
Cell-centered Poisson Solvers
Brian Gunney

Introduction

SAMRAI provides the classes for solving Poisson's equation on a single level (using hypre) or a hierarchy
(using the fast adaptive composite, or FAC, algorithm). These classes solve the general equation of the
form

 C
�
x ������� D � x ��� u

�
x ��	 f

�
x �

for u
 x � , where C
 x � is a scalar field, D
 x � is the diffusion coefficient and f
�
x � is the

source term. The The solver supports the Robin boundary condition, which is any that can be writen in the
form �

u ��
 � u�
n
	��

or (using two parameters)

au � � 1 � a � � u�
n
	 g

where n is the coordinate in the direction of the outward normal on the boundary. Note that

a 	
��
��
 and g 	 �� ��
 .

a u � � 1 � a � � u�
n
	 g , where n is the coordinate along the outward normal. This is a

generalization of the Dirichlet (a=1) and Neumann (a=0) boundary conditions.

The discretization is a standard central-difference, cell-centered finite-volume. This implies that
C � x � , f

�
x � and u

�
x � are cell-centered quantities, and D � x � is side-centered.

Simpler forms of the partial differential equation (PDE) can be solved, and different optimizations are
made to take advantage of those cases. For example, C
 x � and D

�
x � may be constants and

C � x � may be zero.

The class solv_CellPoissonHypreSolverX solves a single-level problem, and the class
solv_CellPoissonFACSolverX solves the problem on a hierarchy. This document shows the
basics of using these classes. It covers the possible settings for specifying the PDE and controlling the
solver algorithm, calling the solveSystem methods to perform the solve, getting data on the solve, and
how to set up an input file. We follow with some examples at the end. The solver classes documented
here references the FAC preconditioner class (solv_FACPreconditionerX) and the Robin boundary
condition class (solv_RobinBcCoefStrategyX), which are documented separately.

Providing the Robin Boundary Condition Coefficients

To set up code to use solv_CellPoissonHypreSolverX or solv_CellPoissonFACSolverX,
you need decide whether to use the internal boundary condition implementation or provide an external one.
For this document to be sufficiently general, we will assume an external implementation is used. To keep
things simple, we choose the library-provided implementation
solv_LocationIndexRobinBcCoefsX. In a later section, we will describe the choices for
specifying the boundary condition coefficients. Provide a pointer to this implementation using the member
function solv_CellPoissonHypreSolverX::setBcObject(). You may choose one of the
general implementations in the library or implement your own.

The solv_LocationIndexRobinBcCoefsX implementation is appropriate for problems where the
coefficients are determined completely by the location index of the boundary box. This covers, among
others, the case of parallelpiped domains where each side of the parallelpiped is set to some uniform
boundary condition. For each location index, one may specify uniform Dirichlet boundary values, uniform
Neumann boundary values or uniform values of a and g.

Usage of the Single-level Hypre-Poisson Solver

After setting up your code as described above, solving the Poisson equation is simple.
1. First, initialize the solver object to an existing hierarchy using

solv_CellPoissonHypreSolverX::initializeSolverState(). You can specify the
hierarchy and level number (which defaults to level zero) to solve on.

2. Then use solv_CellPoissonHypreSolverX::setBcObject() to tell it about the Robin
boundary condition object you have set up.

3. Make sure that ghost cells at the coarse-fine boundaries are initialized with the appropriate values. For
example, refine the coarse grid values into the ghost cells using a refine schedule.

4. Then use solv_CellPoissonHypreSolverX::setMatrixCoefficients() to set up the
matrix coefficients. You can specify the descriptor indices of C � x � and D � x � .

5. Finally, call solv_CellPoissonHypreSolverX::solveSystem() to solve the system. You
have to specify the descriptor indices of the cell-centered solution and the cell-centered source function.
The cell-centered solution data will be modified.

Hypre-Poisson Solver Example

Here is an example following the steps outlined in the previous section, on using
solv_CellPoissonHypreSolverX.

