Using a Multiblock Hierarchy in SAMRAI

Noah S. Elliott

1 Introduction

The multiblock functionality in SAMRAI is intended to allow the use of SAMRATIs structured AMR infras-
tructure on problem domains that have one or more singularity points of reduced or enhanced connectivity
but can be decomposed into logically rectangular subdomains, or blocks. This document describes the steps
needed to set up a multiblock domain, how the hierarchy that represents the domain can be used, and finally
the usage of multiblock-specific communication classes in SAMRAL

2 Creating a MultiblockPatchHierarchy

This section describes how to set up an object of class MultiblockPatchHierarchy, which manages a domain
for a multiblock problem. Figure 1 shows an example domain, consisting of five blocks, that will be used for
reference in this section.

2.1 Defining the Index Spaces for the Blocks

MultiblockPatchHierarchy manages a domain for a multiblock problem, and should be used in a manner
analagous to the way that PatchHierarchy is used on an ordinary rectangular domain. The constructor
for MultiblockPatchHierarchy takes an array of pointers to PatchHierarchy, each of which represents
one block of the multiblock domain. The PatchHierarchy for each block must be constructed from a
GridGeometry object that defines an index space which is independent from all other blocks. After the
construction of each PatchHierarchy, pointers to each one can be placed in an array and passed into the
MultiblockPatchHierarchy constructor. The order of the array can be arbitrary but is important to note,
as each block will be identified by its index in the array.

In the input file, the index spaces for each block are specified in the input for each GridGeometry, such
as the following for the domain shown in Figure 1:

SkeletonGridGeometry0 {
domain_boxes = [(0,0) , (7,8) 1

}

SkeletonGridGeometryl {
domain_boxes = [(0,0) , (6,8)]

}

SkeletonGridGeometry2 {
domain_boxes = [(0,0) , (6,4)]

}

SkeletonGridGeometry3 {
domain_boxes = [(0,0) , (4,6)]

}

Figure 1: Example 5 block domain

SkeletonGridGeometry4 {
domain_boxes = [(0,0) , (7,6)]
}

SkeletonGridGeometryis a version of GridGeometry that defines the geometry in terms of an index space
with no information about the physical location of the grid. It is used instead of CartesianGridGeometry
because multiblock grids are not Cartesian.

2.2 Input to describe singularities

In addition to an array of PatchHierarchy pointers, MultiblockPatchHierachy also requires input that
is used to define the relationships and relative locations of the different blocks of each domain. First, the
number of blocks must be specified, and then a block of input is required to describe the location of each
singularity point.

MultiblockPatchHierarchy {
num_blocks = 5

Singularity0 {
blocks = 0,1,2,3,4

[(8,9),(8,9)]
[(-1,9),(-1,9)]
[(-1,-1),(-1,-1)]
[(-1,-1),(-1,-1)]

sing_box_0
sing_box_1

sing_box_2
sing_box_3

sing_box_4 = [(8,-1),(8,-1)]

The num_blocks symbol is used to specify the total number of blocks in the domain. For each singularity
point, the blocks input specifies which blocks touch the singularity, and the sing box_* inputs tell where
each block abuts the singularity. In two dimensions, the required input is the single-cell box that lies
immediately outside the block and touches the block only at the singularity point. In three dimensions, a
singularity can occur at either a corner or an edge. If the singularity is a corner, then the input is the same
as in two dimensions. If it is on an edge, the the input box must be a box that runs along the singularity
edge and is width one in the other two directions. This box also must be located immediately outside the
block and touch the block only along the singularity edge.

2.3 Defining Neighbor relationships

The remaining input for MultiblockPatchHierarchy describes the relationships between neighboring blocks.
Blocks are said to be neighbors if they abut each other at any point, edge or face. Every pair of neighbors
must be specified in the MultiblockPatchHierarchy input. Shown here are some of the BlockNeighbors
entries needed for the Figure 1 example.

MultiblockPatchHierarchy {

BlockNeighbors0 {
block_a = 0
block_b = 1

rotation_b_to_a = "I_UP", "J_UP"
point_in_a_space = 8,0
point_in_b_space = 0,0

}

BlockNeighbors1 {
block_a = 0
block_b = 2

rotation_b_to_a = "
point_in_a_space
point_in_b_space

I_Uup", "J_UP"
8,9
0,0

3

}

BlockNeighbors2 {
block_a = 1
block_b = 2

rotation_b_to_a = " p", "J_UP"

I_U
0,9
0,0

3

point_in_a_space

point_in_b_space

(4.6)

6.4)

(0,0)

0.0)

4oL

Figure 2: Index spaces of blocks 2 and 3

BlockNeighbors3 {
block_a = 2
block_b = 3

rotation_b_to_a = "J_DOWN", "I_UP"
point_in_a_space = -1,0
point_in_b_space = 0,0

In each BlockNeighbors entry, one block is arbitrarily chosen to be block_a and the other block.b.
rotation b_to_a is used to specify how block b’s index space is aligned in comparison to block a’s. As an
example, for the BlockNeighbors3 entry above, we consider only the two blocks in question, 2 and 3, as
if the other blocks did not exist. Figure 2 shows the index spaces of the blocks 2 and 3 and the respective
alignments of their i-j axes.

