency motivate the decomposition of the SAMRAI
communication framework into the three abstractions described above. Separating the algorithm
from a schedule allows one to describe a variety of AMR communication scenarios involving the
same set of variables independent of the patch hierarchy configuration. That is, one may invoke
the communication operations in different ways on the same hierarchy. Separating the schedule
creation from the actual data communication allows one to amortize the cost of creating
send/receive data dependency information over multiple communication cycles. Finally, the
patch strategy provides a fairly straightforward mechanism for users to customize communication
operations while relieving them of complex implementation details associated with data
movement on an AMR mesh.

SAMR Hierarchy and Data Objects in SAMRAI

Before we provide examples of SAMRAI data communication operations, we recall some
SAMRAI objects that are central to our discussion. The Box , Pat chHi er ar chy ,
Pat chLevel , and Pat ch classes are found in the Hierarchy package. A Box object represents
a logically rectangular region of index space. Essentially all operations in an SAMR application
depend on index space concepts and box calculus operations. A Pat chHi er ar chy object
maintains the collection of patch levels in an SAMR patch hierarchy. A Pat chLevel object is
used to manage the patches comprising a single level of mesh resolution in the hierarchy. Finally,
a Pat ch is a container holding all simulation data residing over a single mesh region defined by
a Box . See Figure 2.

Each patch stores an array
of data objects. These
objects may be accessed
via array indices. However,
the preferred method is to
use Var i abl e and
Var i abl eCont ext
objects. That is, SAMRAI
provides mechanisms that
make managing patch data
quantities on an SAMR
hierarchy straightforward,
especially for applications
that use many variables. Figure 2 shows two storage locations on a patch for the variable
“density” . One can specify this either using two different variables, “current density” and “new
density” , or using a single variable, “density” , and two different contexts, “current” and new”.
The Var i abl eDat abase class in the Hierarchy package manages the mapping between
variables and contexts and indices in the data array on each patch in the hierarchy. The database
is a singleton object that is conveniently accessible from anywhere in the application source code.
The variable, variable context, variable database concepts may seem idiosyncratic at first

Figure 2. SAMRAI “ patches” are containers providing access to all data
created over a box region. Data objects, such as old and new density and
particles are stored in an array on each patch.

“ current” density

“ new” density

particles

Patch

Box Array<PatchData>

inspection, but once understood, it should be clear that SAMRAI allows great flexibility for
managing variable quantities in a complicated application code.

SAMRAI Communication Examples

In the next several sections, we describe various ways in which to use communication algorithms
and schedules in SAMRAI. For completeness and consistency, we begin with the process of
creating variable and variable context objects, and registering them with the variable database.

Suppose that we are building an application in which we have two variable quantities, cell-
centered density and particles. These variables will appear in the examples that follow. We first
create density and particle variables and the variable contexts we will use:

Var i abl eDat abase* vdb = Var i abl eDat abase: : get Dat abase() ;

Poi nt er < Cel l Var i abl e<doubl e> > densi t y_var =
 new Cel l Var i abl e<doubl e>(" densi t y" , 1) ;
Poi nt er <Par t i c l eVar i abl e> par t i c l e_var = new Par t i c l eVar i abl e(…) ;

Poi nt er <Var i abl eCont ext > cur _ct xt = vdb- >get Cont ext (" CURRENT") ;
Poi nt er <Var i abl eCont ext > new_ct xt = vdb- >get Cont ext (" NEW") ;

The pointer “vdb” to the singleton variable database object is used to manage the mapping
between the variables and the associated patch data storage. We have created two variables.
Density is a cell-centered scalar (signified by the “1” in the constructor argument list) of type
double. The particle variable is an application-specific particle object, left unspecified. We
assume that we have available some particle data type that we can link with SAMRAI.
Construction of user-defined data types will not be discussed in this document. We include this
notion here solely to illustrate that, once such a user-defined type is built, it may be used with
SAMRAI communication routines just as any standard array-based type found in the library.
Finally, we create two variable contexts for managing “current” and “new” data.

