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Chapter 1

Introduction

kinsol is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers. This suite consists of cvode, kinsol, and ida, and variants of these. kinsol is a
general-purpose nonlinear system solver based on Newton-Krylov solver technology.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In
particular, the NKSOL package, written at LLNL, was the first Newton-Krylov solver package written
for solution of systems arising in solution of partial differential equations [2]. This Fortran code
made use of Newton’s method to solve the discrete nonlinear systems and applied a preconditioned
Krylov linear solver for solution of the Jacobian system at each nonlinear iteration. The key to the
Newton-Krylov method was that the matrix-vector multiplies required by the Krylov method could
effectively be approximated by a finite difference of the nonlinear system-defining function, preventing
a requirement for the formation of the actual Jacobian matrix. Significantly less memory was required
for the solver as a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver into C and port it to
distributed memory parallel machines. Both Newton and Krylov methods are easily implemented in
parallel, and this effort gave rise to the kinsol package. kinsol is similar to NKSOL in functionality,
except that it provides for more options in the choice of linear system tolerances and has a more
modular design to provide flexibility for future enhancements.

At present, kinsol contains three Krylov methods: the GMRES (Generalized Minimal RESid-
ual) [9], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [10], and TFQMR (Transpose-Free Quasi-
Minimal Residual) [7] linear iterative methods. As Krylov methods, these require almost no matrix
storage as compared to direct methods. However, the algorithms allow for a user-supplied precondi-
tioner matrix, and for most problems preconditioning is essential for an efficient solution. For very
large nonlinear algebraic systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the three Krylov methods in kinsol, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all three, especially if
encountering convergence failures with GMRES. Bi-CGStab and TFQMR have an advantage in stor-
age requirements, in that the number of workspace vectors they require is fixed, while that number
for GMRES depends on the desired Krylov subspace size.

In the process of translating NKSOL into C, the overall kinsol organization has been changed
considerably. One key feature of the kinsol organization is that a separate module devoted to vector
operations has been created. This module facilitated extension to multiprosessor environments with
minimal impact on the rest of the solver. The new vector module design is shared across the sundials
suite. This nvector module is written in terms of abstract vector operations with the actual routines
attached by a particular implementation (such as serial or parallel) of nvector. This allows writing
the sundials solvers in a manner independent of the actual nvector implementation (which can be
user-supplied), as well as allowing more than one nvector module linked into an executable file.



2 Introduction

There are several motivations for choosing the C language for kinsol. First, a general movement
away from Fortran and toward C in scientific computing is apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity, with
the great variety of method options offered. Finally, we prefer C over C++ for kinsol because of the
wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

Changes in v2.4.0

kinspbcg, kinsptfqmr, kindense, and kinband modules have been added to interface with the
Scaled Preconditioned Bi-CGStab (spbcg), Scaled Preconditioned Transpose-Free Quasi-Minimal
Residual (sptfqmr), dense, and band linear solver modules, respectively (for details see Chap-
ter 5). Corresponding additions were made to the Fortran interface module fkinsol. At the
same time, function type names for Scaled Preconditioned Iterative Linear Solvers were added for the
user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

Regarding the Fortran interface module fkinsol, optional inputs are now set using FKINSETIIN

(integer inputs), FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are
still obtained from the IOUT and ROUT arrays which are owned by the user and passed as arguments
to FKINMALLOC.

The kindense and kinband linear solver modules include support for nonlinear residual moni-
toring which can be used to control Jacobian updating.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (kinsol and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see §2.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build systems has been further improved to make it
more robust.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, kinsol now provides a
set of routines (with prefix KINSet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix KINGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of set- and get-type
routines. For more details see Chapter 5.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-
vector products and preconditioner information) were simplified by reducing the number of arguments.
The same information that was previously accessible through such arguments can now be obtained
through set-type functions.
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1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that
some readers will want to concentrate on the general instructions, while others will refer mostly to
the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of kinsol. The most casual user, with a small nonlinear
system, can get by with reading all of Chapter 3, then Chapter 5 through §5.5.3 only, and looking
at examples in [3]. In a different direction, a more expert user with a nonlinear system may want to
(a) use a package preconditioner (§5.7), (b) supply his/her own Jacobian or preconditioner routines
(§5.6), (c) supply a new nvector module (Chapter 7), or even (d) supply a different linear solver
module (§4.2 and Chapter 9).

The structure of this document is as follows:

• In Chapter 2 we begin with instructions for the installation of kinsol, within the structure of
sundials.

• In Chapter 3, we provide short descriptions of the numerical methods implemented by kinsol
for the solution of nonlinear systems.

• The following chapter describes the structure of the sundials suite of solvers (§4.1) and the
software organization of the kinsol solver (§4.2).

• Chapter 5 is the main usage document for kinsol for C applications. It includes a complete
description of the user interface for the solution of nonlinear algebraic systems.

• In Chapter 6, we describe fkinsol, an interface module for the use of kinsol with Fortran
applications.

• Chapter 7 gives a brief overview of the generic nvector module shared among the various com-
ponents of sundials, and details on the two nvector implementations provided with sundials:
a serial implementation (§7.1) and a parallel implementation based on MPI (§7.2).

• Chapter 8 describes the interfaces to the linear solver modules, so that a user can provide his/her
own such module.

• Chapter 9 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, Chapter 10 lists the constants used for input to and output from kinsol.

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as KINMalloc) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules are
written in all capitals. In the index, page numbers that appear in bold indicate the main reference
for that entry.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the kinsol
code and user guide of Allan G. Taylor.





Chapter 2

KINSOL Installation Procedure

The installation of kinsol is accomplished by installing the sundials suite as a whole, according to
the instructions that follow. The same procedure applies whether or not the downloaded file contains
solvers other than kinsol. 1

Generally speaking, the installation procedure outlined in §2.1 below will work on commodity
LINUX/UNIX systems without modification. Users are still encouraged, however, to carefully read
the entire chapter before attempting to install the sundials suite, in case non-default choices are
desired for compilers, compilation options, or the like. In lieu of reading the option list below, the
user may invoke the configuration script with the help flag to view a complete listing of available
options, which may be done by issuing

% ./configure --help

from within the sundials directory.

In the descriptions below, build tree refers to the directory under which the user wants to build
and/or install the sundials package. By default, the sundials libraries and header files are installed
under the subdirectories build tree/lib and build tree/include, respectively. Also, source tree refers
to the directory where the sundials source code is located. The chosen build tree may be different
from the source tree, thus allowing for multiple installations of the sundials suite with different
configuration options.

Concerning the installation procedure outlined below, after invoking the tar command with the
appropriate options, the contents of the sundials archive (or the source tree) will be extracted to
a directory named sundials. Since the name of the extracted directory is not version-specific it is
recommended that the user refrain from extracting the archive to a directory containing a previous
version/release of the sundials suite. If the user is only upgrading and the previous installation of
sundials is not needed, then the user may remove the previous installation by issuing

% rm -rf sundials

from a shell command prompt.

Even though the installation procedure given below presupposes that the user will use the default
vector modules supplied with the distribution, using the sundials suite with a user-supplied vector
module normally will not require any changes to the build procedure.

1Files for both the serial and parallel versions of kinsol are included in the distribution. For users in a se-
rial computing environment, the files specific to parallel environments (which may be deleted) are as follows: all
files in nvec par; kinbbdpre.c, kinbbdpre impl.h (in kinsol/source/); kinsol/include/kinbbdpre.h; fkinbbd.c,

fkinbbd.h (in kinsol/fcmix/); all files in kinsol/examples par/; all files in kinsol/fcmix/examples par/. (By “serial
version” of kinsol we mean the kinsol solver with the serial nvector module attached, and similarly for “parallel
version”.)
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2.1 Installation steps

To install the sundials suite, given a downloaded file named sundials file.tar.gz, issue the following
commands from a shell command prompt, while within the directory where source tree is to be located.

1. gunzip sundials file.tar.gz

2. tar -xf sundials file.tar [creates sundials directory]

3. cd build tree

4. path to source tree/configure options [options can be absent]

5. make

6. make install

7. make examples

8. If system storage space conservation is a priority, then issue
make clean

and/or
make examples_clean

from a shell command prompt to remove unneeded object files.

2.2 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may be
used to indicate which MPI implementation should be used. Also, if the user wants to use non-default
language compilers, then, again, the necessary shell environment variables must be appropriately
redefined. The remainder of this section provides explanations of available configure script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=build tree

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=PREFIX/lib

--disable-examples

All available example programs are automatically built unless this option is given. The example
executables are stored under the following subdirectories of the associated solver:

build tree/solver/examples ser : serial C examples

build tree/solver/examples par : parallel C examples (MPI-enabled)

build tree/solver/fcmix/examples ser: serial Fortran examples



2.2 Configuration options 7

build tree/solver/fcmix/examples par: parallel Fortran examples (MPI-enabled)

Note: Some of these subdirectories may not exist depending upon the solver and/or the configu-
ration options given.

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, and
kinsol.

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).

--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in nonstan-
dard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named libfoo.a

or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may be
used to build sundials with realtype alternatively defined as a single-precision floating-point
numeric data type (float C-type) if ARG=single, or as a long double C-type if
ARG=extended.

Default: ARG=double

Users should not build sundials with support for single-precision floating-point arithmetic on !

32- or 64-bit systems. This will almost certainly result in unreliable numerical solutions. The
configuration option --with-precision=single is intended for systems on which single-precision
arithmetic involves at least 14 decimal digits.

Options for Fortran support

--disable-f77

Using this option will disable all Fortran support. The fcvode, fkinsol, fida, and fnvector
modules will not be built, regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

The configuration script will attempt to automatically determine the function name mangling scheme
required by the specified Fortran compiler, but the following two options may be used to override
the default behavior.

--with-f77underscore=ARG

This option pertains to the fcvode, fkinsol, fida, and fnvector Fortran-C interface mod-
ules and is used to specify the number of underscores to append to function names so Fortran
routines can properly link with the associated sundials libraries. Valid values for ARG are: none,
one and two.
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Default: ARG=one

--with-f77case=ARG

Use this option to specify whether the external names of the fcvode, fkinsol, fida, and fn-
vector Fortran-C interface functions should be lowercase or uppercase so Fortran routines
can properly link with the associated sundials libraries. Valid values for ARG are: lower and
upper.

Default: ARG=lower

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used to
disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers to be
used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sundi-
als configuration script will automatically check under the subdirectories MPIDIR/include and
MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin will also
be searched for the C and Fortran MPI compiler scripts, unless the user uses --with-mpicc=no
or --with-mpif77=no.

--with-mpi-incdir=INCDIR

--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler script,
but instead would rather use a serial complier and provide the flags necessary to compile the
MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include and LIBDIR=MPIDIR/lib

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared libraries
on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sundials
libraries being built if the system supports shared libraries. To build only shared libraries also
specify --disable-static.
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Note: The fcvode, fkinsol, and fida libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen compiler)
as the C language compiler, use CC=xcc in the configure step.

CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

2.3 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The above example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran
compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags.

% configure CC=gcc --disable-examples --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich

This example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no

option explicitly disables the use of the corresponding MPI compiler script. In addition, since the
--with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include and
-L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions. The
--disable-examples option disables the examples (which means a Fortran compiler is not re-
quired). The --with-mpi-libs option is required so that the configure script can check if gcc can
link with the appropriate MPI library.

2.4 Installed libraries and exported header files

Using the standard sundials build system, the command

% make install
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will install the libraries under libdir and the public header files under incdir. The default values for
these directories are build tree/lib and build tree/include, respectively, but can be changed using
the configure script options --prefix, --includedir and --libdir (see §2.2). For example, a global
installation of sundials on a *NIX system could be accomplished using

% configure --prefix=/usr/local

Although all installed libraries reside under libdir, the public header files are further organized into
subdirectories under incdir.

The installed libraries and exported header files are listed for reference in Table 2.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries (see Options for library
support for additional details).

A typical user program need not explicitly include any of the shared sundials header files from
under the incdir/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and safe to do so
(e.g., the functions declared in sundials smalldense.h could be used in building a preconditioner).

2.5 Building SUNDIALS without the configure script

If the configure script cannot be used (e.g., when building sundials under Microsoft Windows with-
out using Cygwin), or if the user prefers to own the build process (e.g., when sundials is incorporated
into a larger project with its own build system), then the header and source files for a given module
can be copied from the source tree to some other location and compiled separately.

The following files are required to compile a sundials solver module:

• public header files located under source tree/solver/include

• implementation header files and source files located under source tree/solver/source

• (optional) Fortran/C interface files located under source tree/solver/fcmix

• shared public header files located under source tree/shared/include

• shared source files located under source tree/shared/source

• (optional) nvector serial header and source files located under source tree/nvec ser

• (optional) nvector parallel header and source files located under source tree/nvec par

• configuration header file sundials config.h (see below)

A sample header file that, appropriately modified, can be used as sundials config.h (otherwise
created automatically by the configure script) is provided below. The various preprocessor macros
defined within sundials config.h have the following uses:

• Precision of the sundials realtype type

Only one of the macros SUNDIALS SINGLE PRECISION, SUNDIALS DOUBLE PRECISION and
SUNDIALS EXTENDED PRECISION should be defined to indicate if the sundials realtype type is
an alias for float, double, or long double, respectively.

