Robin Boundary Conditions for Poisson Solvers
Brian T.N. Gunney

Introduction

The Poisson equation solversin SAMRAI support a general boundary condition known as the Robin
boundary condition. A Robin boundary condition is one that can be writen in the form

ou
xu+p—=
b an Y
or (using two parameters)
ou
aut+(l-a)—=
() on
where N isthe coordinate in the direction of the outward normal on the boundary. Note that
o
a=—— and (= Y
oa+B oa+B

The Robin boundary condition is a generdization of the Dirichlet boundary condition(a=1) andthe
Neuman boundary condition (a=0). Inthe most generdl case, a€[0,1]

The method to set the coefficients a and g areabstracted inthe interface class
solv_RobinBcCoefStrategyX (RobinBcCoefStrategy), an implementation of whichis
required by the scalar Poisson solver classes for computing boundary condition information. This
approach allows the flexibility needed to make the solvers robust but requires you to inherit and
implement an abstract base class. If you are not interested in this much flexibility, please consider using
one of the provided implementations, such as

« sol v_Si npl eCel | Robi nBcCoef sX

« solv_Locationl ndexRobi nBcCoef sX

* sol v_Ghost Cel | Robi nBcCoef sX
which are described below in section “Provided Implementations”.

Note that solv_RobinBcCoefStrategyX isintended for communicating Robin boundary conditions
to the scalar Poisson solver classes. It is not necessarily intended for setting boundary conditions outside
this context. The SAMRAI library provides other methods for general boundary condition setting.

This document covers how to implement sol v_Robi nBcCoef St r at egy X to set the coefficients (once
you've determined what they should be) and how to use some library-provided implementations of
solv_RobinBcCoefStrategyX. After presenting some examples on how to implement and use the
strategy class for cell-centered data, we describe some library-provided implementations which may be
used without having to write code to inherit the strategy class.

Code Setup

In this section, we describe how to set up a concrete class implementing
solv_RobinBcCoefStrategyX. Wefirst review the relationship between the indices of a cell and
the indices of the nodes, edges and sides of the cell, as thisisimportant to determining the discrete
locations at which to set the boundary coefficients. Then we describe the virtual methods to be
implemented and give example implementations.

The Robin eguations are applied at discrete locations on the patch boundaries rather than at the ghost cell
centers, even though boundary boxes are defined by abox of ghost cells. The discrete locations
correspond to the alignment of grid data and each has specific indices. To implement

solv_RobinBcCoefStrategyX, it isimportant to understand the rel ationship between the indices of
variously aligned data and the indices of the cells defining aboundary box. In 2D they are described by
thisfigureof acdl (i,]) anditsneighboring nodes and sides:

Node Side Node
(ij+1) (ij+1) (i+1+1)
Side Cdl Side
(i) (i) (i+1))
Node Side Node
(i) (i) (i+1))

Observe that the side or node index in the direction of decreasing index is aways the same as the cell

index. Thissimple rule aso appliesin 3D. The side of the ghost cell that touches the patch boundary
depends on the location index of the boundary, asillustrated in this figure,

Location index 3

Locationindex O
Locationindex 1

Location index 2 i
In 3D, location indices 4 and 5 refer to the minimum and maximum k sides, respectively. From these

rules, it should be clear that for a boundary (ghost) cell (i,], k) inaboundary box having agiven
location index, the side touching the patch boundary has the following indices:

Location Index Side Indices
(i+1,j,Kk)
(i,j,k)
(i,j+1,k)
(i,j,k)
(i,],k+1)
(i,j,k)

The indices of nodes on the patch boundary follows the same picture, but note that while the number of
sides on the patch boundary equals the number of cellsin the boundary box, the number of nodes will be

greater. Thisinformation should be sufficient to determine the indices of the sides or nodes on any
boundary specified by a boundary box.

g bW NFIO

Two pure virtual functions to be implemented are:
1. set BcCoef s: provide the discrete (side- or node-based) valuesfor a and ¢
2. nunber O Ext ensi onsFi | | abl e: state the maximum number of discrete points past the

corner of the patch where the coefficients can be provided. (Thisisalimit used to truncate the
boundary boxes defined on the mesh. The implementation is not always required to fill al the

extensions specified here.)
We will discuss each of these functions in this section.

