The ALICE Memory Snooper

By

Ibrahima Ba' and Barry Smith?

3/31/1999
Argonne National Laboratory, Argonne, IL

http://www.mcs.anl.gov/ams

! http://www.mes.anl.gov/~ibrahba
2 http://www.mcs.anl.gov/~bsmith

The ALICE MEMOIY SNOOPETcciiuiieeiiieestieeaieeesteeesteeesbeeeasseeesssseessssesssnseesssseessseeans 1
By ettt 1
Ibrahima Baand Barry Smith..........ccoooiiii e 1
3/31/1999 Argonne National Laboratory, Argonne, ILcccceeiiieriiiineniie e 1
htt://WWW.MCS.ANL.GOV/BIMIS ...ttt st e e sane e sare e nnneas 1
gL 0o [H o1 o o SRR URPOPSRPRI 4
ALICE MEMORY SNOOPER API ...ttt nnee s 4
F Y ST B L= o o SRR 5
The PUblisher OBJECT ... 6

The AMS CommuNiCaLOr ODJECTcccueiiiiiiieiiie et 7

The MemMOry ODJECEooiieieeiiee ettt e e ne e e annee e 8

[T= [0 o] o= ol AR 9
Header file and AMS DatatyPeSeeeiieieiiieeesiiee et 10

F N Y SR Y/ o U UPP PRI 10
ODbject it represSentsS Or MEANING........cooivereiiiee e eie et e e e e seee e seeeesnees 10

THE PUDIISNEr AP ...ttt nae e nneeenne e 10
Creating a Publisher and an AM'S COmMMUNICALONccoovueriiiiriiiie e siee e 11
Creating aMemOry ODJECcooiiiiiiie e 11
Adding Field Object(s) t0 an AMS MEMOIYcueveiiiieiiiie e 12
Setting Field Dimensions for Multi-dimensional arrays:ccccevceeeieeescienennnn. 13
PUBIIShING the MEMOIY: ... 13
Granting (Taking) Accessto (from) Other Threads:..........cccoeeviiiiiiinie e, 14
Waiting Access from Other Threads:oocvveiiieiiiie e 15
Destroying AMS ODJECES:......ccoiieieiiieeeitiee ettt et sae e s e 15

TNE ACCESSOE AP ...ttt e et e e rte e e e nne e e enneas 16
Connection to the PUDIISNEN:ooieee e 16
Attaching an AMS COMMUNICELON:ueeeiiiieiiieeaieeeeniiee e rieee e sieee e e eeeeenes 17
Getting the MemOry liSh:... ..o s 18
AtaChING M EIMOIY ...t e e s e enes 18
Getting the list of Fields attached to aMemOry:.........coceeiiieeiiiie e, 19
Getting the FIEld’ S PrOPEItIESviiiiie e 19
Getting the Field' s Size for Multi-dimensional arrays.........ccccocceeeieeenieeescieeesen. 21
Receiving an update from the SErVEr: ..o 21
Setting the Fleld S Properties:o 22

Updating the Publisher MemOory:ooooiiiie i 22

LOCKING @IMEBIMOIY: ..ottt e et e st e e ssne e e s nneeeenes 23
LOCKING @IMEBIMOIY: ...ttt et e e e e ssne e e s nseeeenes 23
DetaChing @ MEIMOIY:oiiiiiie ettt r e e e e snne e e s nneeeenes 24
Detaching an AMS COMMUNICELON:ueeiiieeeiieeesiieeesieeeseeeeseee e e see e seee e 24
API for both the Accessor and the PUblisher ... 24
The Monitor Program (IMONL)eeeoeeee i 26
Starting the MONITOL: ...t enneas 26
GELING NI 26
Connecting to the server (PUDIISNEr): ... 27
Attaching 8 COMMUNICALON:eiiiiiieiiie et eiee ettt e e e e e reeeenes 27
Printing the content Of aMEMOTY:oooiiiii e 27
Printing the content of @aFIEld:.........cooo e 28
Modifying aField’ S CONENt:.........ooiiiie e 29
Sz (RS o] 10110720 PR TS 29
The ALICE Memory Browser Client Program...........cccceeeeeeiieeeniee e 31
SEAtING thE AMB ... e 31
Using the ALICE MeMOrY BrOWSEYcoeiiuiiiiniiieeiiieesiiee e seee e saee e seee e 32
Monitoring an application with ALICE Memory Browserccccovceeeneeeenveeene 34
Visualizing Data with the ALICE Memory BrOWSENcccceeevieeenieeenieee e 35
The Matlah Clent Program ... 36
Using the Matlah ACCESSOr APl ... 36
Accessing the data with one AP Call.........coceiiiiiiiie e 38
Using Matlab interpreter interact with the data...........ccooceeivieinieinieee 39
Using Matlab interface to build a custom client ACCESSOrccccvvvveveeeiiiieeeeeinnen. 41
Introduction

The ALICE (Advanced Large-Scale Integrated Computational Environment) MEMORY
“SNOOPER” (AMYS) is an application programming interface (API) to help in writing
computational steering, monitoring and debugging tools. The motivation for the AMS is
to let users connect to the “running application” and access or modify variables
(memory). Current monitoring systems require alot of custom programming, rely on
third party communication libraries, and are difficult to port to other platforms. We tried
to resolve some of these problems by bundling with the API a portable communication
library using TCF/IP, providing the API in the C language, and building general purpose
C, JAVA GUI, MATLAB, and VTK monitoring clients. The AMS is distributed free of
charge, and the source code is publicly available. It is usable from C, C++, and Fortran.
The AMS is being integrated with other components of the ALICE project, such as
PETSc.

ALICE MEMORY SNOOPER API

With the AMS API, a programmer only needs to make minor changes to the running
application to publish (make accessible to other processes) its memory. In particular, the
running application does not have to be interrupted by the client (Accessor); the Accessor

“snoops’ on the application. The design of the API relies on the use of threads for
creating tasks to process requests from clients, and uses TCP/IP to communicate between
the client program (Accessor) and the main application program (Publisher).

Main Listening ?Cs:yg}tlzgronous Client

Application | Publisher Communication Application

Thread Thread |4 » (Accessor)
AMS Design

An important goal of the AMS isto provide a high-level API that manages most of the
low-level, tedious-to-program details (communications and threads), and yet is flexible
enough to let programmers build on top of it custom computational steering, debugging,
and monitoring systems.

The AMS implements an object-oriented design in C. C was chosen for maximum
portability and to maximize the number of languages in which the clients and servers
could be written. Data structures within the API are created, manipulated, and destroyed
through low-level API’s. There are four types of objects used inthe AMS. The
hierarchical relationship among these objects is shown in the next figure.