• Use of generic math functions

If SUNDIALS USE GENERIC MATH is defined, then the functions in sundials math.(h,c) will use
the pow, sqrt, fabs, and exp functions from the standard math library (see math.h), regardless
of the definition of realtype. Otherwise, if realtype is defined to be an alias for the float

C-type, then sundials will use powf, sqrtf, fabsf, and expf. If realtype is instead defined
to be a synonym for the long double C-type, then powl, sqrtl, fabsl, and expl will be used.
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Table 2.1: SUNDIALS libraries and header files (names are relative to libdir for libraries and to incdir
for header files)

shared Libraries n/a
Header files sundials/sundials types.h sundials/sundials math.h

sundials/sundials config.h sundias/sundials nvector.h
sundials/sunials smalldense.h sundials/sundials dense.h
sundials/sundials iterative.h sundials/sundials band.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h
sundials/sundials spgmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector parallel.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode.h

cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h cvode/cvode spils.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h
cvode/cvode spgmr.h cvode/cvode spbcgs.h
cvode/cvode sptfqmr.h cvode/cvode impl.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes.h cvodea.h

cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h cvodes/cvodes spils.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h
cvodes/cvodes spgmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes sptfqmr.h cvodes/cvodes impl.h
cvodes/cvodea impl.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida.h

ida/ida dense.h ida/ida band.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h ida/ida impl.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol.h

kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h kinsol/kinsol impl.h
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Note: Although the powf/powl, sqrtf/sqrtl, fabsf/fabsl, and expf/expl routines are not
specified in the ANSI C standard, they are ISO C99 requirements. Consequently, these routines
will only be used if available.

• Fortran name-mangling scheme

The macros given below are used to transform the C-language function names defined in the
Fortran-C inteface modules in a manner consistent with the preferred Fortran compiler,
thus allowing native C functions to be called from within a Fortran subroutine. The name-
mangling scheme can be specified either by appropriately defining the parameterized macros
(using the stringization operator, ##, if necessary)

– F77 FUNC(name,NAME)

– F77 FUNC (name,NAME)

or by defining one macro from each of the following lists:

– SUNDIALS CASE LOWER or SUNDIALS CASE UPPER

– SUNDIALS UNDERSCORE NONE, SUNDIALS UNDERSCORE ONE, or SUNDIALS UNDERSCORE TWO

For example, to specify that mangled C-language function names should be lowercase with one
underscore appended include either

#define F77_FUNC(name,NAME) name ## _

#define F77_FUNC_(name,NAME) name ## _

or

#define SUNDIALS_CASE_LOWER 1

#define SUNDIALS_UNDERSCORE_ONE 1

in the sundials config.h header file.

• Use of an MPI communicator other than MPI COMM WORLD in Fortran

If the macro SUNDIALS MPI COMM F2C is defined, then the MPI implementation used to build
sundials defines the type MPI Fint and the function MPI Comm f2c, and it is possible to use
MPI communicators other than MPI COMM WORLD with the Fortran-C interface modules.
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1 /*

2 * -----------------------------------------------------------------

3 * Copyright (c) 2005, The Regents of the University of California.

4 * Produced at the Lawrence Livermore National Laboratory.

5 * All rights reserved.

6 * For details , see sundials/shared/LICENSE.

7 * -----------------------------------------------------------------

8 * SUNDIALS configuration header file

9 * -----------------------------------------------------------------

10 */

11

12

13 /* Define SUNDIALS version number

14 * ------------------------------ */

15

16 #define SUNDIALS_PACKAGE_VERSION "2.2.0"

17

18 /* Define precision of SUNDIALS data type ’realtype ’

19 * ------------------------------------------------- */

20

21 /* Define SUNDIALS data type ’realtype ’ as ’double ’ */

22 #define SUNDIALS_DOUBLE_PRECISION 1

23

24 /* Define SUNDIALS data type ’realtype ’ as ’float ’ */

25 /* #define SUNDIALS_SINGLE_PRECISION 1 */

26

27 /* Define SUNDIALS data type ’realtype ’ as ’long double ’ */

28 /* #define SUNDIALS_EXTENDED_PRECISION 1 */

29

30 /* Use generic math functions

31 * -------------------------- */

32

33 #define SUNDIALS_USE_GENERIC_MATH 1

34

35 /* FCMIX: Define Fortran name -mangling macro

36 * ----------------------------------------- */

37

38 #define F77_FUNC(name ,NAME) name ## _

39 #define F77_FUNC_(name ,NAME) name ## _

40

41 /* FCMIX: Define case of function names

42 * ------------------------------------ */

43

44 /* FCMIX: Make function names lowercase */

45 /* #define SUNDIALS_CASE_LOWER 1 */

46

47 /* FCMIX: Make function names uppercase */

48 /* #define SUNDIALS_CASE_UPPER 1 */

49

50 /* FCMIX: Define number of underscores to append to function names

51 * --------------------------------------------------------------- */

52

53 /* FCMIX: Do NOT append any underscores to functions names */

54 /* #define SUNDIALS_UNDERSCORE_NONE 1 */

55

56 /* FCMIX: Append ONE underscore to function names */

57 /* #define SUNDIALS_UNDERSCORE_ONE 1 */

58

59 /* FCMIX: Append TWO underscores to function names */

60 /* #define SUNDIALS_UNDERSCORE_TWO 1 */

61

62 /* FNVECTOR: Allow user to specify different MPI communicator

63 * ---------------------------------------------------------- */

64

65 #define SUNDIALS_MPI_COMM_F2C 1





Chapter 3

Mathematical Considerations

kinsol solves nonlinear algebraic systems in real N -space,

F (u) = 0 , F : RN → RN , (3.1)

given an initial guess u0.

Basic Newton iteration

Depending on the linear solver used, kinsol can employ either an Inexact Newton method [1, 2, 4, 5, 8],
or a Modified Newton method. At the highest level, kinsol implements the following iteration scheme:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Solve J(un)δn = −F (un)

(b) Set un+1 = un + λδn, 0 < λ ≤ 1

(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. At each stage in the
iteration process, a scalar multiple of the step δn, is added to un to produce a new iterate, un+1. A
test for convergence is made before the iteration continues.

Newton method variants

For solving the linear system given in step 2(a), kinsol provides a choice of five methods:

• dense direct solver,

• band direct solver,

• scaled preconditioned GMRES (Generalized Minimal Residual method),

• scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method), or

• scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method).

When using one of the direct linear solvers, the linear system in 2(a) is solved exactly thus resulting
in a Modified Newton method (the Jacobian matrix is normally outdated; see below1). Note that the
direct linear solvers (dense and band) can only be used with serial vector representations.

1kinsol allows the user to enforce a Jacobian evaluation at each iteration thus allowing for an Exact Newton iteration.
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On the other hand, using any of the iterative linear solvers (GMRES, Bi-CGStab, or TFQMR),
the linear system in 2(a) is solved only approximately thus resulting in an Inexact Newton method.
In the latter case, right preconditioning is available if the preconditioning setup and solve routines are
supplied by the user, in which case the iterative method is applied to the linear systems (JP−1)(Pδ) =
−F , where P denotes the right preconditioning matrix.

Jacobian information update strategy

In general, unless specified otherwise by the user, kinsol strives to update Jacobian information (the
actual system Jacobian J in the case of direct linear solvers, or the preconditioner matrix P in the case
of iterative linear solvers) as infrequently as possible to balance the high costs of matrix operations
against other costs. Specifically, these updates occur when:

• the problem is initialized,

• ‖λδn−1‖Du,∞ > 1.5 (Inexact Newton only),

• mbset= 10 nonlinear iterations have passed since the last update,

• the linear solver failed recoverably with outdated Jacobian information,

• the global strategy failed with outdated Jacobian information, or

• ‖λδn‖Du,∞ < steptol with outdated Jacobian information.

kinsol allows, through optional solver inputs, changes to the above strategy. Indeed, the user can
disable the initial Jacobian information evaluation or change the default value of mbset, the number
of nonlinear iterations after which a Jacobian information update is enforced.

Scaling

To address the case of ill-conditioned nonlinear systems, kinsol allows prescribing scaling factors both
for the solution vector and for the residual vector. For scaling to be used, the user should supply values
Du, which are diagonal elements of the scaling matrix such that Duun has all components roughly the
same magnitude when un is close to a solution, and DF , which are diagonal scaling matrix elements
such that DFF has all components roughly the same magnitude when un is not too close to a solution.
In the text below, we use the following scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (3.2)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these values
are automatically incorporated into the calculation of the perturbations used for the default difference
quotient approximations for Jacobian information; see (3.6) and (3.8) below.

Globalization strategy

Two methods of applying a computed step δn to the previously computed solution vector are imple-
mented. The first and simplest is the standard Newton strategy which applies step 2(b) as above
with λ always set to 1. The other method is a global strategy, which attempts to use the direction
implied by δn in the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option employs both the
α and β conditions of the Goldstein-Armijo linesearch given in [5] for step 2(b), where λ is chosen
to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length
relative to the initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution.

kinsol implements a backtracking algorithm to first find the value λ such that un + λδn satisfies
the sufficient decrease condition (or α-condition)

F (un + λδn) ≤ F (un) + α∇F (un)λδn ,
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where α = 10−4. Although backtracking in itself guarantees that the step is not too small, kinsol
secondly relaxes λ to satisfy the so-called β-condition (equivalent to Wolfe’s curvature condition):

F (un + λδn) ≥ F (un) + β∇F (un)λδn

where beta = 0.9. During this second phase, λ is allowed to vary in the interval [λmin, λmax] where

λmin =
steptol

‖δ̄n‖∞
, δ̄jn =

δjn

1/Dj
u + |uj |

and λmax corresponds to the maximum feasible step size at the current iteration (typically λmax =
stepmax/‖δn‖Du

). In the above expressions, vj indicates the jth component of a vector v.
For more details, the reader is referred to [5].

Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step
length. For the former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U 1/3. For the latter, the Newton
method will terminate when the maximum scaled step is below a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U 2/3. Only the first condition
(small residual) is considered a successful completion of kinsol. The second condition (small step)
may indicate that the iteration is stalled near a point for which the residual is still unacceptable.

Additional constraints

As a user option, kinsol permits the application of inequality constraints, ui > 0 and ui < 0, as well
as ui ≥ 0 and ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint, may
be imposed on each component. kinsol will reduce step lengths in order to ensure that no constraint
is violated. Specifically, if a new Newton iterate will violate a constraint, the maximum (over all i)
step length along the Newton direction that will satisfy all constraints is found and δn in Step 2(b) is
scaled to take a step of that length.

Residual monitoring for Modified Newton method

When using a Modified Newton method (i.e.; when a direct linear solver is used), in addition to the
strategy described below for the update of the Jacobian matrix, kinsol also provides an optional
nonlinear residual monitoring scheme to control when the system Jacobian is updated. Specifically,
a Jacobian update will also occur when mbsetsub= 5 nonlinear iterations have passed since the last
update and

‖DuF (un)‖2 > ω‖DuF (um)‖2 ,
where un is the current iterate and um is the iterate at the last Jacobian update. The scalar ω is
given by

ω = min
(

ωmin e
max(0,β−1), ωmax

)

, (3.3)

with β defined as

β =
‖DuF (un)‖2

ftol
, (3.4)

where ftol is the input scalar tolerance discussed before. Optionally, a constant value ωconst can be
used for the parameter ω.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their
default values through optional inputs to kinsol. These include the parameters ωmin and ωmax, the
constant value ωconst, and the threshold mbsetsub.
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Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e.; when an iterative linear solver is used), the convergence
of the overall nonlinear solver is intimately coupled with the accuracy with which the linear solver in
2(a) above is solved. kinsol provides three options for stopping criteria for the linear system solver,
including the two algorithms of Eisenstat and Walker [6]. More precisely, the Krylov iteration must
pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

Eisenstat and Walker Choice 2

ηn = γ

( ‖F (un)‖DF

‖F (un−1)‖DF

)α

,

where default values of γ and α are 0.9 and 2, respectively.

Constant η
ηn = constant,

with 0.1 as the default.

The default strategy is ”Eisenstat and Walker Choice 1”. For both options 1 and 2, appropriate
safeguards are incorporated to ensure that η does not decrease too quickly [6].

Difference quotient Jacobian approximations

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or approxi-
mated by difference quotients, at the user’s option. In the latter case, we use the usual approximation

J ij = [F i(u+ σje
j)− F i(u)]/σj . (3.5)

The increments σj are given by

σj =
√
U max

{

|uj |, 1/Dj
u

}

, (3.6)

where U is the unit roundoff. In the dense case, this scheme requires N evaluations of F , one for each
column of J . In the band case, the columns of J are computed in groups, by the Curtis-Powell-Reid
algorithm, with the number of F evaluations equal to the bandwidth.