/*
 Initialize the solver.
*/
d_poisson_hypre.initializeSolverState(hierarchy, ln);

/*
 solv_LocationIndexRobinBcCoefsX is an implementation of the
 Robin boundary condition coefficient strategy class. It allows
 one to specify a uniform boundary condition for each location
index.
 We set Dirichlet values of 0.0 and 10.0 on the min x and max x
sides
 and zero slope on the min y and max y sides.
*/
solv_LocationIndexRobinBcCoefX bc_coefs;
bc_coefs.setBoundaryValue(0, 0.0);
bc_coefs.setBoundaryValue(1, 10.0);
bc_coefs.setBoundarySlope(2, 0.0);
bc_coefs.setBoundarySlope(3, 0.0);
d_poisson_hypre.setBcObject(bc_object);

/*
 The solver can now set up the matrix.
 The solv_PoissonSpecifications object holds the values of C and D
 in Poisson's equation. By default, C=0 and D=1, leading to
Laplace's
 equation. These values can be changed through the public

interfaces
 of solv_PoissonSpecifications.
*/
solv_PoissonSpecifications spec("Laplace");
d_poisson_hypre.setMatrixCoefficients(spec);

/*
 Solve the system.
 solution is the patch data index of the solution u.
 souce is the patch data index of the source f.
*/
int solver_ret = d_poisson_hypre.solveSystem(solution,
 source);

Multi-level FAC-Poisson Solver Settings

The solv_CellPoissonFACSolverX class uses the following methods for setting the parameters C and D:
setDConstant(double value)
setDPatchDataId(int id)
setCConstant(double value)
setCPatchDataId(int id)

To set the diffusion coefficient D
 x � , use setDConstant(double value) or setDPatchDataId
(int id), depending on whether it is a constant or spatially varying and stored on the mesh. Similarly, use
setCConstant(double value) or setCPatchDataId(int id), to set C
 x � .

The methods specifying the algorithm parameters, corresponding input parameter name and the default
settings are:

Methods Input name Default
setting

setPresmoothingSweeps(int
num_pre_sweeps)

num_pre_sweeps
1

setPostsmoothingSweeps(int
num_post_sweeps)

num_post_sweeps
1

setMaxCycles(int max_cycles) max_cycles 10

setResidualTolerance(double
residual_tol)

residual_tol
1.00E-006

setCoarseFineDiscretization
(const string
&coarsefine_method)

coarse_fine_discretization “Ewing”

setCoarsestLevelSolverChoice
(const string &choice)

coarsest_level_solver_choic
e

“hypre” or
“redblack”

setCoarsestLevelSolverTolerance
(double tol)

coarsest_level_solver_toler
ance

1e-10 or
1e-8

setCoarsestLevelSolverMaxIterat
ions(int max_iterations)

coarsest_level_solver_max_i
terations

20 or 500

setUseSMG(bool use_smg) use_smg FALSE

setProlongationMethod(const
string &prolongation_method)

prolongation_method “CONSTANT_
REFINE”

� The pre- and post-smoothing sweeps refer to the amount of smoothing used in the FAC cycle.
� The max cycles refer to the maximum number of FAC cycles to take.
� The coarse-fine discretization refers to how the PDE is discretized at the coarse-fine boundary. Other

than one specific exception, the argument must be the name of a refinement operator is used (i.e.,
“ LINEAR_REFINE” , “ CONSTANT_REFINE” , etc.). The coarse-fine discretization results from
using the specified refinement to get the fine-grid ghost cell, followed by a normal stencil applied
across the fine patch boundary. This may seem reasonable, but it results in a discretization that is
specified implicitly by the refinement operator. These discretizations may have unanticipated, though
usually subtle, numerical behaviors. In the exceptional case, the string “ Ewing” specifies the coarse-
fine discretization of Ewing, Lazarov and Vassilevski. This discretization tends to give better accuracy
at the coarse-fine boundaries and is the default.