AMSIPuhIiSher

AMS Communicator
AMS Communicator

AMS Communicator Fi elf
Field

The following table shows how the levels of the AMS object hierarchy fit into the
structure of atypical running application:

Each Hasits own
Running application Publisher
Component or library AMS Communicator
Object Memory
Array or variable Field

The purpose of the Publisher isto create worker threads that will respond to client
requests and ensure the proper synchronization among the different threads in the main
application. The Publisher APl manages the creation, publishing, and destruction of the
memory objects. The AMS Publisher design is based on the use of threads that handle
requests from clients. Threads are concurrent tasks within a process.

The Accessor API isthe client side for the AMS. The Accessor is used to access the
server’'s memory in a consistent and transparent way. The API handles the
communication connection, coding and decoding of requests, data transfer, byte ordering,
and the creation of memory objects on the client side that mirror objects created on the
server. The APl aso manages al the consistency and integrity of these objects (i.e.,
access control, type validation).

The Publisher Object

At the top of the hierarchy is the Publisher object. This data structure uniquely identifies
the application being monitored. The Publisher’s identity is given by the hostname and
port number to connect to. The Publisher is started by the first call of

AMS Comm_publish. This call creates a server thread that listens on a particular TCP
port (8967 by default) for incoming requests. The user could change this port by the
setting the environment variable AMS _PORT. The server thread isthe first point of
connection for a client program. The thread manages and keeps track of all current
connections and pending requests. It is also used to properly shutdown the server.

In the future, we intend to develop a daemon program that will handle some of the server
thread work on alarge network (LAN/WAN) based system. Client programs could
connect to the daemon on a known port or through a broadcast call onaLAN. The
daemon would then list all current Publishers and addresses. The daemon aso could
authenticate clients and verify their access attributes. This would manage potential
conflicts among different clients trying to monitor the same program. The following
figure shows the role of the daemon program would play in the AMS system.

PUBLISHER

)ﬂtfn//' (Server)
A

DAEMON

]

Registered Publisher

ACCESSOR
(Client)

The AM'S Communicator Object

The AMS Communicator object is the data structure that logically encapsulates all
“related” memory objects within a program. An AMS Communicator, identified by a
unique name and port number, is also a server thread that manages a collection of
memory objects. The idea behind an AMS Communicator is that applications could
consist of several components and libraries. These components or libraries may, each
separately, be linked with the AMS API and have separate AMS Communicator objects
that could be published and monitored.

As mentioned above, the AMS Communicator object is created by acall to

AMS _Comm_publish. This call creates a data structure associated with the AMS
Communicator object and starts a server-thread that will listen to requests addressed to
this particular AMS Communicator. Thisthread (AMS Communicator thread) finds an
available port on its host system, informs the Publisher of this port number, and then
waits for incoming requests on that port. A client issuing a connection with the server
accesses the Publisher first to get the AMS Communicator’s port number. The following
figure illustrates the connection scheme.

Publish-thread . Get the Communicator port

Client process

Comm-thread 2. Connect to the Communicator

The AMS Communicator’s data structure keeps information on currently connected
clients. When a client process sends a request to the AMS Communicator thread, a new
worker thread is spawned to handle the request. The AMS Communicator will not shut
itself down unless all the worker threads have processed pending requests. If arequest
arrives after the AMS Communicator has started shutting down, the worker thread sends
back a shutdown warning to the client program.

Besides keeping track of clients, the AMS Communicator maintains a linked list of
Memory objects. The following section discusses the role of these objectsin the AMS
design.

The Memory Object

A Memory object maintains a collection of related memory fields, which represent
variables. Any instance of an application being monitored contains at least three threads
that would have to compete for access to the memory: the main application thread, the
AMS Communicator thread, and the worker thread. Before reading or modifying an
individual memory field, the application must first “take access’ to (lock) the Memory
object that holds that field. Afterwards, the thread must “grant access’ to (unlock) it so
other threads could use it. This synchronization procedure is the only significant change
required in the user application for enabling the use of the AMS.

Because access is granted to entire Memory objects, not to individual memory fields,
Memory objects are the basic units of data synchronization. When one variablein a
Memory object is changed, the AMS assumes that any of them might have changed. In an
object-oriented program, you might want to group the member variables of an object into
one Memory object. To ensure that related variables in the same Memory object are
automatically updated properly, the Publisher allows the user to register “ setter methods’
to be used when changing a memory field (with the API call

AMS Memory_set_field_func). When the AMS Communicator receives a request from

the Accessor to modify avariable, it would lock the memory, and then call the user-
defined setter method in order to update the field properly.

Each memory object maintains a current step number, which is useful in synchronizing
the updates made by different processorsin a parallel environment. Unless you explicitly
“take read access’ only, the AMS increments the Memory’s current step number for that
processor each time you take access to aMemory object. In aparallel environment,
when an Accessor requests a Memory object, the processors will agree on a single step
number at which they will each send datato (or take data from) the client.

Field object

Individual variables or arrays are stored in Field objects, each of which belongsto a
particular Memory object. Field objects are at the bottom of the AMS object hierarchy,
and are created by acall to AMS Memory_add field. Besides keeping a pointer to
variable data, the Field object contains information on the user memory type (integer,
float, double, or string), length, access (read/write) and the shared type (distributed,
common, or reduced). Distributed arrays are those that are stored across different
processors. If aField is declared distributed, the AMS will contact each processor to get
its part of the data. Fields that are declared common are accessed on only one processor.

Field objects should be viewed not only as a pointer to data, but also as any entity that
can be manipulated from the client side. In the future, we plan to support user functions
as type of fields. We are not trying to implement a remote method invocation protocol,
but smply to provide the user with basic object types. If you are interested in more
complex systems, you should consider standards in distributed computing such as
CORBA, JAVA RMI, or DCOM/COM+.

Field objects have aimost the same representation on both the client and the server,

except that on the server we do not store any user datain the field structure, but instead,
we keep a pointer to the dataitself. This allows all threads within the application,
provided they are synchronized, to access that same memory. The Field object stores the
number of elementsin its array. Using the type of the field, we determine the actual byte
size of the field. This model allows usto store and retrieve a more complex data
structure, such aslist of strings. The following graph summarizes the underlying structure
of the Field object. Below is an explanation of the different fields.

Pointer to User Data

Datatype

Datalength

Reduction type
Shared type

10

The Shared type could be defined as AMS_COMMON, AMS_REDUCED, or
AMS DISTRIBUTED. The AMS DISTRIBUTED typeisused only in a parallel
environment.

Header fileand AM S Data types

All the AMS high-level objects described above are defined in the header file ams.h.
Note that the user does not have direct access to the Field object. The AMS API hidesthe
complexity of these high-level objects and presents them as integersto the user. The
ams.h header file aso contains alist of error codes used in the API. Each error code
explanation can be obtained by a call to AMS Explain_error. By default, error messages
are printed to stderr; you can redirect them to afile with the call

AMS Set option(AMS _LOG_FILE, “ myfilename™).

