
Writing an FAC Solver
Brian Gunney

Introduction

The SAMRAI library provides high-level abstractions for writing linear equation solvers using on the fast
adaptive composite (FAC) algorithm. The FAC algorithm and all operations common to it are provided in
the class solv_FACPreconditionerX, while problem-specific operations are accessed through the
interface of the abstract solv_FACOperatorStrategyX class.

Thus, solv_FACPreconditionerX
� provides the entry point for the solution process.
� controls the FAC cycles and parameters such as number of cycles, residual tolerance,

and number of smoothing sweeps
� provide temporary storage for error and residual vectors.

The solv_FACOperatorStrategyX class provides interfaces to these problem-specific operations:
� restricting the solution
� restricting the residual
� prolonging the error and applying the correction
� solving the coarsest level
� computing the residual norm

These operations require the details of the equation and discretization methods and must be implemented
in the a concrete child class.

To develop a solver using the FAC algorithm, one uses a combination of the preconditioner and a concrete
implementation of the operator strategy abstract class. This document describes the methods contained in
these two classes, how to implement solv_FACOperatorStrategyX and how to use the
preconditioner. For an example of an FAC operator class, see solv_CellPoissonFACOpsX. For an
example of using the preconditioner, see the higher-level class solv_CellPoissonFACSolverX.

Using solv_FACPreconditionerX

This section covers the setup and usage of the preconditioner. For users of the solver, this is the most
important part. The operator strategy methods are called through the FAC preconditioner class. Each
preconditioner object requires one operator strategy implementation, which is registered through the
preconditioner's constructor. This section covers the basic usage of the preconditioner, which involves
setting up the parameters, initiating the solve and getting information on the solution process.

Setting up the preconditioner parameters involves these preconditioner methods and corresponding input
parameters:

Method Input name Default setting
setPresmoothingSweeps(int
num_pre_sweeps)

num_pre_sweeps
1

setPostsmoothingSweeps(int
num_post_sweeps)

num_post_sweeps
1

setMaxCycles(int max_cycles) max_cycles 10

setResidualTolerance(double
residual_tol)

residual_tol
1.00E-006

enableLogging(bool enable) enable_logging FALSE

These simple functions are self-explanatory.

The method
solveSystem(solv_SAMRAIVectorRealX<double> &u,
 solv_SAMRAIVectorRealX<double> &f);

performs the solve. The unknown u and right-hand-side f are described as vectors so that systems of
equations are handled through the same interface. Vectors can wrap multiple patch data under a single
object. The two vectors must have the same hierarchy, level range and number of components. Further
requirements, such as ghost cell width, may be imposed by the operator object. The method
solveSystem initializes the solver state (set up temporary storage, etc.), performs the FAC cycling
steps according to the above parameters, then deallocate the solver state. For multiple solves, the solver
state can be set up and preserved through out the solve, leading to significant time savings. The methods

void initializeSolverState(
 const solv_SAMRAIVectorRealX<double> &solution ,
 const solv_SAMRAIVectorRealX<double> &rhs);

and
void deallocateSolverState();

are used set up and remove the solver state manually. If solveSystem is entered with an initialized
state, that state will be used but left undisturbed. Otherwise, the state is initialized using the vector
arguments to solveSystem. Note that initializeSolverState or
deallocateSolverState call corresponding functions in the FAC operator object (described below)
to keep that object in a matching state.

After a solve, the number of FAC iterations, the residual norm and the convergence factors can be
retrieved by the functions

int getNumberIterations() const
void getConvergenceFactors(double *avg_factor,
 double *final_factor) const
double getResidualNorm() const

The convergence factor is the factor by which the residual is reduced by one FAC iteration. The average
factor is that which, when applied the number of iterations used gives the same overall reduction, while the
final factor is that of the last iteration taken. The residual norm is the RMS norm of the residual.

Implementing solv_FACOperatorStrategyX

Critical methods that must be implemented in solv_FACOperatorStrategyX are the pure virtual
functions performing essential operations for the FAC solver.

� restrictSolution
� restrictResidual
� prolongErrorAndCorrect
� smoothError
� solveCoarsestLevel
� computeCompositeResidualOnLevel
� computeResidualNorm

In addition, there are three non-pure virtual functions that are not related to the FAC algorithm but help in
the implementation of the strategy class:

� initializeOperatorState
� deallocateOperatorState
� postprocessOneCycle

This section will make general comments about these methods. The source code documentation of this
abstract class provides the full description, requirement and allowable assumptions when implementing
the methods.

As with the solv_FACPreconditionerX class, patch data are represented through vectors. It is important to
know that the vectors are those given to initializeOperatorState, those given to
solv_FACPreconditionerX::solveSystem or clones of those vectors, leading to some
consistency through out the FAC solve.

Each of the essential operations for the FAC solver, with the exception of computeResidualNorm,
operates on just one level. The level number argument in these functions always refers to the level whose
data is being changed. The restrict and prolong operations obviously require data from an adjacent level,
but they modify only one level. For methods that require data from an adjacent level, you can make
certain assumptions about the state of the data in the adjacent level, and are required to prepare data that
may subsequently be used. This is due to the fact that these functions are only called at appropriate points
in the logical sequence of steps performed in an FAC cycle.

The computation of the residual norm by computeResidualNorm should only compute the norm of
the data passed in. It should not recompute the residual, which is done by
computeCompositeResidualOnLevel.

Acknowledgements:

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence-Livermore National Laboratory under contract No. W-7405-Eng-48. Document UCRL-TM-
202154.