In the case of a Krylov method, Jacobian information is needed only as matrix-vector products
Jv. If a routine for Jv is not supplied, these products are approximated by directional difference
quotients as

J(u)v ≈ [F (u+ σv)− F (u)]/σ (3.7)

where u is the current approximation to a root of (3.1), and σ is a scalar. The choice of σ is taken
from [2] and is given by

σ =
max{|uT v|, uTtyp|v|}

‖v‖2
sign(uT v)

√
U , (3.8)

where utyp is a vector of typical values for the absolute values of the solution (and can be taken to be
inverses of the scale factors given for u as described below), and U is unit roundoff. Convergence of
the Newton method is maintained as long as the value of σ remains appropriately small as shown in
[1].
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Code Organization

4.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems), kinsol
(for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition, variants
of these which also do sensitivity analysis calculations are available or in development. cvodes, an
extension of cvode that provides both forward and adjoint sensitivity capabilities is available, while
idas is currently in development.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 4.1). The following is a list
of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs dy/dt = f(t, y, p) with sensitivity analysis capabil-
ities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

4.2 KINSOL organization

The kinsol package is written in the ANSI C language. This section summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the kinsol package is shown in Figure 4.2. The central solver mod-
ule, implemented in the files kinsol.h, kinsol impl.h and kinsol.c, deals with the solution of a
nonlinear algebraic system using either an Inexact Newton method or a line search method for the
global strategy. Although this module contains logic for the Newton iteration, it has no knowledge of
the method used to solve the linear systems that arise. For any given user problem, one of the linear
system modules is specified, and is then invoked as needed.

At present, the package includes the following five kinsol linear system modules:

• kindense: LU factorization and backsolving with dense matrices;

• kinband: LU factorization and backsolving with banded matrices;

• kinspgmr: scaled preconditioned GMRES method;

• kinspbcg: scaled preconditioned Bi-CGStab method;

• kinsptfqmr: scaled preconditioned TFQMR method.
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Figure 4.1: Organization of the SUNDIALS suite
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Figure 4.2: Overall structure diagram of the kinsol package. Modules specific to kinsol are dis-
tinguished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.
Grayed boxes refer to the encompassing sundials structure.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

In the case of the direct methods kindense and kinband, the package includes an algorithm
for the approximation of the Jacobian by difference quotients, but the user also has the option of
supplying the Jacobian (or an approximation to it) directly. In the case of the Krylov methods
kinspgmr, kinspbcg and kinsptfqmr, the package includes an algorithm for the approximation by
difference quotients of the product between the Jacobian matrix and a vector of appropriate length.
Again, the user has the option of providing a routine for this operation. For the Krylov methods, the
preconditioning must be supplied by the user, in twho phases: setup (preprocessing of Jacobian data)
and solve.

Each kinsol linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central kinsol module to each of the associated functions is fixed, thus allowing
the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules kindense, kinband,
kinspgmr, kinspbcg, and kinsptfqmr is a set of interface routines built on top of a generic solver
module, name dense, band, spgmr, spbcg, and sptfqmr, respectively. The interface deals with
the use of these methods in the kinsol context, whereas the generic solver is independent of the
context. While the generic solvers here were generated with sundials in mind, our intention is that
they be usable in other applications as general-purpose solvers. This separation also allows for any
generic solver to be replaced by an improved version, with no necessity to revise the kinsol package
elsewhere.

kinsol also provides a preconditioner module called kinbbdpre for use with any of the Krylov
iterative liear solvers. It works in conjunction with nvector parallel and generates a precondi-
tioner that is a block-diagonal matrix with each block being a band matrix, as further described in
§5.7.
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All state information used by kinsol to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the kinsol package, and so in this
respect it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the kinsol memory structure. The reentrancy of kinsol was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more different problems are solved by intermixed calls to the package from one user program.



Chapter 5

Using KINSOL for C Applications

This chapter is concerned with the use of kinsol for the solution of nonlinear systems. The following
subsections treat the header files, the layout of the user’s main program, description of the kinsol user-
callable routines, and user-supplied functions. The final section describes the Fortran/C interface
module, which supports users with applications written in Fortran77. The listings of the sample
programs in the companion document [3] may also be helpful. Those codes may be used as templates
(with the removal of some lines involved in testing), and are included in the kinsol package.

The user should be aware that not all linear solver modules are compatible with all nvector
implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers since these linear solver modules need to form the complete system Jacobian. The
following kinsol modules can only be used with nvector serial: kindense and kinband. The
preconditioner module kinbbdpre can only be used with nvector parallel.

kinsol uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Chapter 10.

5.1 Access to library and header files

At this point, it is assumed that the installation of kinsol, following the procedure described in
Chapter 2, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by kinsol. The relevant library files are

• libdir/libsundials kinsol.lib,

• libdir/libsundials nvec*.lib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include

• incdir/include/kinsol

• incdir/include/sundials

The directories libdir and incdir are the install libray and include directories. For a default installation,
these are build tree/lib and build tree/include, respectively, where build tree was defined in Chapter
2.
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5.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §2.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the
type double, float, or long double in their code (assuming the typedef for realtype matches this
choice). Thus, a previously existing piece of ANSI C code can use sundials without modifying the
code to use realtype, so long as the sundials libraries use the correct precision (for details see §2.2).

5.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• kinsol.h, the header file for kinsol, which defines several types and various constants, and
includes function prototypes.

kinsol.h also includes sundials types.h, which defines the types realtype and booleantype and
constants FALSE and TRUE.

The calling program must also include an nvector implementation header file (see Chapter 7
for details). For the two nvector implementations that are included in the kinsol package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation, nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both of these files include in turn the header file sundials nvector.h, which defines the
abstract N Vector type.

Finally, a linear solver module header file is required. The header files corresponding to the various
linear solver options in kinsol are:

• kinsol dense.h, which is used with the dense direct linear solver in the context of kinsol.
This in turn includes a header file (sundials dense.h) which defines the DenseMat type and
corresponding accessor macros;
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• kinsol band.h, which is used with the band direct linear solver in the context of kinsol. This in
turn includes a header file (sundials band.h) which defines the BandMat type and corresponding
accessor macros;

• kinsol spgmr.h, which is used with the Krylov solver spgmr in the context of kinsol;

• kinsol spbcgs.h, which is used with the Krylov solver spbcg in the context of kinsol;

• kinsol sptfqmr.h, which is used with the Krylov solver sptfqmr in the context of kinsol;

The header files for the Krylov iterative solvers include kinsol spils.h which defined common
fuunctions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and for the choices for the Gram-Schmidt process for spgmr.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in
the kinkryx example [3], preconditioning is done with a block-diagonal matrix. For this, the header
sundials smalldense.h is included.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a
nonlinear problem. Some steps are independent of the nvector implementation used; where this
is not the case, usage specifications are given for the two implementations provided with kinsol:
Steps marked with [P] correspond to nvector parallel, while steps marked with [S] correspond
to nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv); to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument counter
and array received by main.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processes.

3. Set vector with initial guess

To set the vector u of initial values, use functions defined by a particular nvector implementation.
If a realtype array udata already exists, containing the initial guess of u0, make the call:

[S] u = N VMake Serial(N, udata);

[P] u = N VMake Parallel(comm, Nlocal, N, udata);

Otherwise, make the call:

[S] u = N VNew Serial(N);

[P] u = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(u)

[P] NV DATA P(u)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPI COMM WORLD.
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4. Create kinsol object

Call kin mem = KINCreate(); to create the kinsol memory block. KINCreate returns a pointer
to the kinsol memory structure. See §5.5.1 for details.

5. Set optional inputs

Call KINSet* routines to change from their default values any optional inputs that control the
behavior of kinsol. See §5.5.4 for details.

6. Allocate internal memory

Call KINMalloc(...); to specify the problem defining function F , allocate internal memory for
kinsol, and initialize kinsol. KINMalloc returns a flag to indicate success or an illegal argument
value. See §5.5.1 for details.

7. Attach linear solver module

Initialize the linear solver module with one of the following calls (for details see §5.5.2).
[S] ier = KINDense(...);

[S] ier = KINBand(...);

ier = KINSpgmr(...);

ier = KINSpbcg(...);

ier = KINSptfqmr(...);

8. Set linear solver optional inputs

Call KIN*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §5.5.4 for details.

9. Solve problem

Call ier = KINSol(...); to solve the nonlinear problem for a given initial guess. See §5.5.3 for
details.

10. Get optional outputs

Call KINGet* and KIN*Get* functions to obtain optional output. See §5.5.5 for details.

11. Deallocate memory for solution vector

Upon completion of the solution, deallocate memory for the vector u by calling the destructor
function defined by the nvector implementation:

[S] N VDestroy Serial(u);

[P] N VDestroy Parallel(u);

12. Free solver memory

Call KINFree(&kin mem); to free the memory allocated for kinsol.

13. [P] Finalize MPI

Call MPI Finalize(); to terminate MPI.

5.5 User-callable functions

This section describes the kinsol functions that are called by the user to set up and solve a nonlinear
problem. Some of these are required. However, starting with §5.5.4, the functions listed involve
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optional inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of kinsol.
In any case, refer to §5.4 for the correct order of these calls.

5.5.1 KINSOL initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the problem solution is complete, as it frees the kinsol memory block created and allocated by the
first two calls.

KINCreate

Call kin mem = KINCreate();

Description The function KINCreate instantiates a kinsol solver object.

Arguments This function has no arguments.

Return value If successful, KINCreate returns a pointer to the newly created kinsol memory block
(of type void *). If an error occurred, KINCreate prints an error message to stderr

and returns NULL.

KINMalloc

Call flag = KINMalloc(kin mem, func, tmpl);

Description The function KINMalloc specifies the problem-defining function, allocates internal mem-
ory, and initializes kinsol.

Arguments kin mem (void *) pointer to the kinsol memory block returned by KINCreate.

func (KINSysFn) is the C function which computes F in the nonlinear problem. This
function has the form func(u, fval, f data) (for full details see §5.6.1).

tmpl (N Vector) is an N Vector which is used as a template to create (by cloning)
necessary vectors in kin mem.

Return value The return flag flag (of type int) will be one of the following:

KIN SUCCESS The call to KINMalloc was successful.

KIN MEM NULL The kinsol memory block was not initialized through a previous call to
KINCreate.

KIN MEM FAIL A memory allocation request has failed.

KIN ILL INPUT An input argument to KINMalloc has an illegal value.

Notes If an error occurred, KINMalloc sends an error message to the error handler function.

KINFree

Call KINFree(&kin mem);

Description The function KINFree frees the memory allocated by a previous call to KINMalloc.

Arguments The argument is the address of the pointer to the kinsol memory block returned by
KINCreate (of type void *).

Return value The function KINFree has no return value.

5.5.2 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2).
There are five kinsol linear solvers currently available for this task: kindense, kinband, kinspgmr,
kinspbcg, and kinsptfqmr. The first two are direct solvers and their names indicate the type of ap-
proximation used for the Jacobian J = ∂F/∂u; kindense and kinband work with dense and banded
approximations to J , respectively. The last three kinsol linear solvers — kinspgmr, kinspbcg, and
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kinsptfqmr — are Krylov iterative solvers, which use scaled preconditioned GMRES, scaled precon-
ditioned Bi-CGStab, and scaled preconditioned TFQMR, respectively. Together, they are referred to
as kinspils (from scaled preconditioned iterative linear solvers).

To specify a kinsol linear solver, after the call to KINCreate but before any calls to KINSol,
the user’s program must call one of the functions KINDense, KINBand, KINSpgmr, KINSpbcg, or
KINSptfqmr, as documented below. The first argument passed to these functions is the kinsol mem-
ory pointer returned by KINCreate. A call to one of these functions links the main kinsol nonlinear
solver to a linear solver and allows the user to specify parameters which are specific to a particular
solver, such as the half-bandwidths in the kinband case. The use of each of the linear solvers involves
certain constants and possibly some macros, that are likely to be needed in the user code. These are
available in the corresponding header file associated with the linear solver, as specified below.

In each case, the linear solver module used by kinsol is actually built on top of a generic linear
system solver, which may be of interest in itself. These generic solvers, denoted dense, band, spgmr,
spbcg, and sptfqmr, are described separately in Chapter 9.

KINDense

Call flag = KINDense(kin mem, N);

Description The function KINDense selects the kindense linear solver.

The user’s main function must include the kinsol dense.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The kindense initialization was successful.

KINDENSE MEM NULL The kin mem pointer is NULL.

KINDENSE ILL INPUT The kindense solver is not compatible with the current nvector
module.

KINDENSE MEM FAIL A memory allocation request failed.

Notes The kindense linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

KINBand

Call flag = KINBand(kin mem, N, mupper, mlower);

Description The function KINBand selects the kinband linear solver.

The user’s main function must include the kinsol band.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the approxi-
mation of it).

Return value The return value flag (of type int) is one of

KINBAND SUCCESS The kinband initialization was successful.

KINBAND MEM NULL The kin mem pointer is NULL.

KINBAND ILL INPUT The kinband solver is not compatible with the current nvector
module, or one of the Jacobian half-bandwidths is outside its valid
range (0 . . . N−1).

KINBAND MEM FAIL A memory allocation request failed.
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Notes The kinband linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not. The half-bandwidths
are to be set so that the nonzero locations (i, j) in the banded (approximate) Jacobian
satisfy −mlower ≤ j − i ≤ mupper.

KINSpgmr

Call flag = KINSpgmr(kin mem, maxl);

Description The function KINSpgmr selects the kinspgmr linear solver.

The user’s main function must include the kinsol spgmr.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

Notes The kinspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (2).

Within kinsol, only right preconditioning is available. For specification of the precon-
ditioner, see §5.5.4 and §5.6.
If preconditioning is done, user-supplied functions define the right preconditioner ma-
trices P , which approximate the Newton matrix from (2).

KINSpbcg

Call flag = KINSpbcg(kin mem, maxl);

Description The function KINSpbcg selects the kinspbcg linear solver.