Following is alist of the most common types used in the AMS API:

AMS Type Object it represents or meaning

AMS Memory Memory object

AMS Memory type Memory access type (read, write)

AMS Data type Field data type (e.g. integer, float, double,
boolean, string)

AMS Shared type Field distribution type (AMS COMMON)

AMS_Reduction_type How afield is distributed across different

processors (AMS_MIN, AMS _MAX, or
AMS_SUM) (only useful for reduction

type data)
AMS Comm AMS Communicator object
AMS_Comm_type MPI processors or Clusters of workstations

(use NODE_TYPE, or MPI_TY PE)

Now that we have described the different data objectsinthe AMS, let uslook at their
implementation and how the AMS API manipulates these objects. There are two sets of
APIs: The Publisher AP, linked with the user’s main application, and the Accessor API,
used by the user to communicate/interact with the main application.

The Publisher API

11

The Publisher API isthe AMS component to be used in the server (main application)
side. The API consists of a set of calls designed to create threads (tasks) that will listen to
incoming requests from clients. Other API calls are used to create memory objects and to
ensure proper synchronization among concurrent threads. In this section, we will
enumerate the steps needed to create a Publisher. The example used in this section can be
found in the testpub.c file.

Creating a Publisher and an AM S Communicator

A Publisher is created with the first call that creates an AMS Communicator. To create an
AMS Communicator, the following API call is used:

AMS _Comm comm; /* AMS Communicator */
char *msg; [* Pointer to error messages */
int err;

err = AMS_Comm_publish("simple", &comm, NODE_TYPE, NULL , NULL);
AMS Check _error(err, &msg);

This sequence creates an AMS Communicator called “simple’. The cal returnsthe id of
the AMS Communicator through the variable comm. The NODE_TY PE indicates that we
are not using MPI processors. The fourth parameter (alist of hostnames) is set to NULL
to use just the local host. The last parameter (alist of port numbers corresponding to the
hostsin the list) is set to NULL to let the system determine the port numbers.

The call to AMS _Check_error macro will display a message if an error has occurred. (It
will give you a pointer to the error message in msg). If the call is successful, a Publisher
is started and an AMS Communicator is created and started. At this moment, we have
three threads running in the main application. One thread representing the user
application, another thread representing the Publisher. This thread is listening on a known
TCP port for anew connecting client. A third thread is waiting (on a TCP port) for
particular requeststo the AMS Communicator. The next call to AMS _Comm_publish will
create only an AMS Communicator; the Publisher is created only in the first API call.

Creating a Memory object
After an AMS Communicator is created, a Memory object can now be created and

attached to it.

AMS_Memory memory;,
err = AMS Memory_create(comm, "simple_memory”, &memory);
AMS Check_error(err, &msg);

12

This call createsan AMS Memory object called “ssmple_memory” that is identified by
the id returned in the memory variable. This call will fail if the AMS Communicator
identified by comm s not valid (has not been successfully published) or the Memory
name is already in use.

Adding Field Object(s) toan AMS Memory

Memory Field s objects are created by the user and attached to an existing Memory
object. The Field object isnot in itself manipulated by the user. Through the API, the user
provides the properties of the Field. The Memory has to be destroyed in order to delete

al the fields in that Memory. To add a Field, the following calling sequence is used:

intint_ elem= 1, /* An integer field to be published */

err = AMS Memory _add field(memory, "int_elem”, &int_elem, 1, AMS INT,
AMS WRITE, AMS COMMON, AMS REDUCT_UNDEF):

AMS Check _error(err, &msg);

This call adds a Field object called “int_elem” to the Memory. The call will fail if the
Memory object isinvalid (has not been successfully created), or the Field name already
exists in this Memory, or if any of the other parametersisinvalid. Note that we passthe
address of the integer int_elemto the API call. This address is referenced whenever we
need accessto thisfield value for reading or writing (updating). So the Field's data are
not stored, only a pointer to the datais kept. The Field’'s length is also passed as a
parameter. In our example, int_elem has alength of one (1). This length does not
represent the number of bytes (which is sizeof(int)), but instead the number of integersin
the field. The other parameters describe the datatype (AMS_INT for integer), the access
type (AMS_WRITE), the shared type (AMS_COMMON), and the reduction type
(AMS_REDUCT_UNDEF). The reduction type is always undefined when the shared
typeis common. The API supports other datatypes (AMS_FLOAT, AMS DOUBLE,
and AMS_STRING). The string type could be used for publishing non-numerical fields
such as a program stack (function names), object names (to monitor for instance the
creation and destruction of objects within a program which is useful for debugging
memory leaks), and general logging information that traditionally is dumped to afile.
Two accesstypes are provided: AMS READ and AMS WRITE. To alow aclient to
modify the Field’s data, you must designate AMS WRITE access.

If successful, this API call will create a Field object and attach it to the Memory. Other
Fields can be created and added to the same memory. The following sample code adds an
array of float to the same Memory:

float float_arr[20]; /* A field of arraysto be published */

err = AMS Memory _add field(memory, "float_arr", float_arr, 20,

13

AMS FLOAT, AMS READ, AMS COMMON, AMS REDUCT _UNDEF);

AMS Check_error(err, &msg);

Setting Field Dimensions for M ulti-dimensional arrays:

When publishing a multi-dimensional array, the user must specify the array’s dimension
so that aclient could retrieve the information and reconstruct the array. The AMS
provides the following API call to set the dimension information:

float float_arr[20][10]: /* A 2-d array to be published */
intdim= 2; /* Number of dimension of the array */
int start_ind[2], end_ind[2]; /* Array of starting and ending indices */

gtart_ind[0] = O; [* Sarting index in the first dimension */
end ind[0] = 19; /* Ending index in the first dimension */
gtart ind[1] = 0; [* Sarting index in the second dimension */
end ind[1] = 9; /* Ending index in the second dimension */

err = AMS Memory_set field block(memory, "float_arr”, dim, start_ind, end_ind);
AMS Check_error(err, &msg);

Now that we created the last object (Field) in the chain, we need to signal the application
to Publish the Memory so clients could access it.

Publishing the Memory:

The following call makes a Memory and its attached fields available to connecting
clients:

err = AMS Memory_publish(memory);
AMS Check_error(err, &msg);

If successful, clients program can connect to the AMS Communicator, and browse the list
of Memory within that Communicator. Each Memory will have a list of Field attached to
it.