To provide an implementation of Robi nBcCoef St r at egy, one must compute discrete valuesof @

and g foraboundary box and write themto arrays. Thisis donein the implementation of
void solv_RobinBcCoefStrategyX: :setBcCoefs(

thox_Pointer<pdat_ArrayDataX<double> > &acoef_data,

thbox_Pointer<pdat_ArrayDataX<double> > &gcoef_data,

const tbox_Pointer<hier VariableX> &variable,

const hier_PatchX &patch,

const hier_BoundaryBoxX &boundary_ box,

const double fill_time=0) const;
This method is given a patch, a boundary box, the fill time, the variable for which the coefficients are
intended and two arraysinwhichtostore a and ¢ . Thismethod should usevari abl e to
determine the alignment of the discrete points at which the Robin formula are applied. These points are
determined by projecting onto the boundary the alignment of var i abl e. Thusfor cel variables, the
formulais applied on sides and for node variables, the formulais applied on nodes. The parameter
vari abl e may aso be used to determine, in a multi-variable implementation, which variable to set the
coefficientsfor. (In practice, the usage of the implementation may be limited enough to allow you to
assume the alignment and variable without performing any check.) The alignment and the boundary box
thus determine all locations and indices where the coefficients are required. The arrays acoef _dat a
and gcoef _dat a, in which to store the coefficients, are allocated exactly for these. Naturally, the
coefficients are only requested for boundary boxes of codimension one, as that is the only boundary type
associated with aboundary normal vector. If either acoef _dat a or gcoef _dat a isanull pointer,
then the calling function is not interested in it at that point, so you can ignoreit.

The implementation of solv_RobinBcCoefStrategyX must be able to state how many cells past the
edge or corner of apatch it is able to provide the coefficients. These cells areillustrated in thisfigure:

3rd extension
2nd extension
1st extension
Edge of patch

vV v

Possible boundary box

The method

hi er _I nt Vect or X nunber O Ext ensi onsFi | | abl e() const;
is provided for this purpose. This function should return a vector indicating the number of cellsin each
spatial direction for which the implementation can provide the boundary coefficients. The number zero
indicates that the implementation cannot provide any coefficients beyond the edge or corner of the patch.
Generally, implementations that require data already stored on the grid may have thistype of limitation,
depending on the availability of grid data. An example isthe library-provided
sol v_Si npl eCel | Robi nBcCoef sXclass. For a specific boundary, the number of cellsin the
direction away from the boundary isirrelevant--the arrays of coefficients are of unit width in that
direction. The solver uses the number of extensionsfillable to determine if aboundary box needs to be
“trimmed” down before requesting the coefficients for it. Regardless this number, the boundary box

argument never extends further than would ordinary boundary boxes given by the patch geometry. The
inability to fill all the extensions that a solver needs may limit certain solver capabilities. For example,
filling extensions is used in linear refinement of cell-centered data, which maybe used in prolongation
operations.

Uniform Coefficients Example:

To illustrate a simple case, this exampl e sets the coefficients in the case where the the boundary condition
isuniform. All boundaries have Dirichlet boundary condition of value 0.5 except for that on the maximum
i side, which has zero gradient. The implementation determines which side the boundary box is on and
sets the coefficients accordingly. This simple implementation simply fillsin the coefficient arrays with
constants, so it has no limit on the number of extensionsit can fill.

void UserClass: :setBcCoefs(
thbox_Pointer<pdat_ArrayDataX<double> > &acoef_data,
thbox_Pointer<pdat_ArrayDataX<double> > &gcoef_data,
const tbox_Pointer<hier VariableX> &variable,
const hier_PatchX &patch,
const hier_BoundaryBoxX &boundary_ box,
const double fill_time=0) const