� Methods beginning with “ setCoarsestLevelSolver...” refer to the coarsest level solver. By
default, hypre is used to solve the coarsest level if it is available, otherwise, red-black Gauss-Seidel
iterations are used.

� The different default tolerance and max iterations for the coarsest level reflect the fact that the hypre
solver converges much faster than the Gauss-Seidel algorithm.

� The usage of hypre's SMG (semicoarsening multigrid) algorithm is set by the function setUseSMG.
This setting has effect only when hypre is chosen as the coarsest level solver. If SMG usage is false,
hypre's PFMG (parallel semicoarsening multigrid) algorithm is used.

� The prolongation method should be the name of a refine operator, such as “ CONSTANT_REFINE” or
“ LINEAR_REFINE” . Be aware that linear refinement (or any refinement that involves the creation
and filling of temporary levels) requires an solv_RobinBcCoefStrategyX implementation that
can fill non-hierarchy data). The default implementation used
(solv_SimpleCellRobinBcCoefsX) does not satisfy this requirement.

Multi-level FAC-Poisson Usage

Once the solver object is set up using the above methods, the method
bool solveSystem(int solution,
 int rhs,
 tbox_Pointer<hier_PatchHierarchyX> hierarchy,
 int coarse_ln=-1,
 int fine_ln=-1)

performs the solve on the hierarchy and level range specified in the arguments. The integers solution
and rhs are patch data indices for the solution and the right hand side, respectively. The solution data
must have a ghost cell width of at least one. Since the solver is for a scalar equation, only the first depth is
used. The solver returns true if convergence to the specified level is reached.

The above function call is the simplest way to perform a solve. It initialize the solver state, which is
dependent on the hierarchy configuration, level range, boundary condition types, etc. After performing the
solve, it deallocates the solver state. When performing multiple solves with different right-hand-side
values, efficiency is improved if you take steps to preserve the solver state between solves. This is done
with two functions:

void initializeSolverState(const int solution,
 const int rhs,
 tbox_Pointer<hier_PatchHierarchyX>
hierarchy
 const int coarse_level=-1,
 const int fine_level=-1)
void deallocateSolverState()

In between these two function calls, you can perform any number of solves using
bool solveSystem(const int solution,
 const int rhs)

The solution and rhs used in the solve may be different from those used to initialize the solver state and
different each time the caller is solved. The solver state initializer uses the patch data indices to set up

matching temporary memory.

Note that it is an error to mix up the two solveSystem methods, as one expects an uninitialized state and
one expects an initialized state.

After a solve, the number of FAC iterations, the residual norm and the convergence factors can be retrieved
by the functions

int getNumberIterations() const
void getConvergenceFactors(double &avg_factor,
 double &final_factor) const
double getResidualNorm() const

The convergence factor is the factor by which the residual is reduced by one FAC iteration. The average
factor is that which, when applied the number of iterations used gives the same overall reduction, while the
final factor is that of the last iteration taken. The residual norm is the RMS norm of the final residual.

Multi-level FAC-Poisson Examples

int ln;
for (ln=0; ln<=hierarchy->getFinestLevelNumber(); ++ln) {
 /*
 Fill in the initial guess and Dirichlet boundary condition
 data. For this example, we want u=0 on all boundaries.
 The easiest way to do this is to just write 0 everywhere,
 simultaneous setting the boundary values and initial guess.
 */
 Pointer<PatchLevel> level = hierarchy->getPatchLevel(ln);
 PatchLevel::Iterator ip(level);
 for (; ip; ip++) {
 Pointer<Patch> patch = level->getPatch(*ip);
 Pointer<CellData<double> > data = patch->getPatchData
(comp_soln_id);
 data->fill(0.0);
 }
}
solver.setBoundaries("Dirichlet");

/*
 Set up solver object.
 The problem specification is set using the
 PoissonSpecifications object then passed to the solver
 for setting the coefficients.
*/
solver.setCConstant(0.0);
solver.setDConstant(1.0);
solver.initializeSolverState(comp_soln_id,

 rhs_id,
 hierarchy,
 0,
 hierarchy->getFinestLevelNumber());

/*
 Solve the system.

