Generating Vislt Visualization Data Files in
SAMRAI

Peter L. Williams

1 Introduction

Vislt is a distributed, parallel, visualization tool for visualizing data defined on two- and three-dimensional
structured and unstructured meshes, including data defined on structured AMR patch hierarchies and
deformed structured AMR meshes, such as moving Lagrangian meshes. Practical details on obtaining and
using Vislt are given in Section 7. A slide presentation on Vislt and the SAMRAI VisltDataWriter is
available in the SAMRALI distribution at docs/userdocs/ VisIt-writer-slides.pdf.

The purpose of the Vislt data writer is to dump SAMRAI data to files that can be read-in and
processed by Vislt. These files have traditionally been called “plot” files, but are also referred to herein
as Vislt data files or dump files. As described in Section 7, these dump files may be viewed using Vislt
either after the simulation has completed, or during the simulation, thus allowing the simulation to be
monitored visually. In addition, as described in Section 7.11, the dumped data can be viewed remotely. If
the simulation was run on a remote distributed machine, the data can be left there and viewed on a local
workstation using Vislt. Vislt may then be run in distributed mode on the remote machine so that the
visualization compute engine can run in parallel.

In the next section, we give a summary of the differences between the Vislt and Vizamrai data writers.
Section 3 describes the Vislt data writer class and gives step by step instructions for creating and using
an object of this class. In Section 4, code fragments are given for a typical call sequence to a Vislt data
writer object from an example SAMRAI application. Then in Section 5, we discuss materials and how
they may be added to a plot file. In Section 6, we discuss how ghost data can be dumped for viewing with
Vislt. Finally in Section 7, we give a brief introduction to using Vislt with SAMRALI plot files.

2 Differences Between Vislt and Vizamrai Data Writers

This section may be skipped by users who have not used Vizamrai in the past. (Vizamrai was a previous,
more limited visualization system for SAMRAI data).

The Vislt data writer is very similar to the Vizamrai data writer, however, there are some significant
differences which are listed next. Items number 1 through 6 indicate differences that may require changes
to existing application code to convert from the use of the Vizamrai data writer to the Vislt data writer.
The remaining items, 7 through 14, are more informational, mainly indicating new or modified features.

1. The method setFinestLevelToPlot (), available for Vizamrai, is not implemented for Vislt.

2. The constructor for the Vislt data writer, in addition to the optional argument setting
number_procs_per_file, described in Item 8, has a new required argument, the directory name where
the dumped data will be stored, The separate method setDirectoryName () is no longer used for Vislt.
For Vizamrai setting a directory name was optional.

3. The method setRatioToCoarserLevel () used by Vizamrali, is not used by the Vislt data writer.

4. The writePlotData() method for Vislt requires a time step number; and it does not take a file name.
Whereas the Vizamrai data writer requires a file name; and the time step number is optional.

5. The method setDerivedDataWriter () used by Vizamrai, is renamed to setDefaultDerivedDataWriter ()

for Vislt.

6. With the Vislt data writer, only float data is actually written to the dump files. However, the data
passed from SAMRALI to the Vislt data writer may be integer, float or double. This data is stored
internally by the data writer in a double precision buffer so it may be properly scaled if a scale factor
is specified. Just before writing the data to disk, the data is converted to floating point format. Thus
the methods setPlotDataToDouble() and setPlotDataToFloat (), used by Vizamrai, are not used
by the Vislt data writer.

7. The Vislt data writer dumps data to HDF files, whereas Vizamrai writes binary files. Thus SAMRAI
must be compiled with the HDF5 library.

8. For parallel runs, the Vislt data writer allows subsets of processors to dump their data to a single file
thus reducing parallel I/O contention. The size of the subset, number _procs_per_file, is an optional
argument to the Vislt data writer constructor. This feature is not available with Vizamrai. With Vislt,
data from parallel runs is ready for immediate visualization, without any assembly step as was required
with Vizamrai.

9. The Vislt data writer can handle both node-centered as well as cell-centered data. The Vizamrai data
writer only deals with cell-centered data.

10. The VisIt data writer accepts data defined on ghost cells or nodes. This was not possible with Vizamrai.

11. With VisIt, vector data with NDIM components, as well as 2nd order tensor data with (NDIM * NDIM)
components, are supported. With Vizamrai only vector data with NDIM components are supported.
The methods register [Derived]PlotTensor () have been introduced in the VisIt Data Writer, and
various optional parameters have been added to all data registration methods to deal with centering
and ghost data.

12. The Vislt data writer can accept data defined on deformed structured AMR, meshes, such as moving
Lagrangian meshes. The Vizamrai data writer does not handle this type of data.

13. For the Vislt data writer, a variable’s data values do not need to exist on all patches, nor on all levels.
For the Vizamrai data writer, a variable is expected to appear on all patches.

14. Material fractions, species fractions, and state variables defined on a material, may be dumped using
the Vislt data writer. This capability was not possible with Vizamrai.

3 How to Generate Vislt Data Files in SAMRAI

In Section 3.1, we present background information that is essential to know before using the Vislt data
writer. In Section 3.2 we give the detailed steps to create and use a Vislt data writer object for dumping
SAMRALI state variable data and derived data. Then in Section 3.3 we give the additional steps necessary
if materials are to be added to the dump files. In Section 3.4 we give the additional steps required to deal
with deformed AMR grids. Section 6 describes how to dump ghost cell data so it can be viewed in Vislt.

3.1 Background Information

An object of the SAMRAI class appu_VisItDataWriterX is used to generate Vislt data files. We refer
to this object as a Vislt data writer object. This class applies when the underlying mesh geometry is
Cartesian, that is, managed by a geom_CartesianGridGeometryX object, or the mesh itself is stored as
a state variable to allow moving deformed AMR grids. The Vislt data writer requires compilation of
SAMRALI with the HDF5 library and will deal with either 2D or 3D data (NDIM =2 or NDIM = 3).
The types of data that the data writer will accept from SAMRALI are integer, float and double. Scalar
data, vector data with NDIM components, and 2nd order tensor data with (NDIM * NDIM) components
may be dumped.

The Vislt data writer class supports the dumping of two kinds of data: data that resides on an AMR
patch hierarchy at the time the dump file is written, and derived data, data that does not live on the patch
hierarchy, but that can be computed from data which does live on the patch hierarchy, e.g. total energy
calculated from velocity, density and pressure. Derived data requires the user to implement a method in
a concrete class derived from the appu_VisDerivedDataStrategyX abstract class. In that method, the
user computes and packs into a buffer the specified derived data quantity over a given box region on a
patch. This method may be implemented so as to calculate one of several derived data quantities, with
the choice being determined by the wvariable_-name argument. This is discussed in detail in Section 4.4.
Writing derived data requires no user intervention when generating a dump file. The Vislt system also
provides a limited capability for deriving new variables from the original data in the dump file.