Next, we establish the variable storage indices on each patch by registering variable, context, and
ghost cell width information with the variable database:

i nt cur _densi t y_dat a_i d = vdb- >r egi st er Var i abl eAndCont ext (
 densi t y_var , cur _ct xt , I nt Vect or (0)) ;
i nt new_densi t y_i d = vdb- > r egi st er Var i abl eAndCont ext (
 densi t y_var , new_ct xt , I nt Vect or (1)) ;

i nt par t i c l e_dat a_i d = vdb- >r egi st er Var i abl eAndCont ext (
 par t i c l e_var , cur _ct xt , I nt Vect or (1)) ;

The integer value returned by each registration call is the index of the data array location for that
data object on each patch in the hierarchy. In this example, there will be one copy of particle data
on each patch associated with the “current” context and it will have a ghost cell layer one cell
wide. There will be two copies of density data on each patch, one for “current” values and one
for “new” values with ghost cell widths of zero cells and one cell, respectively. We emphasize
that variable objects are distinct from patch data objects that store data values. The reason for
this is a variable tends to persist, representing the same quantity for the duration of a computation.
Patch data objects are created and destroyed as the adaptive mesh moves and also to
accommodate the storage needs of our computation. Also, variables know nothing about ghost
cell width information; a single variable may be associated with multiple storage locations on a
patch, each of which has a different number of ghost cells. An important function of the variable

database is to maintain consistency of this information. For example, it is impossible to register a
variable-context pair with the database more than once with different ghost cell information.

Data Refinement Operations

In this section, we describe SAMRAI communication operations for data refinement using the
quantities defined above. Typical usage of refine algorithms and schedules involves four steps:

1. Create a Ref i neAl gor i t hm object.
2. Register operations with the refine algorithm to provide source and destination patch data

information, as well as space refinement and time interpolation operators. The
Ref i neAl gor i t hm class has two registration methods; one supports time interpolation,
one does not.

3. After all operations are registered, create a Ref i neSchedul e object using the refine
algorithm. There are several methods in the Ref i neAl gor i t hm class for this purpose
distinguished by the resulting data communication pattern. A concrete
Ref i nePat chSt r at egy object may be required when the schedule is created to supply
physical boundary conditions and user-defined spatial data refine operations.

4. Invoke the Ref i neSchedul e to perform the data transfers.

The following sequence of operations implements the first two steps of this prescription:

 Ref i neAl gor i t hm f i l l _ghost _dat a;

 Poi nt er <Ref i neOper at or > densi t y_r ef i ne_op =

 new Car t esi anCel l Doubl eLi near Ref i ne() ;

 f i l l _ghost _dat a. r egi st er Ref i ne(new_densi t y_i d, / / dest i nat i on
 cur _densi t y_i d, / / sour ce
 new_densi t y_i d, / / scr at ch
 densi t y_r ef i ne_op) ;

f i l l _ghost _dat a. r egi st er Ref i ne(par t i c l e_dat a_i d, / / dest i nat i on
 par t i c l e_dat a_i d, / / sour ce
 par t i c l e_dat a_i d, / / scr at ch
 NULL) ;

Note that the registration function r egi st er Ref i ne() accepts source and destination patch
data index and operator information. The first three arguments in the calls above identify
destination data, source data on the destination level (and potentially coarser levels), and
“scratch” data, respectively. Scratch data is used internally within SAMRAI to perform copy and
refinement operations. It must have a sufficient ghost cell width to support the stencil of the
refine operator specified. Generally, destination and scratch data may be the same; user data
values will not be overwritten. The “null” refine operator specified for the particles indicates that
particle data will not be refined, but only copied into ghost regions from neighboring patches.

The refine algorithm “ fill_ghost data” may be used to fill density and particle ghost cell data on
any level in an SAMR patch hierarchy, and in more than one way depending on how the
algorithm is used to produce a refine schedule object. Suppose that we have the simple patch

hierarchy configuration illustrated in Figure 3. We describe two communication patterns that
may be generated using the “ fill_ghost_data” algorithm.