The user’s main function must include the kinsol spbcgs.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspbcg initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

Notes The kinspbcg solver uses a scaled preconditioned Bi-CGStab iterative method to solve
the linear system (2).

Within kinsol, only right preconditioning is available. For specification of the precon-
ditioner, see §5.5.4 and §5.6.
If preconditioning is done, user-supplied functions define the right preconditioner ma-
trices P , which approximate the Newton matrix from (2).
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KINSptfqmr

Call flag = KINSptfqmr(kin mem, maxl);

Description The function KINSptfqmr selects the kinsptfqmr linear solver.

The user’s main function must include the kinsol sptfqmr.h header file.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinsptfqmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required oper-
ation.

KINSPILS MEM FAIL A memory allocation request failed.

Notes The kinsptfqmr solver uses a scaled preconditioned TFQMR iterative method to solve
the linear system (2).

Within kinsol, only right preconditioning is available. For specification of the precon-
ditioner, see §5.5.4 and §5.6.
If preconditioning is done, user-supplied functions define the right preconditioner ma-
trices P , which approximate the Newton matrix from (2).

5.5.3 KINSOL solver function

This is the central step in the solution process — the call to solve the nonlinear algebraic system.

KINSol

Call flag = KINSol(kin mem, u, strategy, u scale, f scale);

Description The function KINSol computes an approximate solution to the nonlinear system.

Arguments kin mem (void *) pointer to the kinsol memory block.

u (N Vector) vector set to initial guess by user before calling KINSol, but
which upon return contains an approximate solution of the nonlinear system
F (u) = 0 the computed solution vector.

strategy (int) globalization strategy applied to the Newton method. It must be one
of KIN NONE or KIN LINESEARCH.

u scale (N Vector) vector containing diagonal elements of scaling matrix Du for vec-
tor u chosen so that the components of Du·u (as a matrix multiplication) all
have about the same magnitude when u is close to a root of F (u).

f scale (N Vector) vector containing diagonal elements of scaling matrixDF for F (u)
chosen so that the components of DF · F (u) (as a matrix multiplication) all
have roughly the same magnitude when u is not too near a root of F (u).

Return value On return, KINSol returns the approximate solution in the vector u. The return value
flag (of type int) will be one of the following:

KIN SUCCESS

KINSol succeeded; the scaled norm of F (u) is less than fnormtol.

KIN INITIAL GUESS OK

The guess u = u0 satisfied the system F (u) = 0 within the tolerances specified.
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KIN STEP LT STPTOL

kinsol stopped based on scaled step length. This means that the current iterate may
be an approximate solution of the given nonlinear system, but it is also quite possible
that the algorithm is “stalled” (making insufficient progress) near an invalid solution,
or that the scalar scsteptol is too large (see KINSetScaledStepTol in §5.5.4 to
change scsteptol from its default value).

KIN MEM NULL

The kinsol memory block pointer was NULL.

KIN ILL INPUT

An input parameter was invalid.

KIN NO MALLOC

The kinsol memory was not allocated by a call to KINMalloc.

KIN LINESEARCH NONCONV

The line search algorithm was unable to find an iterate sufficiently distinct from the
current iterate, or could not find an iterate satisfying the sufficient decrease condition.

Failure to satisfy the sufficient decrease condition could mean the current iterate is
“close” to an approximate solution of the given nonlinear system, the finite difference
approximation of the matrix-vector product J(u)v is inaccurate, or the real scalar
scsteptol is too large.

KIN MAXITER REACHED

The maximum number of nonlinear iterations has been reached.

KIN MXNEWT 5X EXCEEDED

Five consecutive steps have been taken that satisfy the inequality ‖Dup‖L2 > 0.99
mxnewtstep, where p denotes the current step and mxnewtstep is a scalar upper
bound on the scaled step length.

Such a failure may mean that ‖DFF (u)‖L2 asymptotes from above to a finite value,
or the real scalar mxnewtstep is too small.

KIN LINESEARCH BCFAIL

The line search algorithm was unable to satisfy the “beta-condition” for MXNBCF +1
nonlinear iterations (not necessarily consecutive), which may indicate the algorithm
is making poor progress.

KIN LINSOLV NO RECOVERY

The user-supplied routine psolve encountered a recoverable error, but the precondi-
tioner is already current.

KIN LINIT FAIL

The linear solver initialization routine (linit) encountered an error.

KIN LSETUP FAIL

The user-supplied routine pset (used to set up the preconditioner data) encountered
an unrecoverable error.

KIN LSOLVE FAIL

Either the user-supplied routine psolve (used to to solve the preconditioned linear
system) encountered an unrecoverable error, or the linear solver routine (lsolve)
encountered an error condition.

KIN SYSFUNC FAIL

The system function failed in an unrecoverable manner.

KIN FIRST SYSFUNC ERR

The system function failed recoverably at the first call.

KIN REPTD SYSFUNC ERR

The system function had repeated recoverable errors. No recovery is possible.
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Notes The components of vectors u scale and f scale should be strictly positive.

KIN SUCCESS = 0, KIN INITIAL GUESS OK = 1, and KIN STEP LT STPTOL = 2. All
remaining return values are negative and therefore a test flag < 0 will trap all KINSol
failures.

5.5.4 Optional input functions

kinsol provides an extensive list of functions that can be used to change from their default values
various optional input parameters that control the behavior of the kinsol solver. Table 5.1 lists
all optional input functions in kinsol which are then described in detail in the remainder of this
section, beginning with those for the main kinsol solver and continuing with those for the linear
solver modules. For the most casual use of kinsol, the reader can skip to §5.6.

We note that, on error return, all of these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.

5.5.4.1 Main solver optional input functions

The calls listed here can be executed in any order.
However, if KINSetErrHandlerFn or KINSetErrFile are to be called, that call should be first, in order
to take effect for any later error message.

KINSetErrHandlerFn

Call flag = KINSetErrHandlerFn(kin mem, ehfun, eh data);

Description The function KINSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ehfun (KINErrHandlerFn) is the C error handler function (see §5.6.2).
eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ehfun and data pointer eh data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal error handler function directs error messages to the file specified
by the file pointer errfp (see KINSetErrFile below).

Error messages indicating that the kinsol solver memory is NULL will always be directed
to stderr.

KINSetErrFile

Call flag = KINSetErrFile(kin mem, errfp);

Description The function KINSetErrFile specifies the pointer to the file where all kinsol messages
should be directed in case the default kinsol error handler function is used.

Arguments kin mem (void *) pointer to the kinsol memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.



5.5 User-callable functions 33

Table 5.1: Optional inputs for kinsol, kindense, and kinspils

Optional input Function name Default
KINSOL main solver

Error handler function KINSetErrHandlerFn internal fn.
Pointer to an error file KINSetErrFile stderr

Info handler function KINSetInfoHandlerFn internal fn.
Pointer to an info file KINSetInfoFile stdout

Data for problem-defining function KINSetFdata NULL

Verbosity level of output KINSetPrintLevel 0
Max. number of nonlinear iterations KINSetNumMaxIters 200
No initial preconditioner setup KINSetNoInitSetup FALSE

No residual monitoring∗ KINSetNoResMon FALSE

Max. iterations without prec. setup KINSetMaxSetupCalls 10
Max. iterations without residual check∗ KINSetMaxSubSetupCalls 5
Form of η coefficient KINSetEtaForm KIN ETACHOICE1

Constant value of η KINSetEtaConstValue 0.1
Values of γ and α KINSetEtaParams 0.9 and 2.0
Values of ωmin and ωmax

∗ KINSetResMonParams 0.00001 and 0.9
Constant value of ω∗ KINSetResMonConstValue 0.9
Lower bound on ε KINSetNoMinEps FALSE

Max. scaled length of Newton step KINSetMaxNewtonStep 1000‖Duu0‖2
Max. number of β-condition failures KINSetMaxBetaFails 10

Rel. error for F.D. Jv KINSetRelErrFunc
√
uround

Function-norm stopping tolerance KINSetFuncNormTol
3
√
uround

Scaled-step stopping tolerance KINSetScaledSteptol uround2/3

Inequality constraints on solution KINSetConstraints NULL

Nonlinear system function KINSetSysFunc none
KINDENSE linear solver

Dense Jacobian function and data KINDenseSetJacFn internal DQ,
NULL

KINBAND linear solver
Band Jacobian function and data KINBandSetJacFn internal DQ,

NULL

KINSPILS linear solvers
Max. number of restarts∗∗ KINSpilsSetMaxRestarts 0
Preconditioner functions and data KINSpilsSetPreconditioner NULL, NULL, NULL
Jacobian-times-vector function and data KINSpilsSetJacTimesVecFn internal DQ,

NULL

∗ Only for kindense and kinband
∗∗ Only for kinspgmr
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Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the kinsol memory pointer is NULL).

If KINSetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

KINSetInfoHandlerFn

Call flag = KINSetInfoHandlerFn(kin mem, ihfun, ih data);

Description The function KINSetInfoHandlerFn specifies the optional user-defined function to be
used in handling informative (non-error) messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ihfun (KINInfoHandlerFn) is the C info handler function (see §5.6.3).
ih data (void *) pointer to user data passed to ihfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ihfun and data pointer ih data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal info handler function directs informative (non-error) messages to
the file specified by the file pointer infofp (see KINSetInfoFile below).

KINSetInfoFile

Call flag = KINSetInfoFile(kin mem, infofp);

Description The function KINSetInfoFile specifies the pointer to the file where all informative
(non-error) messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

infofp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for infofp is stdout.

KINSetPrintLevel

Call flag = KINSetPrintLevel(kin mem, printfl);

Description The function KINSetPrintLevel specifies the level of verbosity of the output.

Arguments kin mem (void *) pointer to the kinsol memory block.

printfl (int) flag indicating the level of verbosity. Must be one of:

0 no information displayed.

1 for each nonlinear iteration display the following information: the scaled
Euclidean `2 norm of the system function evaluated at the current iterate,
the scaled norm of the Newton step (only if using KIN NONE), and the
number of function evaluations performed so far.

2 display level 1 output and the following values for each iteration:
‖F (u)‖DF

(only for KIN NONE).
‖F (u)‖DF ,∞ (for KIN NONE and KIN LINESEARCH).

3 display level 2 output plus additional values used by the global strategy
(only if using KIN LINESEARCH), and statistical information for the linear
solver.
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Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument printfl had an illegal value.

Notes The default value for printfl is 0.

KINSetFdata

Call flag = KINSetFdata(kin mem, f data);

Description The function KINSetFdata specifies the pointer to user-defined memory that is to be
passed to the user-supplied function implementing the nonlinear system residual.

Arguments kin mem (void *) pointer to the kinsol memory block.

f data (void *) pointer to the user-defined memory.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for f data is NULL.

KINSetNumMaxIters

Call flag = KINSetNumMaxIters(kin mem, mxiter);

Description The function KINSetNumMaxIters specifies the maximum number of nonlinear iterations
allowed.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxiter (long int) maximum number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum number of iterations was non-positive.

Notes The default value for mxiter is MXITER DEFAULT = 200.

KINSetNoInitSetup

Call flag = KINSetNoInitSetup(kin mem, noInitSetup);

Description The function KINSetNoInitSetup specifies whether an initial call to the preconditioner
setup function should be made or not.

Arguments kin mem (void *) pointer to the kinsol memory block.

noInitSetup (booleantype) flag controlling whether or not an initial call to the pre-
conditioner setup function is made.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noInitSetup is FALSE, meaning that an initial call to the precon-
ditioner setup function will be made.
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KINSetNoResMon

Call flag = KINSetNoResMon(kin mem, noNNIResMon);

Description The function KINSetNoResMon specifies whether or not the nonlinear residual monitoring
scheme is used to control Jacobian updating.

Arguments kin mem (void *) pointer to the kinsol memory block.

noNNIResMon (booleantype) flag controlling whether or not residual monitoring is
used.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes When using a direct solver, the default value for noNNIResMon is FALSE, meaning that
the nonlinear residual will be monitored. Otherwise, noNNIResMon is set to TRUE.

Residual monitoring is only available for use with the direct linear solver modules (mean-!

ing kindense and kinband).

KINSetMaxSetupCalls

Call flag = KINSetMaxSetupCalls(kin mem, msbset);

Description The function KINSetMaxSetupCalls specifies the maximum number of nonlinear itera-
tions that can be performed between calls to the preconditioner setup function.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbset (long int) maximum number of nonlinear iterations without a call to the
preconditioner setup function.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbset was negative.

Notes The default value for msbset is MSBSET DEFAULT = 10.

KINSetMaxSubSetupCalls

Call flag = KINSetMaxSubSetupCalls(kin mem, msbsetsub);

Description The function KINSetMaxSubSetupCalls specifies the maximum number of nonlinear
iterations between checks by the residual monitoring algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbsetsub (long int) maximum number of nonlinear iterations without checking the
nonlinear residual.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbsetsub was negative.

Notes The default value for msbsetsub is MSBSET SUB DEFAULT = 5.

Residual monitoring is only available for use with the direct linear solver modules (mean-!

ing kindense and kinband).
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KINSetEtaForm

Call flag = KINSetEtaForm(kin mem, etachoice);

Description The function KINSetEtaForm specifies the method for computing the value of the η
coefficient used in the calculation of the linear solver convergence tolerance.