The Vislt data writer only writes float data to the dump files since Vislt uses only float data internally.
However, the data passed from SAMRALI to the Vislt data writer may be integer, float or double. All such
data is stored internally by the data writer in a double precision buffer so it may be properly scaled if a scale
factor is specified. This scaling feature may be used to bring double precision data into a range suitable
for visualization as floats. After scaling, and just before writing the data to disk, the data is converted
to floating point format. Any data value, after scaling, that exceeds the maximum representable floating
point value M AX _FLT is clamped to M AX _F LT} in addition, a warning is written to the log file for each
offending variable for each time step indicating the number of values clamped and the maximum double
precision value that was clamped. This information allows the application to properly set the scale factor
for future runs. The number of underflows are also recorded in the log file. An example log file entry is:

variable: Density had 3 floating point POSITIVE OVERFLOWS,
MAX POSITIVE OVERFLOW: 7.5e+50
A1l positive overflows clamped to 3.40282e+38

variable: Density had 2 floating point NEGATIVE OVERFLOWS,
MAX NEGATIVE OVERFLOW: -4.31e+55
All negative overflows clamped to -3.40282e+38

In simulations where cells contain fractional volumetric amounts of material compounds, data relating
to these materials may be dumped. The concept of materials is explained in detail in Section 5.1; this
section is essential reading if you plan to dump materials.

Before a Vislt data writer object can be used to generate Vislt data files, it must first be constructed
and initialized. Initialization involves registering which scalar and vector data, derived data quantities,
and material-related data are to be dumped. After initialization, the Vislt data writer object may be used
to generate a series of visualization dump files during the execution of an application.

Complete documentation on each method in the Vislt data writer class and the Vislt derived data and
materials data strategy classes can be found in the Application Utilities Section of the SAMRAI Reference
Manual in the SAMRAI/docs directory.

3.2 Basic Steps to Create and Use a Vislt Data Writer Object

These are the basic steps to create and use a Vislt data writer object for dumping SAMRATI state variable
data and derived data.

1. Create an appu_VisItDataWriterX object. The object_-name argument is used primarily for error
reporting. The dump_directory_name argument is required, and is the directory where the Vislt data
writer will create the subdirectory structure used to hold all the dumps. If the specified directory does
not exist, it will be created. The directory name may include a path, if so, any intermediate directories
in the path will be created if they do not already exist.

An optional argument to the constructor, number_procs_per_file, applicable to parallel runs, sets
the number of processors that share a common dump file. The purpose of this is to reduce parallel
I/0O contention and improve I/O efficiency. The default value of number_procs_per_file is 1. If the
specified value is greater than the number of processors, then all processors share a single dump file.

When starting from a restart file, it is essential that the value of the argument number_procs_per_file
be the same as was used to generate the restart file.

2. If any derived quantities will be generated, a default concrete appu VisDerivedDataStrategyX ob-
ject may be registered using the method setDefaultDerivedDataWriter (). When registering each
derived data quantity, a concrete derived data strategy object may be specified to use instead of
the default strategy object. This provides some flexibility in using different derived data strategy
objects for different quantities if desired. For each concrete derived data strategy object, the method
packDerivedDataIntoDoubleBuffer () must be implemented which calculates the desired derived data
quantity or quantities, (several different derived data quantities may be calculated in that method.)
Details on the implementation of the concrete derived data strategy object are given in Section 4.4.

3. Register variable data fields using either registerPlotScalar(), registerPlotVector(),
registerPlotTensor (), registerDerivedPlotScalar(), registerDerivedPlotVector(), or
registerDerivedPlotTensor (). All variables require a unique string identifier and, for the non-
derived data, an index into the patch data array on the AMR hierarchy. Data is not required to exist
on all patches nor on all levels. If a variable was previously registered with the same string identifier,
an error results. A scale factor may also be specified; if so, each data value is multiplied by this factor
before being written to the dump file. Scaling is performed in double precision. For derived data, a
derived data writer object may be specified, otherwise the default derived data writer object will be
used. In addition, for derived data, the user is responsible for registering the correct centering, (by
default, derived data is assumed to be cell-centered).

The optional depth index argument of registerPlotScalar () may be specified to allow a single com-
ponent of a data object with multiple components to be dumped. For non-derived vector or tensor data
to be dumped as a vector or tensor, use registerPlotVector () or registerPlotTensor (), optionally
setting a start_depth_index. Each component of the vector/tensor starting from start_depth_index will
be registered for writing to the plot file. If no start_depth_index is specified, a start_depth_index of O
is used. For vector data, NDIM components will be written to the plot file. For tensor data, (NDIM *
NDIM) components will be dumped.

4. If a variable lives at different patch data array indices on different hierarchy levels, after first register-
ing that variable with registerPlotScalar(), registerPlotVector(), or registerPlotTensor(),
invoke resetLevelPlotScalar (), resetLevelPlotVector (), or resetLevelPlotTensor () to redefine
the patch data array index. For scalar variables, the depth index may also be modified; for vector or
tensor variables, the start depth index may be modified. This change redefines the patch data objects
written to the plot file on the specified level to the data at the new patch data array index / depth
index. For example, suppose a scalar variable lives at a patch data array index on every level except
the finest hierarchy level, where it lives at a different index. First, the scalar variable must be registered
using registerPlotScalar(). Second, the patch data array index for the finest hierarchy level is reset
using resetLevelPlotScalar (). When the data is plotted, it will appear on all levels in the hierarchy.
The data corresponding to the new patch data array index must have the same centering and data type
as the data for which the variable was originally registered.

5. Finally, invoke writePlotData() at the appropriate time to generate a Vislt dump of all registered
items, specifying a hierarchy, time-step number, and optionally a plot time. The time step number
must be non-negative and greater than the previous time step number, if any. New variables may be
registered at future time steps, but there is no provision for de-registering variables.

3.3 Adding Material Data to the Dump File

Material-related data, (materials, species, and their related state variables), are discussed in detail in
Section 5. If the user is going to dump material-related data, it is essential to first carefully read Section 5.1.
In the present section, we assume the user is familiar with the information in Section 5 and give only a
terse, but nevertheless complete, summary of the steps required (in addition to those given in the previous
section) if material-related data are to be dumped.

1. First invoke registerMaterialNames () with an array of strings, the names of the materials.

2. Then if species or material state variables are to be dumped, the methods registerSpeciesNames(),
registerMaterialStateVariable(), and/or registerSpeciesStateVariable () may be invoked.
For each material that has species, invoke the method registerSpeciesNames() with the names
of the species as well as the name of the material. If material state variables are to be dumped,
use the method registerMaterialStateVariable() to specify the name of the variable, and its
depth (1 for a scalar, NDIM for a vector, (NDIM * NDIM) for a tensor), and optionally a scale
factor. The state variable name must not have been registered as a variable name either for a
regular variable or a derived variable. If species state variables are to be viewed, use the method
registerSpeciesStateVariable() to specify the name of the variable; this variable name must
have already been registered using registerPlotScalar() or registerPlotVector (), or their de-
rived variable counterparts.

3. Finally, if dumping any material-related data, in addition to registering the data, a concrete materials
data writer object, derived from appu VisMaterialsDataStrategyX, must be registered using the
method setMaterialsDataWriter (), and the relevant methods for packing the materials data into
a buffer (see Section 5) must be implemented in the concrete material data writer object.