Once the Memory is published, the user has to deal with synchronization issues. Thisis
the most important part of the AMS API. The following section describes the
synchronization calls:

14

Granting (Taking) Accessto (from) Other Threads:

Three API calls are used for synchronization among threads. These calls are placed
before and after any use of avariable that is published in a Field. Depending on how fast
and important are the changes in the published Field, the user could either perform a
global lock at a high level (outside a loop for instance), or alocal lock. The following
segment of code uses what we call local locks:

fori=0;i<20;i++){
[* Take access */
err = AMS Memory_take write_access(memory);
AMS Check _error(err, &msg);

[* Perform some operations on the data */
if (float_arr[i] || i1%2)

float_arr[i] = O;
else

float_arr[i] = int_elem;

[* Grant Access */
err = AMS Memory_grant_write_access(memory);
AMS Check _error(err, &msg);

In the segment above, we used AMS Memory_take write access because the float_arr
field is being modified by the application. Otherwise, AMS Memory take read access
would have been more efficient since client threads seeking read access would not block
if the server (main application) has only read access. In other words, multiple threads
may gain simultaneous read accesses while only one thread can gain write access.
While the write access is taken, requests by other threads are blocked. The AMS API
uses the same synchronization scheme to maintain consistency among objects in the
Accessor and the Publisher. One should weigh the advantage of local vs. global locking
strategies. Remember that synchronization resources are shared among different threads
and locking a Memory for along time may delay communications and requests
processing from the clients and the server.

Note: Once amemory object is published, no particular thread owns alock to it.
Therefore, there is no need initially to call AMS Memory_grant_write_access to alow
other threads to access the memory. The main thread must take access every time it
needs to read or modify the memory once the memory is published, and grant access
afterwards, until the memory is unpublished. Y ou cannot grant access to a memory if
you did not taken accessto it first. In addition, to release its ownership, the thread must
call AMS Memory_grant_write_access once for each time that

15

AMS Memory take write access was called, and AMS Memory grant_read access for
each time AMS Memory take read accesswas called.

Waiting Access from Other Threads:

Two API calls are used for conditional waiting among threads. These APl are very
important if the thread is waiting for certain event to happen to proceed. The waits are not
active (low CPU usage). The following segment of code uses what we call local locks.
The following segment will block the thread until the memory is read, or a timeout
OcCCurs.

[* Wait read access */
err = AMS Memory wait_read access(memory, timeout);
AMS Check_error(err, &msg);

The next segment will block the calling thread until the memory is written by another
thread.

[* Wait written access */
err = AMS Memory_wait_written_access(memory, timeout);
AMS Check_error(err, &msg);

Destroying AM S Objects:

The user isresponsible for destroying all objects previoudly created. It isimportant that
these objects be destroyed so that the associated resources (memory, compute threads,
etc...) bereleased. There aretwo AMS objects to be destroyed: the Communicator object
and the Memory object. The following calls are used:

err = AMS Memory_destroy(memory); [* Destroy the Memory Object */
err = AMS Comm_destroy(comm); /* Destroy the Communicator */

Destroying the Memory object will release the resources associated with it and with all
the fields attached to the Memory. It will also notify current connected clients that the
Memory is being unpublished. If clients are not notified Memory locks might not be
released. This could result in deadlocks and clients waiting for response to their requests.
We recommend that all objects be destroyed before the program ends or aborts.
Destroying the AMS Communicator objects isimportant. It shuts down the
communication thread, and destroys all attached memories and fields.

16

The Accessor API

The Accessor represents the client component of the API. Once a main application is
running the published information (memory, fields) can be accessed. The Accessor API
provides a set of general-purpose, high-level calls that allow the user to accessthe
information in the main application. In this section, we will discuss in detail each API
call and give a context in which it is used. For more information on actual
implementation, please refer to the monitor program (mont) provided with the examples
source code. That program interprets simple user commands from the prompt or afile
and executes the corresponding API calls. A Java GUI interface and aMATLAB
interface are available on some architectures to demonstrate how one could build
complex user interface clients on top of the API. We expect most users to build custom
clients for their different needs (interacting, steering, monitoring, debugging, etc.).

Communication between the server (main application) and the clientsis stateless
(asynchronous) in that the connections are limited to specific requests. Thismodel isa
transactional-based model. Once arequest is completed, the server does not remember
the client. This method has a big advantage in that the server does not have to worry
about idle client programs that do not release the much need communication resources.
The drawback is that the user has to connect and disconnect for every request. However,
we tried to bundle the most common and related requests in the same API calls. In the
future, we plan to publish the specification of the communication protocol (encoding and
decoding of requests) between the client and the server so that motivated users could
develop their own clients API. Our implementation of the protocol is adapted from the
tftp (trivial file transfer protocol) program by Richard Stevens®.

The following sub-sections detail each Accessor API call. The order isimportant in that it
reflects what atypical client program will have to do.

Connection to the Publisher:

Thefirst step is a connection to the Publisher. A port number and a host name are
inputted; the call returns the list of published AMS Communicators and how to access
them (hosthames and port numbers):

|nt port = -1, err, i;
char host[255], **comm _list, buff[255], *p, *msg;

[* Get the Communicators’ list */
err = AMS Connect(host, port, &comm _list);
AMS Check_error(err, &msg);

3 http://www.kohala.com/~rstevens/unp.html

17

If successful, the comm_list parameter will contain the list of AMS Communicators
separated by the pipe “|” sign. If the Publisher has only one AMS Communicator then,
the user need not to parse the comm list parameter. This parameter can be used to attach
the AMS Communicator without further processing. However, the following segment
code shows how one may extract the AMS Communicator name from the list:

while (comm _list[i] && i < MAX_COMM) {
strepy(buff, comm list[i]);
p = strtok(buff, "|");
printf("\t %s", p);
p = strtok(NULL, "|");
printf(" (host = %s) ", p);
p = strtok(NULL, "|");
printf("(port = %s) \n", p);
i++;

MAX_COMM is a constant defined in ams.h. It defines the maximum number of AMS
Communicators the main application could publish. Note that an AMS Communicator
can have multiple hosts in a parallel environment.

Given the information for each AMS Communicator, the user can now attach to an
particular AMS Communicator.

Attaching an AM'S Communicator:

To attach an AMS Communicator, one need only the AMS Communicator’s name. The
request is actually sent to the Publisher. Attaching to a Communicator is creating a mirror
of the server’s object on the client side. Thismirror object contains the list of hosts
belonging to the same AMS Communicator and their port numbers. The following call
attaches a Communicator:

AM S Commalice;

[* Attach to a Communicator */
err = AMS Comm _attach(com_name, &alice);
AMS Check_error(err, &msg);

The call will fail if the com_name is not published in the server side. The variable alice
will contain avalid id for the AMS Communicator. The API will build a structure almost
identical to the one on the server. If the AMS Communicator were already attached, this

18

call will de-attach it first, and re-attach it to make sure that the current AMS
Communicator’s state is consistent with the one the server.