First, we fill ghost regions on the fine level patches from sources identified in Figure 3. Note that
on fine patch interior regions “current” density values will be copied to “new” data as prescribed
by the source and destination information given. Following the last two steps of the prescription
above we accomplish this:

Poi nt er <Pat chHi er ar chy> hi er ar chy = . . . ;
Ref i nePat chSt r at egy* my_pat ch_st r at egy = . . . ;

doubl e f i l l _t i me = . . . ;

Poi nt er <Pat chLevel > f i ne_l evel = hi er ar chy- >get Pat chLevel (1) ;

Poi nt er <Ref i neSchedul e> f i l l _ghost _schedul e =

 f i l l _ghost _dat a. cr eat eSchedul e(f i ne_l evel ,
 0, / / next coar ser l evel i ndex

 hi er ar chy,
 my_pat ch_st r at egy) ;

 f i l l _ghost _schedul e- >f i l l Dat a(f i l l _t i me) ;

We assume that there is some Pat chHi er ar chy object available and that we have
implemented a concrete Ref i nePat chSt r at egy object to provide physical boundary
routines. The cr eat eSchedul e() function produces a Ref i neSchedul e object that
computes data transactions needed to perform the data movement. We identify the fine patch
level (i.e., level “1”) as the destination level and the hierarchy and next coarser level number (i.e.,
“0”) as data sources for refine operations. The next coarser level number indicates the
relationship between the hierarchy and the level to be filled. The patch strategy provides user-

physical
boundary
conditions
 interpolate

density data

copy density,
particle data

Figure 3. This simple SAMR patch hierarchy configuration illustrates potential sources of ghost cell data when the
refine algorithm “ fill_ghost_data” is used to communicate data. The hierarchy has two levels; fine patches are
outlined with dashes. Part of the ghost region around the shaded fine patch will receive density and particle data
from the adjacent fine patch interior. Other ghost regions in the domain interior, but not intersecting other fine
patches, will receive refined values from the coarse level. Regions outside the physical domain will get boundary
values set by user-defined routines.

defined data refinement and boundary routines. If a “null” strategy is given, no such operations
will be invoked. Finally, the f i l l Dat a() function performs the data communication.

As a second example, we fill the fine level using only the fine level as a data source:

Poi nt er <Ref i neSchedul e> f i l l _f i ne_ghost _schedul e =
 f i l l _ghost _dat a. cr eat eSchedul e(f i ne_l evel , f i ne_l evel , NULL) ;

 f i l l _ghost _schedul e- >f i l l Dat a(f i l l _t i me) ;

This communication may be needed, for example, to synchronize the fine patches without
upsetting the ghost values set from coarser levels and physical boundary conditions. Notice that
the same algorithm creates this schedule using a different cr eat eSchedul e() method. By
passing a “null” patch strategy, we short circuit calls to the physical boundary routines. If we
need to reset those values, we would pass the pointer “my_patch_strategy” .

The two preceding examples perform data communication without time interpolation. As noted
earlier, the Ref i neAl gor i t hm class has a r egi st er Ref i ne() function to specify
operations involving time interpolation. To set density values in fine ghost regions based on
time interpolation between current and new values on the coarse level, for example, we would
perform the following sequence of operations:

Ref i neAl gor i t hm f i l l _t i me_ghost _dat a;

Poi nt er <Ti meI nt er pol at eOper at or > densi t y_t i me_op =
 new Cel l Doubl eLi near Ti meI nt er pol at e() ;

 f i l l _t i me_ghost _dat a. r egi st er Ref i ne(

 new_densi t y_i d, / / dest i nat i on
 cur _densi t y_i d, / / sour ce
 cur _densi t y_i d, / / ol d on coar se
 new_densi t y_i d, / / new on coar se
 new_densi t y_i d, / / scr at ch
 densi t y_r ef i ne_op,

 densi t y_t i me_op) ;

f i l l _t i me_ghost _dat a. r egi st er Ref i ne(
 par t i c l e_dat a_i d, / / dest i nat i on
 par t i c l e_dat a_i d, / / sour ce

 par t i c l e_dat a_i d, / / scr at ch
 NULL) ;