3.4 Deformed Structured AMR Grids

For simulations defined on deformed moving grids, in addition to the steps given in Section 3.2, it is
necessary to:

1. Register the node coordinates. To do this, the method registerNodeCoordinate () is called once
for each of the NDIM dimensions. The coordinate_number argument is set to tell Vislt which
coordinate is being registered. So, if data is registered with coordinate_number = 0, Vislt will
use this data as the z coordinate. If the patch data array index refers to a vector, the optional
depth_index argument specifies the component of that vector. The scale_factor may be different in
each call.

3.5 Dumping Ghost Data

Please see Section 6 which describes how to dump ghost data so it can be viewed in Vislt.

4 Example of Vislt Data Writer Basic Usage:
Writing SAMRAI State Variable Data and Derived Data

Here, we present code fragments from an application code for an example that will create a VisltDataWriter
object, initialize it, and then generate dump files of various SAMRALI state variables and derived data. For
derived data, a concrete data strategy object must also be implemented. For simplicity of presentation,
we defer the coverage of materials-related data and ghost cell data until Sections 5 and 6.

First, we set up the example. Then in Section 4.1 we give an excerpt from a typical application input
script file specifying the relevant Vislt dump parameters. In Section 4.2, we give code fragments from the
main.C file, some of which depend on the Vislt dump parameters from the input script file. In Section 4.3,
we give code fragments from the application class, and in Section 4.4, we describe the strategy object
needed for derived data and give an implementation.

In our example, we will give a typical call sequence to the Vislt data writer from a 3 dimensional
(NDIM = 3) application named Applic. In this sequence, we will dump five non-derived variables:
density, pressure scaled by a factor of 10.0, the z component of velocity z_velocity, and the stress vector;
and finally, the velocity vector which appears in the hierarchy at depth indices 2, 3, and 4 of a state space
vector. We will reset z_velocity on level 6 to be at depth index 4 of the state space variable. We also
dump 2 derived variables: total_energy, and the vector field momentum; and, we set the default derived
data writer object.

4.1 Excerpt from a Typical Application .input File

In this excerpt from a typical application .input file, we specify the parameters relevant to a Vislt dump.
These parameters will be referred to by the code in the following section.

// excerpt from example3d.input file

Main {
// log file parameters

// visit dump parameters
visit_dump_interval = 1 // zero turns off visit dumps
visit_dump_dir_name = "visit_example3d"
visit_number_procs_per_file = 3

// restart dump parameters

4.2 Code Fragments from the main.C File

Here we give the code fragments from the main.C file which create a new Vislt data writer object, set the
default derived data writer, and invoke the writePlotData() method.

// main.C

// create application object

Applic* applic_object = new Applic("Applic",
input_db->getDatabase("Applic"),
grid_geometry) ;

// Create & initialize data writer

Pointer<VisItDataWriter> d_visit_data_writer;
int visit_dump_interval = 0;

int visit_number_procs_per_file = 1;

bool use_visit_data_writer = false;

string visit_dump_dir_name;

if (main_db->keyExists("visit_dump_interval")){
visit_dump_interval = main_db->getInteger ("visit_dump_interval");
b

use_visit_data_writer == (visit_dump_interval > 0);

if (use_visit_data_writer) {
if (main_db->keyExists("visit_dump_dir_name")) {
visit_dump_dir_name = main_db->getString("visit_dump_dir_name");
X
if (main_db->keyExists("visit_number_procs_per_file")) {
visit_number_procs_per_file = main_db->getString("visit_number_procs_per_file’’);
b
// create visit dataWriter object:
d_visit_data_writer = new VisItDataWriter("Applic VisIt Writer",
visit_dump_dir_name,
visit_number_procs_per_file);

if (use_visit_data_writer) {
// register data writer with application model object
applic_object->registerVisItDataWriter(d_visit_data_writer);

// if derived data to be used, optionally set a default
// derived data writer object;
d_visit_data_writer->setDefaultDerivedDataWriter (applic_object);

// Time Step Loop

double loop_time = time_integrator->getIntegratorTime();

double loop_time_end = time_integrator->getEndTime() ;

while ((loop_time < loop_time_end) && time_integrator->stepsRemaining()) {
int iteration_num = time_integrator->getIntegratorStep() + 1;

/*
* Advance solution data.

*/

/*
* At specified intervals, write visualization dump files

*/

if ((iteration_num % visit_dump_interval) == 0) {
// generate the dump files now:
d_visit_data_writer->writePlotData(patch_hierarchy,
iteration_number,
loop_time);

4.3 Code Fragments from the Application Class File

We now consider the application model object defined in the file Applic.C. It should have a method
such as registerVisItDataWriter (), shown below, to register a pointer to the Vislt data writer object.
The application object will then use that pointer to register variables with the Vislt data writer. The
application routine, registerModelVariables(), contains the registration of variables with the Vislt
data writer. The routine mapVariableAndContextToIndex() returns the patch data array index of the
variable. Note that when using derived data, as shown in the beginning of the code example in Section 4.4,
Applic derives from appu_VisDerivedDataStrategyX.

// Applic.C
// initialize Applic member variables
Pointer<VisItDataWriter> d_visit_data_writer = NULL;

void Applic::registerVisItDataWriter(Pointer<VisItDataWriter> visit_data_writer)
{
d_visit_data_writer = visit_data_writer;

}

void Applic::registerModelVariables (HyperbolicLevelIntegrator* integrator)
{

d_plot_context = integrator->getPlotContext();
VariableDatabase* vardb = VariableDatabase::getDatabase() ;

if ('d_visit_data_writer.isNull()) {
// register non-derived variables for dumping:

// register scalar variable "density"
d_visit_data_writer->registerPlotScalar("density",
vardb->mapVariableAndContextToIndex (
d_density, d_plot_context));

// register scalar variable "pressure", scaling it by a factor of 10.0. Since
// the scale_factor is the last of 2 optional args, both optional args need to appear.
d_visit_data_writer->registerPlotScalar("pressure",
vardb->mapVariableAndContextToIndex(
d_pressure, d_plot_context),
0, // depth_index
10.0); // scale_factor

// register scalar variable "z_velocity", which appears at a depth index of 2
// in a data object with multiple components called d_velocity.
d_visit_data_writer->registerPlotScalar("z_velocity",
vardb->mapVariableAndContextToIndex(
d_velocity, d_plot_context),
2); // depth_index

// register vector variable "stress"
d_visit_data_writer->registerPlotVector("stress",
vardb->mapVariableAndContextToIndex (
d_stress, d_plot_context));

// register vector variable "velocity", which appears in a multi-component variable
// d_state_space at depth indices 2, 3, and 4. The last two args are optional,
// hence the scale_factor must be specified.
d_visit_data_writer->registerPlotVector("velocity",
vardb->mapVariableAndContextToIndex(
d_state_space, d_plot_context));
1.0, // scale_factor
2); // start_depth_index

// reset plot levels:

// reset "z_velocity" on level 6 to be at depth index of 4 of the state space vector.
d_visit_data_writer->resetLevelPlotScalar("z_velocity",
6, // level number
vardb->mapVariableAndContextToIndex (
d_state_space, d_plot_context),
4); // depth index

// register derived variables for dumping (here we assume the use of the default
// registered above in main.C

d_visit_data_writer->registerDerivedPlotScalar("total_energy");
d_visit_data_writer->registerDerivedPlotVector ("momentum") ;

}

For a complete implementation, see the source code in the example applications, such as Euler. When
testing using a file in one of the sample_input directories, note that the input script for specifying plot file
parameters is more complex than shown above in Section 4.1 to allow for the use of either Vizamrai or
Vislt data writers. In these input files, set viz_writer to “VisIt” if you want to create Vislt plot files.