Getting the Memory list:

Once attached to a Communicator, the user needsto get the list of published memories.
The following call provides such alist:

char **mem list, *msg;

[* Get the memory list */
err = AMS Comm_get_ memory_list(alice, &mem list);
AMS Check _error(err, &msg);

/* Print thelist */
while (mem list[i])
printf("%s\n", mem_list[i++]);

The user should copy the memory list into alocal buffer. Otherwise, subsequent callsto
AMS_Comm_get_memory_list will override the current list. The mem list variable
contains names of all published memories. The user then needs to attach a particular
memory for more details (its fields). This API call will fail if the AMS Communicator
alice has not been attached.

Attaching a Memory:

A Memory object is attached with the following call:

char mem_name] 255] ; [* Memory name */
unsigned int step; [* Memory step number */
AMS _Memory memory;,

[* Copy the Memory name you want to attach to it */
[* Thisexample uses* my_memory” asa name*/
strepy(mem_name, “ my_memory”);

[* Attach the memory structure */
err = AMS Memory_attach(alice, mem_name, &memory, &step);
AMS Check_error(err, &msg);

19

The call attaches the Memory identified by the string in mem_name. The first input
parameter (alice) isthe AMS Communicator that contains this memory. The third
parameter is an output id of the Memory object, and the last parameter indicates the
Memory step number. This identification indicates the Memory version number. Once, a
Memory is attached, a mirror copy of the server’s Memory object is created on the client
side. You can attach multiple memories at the same time by separating them with “|".
Now we have attached a Memory, we are ready to look at its Fields. The next API calls
list the Fields' name, access and modify their content.

Getting thelist of Fields attached to a M emory:

Aswe described in the APl Design section, the Fields are the low-level objectsin the
AMS API hierarchy. These objects provide copies and properties of the physical memory
in which we are interested. The next call allows the user to retrieve alist of names of
Fields attached to a particular Memory, not the objects themselves.

char **fld_lit:
err = AMS Memory_get field_list(memory, &fld_list);

AMS Check _error(err, &msg);

Again, one may need to save a copy of the list so that subsequent callsto the API will not
override the list. This call will fail if the Memory has not been attached or the given id,
memory, isinvalid. Given the list of fields, the user can now request information on a
particular field. Thisis performed by the next API call.

Getting the Field’ s Properties

Users do not have direct access to the Field object, instead, through the following call,
they retrieve the different attributes of a Field.

AMS Memory memory; [* Memory id */

AMS Memory type mtype; [* Memory type */

AMS Data type dtype; [* Data type */

AMS Shared type stype; [* Shared type */

AMS Reduction_type rtype; /* Reduction type */

int len; [* Data length */

void *addr; [* Pointer to the data */

char *fld_name; /* Input parameter, field name */

[* Get Field info */
err = AMS Memory get field info(memory, fld_name, &addr, &len, &dtype, &mtype,

20

&stype, &rtype);
AMS Check_error(err, &msg);

If successful, this call returns all the information regarding the Field. It also returns a
pointer, addr, to a copy of the data. Using the variable dtype, and len, the caller can print
the data in addr, as follows:

char **tmpstr;

[* Data type and data format */
switch(dtype) {
case AMS INT:
printf("\t Data type: Integer \n");
printf("\t Data value: \n");
for (I=0; i<len;i++)
printf("\n\t [%d] = %d",i, *((int *)(addr) + i));
break;

case AMS DOUBLE:
printf("\t Data type: Double\n");
printf("\t Data value: \n");
for (I=0; i<len;i++)
printf("\n\t [%d] = %8.2f",i, *((double *)(addr) + i));
break;

case AMS FLOAT:
printf("\t Data type: Float \n");
printf("\t Data value: \n");
for (I=0; i<len;i++)
printf("\n\t [%d] = %8.2f ",i, *((float *)(addr) + i));
break;

case AMS STRING:
printf("\t Data type: Sring\n");
printf("\t Data value: \n");
tmpstr = (char **)addr;
for (I=0; i<len;i++) {
if (tmpstr[i])
printf("\n\t [%d] = %s",i, tmpstr[i]);
else
printf("\n\t [%d] = null ",i);
}
break;

(.j.é.fault:

21

printf("\t Data type: Undefined \n");
break;

The constant AMS _INT, AMS FLOAT, AMS DOUBLE, AMS BOOLEAN, and
AMS STRING are defined in the header file ams.h. Note that len represents the number of
elements and not the data length (number of bytes).

Getting the Field’s Size for Multi-dimensional arrays

The AMS has support for multi-dimensional arrays. The dimensions of an array can be
retrieved by acall to AMS_Memory_get _field block:

int dim, *start, *end;

err = AMS Memory_get_field_block(mem, fld_name, &dim, &start, &end);
AMS Check _error(err, &msg);

dim will indicate the number of dimension of the array, and start, end will hold the
staring index and ending index for each dimension. For instance, a two-dimensional
array, A[20, 10] will have the function return dim=2, start[0]=0, end[0]=19, start[1]=0
and end[1]=9.

Receiving an update from the server:

Often the client needs to receive updates of its local Memory copy from the Publisher.
The following API call updates the client Memory:

AII\)IS_Memory memory;
int err, changed, step;
char *msg;

/* Receive an update */
err = AMS Memory_update recv_end(memory, &changed, &step);
AMS Check_error(err, &msg);

If successful, the client will receive the latest copy of all the Fields attached to this
Memory. This call will fail if the Memory has been unpublished (by the server) or
detached (removed) by the client. The variable changed will be set to 1 if it downloaded

22

anew version from the server, and O if the client’s copy of the memory was still the most
recent and thus no download was needed. The variable step indicates what the server’s
current step of calculations. This numbers indicates how many times the server locked
and unlocked this Memory. Since this variable is a type of integer, its value is given
modulo MAX_INT or 2/32 - 1.

Setting the Field’ s Properties:

If the Field’s memory typeis AMS_WRITE, the user could modify the Field's data by
the following API call:

AMS_Memory memory; /* Input: Valid Memory id */

int len; /* Input: New Data length */

void *addr; [* Input: Pointer to the new data */
char *fld_name; /* Input: Field name */

err = AMS Memory _set field info(memory, fld_name, addr, len);
AMS Check_error(err, &msg);

This call updates the local copy of the Field identified by fld_name by the new datain
addr. However, the remote copy is not yet updated. This allows the user to change others
fields data before sending an update. The actual update is performed by the next API
cal:

Updating the Publisher M emory:
Once the modification of the client copy of a Memory is complete, the user can now post

an update request so that the server (Publisher of the Memory) gets the latest copy of the
Memory.

AMS Memory memory; /* Input: Valid Memory id */
int er; [* Output: Error code */
char *msy; [* Output: Error message */

err = AMS Memory_update send_begin(memory);
AMS Check_error(err, &msg);

All the Fields that are attached to this particular Memory are sent to the server to update
its copies. Upon return, the function indicates that the server has updated successfully (if
there are no error messages) its Memory.