Poi nt er <Ref i neSchedul e> f i l l _t i me_ghost _schedul e =
 f i l l _ghost _dat a. cr eat eSchedul e(hi er ar chy, 0,

 f i ne_l evel ,
 my_pat ch_st r at egy) ;

 f i l l _t i me_ghost _schedul e- >f i l l Dat a(f i l l _t i me) ;

To avoid confusion, we use a different Ref i neAl gor i t hm object that the earlier examples.
However, operations involving time refinement and operations that do not can both be registered
with the same algorithm. Note that this sequence of operations resembles very closely those
operations in the previous examples. The major difference lies in the specification of the refine
operations for the density variable. Here, we specify the “old” and ”new” time source data on the
coarse level in addition to the other sources. We also provide a time interpolation operator.
Specification of particle communication is the same as before; there will be neither time nor
space interpolation of the particle data.

Remarks:
• Ref i neAl gor i t hm and Ref i neSchedul e objects are used to perform SAMR data

communication operations involving spatial data refinement between levels and data copying
between patches on the same level.

• The Ref i neAl gor i t hm class has two r egi st er Ref i ne() functions with which to
register refine operations; one supports time refinement, the other does not.

• The Ref i neAl gor i t hm class has several cr eat eSchedul e() functions with which to
create a refine schedule. These methods are distinguished by the sort of communication
pattern they produce; e.g., inter-patch communication on a single level, communication of
data between two different levels at the same grid resolution, or refinement of data between
different SAMR hierarchy levels. An important use of this routine that was not described
above involves setting data on a new level after a remeshing operation. In this case, data is
copied to the new level where it intersects the old level before the old level is destroyed.

• User-defined data refine operations and physical boundary routines are provided by creating a
Ref i nePat chSt r at egy object and passing it to the cr eat eSchedul e() function.

Data Coarsening Operations

SAMRAI communication operations for data coarsening on an SAMR hierarchy are similar to
those for data refinement. Typical usage of coarsen algorithms and schedules involves four steps:

1. Create a Coar senAl gor i t hm object.
2. Register operations with the coarsen algorithm to provide source and destination patch data

information, as well as coarsening operators. Note that there is only one such registration
function in the Coar senAl gor i t hm class.

3. After all operations are registered, create a Coar senSchedul e object using the coarsen
algorithm. There is only one method in the Coar senAl gor i t hm class for this purpose. If
user-defined data coarsen operators are needed, a concrete Coar senPat chSt r at egy
object is passed to the coaren schedule at this time.

4. Invoke the Coar senSchedul e to perform the data transfers.

To illustrate the data coarsening process, we will coarsen the “current” density values from fine
patches to corresponding regions on coarse patch interiors. This is done as follows:

Coar senAl gor i t hm coar sen_dat a;

Poi nt er <Ref i neOper at or > densi t y_coar sen_op =
 new Car t esi anCel l Doubl eWei ght edAver age() ;

coar sen_dat a. r egi st er Coar sen(cur _densi t y_i d, / / dest i nat i on

 cur _densi t y_i d, / / sour ce
 cur _densi t y_i d, / / scr at ch
 densi t y_coar sen_op) ;

doubl e coar sen_t i me = . . . ;

Poi nt er <Pat chLevel > coar se_l evel = hi er ar chy- >get Pat chLevel (0) ;
Poi nt er <Pat chLevel > f i ne_l evel = hi er ar chy- >get Pat chLevel (1) ;

Poi nt er <Ref i neSchedul e> coar sen_schedul e =

 coar sen_dat a. cr eat eSchedul e(coar se_l evel ,
 f i ne_l evel ,
 my_pat ch_st r at egy) ;

 coar sen_schedul e- >coar senDat a(coar sen_t i me) ;

The major differences between this coarsening example and the preceding refinement example
are that the cr eat eSchedul e() function accepts only the source and destination level and
that the patch strategy is passed to the schedule when the communication is invoked rather than
when the schedule is created.