4.4 Implementing the Derived Data Strategy Object

When writing derived data, in addition to registering the derived data as shown in Section 4.3, and
optionally setting the default DerivedData Writer object as shown in the code in Section 4.2, the application
class member packDerivedDataIntoDoubleBuffer() needs to be implemented. The interface for this
method is defined in appu_VisDerivedDataStrategyX; and the application class needs to inherit from
this strategy class.

This packing method computes the derived data for a given patch over a given box and packs it into
a double precision buffer. The data should be packed into the buffer in column major order, the ordering
used by SAMRALI i.e. for 3D data, (f(i0,jo, ko), f(i1, o, ko), f (i2, Jo, ko), .--), where f(i,], k) is the data
value at index (i, j, k) on the patch data box. If the derived data was registered as node-centered, then
packDerivedDataIntoDoubleBuffer () must return a buffer of node-centered data. Derived data need
not be defined on all patches. It is the responsibility of the application to determine if the data exists on
a patch and set the return value of packDerivedDatalntoDoubleBuffer() appropriately: true if the data
exists on the patch, false otherwise. The buffer will already have been allocated to the correct size, taking
into consideration whether the data is registered as node- or cell-centered. For vector or tensor data,
the packing routine will be called once for each component of the vector or tensor, with the depth;ndex
argument indicating the component to pack.

// Applic.h
#include "VisDerivedDataStrategy.h"

class Applic :
public VisDerivedDataStrategy

// Applic.C

bool Applic::packDerivedDataIntoDoubleBuffer(
double *dbuffer,
const Patch& patch,
const Box& region,
const string& variable_name,
int depth_index)

if (variable_name == "total_energy") {

/*

* Compute total energy on the box region using the data

* on the patch and pack it into dbuffer. If data is

* defined on patch, set data_on_patch to true, else false.

*/

} else if (variable_name == "momentum") {

* Compute the momentum for the given depth index on the box

* region using the data on the patch and pack it into dbuffer.
* This method will be called once for each component of this
* vector variable. If data is defined on patch, set

* data_on_patch to true, else false.

} else {
TBOX_ERROR("Applic: :packDerivedDataIntoDoubleBuffer"
<< "\n application with name " << d_object_name
<< "\n unknown variable_name " << variable_name << "\n");

return data_on_patch;

The Vislt data writer class in conjunction with the derived data strategy class give a very flexible and
powerful mechanism for creating and dumping derived data. However, there may be times when it may
be wise to utilize Vislt’s own derived data mechanism. Provided the expression to calculate the derived
data is relatively simple, as for example momentum = density * velocity, it will save disk space not to
dump this derived data quantity, but instead to define it while using Vislt. The downside of using VisIt
to calculate derived data is that the derived data is cached only while it is currently plotted on the screen,
and that the derived data expression needs to be keyed in.

10

5 Writing Material Data

We start with a brief but essential conceptual overview of materials and related terminology as used by
Visit. Then in Section 5.2 we discuss the details of using material fractions. In Section 5.3 we cover the
use of material state variables. Then in Section 5.4, we cover the use of species and in Section 5.5 species
state variables. Finally in Section 5.6 we discuss what to do if material-related data is not cell-centered,
and in Section 5.7 we discuss the special case when one might want to use only species, with no materials.

5.1 Conceptual Overview of Materials

In simulations where cells contain fractional volumetric amounts of material compounds, data relating to
these materials may be dumped by the Vislt data writer. A material may have subcomponents called
species. So for example if a simulation has 4 materials, say copper, gold, liquid and gas, then the material
gas, for example, may have subcomponents, e.g. oxrygen, methane and nitrogen. In this example, the
material gas has 3 species, and we say methane is a species of gas. Each material may have its own set
of species.

When a mesh has materials defined over it, every cell contains a fractional amount mf (0 <= mf <=
1.0) of every material, called a material fraction or volume fraction. Vislt assumes that the sum of all
material fractions for every cell is 1.0. Similarly, for each species, there is a species fraction, sf, (also
known as a mass fraction), (0 <= sf <= 1.0) for each cell. The sum of the species fractions for all species
of a given material m must equal 1.0 in every cell in which m appears.

There is an even more important difference between materials and species other than the fact that
species are subcomponents of a material. A set of materials signifies a heterogeneous mixture of substances
where each material has a distinct boundary, such as in concrete, or granite. Whereas, a species signify a
homogeneous mixture of substances with no defined boundaries, such as seawater, Coke, or air.

Scalar or vector data may be defined over each material. These data are referred to as material state
variables or intensive variables. So in the above example, each of the four materials may have a different
temperature associated with it on a cell by cell basis. In this example, temperature is a material state
variable, and there is a separate temperature field over each patch for each of the four materials, provided
the patch contains some of the material. Every material state variable must have a value for each cell, for
each material, if that material has a non-zero fraction in that cell.

Species too may have state variables; however they are treated differently than material state variables.
Any SAMRALI state variable or derived variable registered with the Vislt data writer may be designated
as a species state variable. A species state variable is unique in that Vislt treats it in a special way. When
Vislt displays a species state variable, the value of the variable at a cell is multiplied by the sum of the
species fractions for that cell, for all the species that are currently selected. (In Vislt, there is a Subset
Window which shows all materials and species, and which allows the user to select (turn on/off) individual
materials and species.) Consider an example where the variable pressure is being visualized, and pressure
has been registered as a species state variable. If a material has 3 species, and the pressure for a cell ¢
is 100, and only one species has been selected, say nitrogen, and its species fraction for ¢ is 0.45, then
the partial pressure for ¢ will be 45. If two species were selected, say nitrogen with a species fraction of
0.45, and methane with a fraction of 0.25, then the partial pressure for ¢ would be 70. Thus in the first
example where only nitrogen was selected, a partial pressure field for nitrogen could be displayed, (e.g.
using a pseudocolor plot). The user may think of other ways to make use of this feature of Vislt which
multiplies the sum of the fractions of the currently selected species by a selected state variable.

Another use for species fractions is that they can be treated as a scalar field and the usual scalar plot
operations applied to show concentrations. So for example if the material seawater has a species salt,
then the salinity of the water can be displayed as a pseudocolor plot of the species fractions of salt.

Returning now to material fractions, VisIt uses these values to reconstruct (interpolate) material
boundaries within cells which have multiple materials. More specifically, Vislt finds a crack-free piecewise
two-manifold separating surface approximating the boundary surface between the materials. Therefore
Vislt can display materials as multiple colored contiguous 3D regions with intra-cell boundaries. In
addition, Vislt can intersect this volume field with a plane and show intra-cell 2D boundaries. Vislt can
reconstruct material boundaries for either 2D or 3D data. If desired, the material fractions for a material

11

can be treated as a scalar field and the usual scalar field plot tools, such as pseudocolor and contour, can
be applied.