23

In the design phase, the AMS API provided support for Memory updates in the
background. That is, the AMS Memory_update send begin would return as soon as the
datawas sent to the server (not the completion of the update itself). With that scenario,
another call, AMS Memory _update _send end would be necessary to let the client that the
update has finished. So far, we have not decided to implement the latter API call. This
may change in the future to at least give developers the choice of handling the update
with one call or two.

Locking a Memory:

The Accessor API provides away to lock a Memory object on the server, thus stopping
the publisher main’sthreat. Thisis useful when the user would like to pause the
application so that he/she can do some processing on the client side. Thisis done at the
client or the server level. To detach a Memory, the next API call is used:

AMS Memory memory;,
int err, timeout;
char *msyg;

[* Detach the Memory */
err = AMS Memory_lock(memory, timeout);
AMS Check_error(err, &msg);

The application main thread will block until timeout milliseconds, or until the client calls
AMS Memory_unlock(). If timeout is O, the main thread will block until the client
unblocksiit.

Locking a Memory:
The Accessor API provides away to unlock a Memory object on the server, thus

signaling the publisher main’ sthreat to proceed. Thisis done at the client or the server
level. To unlock a Memory, the next API call is used:

AII\)IS_Memory memory;,
int err;
char *msyg;

[* Detach the Memory */
err = AMS Memory_unlock(memory);
AMS Check_error(err, &msg);

24

Detachinga Memory:

The Accessor API provides away to delete aMemory object and release the associated
resources. Deleting a Memory does not involve any connection with the server. Thisis
done at the client level. To detach a Memory, the next API call is used:

AII\)IS_Memory memory;,
int err;
char *msyg;

[* Detach the Memory */
err = AMS Memory_deattach(memory);
AMS Check _error(err, &msg);

The Memory isfirst disconnected from the local copy of the AMS Communicator and
then deleted. Thiswill also delete all the Fields connected to it.

Detaching an AM'S Communicator:

When a client attaches an AMS Communicator, it isindicating that further requests
regarding Memories and Fields are directed to the current attached AMS Communicator.
Detaching a Communicator not only release the corresponding resources (memory), but
also resets the current AMS Communicator’s port. The server (Publisher) is notified by a
client that a Communicator is being detached. This will be used in the future to manage
concurrent access by different client to the same AMS Communicator. For instance, only
one client would have the right to modify a certain Memory while others have read
access. When this particular client detachesits AMS Communicator, the server could
then give write access to another client.

To detach a client, the following API call is used:

AMS Comm alice;

int err;

char *msg;

/* Detach the Communicator */

err = AMS Comm _deattach(alice);
AMS Check_error(err, &msg);

API for both the Accessor and the Publisher

25

The following API’s are used to both from the Accessor and the Publisher. They
generally serve to control the behavior of the AMS libraries by changing some default
behavior.

API Common to the Publisher and Accessor
AMS Explain_error

AMS_Print

AMS Memory_lock
AMS_Memory_unlock
AMS_Set_abort_func

AMS_Set_exit_func

AMS_Set_output_file

For more information, please go to the AMS Web page http://www.mcs.anl.gov/ams

26

The Monitor Program (mont)

The Monitor program (mont, or mont.exe in Windows) is our first example on using the
Accessor API. Therole of the Monitor isto give the user aquick start on testing a
Publisher program. The Monitors implements basic commands such as connecting to the
server, attaching a Communicator, or Memory, and displaying/modifying the content of a
Memory. The program can aso take alist of commands from afile and execute them.

Starting the M onitor:
The AMS instalation program puts the Monitor program in src/examples directory. To
run the program type the command:

mont

This command gives you back the Monitor prompt:
(mont)

From now on, we assume that the Publisher program simple, which is located in the same
directory as mont, has been started on host called host.mcs.anl.gov for example. The
following subsections describe a complete session of the Monitor.

Getting help:

Y ou can get help from the prompt by typing “help” or “?’

(mont) help
? - to get thishelp
ac - to attach communicator. Syntax: ac <comm_name>

connect - to connect to server. Syntax: connect <hostname> [port#]
exit - exit the interpreter
help -togetthishelp
mf - to modify a field value. Syntax: mf <fld_name> new_value
pf - to print the content of a field. Syntax: pf <fld_name>
The field must be in current focus memory
pm - to print memory fields. Syntax: pm [mem_name]
If memory name is omitted, the current focus memory is printed
pml - to print thelist of published memory. Syntax: pml
quit - to exit the interpreter
set - toset an option
sfc - to set focus on a communicator. Syntax: sfc <comm_name>
Thiswill make this communicator the default for memory accesses
sfm - to set focus on a memory. Syntax: sfm <mem_name>
Thiswill make this memory the default for field accesses
status - to get current status of the monitor variables
verbose - not implemented yet

27

(mont)
Connecting to the server (Publisher):
To connect to the Publisher using the default port (8967) use the command “connect”:

(mont) connect host.mcs.anl.gov

Connected. The following communicators are published:
simple (host = host.mcs.anl.gov) (port = 58875)

(mont)

The command returnsthe list of AMS Communicators that are published. In our
example, one AMS Communicator (simple) is published. Note that the port number,
58875, isreturned to indicate to the client how to reach this particular AMS
Communicator.

Attaching a Communicator:

Once we have alist of Published AMS Communicators, we are ready to attach to one of
them. Attaching to a Communicator means that future requests regarding Memory objects
are sent to this AMS Communicator. To attach to AMS Communicator use the command
113 ac” :

(mont)ac simple

Communicator simple has been attached
Published memory(ies):

simple_memory

(mont)

The command attaches the AMS Communicator “simple’. It aso returnsthe list of
published Memory objects within this AMS Communicator. In our example, one
Memory, “ ssmple_memory” , is published.

Printing the content of a Memory:

Going further down in the hierarchy, we can print the content of the Memory object by
using the command “pm”:

(mont) pm simple_memory

Memory simple_memory contains the following fields
int_elem
float_arr

(mont)

Our Memory object contains two fields: int_elem, and float_arr. These represent the
names of the fields as they were published. Note, that the command pm requires an

28

argument memory name, unless the sfm* mem _name” command has previously been
type. The set focus memory (sfm) is used to set the default name to use for commands
that require a memory name.