Remarks:
• Coar senAl gor i t hm and Coar senSchedul e objects are used to perform SAMR data

communication operations involving spatial data coarsening. Unlike, refine operations,
SAMRAI coarsen operations never involve time interpolation nor boundary conditions.

• The Coar senAl gor i t hm class has one r egi st er Coar sen() function with which to
register coarsen operations.

• The Coar senAl gor i t hm class has one cr eat eSchedul e() function with which to
create a coarsen schedule (recall that Ref i neAl gor i t hm has several such functions). No
more than two levels are ever involved in a single data coarsen phase since SAMR patch
hierarchy levels are nested. Thus, coarsen schedule creation only requires a coarse
(destination) and a fine (source) level.

• User-defined data coarsen operations are set by creating a Coar senPat chSt r at egy
object passing it to the cr eat eSchedul e() function.

User-defined Data Refine and Coarsen Operators

In many cases, users do not need special spatial coarsen or refine operators for their applications.
The needed operators can be found in the SAMRAI library in the Geometry package. If a new
operation is needed, one has a choice for implementing it. An operator class may be derived from
either the Coar senOper at or or Ref i neOper at or interface found in SAMRAI Transfer
package. This works whenever the operation is a function of a single variable and the spatial
mesh coordinates. However, when an operation is a function of more than one variable, either the
Coar senPat chSt r at egy or the Ref i nePat chSt r at egy interface must be used. These
interfaces allow one to provide very general routines to the communication schedules so that they
may be invoked during data refinement or data coarsening communication operations.

As an example, suppose that two variables, density and velocity, are used in an application. To
refine or coarsen density conservatively, all that is needed are the density values and the mesh
coordinates. Thus, these operations may be found in the SAMRAI library or, if not, may be
implemented as an operator object that the schedule can invoke. In contrast, refinement or
coarsening of velocity in so as to conserve momentum requires one to operate on the product of
density and velocity conservatively and then divide the result by the refined or coarsened density.
This operation is not a function of a single variable and the SAMRAI library does not understand
the physical relationship between density and velocity which is defined at the application level.

The Coar senPat chSt r at egy and Ref i nePat chSt r at egy classes each declares two
functions, pr epr ocessCoar sen/ Ref i ne() and post pr ocessCoar en/ Ref i ne() ,
which provide interfaces to user-supplied coarsen and refine operations. When a patch strategy
object is passed to a communication schedule, these operations will be invoked at every data
coarsen/refine step along with the standard operator objects passed into the communication

registration routines. In the schedule, the pr epr ocessCoar sen/ Ref i ne() function that
the user supplies is called first. Then, each of the standard operators is called. Lastly, the user
post pr ocessCoar en/ Ref i ne() function is called. Using this scheme, an application
developer may combine standard operations with special operations for his problem.

Setting Physical Boundary Conditions

Implementing physical boundary conditions is a fundamental task when using SAMRAI to build
an SAMR application. This is done using the same concrete Ref i nePat chSt r at egy object
that provides special spatial data refinement operations to the refine schedule. This strategy
interface has a virtual function set Physi cal Boundar yCondi t i ons() for setting values at
the boundary of the computational domain. In this section, we describe this function, how one
uses Boundar yBox objects to determine the relationship between a patch and the domain
boundary, and special issues that arise for periodic boundary conditions.

The signature of the function for setting boundary values is

voi d Ref i nePat chSt r at egy: : set Physi cal Boundar yCondi t i ons(
 Pat ch& pat ch,
 const doubl e f i l l _t i me,
 const I nt Vect or & ghost _wi dt h_t o_f i l l) ;

When a concrete refine patch strategy object is passed to the refine algorithm function
cr eat eSchedul e() , the routine for filling boundary conditions will be called whenever it is
needed to properly perform all the data communication operations described by the schedule.
Within this method, a user must fill all physical boundary values for the given patch at the given
time in a ghost region whose width is indicated. The routine must be implemented so that it may
be used on any arbitrary patch in the hierarchy. To do this properly, one must know which patch
data to set and how to determine where the patch sits relative to the physical boundary. The
emphasis of this section is on the second point. However, before we begin we note two things.
First, the data for which a user will set boundary values is that which corresponds to the “scratch”
data indices given when operations are registered with the refine algorithm. Second, the physical
boundary routine will always be the last operation invoked when filling data on a patch; thus, all
patch interior data and all other ghost region values are available when boundary values are set.