5.2 Steps to Add Material Volume Fraction Data

We will start with the steps to register materials which have volume fractions; later we will add the steps
needed if one wishes to add species and/or material state variables.

First, as part of the initialization process, i.e. steps 2 through 4 of Section 3.2, invoke the method
registerMaterialNames () with an array of strings, the names of all the materials used in the simulation.
It is a requirement that registerMaterialNames() be invoked at most once.

It is also necessary to create and register a MaterialsDataWriter object. To do this, the application
class member needs to inherit from appu_VisMaterialsDataStrategyX. This is an abstract base class
which defines an interface for writing out the various material-related fields. A concrete object of this
strategy must be registered with setMaterialsDataWriter().

Before we discuss the implementation of this strategy, we show the two required initialization invoca-
tions. For our example, we will assume there are four materials in our simulation: copper, gold, liquid,
and gas.

First, in the main.C code fragment given in Section 4.2, find the call:

d_visit_data_writer->setDefaultDerivedDataWriter (applic_object);
Now add the following call immediately after it:
d_visit_data_writer->setMaterialsDataWriter(applic_object);
Second, in the code for the application class file Applic.C shown in Section 4.3, find the call:
d_visit_data_writer->registerDerivedPlotVector ("momentum") ;
Now add the following after that:

// register all material names
tbox_Array<string> name_array(4) ;

name_array[0] = "copper";
name_array[1] = "gold";
name_array[2] = "liquid";

name_array[3] = "gas";
d_visit_writer->registerMaterialNames (name_array) ;

We now return to the implementation of the concrete materials data writer strategy object. This
concrete object is responsible for providing an implementation of the method
packMaterialFractionsIntoDoubleBuffer (). This method packs the material fractions for the specified
material into an already allocated buffer, over the specified patch and region. The data is packed in column
major order (see Section 4.4). If material data is used, then it is assumed that material data is defined on
all patches. All material data must be cell-centered.

The return value of packMaterialFractionsIntoDoubleBuffer() is important. If there is none
of the specified material M in any of the cells of the specified patch P, i.e. material fraction(M) =
0.0 for all cells on P, then return the enumeration constant VisMaterialsDataStrategy::ALL_ZEROS. If
the material fraction(M) = 1.0 for all cells on P, return VisMaterialsDataStrategy::ALL_ONES. Other-
wise, return VisMaterialsDataStrategy::SOME. These return values are used to compress the materials
data dumped to disk, dramatically economizing disk space. For material data this is extremely impor-
tant!! When a packing method returns VisMaterialsDataStrategy::ALL_ONES or VisMaterialsDataStrat-
eqy::ALL_ZEROS, the data in the buffer is ignored and the Vislt data writer writes a single integer code
to disk for that material and patch rather than the entire buffer.

The code fragment from the application Applic shown next implements the concrete materials data
strategy object. Note that Applic inherits from VisMaterialsDataStrategy.

12

// Applic.h

#include "VisMaterialsDataStrategy.h"

class Applic :
public VisMaterialsDataStrategy

// Applic.C

int Applic::packMaterialFractionsIntoDoubleBuffer (

if

double *dbuffer,

const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name)

(material_name == "gold") {

/*

* Pack the material fractions for "gold" for each cell in

* this box region into dbuffer. If there is no "gold" in a

* cell, enter O for that cell.

*

* If there is no "gold" in any of the cells of this patch,

* set return_value = VisMaterialsDataStrategy::ALL_ZEROS
* If "gold = 1.0" for all cells on this patch,

* set return_value = VisMaterialsDataStrategy::ALL_ONES
* Otherwise

* set return_value = VisMaterialsDataStrategy::SOME

*

* If a non-zero ghost cell width vector was specified when

* registerMaterialNames() was invoked, then ghost data must also
* be packed into dbuffer.

*/

return return_value;

} else if (material_name == "copper") {
/*
* As above, but for "copper".
*/
return return_value;
X
} else {
TBOX_ERROR("Applic: :packMaterialFractionsIntoDoubleBuffer"
<< "\n application with name " << d_object_name
<< "\n unknown material_name " << material_name << "\n");
}

13

At the time of each dump, this packing method will be called once for each patch for each material.

In certain simulations, such as air flow around a solid object (such as an air foil or a building), one may
be tempted to register just one material — the solid object. However this is not correct since the volume
fractions in every cell must add up to 1.0. Nevertheless, to support this special case, the Vislt data reader
detects if only one material M is registered and automatically creates a second dummy material called
“void” whose material fractions mf are mf(“void”) =1 — mf(M). This feature of VisIt only works when
a single material is registered. For all other cases the total of the material fractions for every cell must
equal 1.0.

5.3 Steps to Add Material State Variable Data

If you are not completely clear on what a material state variable is, please read Section 5.1 before con-
tinuing. To add a material state variable, invoke the method registerMaterialStateVariable (). This
method specifies the name of the variable, and its depth (NDIM, or NDIM*NDIM) if it is a vector or
tensor, and optionally a scale factor. The variable name must not have been already registered as a vari-
able name for any other variable. It is a requirement that registerMaterialNames () be invoked before
registerMaterialStateVariable(). (Note this method is used only to register state variables related
to materials, not for state variables related to species; species state variables are described in Section 5.5.)

Before we describe the packing method for material state variables, we show an example registration
of a single material state variable: temperature. Note that this registration, shown next, actually sets
the stage for 4 temperature fields, one for each of the four materials (Copper, Gold, Liquid and Gas).
The following invocation is placed in the application class file Applic.C immediately after the call to
registerMaterialNames () shown above in Section 5.2.

// register a material state variable
d_visit_writer->registerMaterialStateVariable("temperature");

In Section 5.2, we also created and registered a MaterialsData Writer object, and implemented the
method packMaterialFractionsIntoDoubleBuffer (). For material state variables, we need to add the
implementation of the method packMaterialStateVariableIntoDoubleBuffer(). A code fragment from
the application file Applic.C', shown next, implements this packing method.

// Applic.C

void Applic::packMaterialStateVariableIntoDoubleBuffer (
double *dbuffer,
const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& state_variable_name,
const int depth_index)

if ((state_variable_name == "temperature") && (material_name == "gold")) {

~
*

Pack the "temperature" for "gold" for each cell in this
box region into dbuffer. If there is no "gold" in a cell,
some value must be placed in dbuffer for that cell

to serve as a place holder, however since that value will
be skipped over during visualization, its value does not
matter. The buffer must contain a value for every cell in
the patch.

EE R R

14

This method will not be called if the patch does not contain
any "gold". Therefore this method has no return value and is
declared as void.

If a non-zero ghost cell width vector was specified when
registerMaterialNames() was invoked, then ghost data must be
packed into dbuffer.

} else if ((state_variable_name == "temperature") &&
(material_name == "copper")) {
/*
* As above, but for "copper".