The positive i direction on block 2 is equivalent to the negative j direction on block 3. Thus the first
entry for rotation b_to_a is "J.DOWN". Likewise the positive j direction on block 2 is equivalent to the
positive i direction on block 3, so the second entry is "I_UP". In general, the entries for rotation b_to_a
are determined by travelling in the positive direction for each dimension in block a, and identifying the
equivalent axis and direction on block b.

For the entries point_in_a_space and point_in b_space, we choose any cell-centered point in block a’s
index space and assign it to point_in_a_space. It does not matter whether or not the point is in the interior
of block a’s domain. Then we identify the index location of that same point in block b’s index space, and
assign it to point_in_b_space.

The three entries rotation b_to_a, point_in a space, and point_in b_space are sufficient to describe
a unique neighbor relationship between two blocks.

3 Usage of MultiblockPatchHierarchy and other multiblock classes

MultiblockPatchHierarchy is one of several classes that serve as multiblock versions of classes that pre-
viously existed in SAMRAI These classes provide an extension of the concepts used in regular single-block

AMR problems to problems on multiblock domains.

3.1 Other multiblock classes

Just as PatchLevel is a representation of a single level of refinement within a PatchHierarchy, the class
MultiblockPatchLevel represents a single level of refinement within a MultiblockPatchHierarchy. A
MultiblockPatchLevel consists of an array of pointers to PatchLevel and can be retrieved using the
member function getPatchLevel () in MultiblockPatchHierarchy. Depending on the state of the problem,
the regions of a particular level of refinement may not exist on all of the blocks of the domain. In such a
case, a MultiblockPatchLevel will still have a pointer to PatchLevel for every block of the domain, but
the pointers corresponding to blocks having no refinement at that particular level will be null.

MultiblockGriddingAlgorithmis a multiblock extension of the original GriddingAlgorithm class. The
multiblock version can be used almost the same as the original class, but it differs in that it uses the multiblock
communication schedules (see section 4) to transfer cell-tagging information across block boundaries.

3.2 Using multiblock classes in high-level algorithm classes

Each of MultiblockPatchHierarchy, MultiblockPatchLevel, and MultiblockGriddingAlgorithm, along
with their corresponding original non-multiblock classes, inherit from virtual base classes that allow interfaces
with SAMRATs high-level classes in the algorithm package. For example, TimeRefinementIntegrator’s con-
structor takes as arguments pointers to BasePatchHierarchy and BaseGriddingAlgorithm and stores them
as private data. The TimeRefinementIntegrator does not need to know whether its patch hierarchy pointer
points to a PatchHierarchy or a MultiblockPatchHierarchy, because the time integrator consists of high-
level operations such as initializing and advancing the entire hierarchy. The details of these operations are
delegated to lower-level classes, such as a level integrator class that is a problem-appropriate implementation
of the TimeRefinementLevelStrategy virtual base class.

4 Multiblock communication algorithms and schedules

Multiblock versions of the refine and coarsen algorithms and schedules have been added to SAMRAIin order
to handle data transfer and parallel communication on multiblock hierarchies. They can be used similarly
to the algorithms and schedules that exist for problems on rectangular domains.

4.1 MultiblockRefineAlgorithm

Like RefineAlgorithm, MultiblockRefineAlgorithm is used to register and manage a set of refinement
operations and to create schedules that will control the movement of data. MultiblockRefineAlgorithm
is constructed with a pointer to a RefineAlgorithm and will manage all refinement operations that have
been registered with the RefineAlgorithm. Additional refinement operations can be added by calling the
method MultiblockRefineAlgorithm: :registerRefine().

MultiblockRefineAlgorithm is used to create MultiblockRefineSchedule objects, which will execute
the communications operations that are registered with the refine algorithm. The overloaded versions of
MultiblockRefineAlgorithm: : createSchedule() are analagous to the versions of createSchedule() ex-
isting in RefineAlgorithm. All versions of createSchedule () take a pointer to MultiblockPatchStrategy
(see Subsection 4.3), which is a virtual base class that inherits from RefinePatchStrategy. The user must
create a class that implements the physical-boundary filling interface from RefinePatchStrategy as well
as an interface defined in MultiblockPatchStrategy for filling boundary data around singularities. The

MultiblockPatchStrategy may be null, in which case no data will be filled in physical boundary ghost
zones nor in ghost zones around a singularity.