SAMR computations give rise to complicated patch configurations. Each SAMRAI Pat ch owns
a Pat chGeomet r y object that has information on where the patch resides in the domain. In
addition to real space coordinates and other mesh information, the patch geometry object provides
information about where a patch lives in terms of the underlying index space. When a SAMRAI
Pat ch object is created, an array of Boundar y Box objects is constructed for each spatial
dimension and stored in the Pat chGeomet r y object owned by the patch. The Boundar yBox
objects in each array define the relationship between the patch and the domain boundary for a
single intersection type (e.g., face, edge, node). Without delving too deeply into implementation
details, each Boundar yBox has a Box and two integer data members. The Box describes a
ghost region outside the physical domain and the integers identify the boundary type and location
index. One does not need to fully understand the manner in which the box describes a boundary
region to use a Boundar yBox object effectively. However, this may be needed in some
circumstances, so we note that the box data member resides immediately outside of the boundary
shared by the Patch and the physical domain and is one cell wide in the direction normal to the
physical boundary.

The boundary type identifier indicates whether the patch boundary intersects the physical
boundary on a 2-dimensional surface (face), a 1-dimensional line (edge), or at a single point
(node). The following table describes the integer boundary types for each spatial dimension:

Boundary type 1-d hierarchy 2-d hierarchy 3-d hierarchy
node 1 2 3
edge N/ A 1 2
face N/ A N/ A 1

The location index indicates where a patch sits relative to the boundary. For example, in a 2-
dimensional rectangular domain, a patch may touch the boundary along an edge on the top,
bottom, left, or right, or some combination of these. For each spatial dimension and boundary
type, an indexing scheme for boundary regions helps one to resolve situations such as this.
Figure 4 illustrates the indexing scheme for the location of each boundary type.

Figure 4. BoundaryBox location index schemes for 1-, 2-, and 3-dimensional boxes. This location index
information indicates how a patch boundary intersects the physical domain boundary

3-dimensional location indices

x

z

y
02

4

1 3

5 3

0 4
1

52

6

7

9 1011
8

0 2

4

1 3

5
6

7

edge node face

node

x

y 0 1

2

3

edge

0 1

32

2-dimensional location indices

0 1
 x

1-dimensional location indices

node

The essential task of the set Physi cal Boudar yCondi t i ons() routine is to set boundary
values for a patch that are appropriate for the given problem. Recall that arrays of
Boundar yBox objects owned by the patch geometry describe the relationship between the patch
and the domain boundary. After retrieving the arrays, one should iterate through them and set
values based on the description of a boundary region found in each Boundar yBox object.
Often, the most straightforward way to set boundary data is to write general routines to fill
boundary values in a box region given information about the relationship between that region and
the patch (e.g., whether it lies above, below, to the left or right of the patch). Then, those routines
can be used for any patch in any SAMR patch configuration. For example, one may implement
a routine to fill patch boundary values in a 3-dimensional problem as follows:

voi d MyPat chSt r at egy: : set Physi cal Boundar yCondi t i ons(
 Pat ch& pat ch,
 const doubl e f i l l _t i me,

 const I nt Vect or & ghost _wi dt h_t o_f i l l)
 {

 Poi nt er <Pat chGeomet r y> pgeom = pat ch. get Pat chGeomet r y() ;

 const Ar r ay<Boundar yBox> f ace_bdr y = pgeom- >get FaceBoundar y() ;
 const Ar r ay<Boundar yBox> edge_bdr y = pgeom- >get EdgeBoundar y() ;

 const Ar r ay<Boundar yBox> node_bdr y = pgeom- >get NodeBoundar y() ;

 Box i nt er i or (pat ch. get Box()) ;

 f or (i nt i = 0; i < f ace_bdr y- >get Si ze() ; i ++) {

 i nt bdr y_t ype = f ace_bdr y[i] . get Boundar yType() ;
 i nt bdr y_l oc = f ace_bdr y[i] . get Locat i onI ndex() ;