Arguments kin mem (void *) pointer to the kinsol memory block.

etachoice (int) flag indicating the method for computing η. etachoice must be one
of KIN ETACHOICE1, KIN ETACHOICE2, or KIN ETACONSTANT (see Chapter 3
for details).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument etachoice had an illegal value.

Notes The default value for etachoice is KIN ETACHOICE1.

KINSetEtaConstValue

Call flag = KINSetEtaConstValue(kin mem, eta);

Description The function KINSetEtaConstValue specifies the constant value for η in the case
etachoice = KIN ETACONSTANT.

Arguments kin mem (void *) pointer to the kinsol memory block.

eta (realtype) constant value for η.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument eta had an illegal value

Notes The default value for eta is 0.1. The valid values are 0.0 < eta ≤ 1.0.

KINSetEtaParams

Call flag = KINSetEtaParams(kin mem, egamma, ealpha);

Description The function KINSetEtaParams specifies the parameters γ and α in the formula for η,
in the case etachoice = KIN ETACHOICE2.

Arguments kin mem (void *) pointer to the kinsol memory block.

egamma (realtype) value of the γ parameter.

ealpha (realtype) value of the α parameter.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments egamma or ealpha had an illegal value.

Notes The default values for egamma and ealpha are 0.9 and 2.0, respectively.

The valid values for ealpha are 1.0 < ealpha ≤ 2.0. If ealpha = 0.0, then its value is
set to 2.0.

The valid values for egamma are 0.0 < egamma ≤ 1.0. If egamma = 0.0, then its value is
set to 0.9.
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KINSetResMonConstValue

Call flag = KINSetResMonConstValue(kin mem, omegaconst);

Description The function KINSetResMonConstValue specifies the constant value for ω when using
residual monitoring.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegaconst (realtype) constant value for ω.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument omegaconst had an illegal value

Notes The default value for omega is 0.9. The valid values are 0.0 < omega < 1.0.

KINSetResMonParams

Call flag = KINSetResMonParams(kin mem, omegamin, omegamax);

Description The function KINSetResMonParams specifies the parameters ωmin and ωmax in the for-
mula for ω.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegamin (realtype) value of the ωmin parameter.

omegamax (realtype) value of the ωmax parameter.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments omegamin or omegamax had an illegal value.

Notes The default values for omegamin and omegamax are 0.00001 and 0.9, respectively.

The valid values for omegamin and omegamax are 0.0 < omegamin < omegamax < 1.0. If
omegamin = 0.0, then its value is set to 0.00001. If omegamax = 0.0, then its value is
set to 0.9.

KINSetNoMinEps

Call flag = KINSetNoMinEps(kin mem, noMinEps);

Description The function KINSetNoMinEps specifies a flag that controls whether or not the value of
ε, the scaled linear residual tolerance, is bounded from below.

Arguments kin mem (void *) pointer to the kinsol memory block.

noMinEps (booleantype) flag controlling the bound on ε.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noMinEps is FALSE.

KINSetMaxNewtonStep

Call flag = KINSetMaxNewtonStep(kin mem, mxnewtstep);

Description The function KINSetMaxNewtonStep specifies the maximum allowable scaled length of
the Newton step.

Arguments kin mem (void *) pointer to the kinsol memory block.
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mxnewtstep (realtype) maximum scaled step length.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum step was non-positive.

Notes The default value of mxnewtstep is 1000 ‖u0‖Du
, where u0 is the initial guess.

KINSetMaxBetaFails

Call flag = KINSetMaxBetaFails(kin mem, mxnbcf);

Description The function KINSetMaxBetaFails specifies the maximum number of β-condition fail-
ures in the linesearch algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxnbcf (realtype) maximum number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT mxnbcf was non-positive.

Notes The default value of mxnbcf is MXNBCF DEFAULT = 10.

KINSetRelErrFunc

Call flag = KINSetRelErrFunc(kin mem, relfunc);

Description The function KINSetRelErrFunc specifies the relative error in computing F (u), which
is used in the difference quotient approximation of the Jacobian-vector product.

Arguments kin mem (void *) pointer to the kinsol memory block.

relfunc (realtype) relative error in F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The relative error was non-positive.

Notes The default value for relfunc is
√
unit roundoff.

KINSetFuncNormTol

Call flag = KINSetFuncNormTol(kin mem, fnormtol);

Description The function KINSetFuncNormTol specifies the scalar used as a stopping tolerance on
the scaled maximum norm of the system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

fnormtol (realtype) tolerance for stopping based on scaled function norm.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for fnormtol is 3
√
unit roundoff.
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KINSetScaledStepTol

Call flag = KINSetScaledStepTol(kin mem, scsteptol);

Description The function KINSetScaledStepTol specifies the scalar used as a stopping tolerance on
the minimum scaled step length.

Arguments kin mem (void *) pointer to the kinsol memory block.

scsteptol (realtype) tolerance for stopping based on scaled step length..

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for scsteptol is (unit roundoff)2/3.

KINSetConstraints

Call flag = KINSetConstraints(kin mem, constraints);

Description The function KINSetConstraints specifies a vector that defines inequality constraints
for each component of the solution vector u.

Arguments kin mem (void *) pointer to the kinsol memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ui.

1.0 then ui will be constrained to be ui > 0.0.

−1.0 then ui will be constrained to be ui < 0.0.

2.0 then ui will be constrained to be ui ≥ 0.0.

−2.0 then ui will be constrained to be ui ≤ 0.0.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The constraint vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed.

The function creates a private copy of the constraints vector. Consequently, the user-
supplied vector can be freed after the function call, and the constraints can only be
changed by calling this function.

KINSetSysFunc

Call flag = KINSetSysFunc(kin mem, func);

Description The function KINSetSysFunc specifies the user-provided function that evaluates the
nonlinear system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

func (KINSysFn) user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument func was NULL.

Notes The nonlinear system function is initially specified through KINMalloc. The option of
changing the system function is provided for a user who wishes to solve several problems
of the same size but with different functions.
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5.5.4.2 Dense linear solver

The kindense solver needs a function to compute a dense approximation to the Jacobian matrix
J(u). This function must be of type KINDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default difference quotient function KINDenseDQJac that comes with
the kindense solver. To specify a user-supplied Jacobian function djac and associated user data
jac data, kindense provides the function KINDenseSetJacFn. The kindense solver passes the
pointer jac data to its dense Jacobian function. This allows the user to create an arbitrary structure
with relevant problem data and access it during the execution of the user-supplied Jacobian function,
without using global data in the program. The pointer jac data may be identical to f data, if the
latter was specified through KINSetFdata.

KINDenseSetJacFn

Call flag = KINDenseSetJacFn(kin mem, djac, jac data);

Description The function KINDenseSetJacFn specifies the dense Jacobian approximation function
to be used and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

djac (KINDenseJacFn) user-defined dense Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The optional value has been successfully set.

KINDENSE MEM NULL The kin mem pointer is NULL.

KINDENSE LMEM NULL The kindense linear solver has not been initialized.

Notes By default, kindense uses the difference quotient function KINDenseDQJac. If NULL is
passed to djac, this default function is used.

The function type KINDenseJacFn is described in §5.6.4.

5.5.4.3 Band linear solver

The kindense solver needs a function to compute a banded approximation to the Jacobian matrix
J(u). This function must be of type KINBandJacFn. The user can supply his/her own banded Jacobian
approximation function, or use the default difference quotient function KINBandDQJac that comes
with the kinband solver. To specify a user-supplied Jacobian function bjac and associated user data
jac data, kinband provides the function KINBandSetJacFn. The kinband solver passes the pointer
jac data to its banded Jacobian approximation function. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied Jacobian
function, without using global data in the program. The pointer jac data may be identical to f data,
if the latter was specified through KINSetFdata.

KINBandSetJacFn

Call flag = KINBandSetJacFn(cvode mem, bjac, jac data);

Description The function KINBandSetJacFn specifies the banded Jacobian approximation function
to be used and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

bjac (KINBandJacFn) user-defined banded Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

KINBAND SUCCESS The optional value has been successfully set.

KINBAND MEM NULL The kin mem pointer is NULL.
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KINBAND LMEM NULL The kinband linear solver has not been initialized.

Notes By default, kinband uses the difference quotient function KINBandDQJac. If NULL is
passed to bjac, this default function is used.

The function type KINBandJacFn is described in §5.6.5.

5.5.4.4 SPILS linear solvers

If any preconditioning is to be done with one of the kinspils linear solvers, then the user must supply
a preconditioner solve function psolve and specify its name in a call to KINSpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-

tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §5.6. If used, the psetup function should also be specified in the call to
KINSpilsSetPreconditioner. Optionally, a kinspils solver passes the pointer p data received
through KINSpilsSetPreconditioner to the preconditioner psetup and psolve functions. This al-
lows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied preconditioner functions without using global data in the program. The
pointer p data may be identical to f data, if the latter was specified through KINSetFdata.

Ther kinspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(u) and a vector v. The user can supply his/her own Jacobian-times-vector ap-
proximation function, or use the difference quotient function KINSpilsDQJtimes that comes with the
kinspils solvers. A user-defined Jacobian-vector function must be of type KINSpilsJacTimesVecFn

and can be specified through a call to KINSpilsSetJacTimesVecFn (see §5.6.6 for specification de-
tails). As with the preconditioner user data structure p data, the user can also specify, in the call
to KINSpilsSetJacTimesVecFn, a pointer to a user-defined data structure, jac data, which the kin-
spils solver passes to the Jacobian-times-vector function jtimes each time it is called. The pointer
jac data may be identical to p data and/or f data.

KINSpilsSetPreconditioner

Call flag = KINSpilsSetPreconditioner(kin mem, psetup, psolve, p data);

Description The function KINSpilsSetPreconditioner specifies the preconditioner setup and solve
functions and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

psetup (KINSpilsPrecSetupFn) user-defined preconditioner setup function.

psolve (KINSpilsPrecSolveFn) user-defined preconditioner solve function.

p data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

KINSPILS SUCCESS The optional value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The kinspils linear solver has not been initialized.

Notes The function type KINSpilsPrecSolveFn is described in §5.6.7. The function type
KINSpilsPrecSetupFn is described in §5.6.8.

KINSpilsSetJacTimesVecFn

Call flag = KINSpilsSetJacTimesVecFn(kin mem, jtimes, jac data);

Description The function KINSpilsSetJacTimesFn specifies the Jacobian-vector function to be used
and the pointer to user data.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimes (KINSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

jac data (void *) pointer to the user-defined data structure.
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Return value The return value flag (of type int) is one of

KINSPILS SUCCESS The optional value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The kinspils linear solver has not been initialized.

Notes By default, the kinspils linear solvers use an internal difference quotient function
KINSpilsDQJtimes. If NULL is passed to jtimes, this default function is used.

The function type KINSpilsJacTimesVecFn is described in §5.6.6.

KINSpilsSetMaxRestarts

Call flag = KINSpilsSetMaxRestarts(kin mem, maxrs);

Description The function KINSpilsSetMaxRestarts specifies the maximum number of times the
iterative linear solver can be restarted.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxrs (int) maximum number of restarts.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional value has been successfully set.

KINSPILS ILL INPUT The maximum number of restarts specified is negative.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver has not been initialized.

Notes The default value is 0 (meaning no restarts).

This option is available only for the kinspgmr linear solver. !

5.5.5 Optional output functions

kinsol provides an extensive list of functions that can be used to obtain solver performance infor-
mation. Table 5.2 lists all optional output functions in kinsol, which are then described in detail in
the remainder of this section, beginning with those for the main kinsol solver and continuing with
those for the linear solver modules. Where the name of an output from a linear solver module would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added here (e.g., lenrwLS).

Table 5.2: Optional outputs from kinsol, kindense, kinband, and kinspils

Optional output Function name
KINSOL main solver

Size of kinsol real and integer workspaces KINGetWorkSpace

Number of function evaluations KINGetNumFuncEvals

Number of nonlinear iterations KINGetNumNolinSolvIters

Number of β-condition failures KINGetNumBetaCondFails

Number of backtrack operations KINGetNumBacktrackOps

Scaled norm of F KINGetFuncNorm

Scaled norm of the step KINGetStepLength

KINDENSE linear solver
Size of kindense real and integer workspaces KINDenseGetWorkSpace

No. of Jacobian evaluations KINDenseGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. KINDenseGetNumFuncEvals

Last return from a kindense function KINDenseGetLastFlag

continued on next page
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continued from last page

Optional output Function name

KINBAND linear solver
Size of kinband real and integer workspaces KINBandGetWorkSpace

No. of Jacobian evaluations KINBandGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. KINBandGetNumFuncEvals

Last return from a kinband function KINBandGetLastFlag

KINSPILS linear solvers
Size of real and integer workspaces KINSpilsGetWorkSpace

No. of linear iterations KINSpilsGetNumLinIters

No. of linear convergence failures KINSpilsGetNumConvFails

No. of preconditioner evaluations KINSpilsGetNumPrecEvals

No. of preconditioner solves KINSpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations KINSpilsGetNumJtimesEvals

No. of fct. calls for finite diff. Jacobian-vector evals. KINSpilsGetNumFuncEvals

Last return from a linear solver function KINSpilsGetLastFlag

5.5.5.1 Main solver optional output functions

kinsol provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements and solver performance statistics.
These optional output functions are described next.