4.2 MultiblockRefineSchedule

The most significant member function of MultiblockRefineSchedule is fillData(), which, like the mem-
ber of the same name in RefineSchedule, executes the communication operations. On each block of the
destination level, data is filled in the block interior, then ghost zones on block boundaries are filled from
patches lying on other blocks, then ghost data around the singularity and physical boundaries is filled.
fillData() takes an optional boolean argument do_physical boundary f£ill, with which the filling of
physical boundary ghost data can be turned off.

4.3 MultiblockPatchStrategy

MultiblockPatchStrategy is a virtual base class that inherits from RefinePatchStrategy and adds one
more pure virtual interface: £i11SingularityBoundaryConditions().

virtual void fillSingularityBoundaryConditions(
hier::Patch<DIM>& patch,
tbox: :List<typename MultiblockRefineSchedule<DIM>::SingularityPatch>&
singularity_patches,
const double fill_time,
const hier::Box<DIM>& fill_box,
const hier::BoundaryBox<DIM>& boundary_box) = 0;

The MultiblockRefineSchedule will call this function to fill ghost data around a singularity. Figure 3
shows a Patch that has a corner which touches a singularity point where three blocks meet. Since every
Patch in SAMRAI is still defined on a logically rectangular index space, there is data allocated for the ghost
zones at the upper right corner of this Patch, even though those zones do not represent any physical space
in the multiblock domain. The interface for fillSingularityBoundaryConditions() allows the user to fill
these ghost zones in a problem-specific manner.

If the singularity is a point of enhanced connectivity, as in Figure 4, then there are two or more sets of
data that can represent the corner ghost region of the Patch to be filled. The struct SingularityPatch
within MultiblockRefineSchedule is used to handle this case. A list of SingularityPatch is passed from
MultiblockRefineSchedule into fillSingularityBoundaryConditions(). The list will have one item for
each block that abuts the Patch at the singularity (the list will be empty in cases of reduced connectivity).
SingularityPatch is a struct that contains a Patch and an integer identifier of the block from which it
came. The Patch covers the index space of the ghost region that is to be filled, and it has pointers to
PatchData allocated for each data component that needs to be filled. The PatchData is filled with data
from the block indicated by the integer identifier. Thus there is access to data from all neighboring blocks
in the user-defined implementaion of £illSingularityBoundaryConditions().

4.4 MultiblockCoarsenAlgorithm and MultiblockCoarsenSchedule

In ordinary usage, the original CoarsenAlgorithm and CoarsenSchedule classes coarsen data from a fine
Patch onto a coarse Patch representing the same physical space, and no ghost data is used, thus no par-
allel communication is necessary. If that same behavior is all that is needed in a multiblock problem,
the same original coarsen classes can be used. However, in cases where ghost data is required to be
filled on the coarse level prior to the execution of the coarsen operator, MultiblockCoarsenAlgorithm

Block 2

777

I
|
Looooe R L R SR !
| I f ’ , ! |
I 1 N 1’ /7 ! 1
| 1 , 7 / | -
| I f / / | H
* * I |
I I /4 I
I I I I
| | | 1
I I I <
r-TTTrr T T T \/ I
I I 13 I
L _~~"1 Block 1
I
r-TTTrr T T T I //T
I I \// I
| | - |
| | P | |
[I I
I I I ‘\
| | [P
| | - |
| | -~ |
r-TTTrr T T T I I
I I I I I I I I I I
I I I I I I I I I I
| | | | | | | | [
| | | | | | | | __--T |
r----"r--"~"~"r-~"~"~"r--"~-""r---Tr---TTr-T-TTrT T o7 I I
| i Block 0 | | | | | |
S S N S S N B W
Filled from Block 2 Singularity
ghost zone
Patch Interior
Filled
from
Block 1

Filled from other patches within Block 0

Figure 3: A Patch that needs ghost zones filled at a singularity. The first picture shows a Patch where it is
located in a multiblock domain, and the second shows that the Patch is still defined in terms of a rectangular
index space. The ghost zones on the top and the right can be filled from the neighboring blocks, but the

zones in the upper right do not have corresponding cells on the other blocks.

Figure 4: A Patch that needs ghost zones filled at a singularity with enhanced connectivity. There are two
blocks that can be used to fill ghost data in the upper right corner.

and MultiblockCoarsenSchedule must be used. The usage of these classes is almost the same as that of
the original coarsen classes, but if MultiblockCoarsenAlgorithm is constructed with the optional boolean
argument £ill_coarse_data set to true, then the instances of MultiblockCoarsenSchedule that will be cre-
ated will use MultiblockRefineSchedule to pre-fill the coarse levels. Thus MultiblockCoarsenAlgorithm’s
coarsenSchedule () routine takes pointers to both CoarsenPatchStrategy and MultiblockPatchStrategy.
The CoarsenPatchStrategy pointer is used for user-defined functions related to the the coarsen opera-
tion, just as with an ordinary CoarsenSchedule, while the MultiblockPatchStrategy pointer is needed
to allow for the user-defined functions for refinement and boundary-filling that will be required when a
MultiblockRefineSchedule is used by MultiblockCoarsenSchedule.