{
double a, g;
/*
Determine from the available information
(i.e., the patch, boundary box and any internal data)
the value of a and g for this boundary box. The
parameter variable is iIgnored, because we want the
coefficients to be independent of the variable.
For this example, let us set the boundary value
to 0.5 on the minimum i side and the slope to
zero everywhere else.
*/
iT (boundary_box.getLocationlndex() == 1) {
a = 0.0;
g = 0.0;
} else {
a=1.0;
g = 0.5;
3
ifT (acoef_data) {
acoef_data->Fill(a);
}
iT (gcoef_data) {
gcoef_data->Fill(Qg);
return;
}
hier_IntVectorX UserClass::numberOfExtensionsFillable()
const
{
/*
Return some really big number. We have no limits.
*/
return hier_IntVectorX(1000);
}

In this simple example, we disregarded the argument var i abl e, because the coefficients are
independent of what variable isbeing set. If thisimplementation is set up for both a cell-centered quantity

and a node-centered quantity, we can use the argument var i abl e to determine which isbeing set. This
implementation is similar to the slightly more general library-provided implementation
sol v_Locat i onl ndexRobi nBc Coef s X class described below.

Exact Boundary Condition Example:

In this example, we implement a boundary condition on two variables which are named “u” and “v”. For
each, there isan exact Dirichlet boundary condition we wish to use.

We must |oop through the index space of the boundary surfaces and set each coefficient individually,
because the coefficient g variesin space. Thisisthe most general form for g. In the following code-setup
example, we have internally two functors of type FcnX, d_u_functor andd_v_functor, which
compute the boundary valuesfor the two variables as a function of spatial coordinates. The code sets up
for Dirichlet boundary conditionsby setting a=1 and (¢ tothevaueof thefunctor. Thusgisa

function of space, requiring us to determine the spatial coordinates of the side centers where the Robin
formulaisapplied. Asin the above example, thisimplementation can fill an unlimited number of
extensions past the patch corner.

void PoissonSineSolutionX::setBcCoefs (
tbox_Pointer<pdat_ArrayDataX<double> > &acoef _data ,
thbox_Pointer<pdat_ArrayDataX<double> > &gcoef _data ,
const tbox_Pointer<hier_ VariableX> &variable ,
const hier_PatchX &patch ,
const hier_BoundaryBoxX &bdry box ,
const double fill_time) const

it (bdry _box.getBoundaryType() =1) {
// Must be a face boundary.
TBOX_ERROR(*'Bad boundary type in\n"
<< "PoissonSineSolutionX: :setBcCoefs \n");

/ a=1 for Dirichlet boundary condition.
ifT (acoef_data) {
acoef_data->fill(1.0 , 0);

it (gcoef _data) {

FcnX &functor(variable->getName() == “u” ?
d_u_functor : d_v_functor);

const int location_index = bdry_box.getLocationlndex();

/*
Get geometry information needed to compute coordinates
of side centers.

*/

tbox_Pointer<geom_CartesianPatchGeometryX> patch_geom
= patch.getPatchGeometry();

hier_BoxX patch_box(patch.getBox());

const double *xlo = patch_geom->getXLower();

const double *xup = patch_geom->getXUpper();

const double *dx = patch_geom->getDx();

#i1T NDIM ==
hier_BoxlteratorX boxit(gcoef _data->getBox());
int i, j;
double x, y;
switch (location_index) {

/*
For each case, we loop through the data box,
compute the coordinates corresponding to the
side center and set g to the exact value of
the function there.

*/

case O:
// min 1 edge
x = xl1o[0];

if(gcoef _data) for (; boxit; boxit++) {
J = Cboxit)[1];
y = xlo[1] + dx[1]*(-patch_box.lower()[1]+0.5);
(*gcoef_data) (*boxit,0) = functor(X,y);

break;
case 1:
// max 1 edge
X = xup[0];
if(gcoef _data) for (; boxit; boxit++) {
J = Cboxit)[1];
y = xlo[1] + dx[1]*(-patch_box.lower()[1]+0.5);
(*gcoef_data) (*boxit,0) = functor(X,y);

break;
case 2:
// min j edge
y = xlo[1];
if(gcoef _data) for (; boxit; boxit++) {
i = (Cboxit)[0];
x = x1o[0] + dx[0]*(i-patch_box.lower()[0]+0.5);
(*gcoef_data) (*boxit,0) = functor(X,y);

break;
case 3:
// max j edge
y = xup[1]; _ _
if(gcoef _data) for (; boxit; boxit++) {
i = (C*boxit)[0];
x = x1o[0] + dx[0]*(i-patch_box.lower()[0]+0.5);
(*gcoef_data) (*boxit,0) = functor(X,y);

break;
default:
TBOX_ERROR(*Invalid location index in\n"
<< "PoissonSineSolutionX: :setBcCoefs');

)
#endi f

#if NDIM == 3
// Similar to 2D.