KINGetWorkSpace

Call flag = KINGetWorkSpace(kin mem, &lenrw, &leniw);

Description The function KINGetWorkSpace returns the kinsol integer and real workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrw (long int) the number of realtype values in the kinsol workspace.

leniw (long int) the number of integer values in the kinsol workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes In terms of the problem size N , the actual size of the real workspace is 17+5N realtype

words. The real workspace is increased by an additional N words if constraint checking
is enabled (see KINSetConstraints).

The actual size of the integer workspace (without distinction between int and long

int) is 22 + 5N (increased by N if constraint checking is enabled).

KINGetNumFuncEvals

Call flag = KINGetNumFuncEvals(kin mem, &nfevals);

Description The function KINGetNumFuncEvals returns the number of evaluations of the system
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevals (long int) number of calls to the user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.



5.5 User-callable functions 45

KINGetNumNonlinSolvIters

Call flag = KINGetNumNonlinSolvIters(kin mem, &nniters);

Description The function KINGetNumNonlinSolvIters returns the number of nonlinear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nniters (long int) number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBetaCondFails

Call flag = KINGetNumBetaCondFails(kin mem, &nbcfails);

Description The function KINGetNumBetaCondFails returns the number of β-condition failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbcfails (long int) number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBacktrackOps

Call flag = KINGetNumBacktrackOps(kin mem, &nbacktr);

Description The function KINGetNumBacktrackOps returns the number of backtrack operations (step
length adjustments) performed by the line search algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbacktr (long int) number of backtrack operations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetFuncNorm

Call flag = KINGetFuncNorm(kin mem, &fnorm);

Description The function KINGetFuncNorm returns the scaled Euclidean `2 norm of the nonlinear
system function F (u) evaluated at the current iterate.

Arguments kin mem (void *) pointer to the kinsol memory block.

fnorm (realtype) current scaled norm of F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetStepLength

Call flag = KINGetStepLength(kin mem, &steplength);

Description The function KINGetStepLength returns the scaled Euclidean `2 norm of the step used
during the previous iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.
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steplength (realtype) scaled norm of the Newton step.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

5.5.5.2 Dense linear solver

The following optional outputs are available from the kindense module: workspace requirements,
number of calls to the Jacobian routine, number of calls to the system function routine for finite-
difference Jacobian approximation, and last return value from a kindense function.

KINDenseGetWorkSpace

Call flag = KINDenseGetWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINDenseGetWorkSpace returns the kindense real and integer workspace
sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwLS (long int) the number of realtype values in the kindense workspace.

leniwLS (long int) the number of integer values in the kindense workspace.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The optional output value has been successfully set.

KINDENSE MEM NULL The kin mem pointer is NULL.

KINDENSE LMEM NULL The kindense linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is 2N 2 realtype

words, and the actual size of the integer workspace is N integer words.

KINDenseGetNumJacEvals

Call flag = KINDenseGetNumJacEvals(kin mem, &njevals);

Description The function KINDenseGetNumJacEvals returns the number of calls to the dense Jaco-
bian approximation function.

Arguments kin mem (void *) pointer to the kinsol memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The optional output value has been successfully set.

KINDENSE MEM NULL The kin mem pointer is NULL.

KINDENSE LMEM NULL The kindense linear solver has not been initialized.

KINDenseGetNumFuncEvals

Call flag = KINDenseGetNumFuncEvals(kin mem, &nfevalsLS);

Description The function KINDenseGetNumFuncEvals returns the number of calls to the user system
function due to the finite difference dense Jacobian approximation.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The optional output value has been successfully set.

KINDENSE MEM NULL The kin mem pointer is NULL.
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KINDENSE LMEM NULL The kindense linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default KINDenseDQJac difference quo-
tient function is used.

KINDenseGetLastFlag

Call flag = KINDenseGetLastFlag(kin mem, &lsflag);

Description The function KINDenseGetLastFlag returns the last return value from a kindense
routine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (int) the value of the last return flag from a kindense function.

Return value The return value flag (of type int) is one of

KINDENSE SUCCESS The optional output value has been successfully set.

KINDENSE MEM NULL The kin mem pointer is NULL.

KINDENSE LMEM NULL The kindense linear solver has not been initialized.

Notes If the kindense setup function failed (KINSol returned KIN LSETUP FAIL), then lsflag

is equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the dense Jacobian matrix.

5.5.5.3 Band linear solver

The following optional outputs are available from the kinband module: workspace requirements,
number of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-
difference Jacobian approximation, and last return value from a kinband function.

KINBandGetWorkSpace

Call flag = KINBandGetWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINBandGetWorkSpace returns the kinband real and integer workspace
sizes.

Arguments kin mem (void *) pointer to the cvode memory block.

lenrwLS (long int) the number of realtype values in the kinband workspace.

leniwLS (long int) the number of integer values in the kinband workspace.

Return value The return value flag (of type int) is one of

KINBAND SUCCESS The optional output value has been successfully set.

KINBAND MEM NULL The kin mem pointer is NULL.

KINBAND LMEM NULL The kinband linear solver has not been initialized.

Notes In terms of the problem size N and Jacobian half-bandwidths, the actual size of the
real workspace is (2 mupper+3 mlower +2)N realtype words, and the actual size of
the integer workspace is N integer words.

KINBandGetNumJacEvals

Call flag = KINBandGetNumJacEvals(kin mem, &njevals);

Description The function KINBandGetNumJacEvals returns the number of calls to the banded Jaco-
bian approximation function.

Arguments kin mem (void *) pointer to the cvode memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of
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KINBAND SUCCESS The optional output value has been successfully set.

KINBAND MEM NULL The kin mem pointer is NULL.

KINBAND LMEM NULL The kinband linear solver has not been initialized.

KINBandGetNumRhsEvals

Call flag = KINBandGetNumFuncEvals(kin mem, &nfevalsLS);

Description The function KINBandGetNumFuncEvals returns the number of calls to the user system
function due to the finite difference banded Jacobian approximation.

Arguments kin mem (void *) pointer to the cvode memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of

KINBAND SUCCESS The optional output value has been successfully set.

KINBAND MEM NULL The kin mem pointer is NULL.

KINBAND LMEM NULL The kinband linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default KINBandDQJac difference quo-
tient function is used.

KINBandGetLastFlag

Call flag = KINBandGetLastFlag(kin mem, &lsflag);

Description The function KINBandGetLastFlag returns the last return value from a kinband rou-
tine.

Arguments kin mem (void *) pointer to the cvode memory block.

lsflag (int) the value of the last return flag from a kinband function.

Return value The return value flag (of type int) is one of

KINBAND SUCCESS The optional output value has been successfully set.

KINBAND MEM NULL The kin mem pointer is NULL.

KINBAND LMEM NULL The kinband linear solver has not been initialized.

Notes If the kinband setup sunction failed (KINSol returned KIN LSETUP FAIL), the value
lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the banded Jacobian matrix.

5.5.5.4 SPILS linear solvers

The following optional outputs are available from the kinspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to the
system function routine for finite-difference Jacobian-vector product approximation, and last return
value from a linear solver function.

KINSpilsGetWorkSpace

Call flag = KINSpilsGetWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINSpilsGetWorkSpace returns the global sizes of the linear solver real
and integer workspaces.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwSG (long int) the number of realtype values in the linear solver workspace.

leniwSG (long int) the number of integer values in the linear solver workspace.
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Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output values have been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The kinspgmr linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
(maxl+3) ∗N+ maxl ∗( maxl+4) + 1 realtype words for kinspgmr,
7 ∗N realtype words for kinspbcg,
and 11 ∗N realtype words for kinsptfqmr.

In a parallel setting, this value is global — summed over all processes.

KINSpilsGetNumLinIters

Call flag = KINSpilsGetNumLinIters(kin mem, &nliters);

Description The function KINSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments kin mem (void *) pointer to the kinsol memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPLIS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumConvFails

Call flag = KINSpilsGetNumConvFails(kin mem, &nlcfails);

Description The function KINSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumPrecEvals

Call flag = KINSpilsGetNumPrecEvals(kin mem, &npevals);

Description The function KINSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup.

Arguments kin mem (void *) pointer to the kinsol memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.
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KINSpilsGetNumPrecSolves

Call flag = KINSpilsGetNumPrecSolves(kin mem, &npsolves);

Description The function KINSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments kin mem (void *) pointer to the kinsol memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumJtimesEvals

Call flag = KINSpilsGetNumJtimesEvals(kin mem, &njvevals);

Description The function KINSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector product function, jtimes.

Arguments kin mem (void *) pointer to the kinsol memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

KINSpilsGetNumFuncEvals

Call flag = KINSpilsGetNumFuncEvals(kin mem, &nfevalsLS);

Description The function KINSpilsGetNumFuncEvals returns the number of calls to the user system
function for finite difference Jacobian-vector product approximations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS LMEM NULL The linear solver module has not been initialized.

Notes The value nfevalsLS is incremented only if the default KINSpilsDQJtimes difference
quotient function is used.

KINSpilsGetLastFlag

Call flag = KINSpilsGetLastFlag(kin mem, &lsflag);

Description The function KINSpilsGetLastFlag returns the last return value from a kinspils rou-
tine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (int) the value of the last return flag from a kinspils function.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The optional output value has been successfully set.

KINSPILS MEM NULL The kin mem pointer is NULL.
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KINSPILS LMEM NULL The linear solver module has not been initialized.

Notes If the kinspils setup function failed (KINSOL returned KIN LSETUP FAIL), lsflag will
be SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the kinspgmr solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag con-
tains the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL, indicat-
ing that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an unrecov-
erable failure in the Jacobian-times-vector function; SPGMR PSOLVE FAIL UNREC, indicat-
ing that the preconditioner solve function psolve failed unrecoverably; SPGMR GS FAIL,
indicating a failure in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating
that the matrix R was found to be singular during the QR solve phase.

If the kinspbcg solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag con-
tains the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL, indi-
cating that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an unre-
coverable failure in the Jacobian-times-vector function; or SPBCG PSOLVE FAIL UNREC,
indicating that the preconditioner solve function psolve failed unrecoverably.

If the kinsptfqmr solve function failed (KINSol returned KIN LSOLVE FAIL), lsflag
contains the error return flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the Jacobian-times-vector function; or SPTFQMR PSOLVE FAIL UNREC,
indicating that the preconditioner solve function psolve failed unrecoverably.

5.6 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a
function that handles error and warning messages, (optionally) a function that handles informational
messages, (optionally) a function that provides Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iterative
algorithms.

5.6.1 Problem-defining function

The user must provide a function of type KINSysFn defined as follows:

KINSysFn

Definition typedef void (*KINSysFn)(N Vector u, N Vector fval, void *f data);

Purpose This function computes F (u) for a given value of the vector u.

Arguments u is the current value of the variable vector, u.

fval is the output vector F (u).

f data is a pointer to user data, same as the pointer f data passed to KINSetFdata.

Return value A KINSysFn function should return 0 if successful, a positive value if a recoverable error
occurred (in which case kinsol will attempt to correct), or a negative value if it failed
unrecoverably (in which case the solution process is halted and KIN SYSFUNC FAIL is
returned).

Notes Allocation of memory for fval is handled within kinsol.

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see KINSetErrFile), the user may provide a function of type KINErrHandlerFn to process
any such messages. The function type KINErrHandlerFn is defined as follows:
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KINErrHandlerFn

Definition typedef void (*KINErrHandlerFn)(int error code,

const char *module, const char *function,

char *msg, void *eh data);

Purpose This function processes error and warning messages from kinsol and its sub-modules.

Arguments error code is the error code.

module is the name of the kinsol module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
KINSetErrHandlerFn.

Return value A KINErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (KIN WARNING) for warnings. If a function
returning a pointer to memory (e.g., KINBBDPrecAlloc) encounters an error, it sets
error code to 0 before returning NULL.

5.6.3 Informational message handler function

As an alternative to the default behavior of directing informational (meaning non-error) messages
to the file pointed to by infofp (see KINSetInfoFile), the user may provide a function of type
KINInfoHandlerFn to process any such messages. The function type KINInfoHandlerFn is defined as
follows:

KINInfoHandlerFn

Definition typedef void (*KINInfoHandlerFn)(const char *module, const char *function,

char *msg, void *ih data);

Purpose This function processes informational messages from kinsol and its sub-modules.

Arguments module is the name of the kinsol module reporting the information.

function is the name of the function reporting the information.

msg is the message.

ih data is a pointer to user data, the same as the ih data parameter passed to
KINSetInfoHandlerFn.

Return value A KINInfoHandlerFn function has no return value.

5.6.4 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e. KINDense is called in Step
7 of §5.4), the user may provide a function of type KINDenseJacFn defined by

KINDenseJacFn

Definition typedef int (*KINDenseJacFn)(long int N, DenseMat J,

N Vector u, N Vector fu, void *jac data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the dense Jacobian J(u) (or an approximation to it).

Arguments N is the problem size.

J is the output Jacobian matrix.

u is the current (unscaled) iterate.

fu is the current value of the vector F (u).
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jac data is a pointer to user data — the same as the jac data parameter passed to
KINDenseSetJacData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINDenseJacFn as temporary storage or work space.

Return value A function of type KINDenseJacFn should return 0 if successful or a non-zero value
otherwise.

Notes A user-supplied dense Jacobian function must load the N by N dense matrix J with an
approximation to the Jacobian matrix J at u. Only nonzero elements need to be loaded
into J because J is set to the zero matrix before the call to the Jacobian function. The
type of J is DenseMat.