Printing the content of a Field:

Once the user got access to the Memory, the command “pf” prints the content of a Field
that is attached to the current Memory. The following example printsthe Field int_elem:

(mont)pf int_elem

Field int_elem descriptions:
Memory type: Read/Write
Shared type: COMMON
Data type: Integer
Data value:

[0 =1
(mont)

The Field properties are printed, and its value is displayed. In this example, int_elemisan
integer. It has one element with a value of one ([0] = 1). The access type of this Field is
Read/Write, which means that the Field could be modified. The “pf” command first gets
the latest copy from the server and then printsit. The next command displays the content
of the second Field (float_arr) in our example, which is an array of floats that is read-
only:

(mont)pf float_arr

Field float_arr descriptions:
Memory type: Read
Shared type: COMMON
Data type: Float

Data value:

[0] = 0.00
[1] = 0.00
[2] = 1.00
[3] = 0.00
[4 = 1.00
[5] = 0.00
[6] = 1.00
[71= 0.00
[8] = 1.00
[9] = 0.00
[10] = 1.00
[11] = 0.00
[12] = 1.00

29

[13] = 0.00
[14] = 1.00
[15] = 0.00
[16] = 0.00
[171= 0.00
[18] = 1.00
[19) = 0.00
(mont)

Using the Monitor might not always be practical for large arrays. Thisisin general valid
for many interpreters. We hope to overcome this in the future by adding more commands
that will let users control how arrays and other objects are to be displayed or manipulated.
Motivated users can aways modify the Monitor program for customization.

M odifying a Field’ s content:

Read/Write Field objects can be modified from the Monitor prompt by using the
command “mf”. As soon as the command returns, the server (Publisher) copy of the Field
has already been updated. We will show this by printing the Field's content just after its
modification:

(mont)mf int_elem -3

(mont)pf int_elem

Field int_elem descriptions:
Memory type: Read/Write
Shared type: COMMON
Data type: Integer
Data value:

[0] = -3
(mont)

In the last commands, we modified the Field int_elem value by —3 and then printed its
new value.

Status command:

Often, the user wants to keep track of the status of the connection, which AMS
Communicator is attached, or which Memory is active. The Monitor program provides
the status command:

(mont)status

Connected

Active Communicator: simple
Active Memory: simple_memory

30

(mont)

We believe the Monitor program is afirst step toward giving the user atool to start with
in developing and testing a Publisher program. Thistool is limited but it has the
advantage of running on al platforms (unlike the JAVA GUI, JAccessor). In future
releases, we will add more features and enhances some of commands to make the
Monitor an even more useful tool. We also welcome comments, requests for additional
features and bug reports.

For those who have access to Windows platform or Solaris as client desktops, we
recommend the use of the Alice Memory Browser, our JAVA GUI client, as a monitoring
tool. The JAccessor GUI should run on other flavors of UNIX provided they have the
jdk1.1.5 or later installed. The next section describes in details the how to use the
JAccessor.

31

The ALICE Memory Browser Client Program

One easy way to access the user application isto use our Java client, the ALICE Memory
Browser (AMB). The AMB uses Java Native Interface to access the AMS Accessor
library and connect to the Publisher. The AMB is available on Windows, Solaris, and
IRIX architectures.

Startingthe AMB
The AMB can be started using the script jams, or jacc for jdk1.1.x, located in the

javalclient directory in the AMS package. The following dialog box appears when
starting the AMB:

E-E,g[:nnnecting to the Server

Server Name

|5 afari |

Communication Port

TCP Port#: a967

CONNECT CANCEL

The AMB will prompt the user for the name of the server where the application is
running on, and the TCP port number to use for communication. By default, the local
hostname and the port 8967 are used. Y ou can change such behavior by setting the
environments variables AMS _SERVER, and AMS _PORT to the host name and port
number you wish to use every time.

Upon connection, the AMB will display alist of AMS Communicators published by the
user’s application. The next figure shows that the AMS Communicator simpleis
published in the host tiamat:

E%%ALIEE Memory Browser
File ‘“iew Options

tiamat
o]

Using the ALICE Memory Browser

Published AMS objects are displayed within a tree structure. By double clicking on the
tree nodes, the user can expand the different objects such as Communicators, Memory,
and Fields. The next figures show the different AMS objects in the smple

Communicator:

The above figure shows that AMS Memory simple_memory contains three fields:

E%%ALIEE Memory Browser
File ‘“iew Options

tiamat
@
@ simple_memony
2 imt_elem=1
@ fit_elem=2.45
Value = 2.5
Access: Read-Write
Type: Float
Shared type: COMMON
O float_arr

32

int_elem, flt_elem, and float_arr. If an AMS Field is atomic (has only one element), the
field’ s value is displayed. The user can still expand the field to view its properties (access

type, field type, etc...). In the above example, the field flt_elem is Read-Write which

33

means that we could modify its value. Double clicking on its value will allow the user to
change its value as in the next figure:

E%%ALIEE Memory Browser
File ‘“iew Options

tiamat
7]

@ simple_memony
2 imt_elem=1
@ fit_elem=2.45
] |
Access: Read-Write
Type: Float

Shared type: COMMON
O float_arr

After entering a new value, and hitting the Enter key the AMB will change, update the
server’s copy for this field and display the new value as in the following figure:

E%ALIEE Memory Browser |_ (O] x|
File View Options

fire

@

@ simple_memaony
O imt_elem=1
@ fit_elemnm = 6.0
Yalue =6
Access: Read-Write
Type: Float

Shared type; COMMON
C- float_arr

Monitoring an application with ALICE Memory Browser

In addition to the GUI interface to AMS, the ALICE Memory Browser provides other
features such as “refreshing” the data periodically. Thisisimportant if the user is
interested in monitoring the application while it is running. For example, to get the data
from the application every 10 seconds, use the menu view and then auto-refresh (or ALT-
F5 key). The following dialogue box appears:

Server Hame

[_| Enable Auto-Refresh

-Refresh evens
Min: 0 Sec: |0

APPLY CANCEL

Y ou need first to enable the “ Auto-Refresh” check box before and input the number of
seconds desired as follow:

Server Hame

lv| Enable Auto-Refresh

-Refresh eveny

Min: 1] Sec: 10

APPLY CANCEL

Upon clicking on the “ APPLY” button, the AMB will refresh all the datathat are
currently displayed every 10 seconds for example.

If the user wants only to refresh the data once, they can hit the F5 key or go to the menu
view, and then refresh. Complex JAVA Application clients can be written using the
AMSBean class (in AMSBean.jar). Its API is straightforward and documented on the
AMS Web page http://www.mcs.anl.gov/ams (Java APl).

35

Visualizing Data with the ALICE Memory Browser

In addition to the GUI interface to AMS, the ALICE Memory Browser providesthe
ability to visualize application data “on the fly”. However, to use this feature you need to
have VTK on your system. The AMS's Windows version provides support for VTK
automatically if you select so at installation. We highly recommend that you do so if you
are interested in visualization with the AMB. For example, in the following graph, the
user has connected to an application that is publishing arrays of data. By clicking right

mouse on the values of afield, a popup menu appears if the data can be visualized (1D,
2D, 3D, numerical type).