*/

} else {
TBOX_ERROR("Applic: :packMaterialStateVariableIntoDoubleBuffer"
<< "\n application with name " << d_object_name
<< "\n unknown material_name, state_variable_name pair "
<< material_name << "," << state_variable_name << endl;

At the time each dump is created, this packing method will be invoked once for each patch for each
(material, state_variable) pair. If the state variable is registered as a vector or tensor, this method will
be called once for each component of the vector or tensor with the argument depth_index set to indicate
which component to pack. In cells where a specific material does not exist, i.e. has a zero fraction, the
state variable for that material will not be accessed by Vislt, therefore it does not matter what value is
written for such cells. However, a value must be packed into the buffer for every cell in the patch. This
packing method will not be called if the entire patch does not contain any of the specified material.

As with the packing method for material fractions, the buffer will have already been allocated and the
data is to be packed in column major order. All material state variable data must be cell-centered.

5.4 Steps to Add Species

It is important to have carefully read Section 5.1 before continuing.

To add species for a particular material, invoke the method registerSpeciesNames (). This method
requires two arguments: an array of strings, the names of the species, and the name of the material to
which the species belong. It is a requirement that registerMaterialNames() must be invoked before
registerSpeciesNames (). First, we show an example of species registration, following that we describe
the packing method for species fractions.

In our example which we started earlier, we will give the material gas three species: oxygen, nitrogen,
and methane. The material liquid will have two species: salt and h2o. The following code fragment
appears in the application class file after the call to registerMaterialNames () shown above in Section 5.2.

// register the three species of the material gas:
name_array.resizeArray(3);

name_array[0] = "oxygen";
name_array[1] = "methane";
name_array[2] = "nitrogen";

d_visit_writer->registerSpeciesNames("gas",name_array) ;

15

// register the two species of the material liquid
name_array.resizeArray(2);

name_array[0] = "salt";

name_array[1] = "h20";
d_visit_writer->registerSpeciesNames("liquid",name_array) ;

In Section 5.2, we created and registered a MaterialsData Writer object, and implemented the method
packMaterialFractionsIntoDoubleBuffer (). For species, we need to add the implementation of the
method packSpeciesFractionsIntoDoubleBuffer(). A code fragment from the application file Applic.C,
shown next, implements this packing method.

int Applic::packSpeciesFractionsIntoDoubleBuffer(

double *dbuffer,

const hier_PatchX& patch,
const hier_BoxX& region,
const string& material_name,
const string& species_name)

{
if ((species_name == "methane") && (material_name == gas)) {
/*
* Pack the species fractions for species "methane" of material
* "gas" for each cell in this box region into dbuffer. If
* there is no "gas" in a cell enter O for that cell.
*
* If there is no "methane" in any of the cells of this patch,
* set return_value = VisMaterialsDataStrategy::ALL_ZEROS
* If "methane = 1.0" for all cells on this patch,
* set return_value = VisMaterialsDataStrategy::ALL_ONES
* Otherwise
* set return_value = VisMaterialsDataStrategy::SOME
*
* If a non-zero ghost cell width vector was specified when
* registerMaterialNames() was invoked, then ghost data must also
* be packed into dbuffer.
*/
return return_value;
} else if ((species_name == "oxygen") && (material_name == gas)) {
// As above, but for "oxygen".
return return_value;
b
} else {
TBOX_ERROR("Applic: :packSpeciesFractionsIntoDoubleBuffer"
<< "\n application with name " << d_object_name
<< "\n unknown material_name, species_name pair "
<< material_name << "," << species_name << endl;
X

16

At the time each dump is created, this packing method will be invoked once for each patch for each
species for each material that has species. As with the packing method for material fractions, the buffer
will have already been allocated and the data is to be packed in column major order. All species fraction
data must be cell-centered.

The return values for packSpeciesFractionsIntoDoubleBuffer() are the same as for material frac-
tions described in Section 5.2 and are described in the comment in the code fragment for packing just
above.

5.5 Steps to Add Species State Variables

Species state variables are treated in a rather unique way by Vislt, so it is important to have carefully
read Section 5.1 before continuing.

To add a species state variable for a particular material, invoke the method
registerSpeciesStateVariable(). This method requires one argument, the name of variable. This vari-
able name must have been registered previously using registerPlotScalar(), registerPlotVector(),
or registerPlotTensor (), or their derived variable counterparts.

Note the difference from a material state variable: Registering a material state variable means a
separate variable field must be dumped for each material, whereas registering a species state variable is
purely informational — it just informs Vislt that an already existing variable can be treated as a species
state variable with the significance described in Section 5.1.

Continuing our ongoing materials example, we will register one species state variable: pressure. The
following registration goes in the Applic.C file following the registration of the species names.

// register a species state variable
d_visit_writer->registerSpeciesStateVariable("pressure");

5.6 Special Topic: Node-Centered Materials-Related Data

The Vislt system currently requires that material fractions, species fractions, and material variables be
cell-centered. In simulations, material fractions usually are cell-centered so this is not a problem. However,
there may be simulations where species fractions or material variables may be node-centered. For those
cases, since Vislt requires such data to be cell-centered, the application will need to interpolate the
node-centered species fractions to cell-centered values in the packSpeciesFractionsIntoDoubleBuffer ()
method. Similarly for material state variables in the packMaterialStateVariableIntoDoubleBuffer ()
method. There is no limitation on the centering of species state variables; Vislt will do its best to
intelligently interpolate these values appropriately.

5.7 Special Topic: Using Species Only

Given the difference between materials and species, i.e. the heterogeneity or homogeneity of the mixture
referred to in Section 5.1, it might be appropriate for an application to only have species, and no materials,
e.g. a simulation whose domain is entirely submerged in a homogeneous fluid. In order to satisfy Vislt’s
requirement that species be subcomponents of some material, the work-around is to just declare some ma-
terial, e.g. gas, and then just set the material fractions for gas to 1.0 everywhere. This can easily be done,
as described in Section 5.2, by setting the return value of packMaterialFractionsIntoDoubleBuffer ()
to the VisMaterialsDataStrategy::ALL_ONES. In this case, it is not necessary to actually pack any data
into the buffer, since the Vislt data writer ignores the contents of the buffer for this particular return
value. There is no significant storage penalty for defining a material in this instance, since the Vislt data
writer compresses such data.

6 Writing Ghost Data

Visualizing ghost data may be helpful in debugging: for example to check the validity of boundary
conditions, to check the correctness of interpolation at boundaries between patches at different patch
levels, and for examining how deformed moving grids match up at patch boundaries.

17

For state variable data defined on the SAMRATI hierarchy, the data writer automatically detects the
presence of ghost data and includes ghost data in the dump if it is available. This behavior can be over-
ridden by setting the optional omit_ghost_data argument to TRUFE when the data is registered. The
setting of the omit_ghost_data argument does not have to be the same for all variables.

In order for the Vislt data writer to be able to access ghost data, it is necessary (1) that the call
to writePlotData() be placed in the appropriate context (a context where ghost data exists) in the
application code, and (2) that the data writer registration calls (such as registerPlotScalar() for
example) pass an index into the patch data array on the AMR hierarchy in which ghost data exist.