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the DenseMat type. DENSE ELEM(J, i, j) references the (i, j)-th element of the dense
matrix J (i, j= 0 . . . N −1). This macro is for use in small problems in which efficiency
of access is not a major concern. Thus, in terms of indices m and n running from 1 to
N , the Jacobian element Jm,n can be loaded with the statement DENSE ELEM(J, m-1,

n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a pointer to the storage for the
jth column of J (j= 0 . . . N − 1), and the elements of the jth column are then accessed
via ordinary array indexing. Thus Jm,n can be loaded with the statements col n =

DENSE COL(J, n-1); col n[m-1] = Jm,n. For large problems, it is more efficient to
use DENSE COL than to use DENSE ELEM. Note that both of these macros number rows
and columns starting from 0, not 1.

The DenseMat type and the accessor macros DENSE ELEM and DENSE COL are documented
in §9.1.
If the user’s KINDenseJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. To obtain these, use the KINGet* functions
described in §5.5.5.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

5.6.5 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e., KINBand is called in
Step 7 of §5.4), the user may provide a function of type KINBandJacFn defined as follows:

KINBandJacFn

Definition typedef int (*KINBandJacFn)(long int N, long int mupper,

long int mlower, BandMat J,

N Vector u, N Vector fu, void *jac data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the banded Jacobian J(u) (or a banded approximation to it).

Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

J is the output Jacobian matrix.

u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

jac data is a pointer to user data — the same as the jac data parameter passed to
KINBandSetJacData.

tmp1
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tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINBandJacFn as temporary storage or work space.

Return value A function of type KINBandJacFn should return 0 if successful or a non-zero value
otherwise.

Notes A user-supplied band Jacobian function must load the band matrix J of type BandMat

with the elements of the Jacobian J at u. Only nonzero elements need to be loaded into
J because J is preset to zero before the call to the Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underly-
ing representation of the BandMat type. BAND ELEM(J, i, j) references the (i, j)th
element of the band matrix J, counting from 0. This macro is for use in small prob-
lems in which efficiency of access is not a major concern. Thus, in terms of indices
m and n running from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded with the statement BAND ELEM(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, BAND COL(J, j) returns a pointer to the diagonal element of
the jth column of J, and if we assign this address to realtype *col j, then the ith
element of the jth column is given by BAND COL ELEM(col j, i, j), counting from 0.
Thus for (m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J,

n-1); BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the jth column can
also be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type BandMat. The array col n can be
indexed from −mupper to mlower. For large problems, it is more efficient to use the
combination of BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the dense
case, these macros all number rows and columns starting from 0, not 1.

The BandMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §9.2.
If the user’s KINBandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. To obtain these, use the KINGet* functions
described in §5.5.5.1. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundials types.h.

5.6.6 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (KINSp* is called
in step 7 of §5.4), the user may provide a function of type KINSpilsJacTimesVecFn in the following
form:

KINSpilsJacTimesVecFn

Definition typedef int (*KINSpilsJacTimesVecFn)(N Vector v, N Vector Jv,

N Vector u, booleantype new u,

void *jac data);

Purpose This function computes the product Jv (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the output vector computed.

u is the current value of the dependent variable vector.

new u is a flag (reset by user) indicating if the iterate has been updated in the
interim — Jacobian needs to be updated/reevaluated, if appropriate, unless
new u = FALSE.

jac data is a pointer to user data — the same as the jac data parameter passed to
KINSp*SetJacTimesVecFn.
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Return value The value to be returned by the Jacobian-times-vector function should be 0 if successful.
If a recoverable failure occured, the return value should be positive. In this case, kinsol
will attempt to correct by calling the preconditioner setup function if the preconditioner
information. If this information is current, kinsol halts. If the Jacobian-times-vector
function encounters an unrecoverable error, it should return a negative value, prompting
kinsol to halt.

Notes If a user-defined routine is not given, then an internal kinspgmr function, using differ-
ence quotient approximations, is used.

If the user-provided KINSpilsJacTimesVecFn function needs the unit roundoff, this can
be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

The user is responsible for resetting the value of new u to FALSE. !

5.6.7 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r
where P is the preconditioner matrix. This function must be of type KINSpilsPrecSolveFn, defined
as follows:

KINSpilsPrecSolveFn

Definition typedef int (*KINSpilsPrecSolveFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

N Vector v, void *prec data,

N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

v on input, v is set to the right-hand side vector of the linear system, r. On
output, v must contain the solution z of the linear system Pz = r.

prec data is a pointer to user data - the same as the prec data parameter passed to
the function KINSpilsSetPreconditioner.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error,
and negative for an unrecoverable error.

Notes If the preconditioner solve function fails recoverably and if the preconditioner informa-
tion (set by the preconditioner setup function) is out of date, kinsol attempts to correct
by calling the setup function. If the preconditioner data is current, kinsol halts.

5.6.8 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied C function of type KINSpilsPrecSetupFn, defined as follows:

KINSpilsPrecSetupFn
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Definition typedef int (*KINSpilsPrecSetupFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

void *prec data, N Vector tmp1,

N Vector tmp2);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of a KINSpilsPrecSetupFn are as follows:

u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

prec data is a pointer to user data - the same as the prec data parameter passed to
the function KINSpilsSetPreconditioner.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by KINSpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, any other value re-
sulting in halting the kinsol solver.

Notes The user-supplied preconditioner setup subroutine should compute the right precondi-
tioner matrix P (stored in the memory block referenced by the prec data pointer) used
to form the scaled preconditioned linear system

(DFJ(u)P
−1D−1

u ) · (DuPx) = −DFF (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are
stored in the vectors uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the
preconditioner solve function, but will instead be called only as often as necessary to
achieve convergence of the Newton iteration.

If the preconditioner solve routine requires no preparation, then a preconditioner setup
function need not be given.

5.7 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, kinsol provides a band-block-diagonal preconditioner module kinbbdpre, to
be used with the parallel N Vector module described in §7.2.

This module provides a preconditioner matrix for kinsol that is block-diagonal with banded
blocks. The blocking corresponds to the distribution of the dependent variable vector u amongst the
processes. Each preconditioner block is generated from the Jacobian of the local part (associated with
the current process) of a given function G(u) approximating F (u) (G = F is allowed). The blocks
are generated by each process via a difference quotient scheme, utilizing a specified band structure.
This structure is given by upper and lower half-bandwidths, mudq and mldq, defined as the number
of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mu + ml +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the system outside a certain bandwidth are considerably weaker than those within the
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band. Reducing mu and ml while keeping mudq and mldq at their true values, discards the elements
outside the narrower band. Reducing both pairs has the additional effect of lumping the outer Jacobian
elements into the computed elements within the band, and requires more caution and experimentation
to see whether the lower cost of narrower band matrices offsets the loss of accuracy in the blocks.

The kinbbdpre module calls two user-provided functions to construct P : a required function Gloc

(of type KINLocalFn) which approximates the nonlinear system function function G(u) ≈ F (u) and
which is computed locally, and an optional function Gcomm (of type KINCommFn) which performs all
interprocess communication necessary to evaluate the approximate function G. These are in addition
to the user-supplied nonlinear system function that evaluates F (u). Both functions take as input the
same pointer f data as that passed by the user to KINSetFdata and passed to the user’s function
func, and neither function has a return value. The user is responsible for providing space (presumably
within f data) for components of u that are communicated by Gcomm from the other processes, and
that are then used by Gloc, which is not expected to do any communication.

KINLocalFn

Definition typedef void (*KINLocalFn)(long int Nlocal, N Vector u,

N Vector gval, void *f data);

Purpose This function computes G(u), and outputs the resulting vector as gval.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

gval is the output vector.

f data is a pointer to user data - the same as the f data parameter passed to KINSetFdata.

Return value A KINLocalFn function type does not have a return value.

Notes This function assumes that all interprocess communication of data needed to calculate
gval has already been done, and this data is accessible within f data.

Memory for u and gval is handled within the preconditioner module.

The case where G is mathematically identical to F is allowed.

KINCommFn

Definition typedef void (*KINCommFn)(long int Nlocal, N Vector u, void *f data);

Purpose This function performs all interprocess communications necessary for the execution of
the gloc function above, using the input vector u.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

f data is a pointer to user data - the same as the f data parameter passed to KINSetFdata.

Return value A KINCommFn function type does not have a return value.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure f data.

Each call to the Gcomm function is preceded by a call to the system function func with
the same u argument. Thus Gcomm can omit any communications done by func if
relevant to the evaluation of Gloc. If all necessary communication was done in func,
then Gcomm = NULL can be passed in the call to KINBBDPrecAlloc (see below).

Besides the header files required for the solution of a nonlinear problem (see §5.3), to use the
kinbbdpre module, the main program must include the header file kinbbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §5.4 are
grayed out.
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1. Initialize MPI

2. Set problem dimensions

3. Set vector with initial guess

4. Create kinsol object

5. Set optional inputs

6. Allocate internal memory

7. Initialize the kinbbdpre preconditioner module

Specify the upper and lower half-bandwidth pairs mu,ml and mukeep,mlkeep, and call

bbd data = KINBBDPrecAlloc(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

to allocate memory for and initialize a data structure bbd data to be passed to the appropriate
kinspils linear solver. The last two arguments of KINBBDPrecAlloc are the two user-supplied
functions described above.

8. Attach the Kyrlov linear solver, one of:

flag = KINBBDSpgmr(kin mem, maxl, bbd data);

flag = KINBBDSpbcg(kin mem, maxl, bbd data);

flag = KINBBDSptfqmr(kin mem, maxl, bbd data);

Each function KINBBDSp* is a wrapper around the corresponding specification function KINSp*

and performs the following actions:

•Attaches the kinspils linear solver to the main kinsol solver memory;

•Sets the preconditioner data structure for kinbbdpre;

•Sets the preconditioner setup function for kinbbdpre;

•Sets the preconditioner solve function for kinbbdpre;

The argument maxl is described below. The last argument of KINBBDSp* is the pointer to the
kinbbdpre data returned by KINBBDPrecAlloc.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to kinspils optional input functions.

10. Solve problem

11. Get optional output

12. Deallocate memory for solution vector

13. Free the kinbbdpre data structure

KINBBDPrecFree(&bbd data);

14. Free solver memory

15. Finalize MPI

The user-callable functions that initialize, attach, and deallocate the kinbbdpre preconditioner
module (steps 7, 8, and 13 above) are described in more detail below.



5.7 A parallel band-block-diagonal preconditioner module 59

KINBBDPrecAlloc

Call bbd data = KINBBDPrecAlloc(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

Description The function KINBBDPrecAlloc initializes and allocates memory for the kinbbdpre
preconditioner.

Arguments kin mem (void *) pointer to the kinsol memory block.

Nlocal (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Jaco-
bian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dq rel u (realtype) the relative increment in components of u used in the difference
quotient approximations. The default is dq rel u=

√
unit roundoff, which

can be specified by passing dq rel u= 0.0.

Gloc (KINLocalFn) the C function which computes the approximation G(u) ≈
F (u).

Gcomm (KINCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of G(u).

Return value If successful, KINBBDPrecAlloc returns a pointer to the newly created kinbbdpre mem-
ory block (of type void *). If an error occurred, KINBBDPrecAlloc returns NULL.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced with 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.

KINBBDSpgmr

Call flag = KINBBDSpgmr(kin mem, maxl, bbd data);

Description The function KINBBDSpgmr links the kinbbdpre data to the kinspgmr linear solver
and attaches the latter to the kinsol memory block.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

bbd data (void *) pointer to the kinbbdpre data structure.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required op-
eration.

KINSPILS MEM FAIL A memory allocation request failed.

KINBBDPRE PDATA NULL The kinbbdpre preconditioner has not been initialized.
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KINBBDSpbcg

Call flag = KINBBDSpbcg(kin mem, maxl, bbd data);

Description The function KINBBDSpbcg links the kinbbdpre data to the kinspbcg linear solver and
attaches the latter to the kinsol memory block.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

bbd data (void *) pointer to the kinbbdpre data structure.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required op-
eration.

KINSPILS MEM FAIL A memory allocation request failed.

KINBBDPRE PDATA NULL The kinbbdpre preconditioner has not been initialized.

KINBBDSptfqmr

Call flag = KINBBDSptfqmr(kin mem, maxl, bbd data);

Description The function KINBBDSptfqmr links the kinbbdpre data to the kinsptfqmr linear solver
and attaches the latter to the kinsol memory block.

Arguments kin mem (void *) pointer to the kinsol memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value KINSPILS MAXL= 5.

bbd data (void *) pointer to the kinbbdpre data structure.

Return value The return value flag (of type int) is one of:

KINSPILS SUCCESS The kinspgmr initialization was successful.

KINSPILS MEM NULL The kin mem pointer is NULL.

KINSPILS ILL INPUT The nvector module used does not implement a required op-
eration.

KINSPILS MEM FAIL A memory allocation request failed.

KINBBDPRE PDATA NULL The kinbbdpre preconditioner has not been initialized.

KINBBDPrecFree

Call KINBBDPrecFree(&bbd data);

Description The function KINBBDPrecFree frees the pointer allocated by KINBBDPrecAlloc.

Arguments The only argument of KINBBDPrecFree is the pointer to the kinbbdpre data structure
(of type void *).

Return value The function KINBBDPrecFree has no return value.