E%%ALIEE Memory Browser Hi=] E3
File Yiew Options

yavin: 9000
5
2 memony
€ flt_elem
©= array_1d

@ array_2d :
- Display a 2D Surface
Display a 2D Contours
Shared type: COMMON |
@ array_3d

In the above example, we have a 2D array for which we can either plot contour lines, or a
surface. Plotting a surface gives the following graph

36

E%%ALIEE Memory Browser
File Yiew Options

yavin: 9000
5
2 memony
€ flt_elem
©= array_1d
@ array_2d
& Values...
Access: ReadOnhy
Type: Double
Shared type: COMMON
@ array_3d

Other plots can be obtained for 1D, 2D, and 3D data. Custom visualization applications
can be written easily to visualize more complex data (unstructured grids).

The Matlab Client Program

The ALICE Memory Snooper comes with a Matlab interface to the Accessor API. Each
function of the API istrandated into Matlab using C-Mex files. This allows Matlab users
to create custom AMS client to connect to their application. Thisis especially helpful if
the user wantsto do run-time visualization directly from the server to the client. Note that
the Matlab client does not allow yet the user to change the server’s values. This could be
achieved separately by using the ALICE Memory Browser or the MONT program.

Using the M atlab Accessor API

Matlab files are located in the directory matlab under the AMS directory. In Windows
environment, the ams.dll is used. The user can recompile it using nmake. In Unix, a
makefile is available for building the Mex files. By default, these files are not built for
UNIX. For both architectures, the user might need to edit the makefile to specify the path
to Matlab Mex compiler.

The following is an example on how to use the Matlab Accessor API. We first start
matlab from the AM S directory matlab, and get the standard matlab prompt. From the
Matlab prompt », you can get help by typing ams_help:

37

»ams_help
ans=

Getting a variable
commlist = ams_connect(host,port)
comm = ams_comm_attach(commlist(i,:))
memlist = ams_comm_get_memory_list(comm)
[memory,step] = ams_memory_attach(comm,memlist(i,:))
fieldlist = ams_memory_get_field_list(memory)
data = ams_memory_get_field_info(memory,fieldlist(i,:))

Getting a variable repeatedly
ams_memory_update rec_begin(memory)
[changed,step] = ams_memory_update recv_end(memory)
data = ams_memory_get_field_info(memory,fieldlist(i,:))

Selecting a variable from menu

data = ams view_select(host,port)

For example, to connect to a program running on host tiamat, type the following
command:

» ams_connect(‘tiamat’,-1)

ans=

simpl eltiamat.mcs.anl.gov|35753
»

The -1 parameter in ams_connect indicates the use of the default port on the server. The
result of the previous command is a string containing the AMS Communicator name,
hostname, and port number. To connect to the AMS Communicator, type the following
command:

» comm = ams_comm_attach('simple’)
comm =
0

»

Thiswill attach the AMS Communicator simple and return an id comm. To get the
memory list, use the command:

» memlist = ams_comm_get_memory_list(comm)
memlist =

38

simple_memory
»

The result indicates one memory called simple_memory. The use can then attach to this
memory and get the list of fields using:

» [memory,step] = ams_memory_attach(comm,memlist)
memory =
1
step =
52972865

»

This function returns two outputs, a memory id, and a step number. The step number isa
representation (modulo an unsigned int) the number of times this memory has been
accessed for writing. In our simple example, the server is executing aloop and changing
fields in the memory every time. That is why the number istoo big. To get the fields list
within the memory use the command:

» fieldlist = ams_memory_get field_list(memory)
fieldlist =

int_elem

flt_elem

float_arr

»

The command shows that there are three fields in this memory: int_elem, flt_elem, and
float_arr. To access data within a specific field use the command:

» data = ams_memory get field_info(memory, 'flt_elem)
data =
2.5000

»

Accessing the data with one API call

The API call ams view select(host, port) should be used to list al the fields that have
been published, select afield, and display its value. For example, the user can type the
command:

» data = ams_view_select('tiamat',-1)

The following Matlab window will display the list of published fields:

simple| simple memory int_elem
szimplel simple. memone fl elem
gimnple| zimple_memon float_arr

-.,-i

Ok I Cancel I

The use can then select afield to view and Matlab will return the data in the field:
data =

2.5000
»
Using Matlab interpreter interact with the data
Two Matlab classes are provided to allow easy interaction and scripting of AMS
published data. These are ams_comm_class and ams_memory_class located under the
matlab directory within AMS.

For example, to connect to an application running on yavin using the port 9000 type of
following command:

» comm = ams_connect(‘'yavin', 9000)
comm =
multi_dims|yavin.mcs.anl.gov|4483

Once you have a handle to the AMS Communicator, we can use it to create an
ams_comm_class:

» com_class = ams_comm_class(comm)
memories =
memory

The results indicate the com_class has on memory, called memory. Now the user can
simply reference that memory to obtain the list of fields:

» flds = com_class.memory
fields =

flt_elem

40

array_1d
array _2d
array 3d

In this particular example, there are 4 fields. If you want to view the content of afield, we
just reference that field as follow:

» X = fldsflt_elem
X =
2.5000
Similarly, we can modify the content of the field by:
» flds.flt_elem= 3;

This will automatically modify the value of that field on the running application
(Powerful, isn’t it?).

In the same manner, one can visualize the content of arrays. For example, to plot the
content of array_2d, we use:

» surf(flds.array_2d);

»

¥ Figure No. 1 | _ O] =]
File Edit “indow Help

100

The AMS Matlab interface will automatically detect the array dimensions and provide.

41

All the above commands can written in a script to create some sort of animation or
custom Matlab script to process the data.

Using Matlab interface to build a custom client Accessor

The following is an example on how the user can build on the AMS Matlab APl amore
complex monitoring system. The application running on the server isa PETSc* Euler
code, which we will assume that it is running on the host tiamat. It publishes various
types of objects (solutions, vectors, iterations, residual, etc...). The Matlab client is
located in the matlab/petsc directory. From the Matlab prompt, the user can type the
following command:

» petscview('tiamat’,-1)
»

The following window will appear

Figure No. 1 |_ (O] x|
File Edit “indow Help

I

Fesidual Mg,

Wet “ar
rrre

=
(BELS

2 a g 4 1 tign 5
SLE Wer Wer Wec Wec et Wec
\'Tr bl m TrpT T et e
M 1
KSR PC
R
3 i 12 g 1 1 17
Yec Wec et Wec e Wec Wec |
ripi rripi i] mipi rrpi Frp

This graph is built from information published by the server. The relationship among the
objectsis also constructed by the AMS API from the information that is published by the
server. While the application is running on the server, the user can click on any button to

4 http://www.mes.anl.gov/petsc

42

get the data or display a solution. For example, clicking on “n;7 Vec mpi” the following
Matlab graph is displayed:

¥ Figure No. 2 M=l E3
File Edit “indow Help

% 10

"~ ﬂ
L
Ho iy 4 1
*%%tw,}ﬂ
% 'l.- '.‘.

\\

The AMS API will recognize weather an object is for example 2d, or 3d array and
display it accordingly. If aso the object has only one element, its value is displayed in the
Matlab command window.