The method registerNodeCoordinate () for deformed data does not take an omit_ghost_data argu-
ment since Vislt requires coordinates of ghost cells if they exist.

For derived data, it is the user’s responsibility to advise the Vislt data writer whether or not ghost
data will be dumped. This is done in the registration call for derived data by setting the optional
ghost_cell_width argument to the proper ghost cell width vector. By default, this vector is the zero vector.

If ghost data is to be dumped for material data, it is necessary to specify the ghost cell width vector
in the call to registerMaterialNames (). By default, this vector argument is the zero vector. The ghost
cell width so specified will then be used for all material-related data.

When implementing the various packing routines for the derived and material data strategy objects,
it is important to keep in mind that if ghost cell data has been specified in the relevant registration calls,
then ghost data must be packed in the packing routines.

If ghost data is to be visualized, it is important that the application specify data values for all ghost
cells or nodes on a patch. So, for example, an application should avoid only specifying initial values for
ghost cells or nodes on the faces of the box region. The SAMRAI function £i11A11() is useful in this
regard.

As described in Section 7.8, while visualizing data using VisIt, ghost data (if available) may be turned
on or off interactively on a variable by variable basis.

7 Using Vislt with SAMRAI Data Files

After a brief description in Section 7.1 of how to access Vislt and use it to look at SAMRALI data, we discuss
a number of helpful topics including slicing and browsing, the subset dialog box, materials visualization,
picking, and looking at ghosts. Then in Section 7.10, we explain the rudiments of making a movie, and in
Section 7.11 we describe how to run Vislt remotely and/or in parallel. For more information on using VisIt
please see the Vislt web site: http://www.llinl.gov/visit. For problems or help, contact visit-help@linl.gov.

7.1 Finding and Starting Up Vislt

The Vislt system is described in detail in the Vislt User’s Manual; in addition, there is a Vislt Getting
Started Manual. Both of these manuals as well as other useful information on Vislt are available at
http://www.llnl.gov/visit. However, you may find the information given below, tailored to a SAMRAI
user, to be helpful in getting started.

At CASC, on the tur machines, the path to Vislt is /usr/apps/visit/bin/visit. On the main LC
machines at LLNL, Vislt is installed under /usr/gapps/visit/bin/visit. The Vislt team will be happy to
install the binaries on any other LLNL machine. For other locations that may not have Vislt, the Vislt
source or executables can be downloaded from the above web site.

Start Vislt by invoking wvisit at the command line with no arguments. Once Vislt starts up, from the
File menu, choose Select file, and then navigate to the directory specified in the application code when the
Vislt data writer object was created (see Section 3.2, step 1). Click Remove all, highlight the file named
dumps.visit in the Files list, and click Select. Now dumps.visit will appear in the Selected files list as the
only file. Click OK. Now you will be back in the main GUI. Double click on the file that appears in the
Selected files list in the upper left. After a slight delay as Vislt reads in the summary information, all the
time steps will appear just below where you just clicked. Then after another slight pause — be patient —
a view of the patch boundaries will appear in the main window. With this image, try rotating, zooming
and panning (shift left mouse). Now try swapping the foreground and background colors (top menu bar,

18

button with black and white triangles and 2 green arrows). Turn on the toggle bounding box button (the
one just to left of the swap background button) and try rotating again. Pull down the File menu and select
Save Window, do it again, and then look in your directory.

Now select any time step and then choose one of the Plots, say Contour: Density (i.e. display a contour
of density). Click the Draw button and you should see a density contour plot appear. Now click the VCR
“forward” button to start an animation over all time steps. Click the VCR “stop” button to stop the
animation. To adjust the opacities of the contours, click the PlotAtts button and select Contour. To select
specific contours, choose Select by Value on the plot attributes menu, and then enter values separated
by spaces, adjusting the opacities if necessary. (The VCR needs to be stopped in order to make these
modifications.)

After rotating, panning and/or zooming the image, if you want to restore the image to its original
orientation, pull down the Controls menu and select View; then on the resulting dialog box, select the
Advanced tab and then click on the Reset view button.

7.2 Changing Data Sets, Adding New Variables and Time Steps

To remove a data set from Vislt, from the File menu, choose Select file, click Remove all, and then OK.

If your simulation registered a new variable after the first dump, you will not see it in Vislt unless you
do the following. Say you registered “pressure” after time step 5, then when you start up Vislt, “pressure”
will not appear in any of the pull down menus that list variables for any time step. Here is what you need
to do. Double click on a time step where “pressure” is in fact in existence, for example the very last time
step, then press the ReOpen button. Now “pressure” will appear on the pull down lists of variables, even
for time steps where it does not exist. Vislt will crash if you generate a video animation of a variable that
does not exist on all time steps, so be cautious. The Vislt team has been notified about this problem and
it should be fixed soon.

If Vislt is started up on dumps from a running SAMRAT application, new time steps can be added to
Vislt as they are created by clicking the ReOpen button, thus allowing the progress of the simulation to
be monitored. If you are running a video animation, you need to stop the animation before clicking the
ReOpen button.

7.3 Getting Information about a Dump File

Useful information about each dump can be found by choosing File Information ... from the File menu.
This information includes: the time and date of the dump, the simulation time, the spatial extents of the
data set, names of all variables, and material-related data, and for each variable: its scale factor, extents,
ghost cell information, centering, etc.

7.4 Slicing and Browsing

When looking at 3D data it is often very helpful to look at a 2D slice of the data. Use the Slice operator
to do so. After applying the slice operator, it is important to go to the OpAtts dialog box for Slice and
unclick the Project to 2D button. To move the position of the slice, use the Plane Tool which you get by
selecting the icon on the lower top row of the graphics window. Use the help “balloon” for an icon to see
which one is the Plane Tool. To move the plane, click the mouse on the origin of the plane tool arrows,
and drag the plane.

Another very useful slicing tool is the ThreeSlice operator, which you can apply to a pseudocolor or
contour plot for example. Use the Point Tool to drag the “three-slice”, not the Plane Tool.

7.5 The Subset Dialog Box

The Subset Dialog Box is extremely helpful. In the Controls Menu at the top of the main Vislt window,
select Subset. In the resulting dialog box, you can click on patches or levels. (If you are using materials,
you will also see materials there too. We discuss this is Section 7.6.) This will bring up a new set of
selections where you can turn on or off all or some levels or patches. These selections apply to whatever

19

you may wish to visualize, the mesh, a pseudocolor plot, etc. The levels or patches that are currently
selected are said to be the “active” levels or patches.
In addition to seeing the mesh on certain patches/levels, you may select either the Boundary or Filled
Boundary Plot of levels or patches. The Boundary plot shows the boundaries between active patches.
When you select a subset of the patches for viewing, the image of the subset may expand to fill the
entire window. To avoid this and keep the viewing scale constant, click the radio button view under
Maintain limits.

7.6 Materials Visualization

Bring up the Subset Dialog Box as described in Section 7.5. Click on “materials” or “species”. You should
now see a list of the materials or species that are available for visualization. To look at the material data,
use Filled Boundary plot and select “materials”. Whatever materials you have selected in the Subset
Dialog Box (i.e. the “active” materials or species) will be displayed. You may want to do a 2D slice of
3D data and browse it as described in Section 7.4, or you may choose to make the plot semitransparent
using the PlotAtts dialog box for Filled Boundary.