*/
pout << "solving..." << endl;
bool solver_ret;
solver_ret = solver.solveSystem(comp_soln_id ,

 rhs_id);

/*
 Present data on the solve.
*/
double avg_factor, final_factor;
solver.getConvergenceFactors(&avg_factor, &final_factor);
if (solver_ret) pout << " converged\n";
else pout << " NOT converged\n";
pout << " iterations: " << solver.getNumberIterations() << "\n"
 << " residual: " << solver.getResidualNorm() << "\n"
 << " average convergence: " << avg_factor << "\n"
 << " final convergence: " << final_factor << "\n"
 << flush;

/*
 Deallocate state.
*/
solver.deallocateSolverState();

Boundary Condition Options

As mentioned above, the Robin boundary conditions are supported. These boundary conditions are
specified by two coefficients, a and g. Technically, one provides an implementation of
solv_RobinBcCoefStrategyX through which the solvers obtain the coefficients. But in most cases,
one of the library-provided implementations would suffice. Once you have an implementation, use the
method setBcObject(), described above, to specifiy it.

For the se solvers, there is one additional choice, which is aimed at providing compatibility to codes that
were written for SAMRAI's older Poisson solvers: using the internal boundary condition implementation.
The internal implementation is the library-provided solv_SimpleCellRobinBcCoefsX class, whose
primary interface, the setBoundaries() method, is duplicated in the solver classes.

The boundary condition is specified by calling
setBoundaries(const string &boundary_type,

 const int fluxes=-1,
 const int flags =-1,
 int *bdry_types=NULL);

The boundary conditions specified as the string argument "boundary_type." The boundary type argument
can be "Dirichlet", "Neumann", or "Mixed".

If using Dirichlet boundary conditions, then before the solver is called, the storage for the unknown must
have a layer of ghost cells at least one cell wide that includes the Dirichlet boundary values.

If using Neumann boundary conditions, then before the solver is called, the outerface boundary flux data
must be set for the Neumann conditions. The fluxes argument gives the patch data index of this flux data.

The mixed boundary type is for a mixture of Dirichlet and Neumann boundary conditions at the physical
domain boundary. The fluxes argument gives the patch data index of the outerface data that specifies the
flux data for the Neumann conditions. The flags array is an outerface data array of integer flags that
specifies whether Dirichlet (flag == zero) or Neumann (flag == one) conditions are to be used at

a particular cell boundary face. Note that the flag data must be set before the solver state is initialized. The
bdry_types argument can be used if the boundary conditions are mixed but one or more of the faces of
the physical boundary are entirely either Dirichlet or Neumann boundaries. The bdry_types argument
should be an array of 2*NDIM integers, specifying the boundary conditions on each side of the physical
domain. It should be ordered { x_lo, x_hi, y_lo, y_hi, z_lo, z_hi} , with the values for each face being 0 for
Dirichlet conditions, 1 for Neumann conditions, and 2 for mixed boundary conditions. The bdry_type
argument is never required, but if used it can sometimes make the solver more efficient.

As mentioned above, the default boundary condition implementation does not allow linear refinement in
the prolongation of error in its most general usage. If you chose to provide an external implementation of
solv_RobinBcCoefStategyX, the method setBcObject(const
solv_RobinBcCoefStrategyX *bc_object) is used to set it. Some relatively easy to use
implementations are available in the library. For example, problems where the coefficients are strictly a
function of the boundary box's location index (see hier_BoundaryBoxX::getLocationIndex()),
is supported by the class solv_LocationIndexRobinBcCoefsX.

Acknowledgements:

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence-Livermore National Laboratory under contract No. W-7405-Eng-48. Document UCRL-TM-
202156.