 Box f i l l _box =

 pgeom- >get Boundar yFi l l Box(f ace_bdr y[i] ,
 i nt er i or ,
 ghost _wi dt h_t o_f i l l) ;

 set MyBoundar yRegi on(. . .) ;

 }

 . . .
 }

First, we obtain arrays for face, edge, and node boundary regions from the patch geometry. Then,
we iterate through the face boundary regions, setting values for each. Note that the function
get Boundar yFi l l Box() in the Pat chGeomet r y class is used to get a box describing the
boundary region to be filled for a given Boundar yBox , a box for the patch interior, and a fill
ghost width. The routine set MyBoundar yRegi on() is a user-defined function that fills
regions with the appropriate boundary values. A user must dimension the data arrays and access
the array entries properly for each patch and boundary value setting scenario. In an actual
application code, we would most likely process the edge and node boundaries in a similar way.

Before we conclude, we comment on periodic boundary conditions. Essentially, a user needs
only to write boundary routines for non-periodic boundary regions. Boundar yBox objects are
created only for patches with boundaries that intersect non-periodic physical boundaries. All
periodic boundary regions are filled automatically during execution of a communication schedule.
They are treated as though they are part of the domain interior. However, the presence of
periodic boundaries may influence how a user may process a non-periodic boundary region.

When Boundar yBox objects are created in a problem that has both periodic and non-periodic
boundaries, periodic boundary regions are treated as though they are part of the domain interior.
For example, a boundary region that may be described with an edge boundary and a node
boundary when there are no periodic boundaries may instead be described using only an edge
boundary. Figure 5 illustrates a situation of this sort in 2 dimensions. In 3-dimensional
problems, similar situations may arise involving face and edge boundaries. User-supplied
boundary routines should be aware of the periodic nature of the problem domain if this will
influence the way that boundary values are set. In Figure 5, the boundary region in the upper-
right corner should have the same values that appear in the boundary region near the upper-left
corner. Note that when these values depend on values in the domain interior there is no problem;
values in periodic boundary regions are already filled before the user boundary routine is called.

One final item to note is that, during inter-level data transfers, temporary Pat ch objects may be
created that extend past the edge of a periodic boundary. Thus, user-code may be asked to set
boundary values for a patch whose interior partially resides outside the index space of the
computational domain. However, such a patch is physically reasonable due to periodicity of the
domain. Figure 6 illustrates this situation. When this occurs, the boundary region to fill
maintained by the Boundar yBox object will extend along the non-periodic boundary to the end
of the patch ghost region. User boundary routines that rely on physical space coordinates must
account for such possibilities.

Figure 5. Example of a patch located along a periodic boundary in 2-dimensions. In this case, periodic boundary data is
copied into the right boundary region from the left side of the domain. The user sees a single “ edge” boundary box along
the top of the patch to fill with non-periodic boundary data. If the domain were not periodic, the user would see an edge
box on top, an edge box on the right, and a node box at the upper right corner.

periodic boundary
data is copied

non-periodic patch boundary is
described using a single edge box

patch

periodic boundary

Remarks:
• Data in physical boundary regions are set by the user-supplied routine

set Physi cal Boundar yCondi t i ons() in the Ref i nePat chSt r at egy
interface.

• The relationship between a patch boundary and the domain boundary is expressed using
arrays of Boundar yBox objects that are obtained from the Pat chGeomet r y object.

• Each Boundar yBox object has a boundary type and a boundary location index.
• The function get Boundar yFi l l Box() in the Pat chGeomet r y class is used to obtain a

box describing a boundary region to be filled for given patch, boundary box, and ghost width.

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Document UCRL-TM-202188.

patch

periodic boundary

periodic data copied,
including patch interior

user fills all non-periodic boundary data

Figure 6. When using periodic domains, it is likely that boundary data must be set for a patch that
seemingly lies outside the index space of the domain. The patch is really within the domain due to
periodicity. Thus, user routines must be able to treat this case.