The Boundary plot will show you the boundaries between materials. The legend is a bit confusing as
it arbitrarily chooses one of the two materials which define the boundary to label the boundary; so if you
have 4 materials, only 3 may appear on the legend. For species, you may do a pseudocolor, contour or
volume plot. Again only the active species will be used.

More information on viewing materials is given in Section 7.7 on picking.

7.7 Picking

Picking refers to clicking the mouse on a Vislt plot and determining information about the point clicked
on. This information includes the spatial coordinates of the point, the i, j, k indices of the enclosing cell,
and the node indices of the nodes that define the cell. In addition, the level and patch number of the
pick point are given. If a variable plot is selected (highlighted) in the Active Plots wiindow, then the
value of the variable at that point is given. If a plot involving materials is highlighted, pick will tell you
the percentage of each material in the picked cell. If species are selected, you will get information on the
different species in the picked cell.

To do picking here is what you need to do. First, go to the large graphics window and find the
compass-like icon on the far left of the second row of icons at the top of the window. When this button
is selected, you are in the normal mouse-driven navigational mode. To go Pick mode, select either of the
two icon buttons next to the compass-like icon. The one with Z is for cell-picking mode, and the one with
N for node-picking mode. Now you need to do one more thing. Pull down the Controls menu and select
Pick. On the resulting dialog box, under both Display for Nodes: and Display for Zones:, unclick the 1D
buttons and click “on” the Domain-Logical Coords buttons. Then click Apply. Now the next mouse pick
will show the information described above. For easier picking, you may want to use the Slice operator on
3D data, and/or theSubset dialog box to turn on only selected levels and or patches. After you are done
picking, select the compass-like icon again to enable mouse-driven navigation again.

7.8 Looking at Ghosts

To look at ghosts in Vislt, assuming you have dumped ghost data, use the Operator Inverse Ghost Zone on
the Operators pull down menu. (In Vislt the term “zone” refers to what is called a “cell” in SAMRAL) If
this operator does not appear in the Operators pull down menu, pull down the Options menu at the top of
the control GUI, and choose Plugin Manager. In the Plugin Manager dialog window, select the Operators
tab in the middle and click on the Inverse Ghost Zone box. Now the Inverse Ghost Zone operator will
appear in your regular Operators menu. If you want it to remain there for future uses of Vislt, go back to
the Options menu at the top and select Save Settings. This will store a configuration file in .visit in your
home directory.

Now bring up the OpAtts menu and select Inverse Ghost Zone. In the dialog box that results, you will
see that you may select to see either only the ghost zones or both real and ghost zones. Remember the

20

Inverse Ghost Zone operator only works when it has been applied to some variable or the mesh, just like
the Slice operator. So if you don’t want to see any ghost zones, then do not apply the Inverse Ghost Zone
operator to that data. This capability mean you may turn on or off ghost data interactively on a variable
by variable basis.

To check if data in a ghost cell of one patch is consistent with the corresponding data in a different
patch, try this. Using the Subset dialog box, select only these two patches, and then use Inverse Ghost
Zones to turn on “only ghost cells” for one patch; do not use ghost cells at all for the other patch. Here
are two ways to make the comparison. Turn on toggle bounding bor so the system redraws the screen
continuously while the image is rotated. Now rotate the image and check the area of overlap between
ghost cells and non-ghost cells to see if you get a “flashing” effect. If so, this may indicate that the data
in the cells that flash are not identical. You can also check the data in these cells by “picking”.

At present, the Vislt team is upgrading the ghost data visualization capabilities of VisIt and we can
expect more enhancements. You can contact wisit-help@linl.gov for the current status and also make a
request for a feature you would like.

7.9 Problems?

If at any time, the Vislt graphical interface looks strange or is not working, as sometimes occurs, one
thing to try is to move the .visit directory in your home directory to some other name and then restart
VisIt. Vislt will run fine even if there is no .visit directory. Vislt stores various preferences in the .visit
directory and you may inadvertently have caused Vislt to store some preference which is now causing you
a problem.

If you were viewing a 2D data set and then decide to load a 3D data set, or vice versa, you will need
to delete the existing plots before loading the new data set. If this does not work, try quitting Vislt and
then restarting it with the new data set by itself.

If all else fails, contact visit-help@linl.gov.

7.10 Making a Movie

To make a movie, set up your plot just like you want it to appear in the movie, select time step 0 or
whatever time step you want the movie to start from, and then from the File menu, select Save session.
The saved session file will appear in a directory named .visit in your home directory. At the command
line in the .visit directory, type:

visit -movie -geometry 800x800 -sessionfile sessionfile_name -format mpeg -output mymovie

Other output file options such as tif, etc are available. To see all the options, type wvisit -movie. This
simple method also allows you to save movies that involve keyframing. A more powerful approach is to
write a Python script that tells Vislt everything that you want to do for your movie. This allows very
sophisticated movies including fly-by sequences. If you write a movie script called movie.py, you make
VisIt run it by the following command:

visit -cli -geometry 1024x1024 -nowin -s movie.py

A manual on making Vislt movies with Python is available on request from visit-help@Ilnl.gov.

7.11 Running Vislt Remotely and/or in Parallel

If your simulation runs on a distributed machine, you may leave your data there and visualize it on your
desktop workstation. Not only that, you may run Vislt in distributed mode so the visualization compute
engine runs in parallel remotely, while the images are displayed on your desktop. Here is how to do that.

First be sure the path to Vislt is included in your path environment variable on the remote machine.
On the Livermore Computing (LC) distributed machines, the path is slightly different than at CASC; the
path to use on the LC machines is /usr/gapps/visit/bin.

Now on your local desktop, start up Vislt. From the File menu, choose Select file. In the window that
pops up, enter the distributed machine name in the Host text field and press Enter — after a pause you
will be prompted for a password (unless you are password-less on that machine). After another pause,
your files and directories on the remote machine will appear in the File Selection window. Now proceed,

21

as described in Section 7.1, to select the file you wish to view. When you double click on the time step in
the main GUI, a dialog window will pop up for you to choose a Host profile. This window will list several
choices, e.g. on frost you can choose serial, parallel pdebug, or parallel pbatch, (batch mode is useful if you
want to create a movie.) You can also select the number of processors you wish to run on. (You will have
a default profile which specifies number processors, etc. for each machine, but you may change any of the
preferences at this point.) Vislt will automatically distribute the SAMRAI patch data over the number
of processors that you choose. So there is no point in running with more processors than patches.

(You can find out which machines Vislt will run on in parallel by choosing Host profiles from the
Options menu. Currently at CASC, the following machines are listed: blue, frost, gps, ilx, mcr, pengra,
pue, riptide, and snow.)

Once you have completed the dialog window for the Host profile, shortly thereafter an image of the
patch boundaries will come up. Now you may use the various plots and operators described in Section 7.1.
Remote visualization using Vislt is described in more detail in the VisIt User’s Manual.

8 Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

22