#endi T
}
return;
}
hier_IntVectorX UserClass::numberOfExtensionsFillable()
const
{
/*

Return some really big number. We have no limits.

*/
return hier_IntVectorX(1000);
}

Provided |mplementations:

The Robin boundary coefficients interface described above is simply aflexible mean to describe the
boundary condition. To avoid having to implement the interface for some common boundary conditions,
the SAMRALI library provides several implementations. These are

sol v_Si nmpl eCel | Robi nBcCoef sX, sol v_Gnhost Cel | Robi nBcCoef sXand

sol v_Locat i onl ndexRobi nBcCoef sX. To help you determineif one of these may be suitable for
your application, we briefly describe the intended purpose of each. Please refer to the source code
documentation for more details.

Thesol v_Si npl eCel | Robi nBcCoef sX implementation allows users to specify boundary
conditions using an interface identical to previous Poisson solversin the SAMRAI library. This
implementation is helps codes that use the old Poisson solvers to switch to the current solvers. Since the
old Poisson solvers are cell-centered, this implementation assumes that it is only used for cell-centered
data. Thisimplementation providesa method, set Boundar i es() , which is compatible with the
identically-named method in the old Poisson solvers. Undernesath, it computes the Robin boundary
coefficients according to the information specified by the call to set Boundar i es() .

Thesol v_Locat i onl ndexRobi nBc Coef s Ximplementation is appropriate for problems where the
coefficients are determined completely by the location index of the boundary box. This covers, among
others, the case of parallelpiped domains where each side of the parallel piped is set to some uniform
boundary condition. For each location index, one may specify uniform Dirichlet boundary values, uniform
Neumann boundary values or uniform values of aand g.

Thesol v_Ghost Cel | Robi nBcCoef sXimplementation is for specific cases where the discrete
function isfixed at the center of the first ghost cell. The user setsthe ghost cell values at a specific cell-
centered patch dataindex. Thisimplementation sets the boundary coefficients to values that are
equivalent to setting the same value at the same ghost-cell-centered locations.

Usage in Solvers:

After implementing your boundary coefficient class or deciding to use alibrary-provided implementation,
you can use an object of that classin asolver. The exact detail on how to do that depends on the solver's
interface for specifying the boundary condition object and on the setup steps required by the boundary
coefficient class. The following is an example of using the sol v_Locat i onl ndexRobi nBcCoef sX
class with the cell-centered Poisson FAC solver (sol v_Cel | Poi ssonFACSol ver X) inthelibrary.

/1 Create the solver

sol v_Cel | Poi ssonFACSol ver X poi sson_sol ver;

/*
Create and set up the boundary coefficient inplenentation
The exact setup steps depends on the inplenentation being used.
Thi s exanpl e uses the Locati onl ndexRobi nBcCoefs cl ass to set
Dirichlet and Neumann boundary conditions.
Set up Dirichlet boundary values of 1.0 and 0.0 at the m ni mum
and maxi mum x boundaries and zero slope at the m ni mum and
maxi mumy boundaries. Note that the first argunent of
set Boundar yVal ue and set BoundarySl ope is the | ocation index.

*/

sol v_Locat i onl ndexRobi nBcCoef sX bccoef;

bccoef. set Boundar yVal ue(0, 1. 0) ;

bccoef. set Boundar yVal ue(1, 0. 0) ;

bccoef. set Boundar ySl ope(2, 0.0);

bccoef . set Boundar ySl ope(3, 0.0);
/1 Tell the solver to use the boundary coefficient object we

cr eat ed.

poi sson_sol ver. set BcObj ect (&ccoef) ;
/* ... Set up the solver ... */

/1 Solve

poi sson_sol ver. sol veSysten{...);

Acknowledgements:

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence-Livermore National Laboratory under contract No. W-7405-Eng-48. Document UCRL-TM-

202071.