The following two optional output functions are available for use with the kinbbdpre module:

KINBBDPrecGetWorkSpace

Call flag = KINBBDPrecGetWorkSpace(bbd data, &lenrwBBDP, &leniwBBDP);

Description The function KINBBDPrecGetWorkSpace returns the local kinbbdpre real and integer
workspace sizes.

Arguments bbd data (void *) pointer to the kinbbdpre data structure.
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lenrwBBDP (long int) local number of realtype values in the kinbbdpre workspace.

leniwBBDP (long int) local number of integer values in the kinbbdpre workspace.

Return value The return value flag (of type int) is one of:

KINBBDPRE SUCCESS The optional output values have been successfully set.

KINBBDPRE PDATA NULL The kinbbdpre preconditioner has not been initialized.

Notes In terms of the local vector dimension Nlocal and smu = min(Nl−1, mukeep + mlkeep),
the actual size of the real workspace is (2 mlkeep + mukeep + smu +2) Nlocal realtype
words, and the actual size of the integer workspace is Nlocal integer words. These values
are local to the current processor.

The workspaces referred to here exist in addition to those given by the corresponding
KINSp*GetWorkSpace function.

KINBBDPrecGetNumGfnEvals

Call flag = KINBBDPrecGetNumGfnEvals(bbd data, &ngevalsBBDP);

Description The function KINBBDPrecGetNumGfnEvals returns the number of calls to the user Gloc
function due to the finite difference approximation of the Jacobian blocks used within
kinbbdpre’s preconditioner setup function.

Arguments bbd data (void *) pointer to the kinbbdpre data structure.

ngevalsBBDP (long int) the number of calls to the user Gloc function.

Return value The return value flag (of type int) is one of:

KINBBDPRE SUCCESS The optional output value has been successfully set.

KINBBDPRE PDATA NULL The kinbbdpre preconditioner has not been initialized.

KINBBDPrecGetReturnFlagName

Call name = KINBBDPrecGetReturnFlagName(flag);

Description The function KINBBDPrecGetReturnFlagName returns the name of the kinbbdpre con-
stant corresponding to flag.

Arguments The only argument, of type int is a return flag from a kinbbdpre function.

Return value The return value is a string containing the name of the corresponding constant.

In addition to the ngevalsBBDP Gloc evaluations, the costs associated with kinbbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional kinsol output and
npsolves and nfevalsLS are linear solver optional outputs (see §5.5.5).
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Chapter 6

FKINSOL, an Interface Module for
FORTRAN Applications

The fkinsol interface module is a package of C functions which support the use of the kinsol solver,
for the solution nonlinear systems F (u) = 0, in a mixed Fortran/C setting. While kinsol is written
in C, it is assumed here that the user’s calling program and user-supplied problem-defining routines
are written in Fortran. This package provides the necessary interface to kinsol for both the serial
and the parallel nvector implementations.

6.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user rou-
tines called by them, appear as dummy names which are mapped to actual values by a series of
definitions in the header files fkinsol.hand fkinbbd.h. By default, those mapping definitions de-
pend in turn on the C macro F77 FUNC defined in the header file sundials config.h by configure.
However, the set of flags SUNDIALS CASE UPPER, SUNDIALS CASE LOWER, SUNDIALS UNDERSCORE NONE,
SUNDIALS UNDERSCORE ONE, and SUNDIALS UNDERSCORE TWO can be explicitly defined in the header
file sundials config.h when configuring sundials via the options --with-f77underscore and
--with-f77case to override the default behavior if necessary (see Chapter 2). Either way, the names
into which the dummy names are mapped are in upper or lower case and have up to two underscores
appended.

The user must also ensure that variables in the user Fortran code are declared in a manner
consistent with their counterparts in kinsol. All real variables must be declared as REAL, DOUBLE
PRECISION, or perhaps as REAL*n, where n denotes the number of bytes, depending on whether kinsol
was built in single, double or extended precision (see Chapter 2). Moreover, some of the Fortran
integer variables must be declared as INTEGER*4 or INTEGER*8 according to the C type long int.
These integer variables include: the array of integer optional inputs and outputs (IOUT), problem
dimensions (NEQ, NLOCAL, NGLOBAL), and Jacobian half-bandwidths (MU and ML). This is particularly
important when using kinsol and the fkinsol package on 64-bit architectures.

6.2 FKINSOL routines

The user-callable functions, with the corresponding kinsol functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

• Interface to the main kinsol module
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– FKINMALLOC interfaces to KINCreate, KINSetFdata, and KINMalloc.

– FKINSETIIN and FKINSETRIN interface to KINSet* functions.

– FKINSETVIN interfaces to KINSetConstraints.

– FKINSOL interfaces to KINSol, KINGet* functions, and to the optional output functions for
the selected linear solver module.

– FKINFREE interfaces to KINFree.

• Interface to the linear solver modules

– FKINDENSE interfaces to KINDense.

– FKINDENSESETJAC interfaces to KINDenseSetJacFn.

– FKINBAND interfaces to KINBand.

– FKINBANDSETJAC interfaces to KINBandSetJacFn.

– FKINSPGMR interfaces to KINSpgmr and spgmr optional input functions.

– FKINSPBCG interfaces to KINSpbcg and spbcg optional input functions.

– FKINSPTFQMR interfaces to KINSptfqmr and sptfqmr optional input functions.

– FKINSPILSSETJAC interfaces to KINSpilsSetJacTimesVecFn.

– FKINSPILSSETPREC interfaces to KINSpilsSetPreconditioner.

The user-supplied functions, each listed with the corresponding interface function which calls it
(and its type within kinsol), are as follows:

fkinsol routine (Fortran) kinsol function (C) kinsol function type
FKFUN FKINfunc KINSysFn

FKDJAC FKINDenseJac KINDenseJacFn

FKBJAC FKINBandJac KINBandJacFn

FKPSET FKINPSet KINSpilsPrecSetupFn

FKPSOL FKINPSol KINSpilsPrecSolveFn

FKJTIMES FKINJtimes KINSpilsJacTimesVecFn

In contrast to the case of direct use of kinsol, the names of all user-supplied routines here are fixed,
in order to maximize portability for the resulting mixed-language program.

6.3 Usage of the FKINSOL interface module

The usage of fkinsol requires calls to a few different interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding kinsol functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by
an interface function.

Steps marked with [S] in the instructions below apply to the serial nvector implementation
(nvector serial) only, while those marked with [P] apply to nvector parallel.

1. Nonlinear system function specification

The user must in all cases supply the following Fortran routine

SUBROUTINE FKFUN (U, FVAL, IER)

DIMENSION U(*), FVAL(*)
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It must set the FVAL array to F (u), the system function, as a function of U= u. IER is an error
return flag which should be set to 0 if successful, a positive value if a recoverable error occurred
(in which case kinsol will attempt to corret), or a negative value if it failed unrecoverably (in
which case the the solution process is halted).

2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS (KEY, NEQ, IER)

where KEY is the solver id (KEY = 3 for kinsol), NEQ is the size of vectors, and IER is a return
completion flag which is 0 on success and −1 if a failure occurred.

[P] To initialize the parallel vector module, the user must make the following call:

CALL FNVINITP (COMM, KEY, NLOCAL, NGLOBAL, IER)

in which the arguments are: COMM = MPI communicator, KEY = 3, NLOCAL = the local size of
vectors on this processor, and NGLOBAL = the system size (and the global size of all vectors, equal
to the sum of all values of NLOCAL). The return flag IER is set to 0 on a successful return and to
−1 otherwise.

If the header file sundials config.h defines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI !

implementation used to build sundials includes the MPI Comm f2c function), then COMM can be
any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so just pass an integer
value as a placeholder.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FKINMALLOC

Call CALL FKINMALLOC (IOUT, ROUT, IER)

Description This function specifies the optional output arrays, allocates internal memory, and
initializes kinsol.

Arguments IOUT is an integer array for integer optional outputs.
ROUT is a real array for real optional outputs.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes The user integer data array IOUT must be declared as INTEGER*4 or INTEGER*8

according to the C type long int.

The optional outputs associated with the main kinsol integrator are listed in Ta-
ble 6.2.

4. Linear solver specification

The solution method in kinsol involves the solution of linear systems related to the Jacobian of
the nonlinear system. kinsol presently includes five choices for the treatment of these systems,
and the user of fkinsol must call a routine with a specific name to make the desired choice.

[S] Dense treatment of the linear system

The user must make the call:

CALL FKINDENSE (NEQ, IER)
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where NEQ is the size of the nonlinear system. The argument IER is an error return flag which is 0
for success , −1 if a memory allocation failure occurred, or −2 for illegal input. As an option when
using the dense linear solver, the user may supply a routine that computes a dense approximation
of the system Jacobian J = ∂F/∂u. If supplied, it must have the following form:

SUBROUTINE FKDJAC (NEQ, U, FVAL, DJAC,

& WK1, WK2, IER)

DIMENSION U(*), FVAL(*), DJAC(NEQ,*),

& WK1(*), WK2(*)

Typically this routine will use only NEQ, U, and DJAC. It must compute the Jacobian and store it
columnwise in DJAC. The input arguments U and FVAL contain the current values of u, and F (u),
respectively. The vectors WK1 and WK2 of length NEQ are provided as work space for use in FKDJAC.
IER is an error return flag which should be set to 0 if successful, a positive value if a recoverable
error occurred (in which case kinsol will attempt to correct), or a negative value if FKDJAC failed
unrecoverably (in which case the solution process is halted).

If the FKDJAC routine is provided, then, following the call to FKINDENSE, the user must make the
call:

CALL FKINDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

Optional outputs specific to the dense case are listed in Table 6.2.

[S] Band treatment of the linear system

The user must make the call:

CALL FKINBAND (NEQ, MU, ML, IER)

The arguments are: MU, the upper half-bandwidth; ML, the lower half-bandwidth; and IER an error
return flag which is 0 for success , −1 if a memory allocation failure occurred, or −2 in case an
input has an illegal value.

As an option when using the band linear solver, the user may supply a routine that computes a
band approximation of the system Jacobian J = ∂F/∂u. If supplied, it must have the following
form:

SUBROUTINE FKBJAC (NEQ, MU, ML, MDIM, U, FVAL, BJAC,

& WK1, WK2, IER)

DIMENSION U(*), FVAL(*), BJAC(MDIM,*),

& WK1(*), WK2(*)

Typically this routine will use only NEQ, MU, ML, U, and BJAC. It must load the MDIM by N array BJAC

with the Jacobian matrix at the current u in band form. Store in BJAC(k, j) the Jacobian element
Ji,j with k = i− j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The input arguments U, and
FVAL contain the current values of u, and F (u), respectively. The vectors WK1 and WK2 of length
NEQ are provided as work space for use in FKBJAC. IER is an error return flag which should be
set to 0 if successful, a positive value if a recoverable error occurred (in which case kinsol will
attempt to correct), or a negative value if FKBJAC failed unrecoverably (in which case the solution
process is halted).

If the FKBJAC routine is provided, then, following the call to FKINBAND, the user must make the
call:
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CALL FKINBANDSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

Optional outputs specific to the band case are listed in Table 6.2.

[S][P] SPGMR treatment of the linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must make the call

CALL FKINSPGMR (MAXL, MAXLRST, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension. MAXLRST is the
maximum number of restarts. IER is an error return flag which is 0 to indicate success, −1 if a
memory allocation failure occurred, or −2 to indicate an illegal input.

Optional outputs specific to the spgmr case are listed in Table 6.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPBCG treatment of the linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must make the
call

CALL FKINSPBCG (MAXL, IER)

Its arguments are the same as those with the same names for FKINSPGMR.

Optional outputs specific to the spbcg case are listed in Table 6.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPTFQMR treatment of the linear systems

For the Scaled Preconditioned Transpose-Reee Quasi-Minimal Residual solution of the linear sys-
tems, the user must make the call

CALL FKINSPTFQMR (MAXL, IER)

Its arguments are the same as those with the same names for FKINSPGMR.

Optional outputs specific to the sptfqmr case are listed in Table 6.2.

For descriptions of the relevant optional user-supplied routines, see below.

[S][P] Functions used by SPGMR/SPBCG/SPTFQMR

An optional user-supplied routine, FKINJTIMES (see below), can be provided for Jacobian-vector
products. If it is, then, following the call to FKINSPGMR, FKINSPBCG, or FKINSPTFQMR, the user
must make the call:

CALL FKINSPILSSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector approximation. The
argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

If preconditioning is to be done, then the user must call

CALL FKINSPILSSETPREC (FLAG, IER)
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with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user program must include preconditioner routines FKPSOL and FKPSET (see below).

[S][P] User-supplied routines for SPGMR/SPBCG/SPTFQMR

With treatment of the linear systems by any of the Krylov iterative solvers, there are three optional
user-supplied routines — FKINJTIMES, FKPSOL, and FKPSET. The specifications for these routines
are given below.

As an option when using the spgmr, spbcg, or sptfqmr linear solvers, the user may supply a
routine that computes the product of the system Jacobian J = ∂F/∂u and a given vector v. If
supplied, it must have the following form:

SUBROUTINE FKINJTIMES (V, FJV, NEWU, U, IER)

DIMENSION V(*), FJV(*), U(*)

Typically this routine will use only NEQ, U, V, and FJV. It must compute the product vector Jv,
where the vector v is stored in V, and store the product in FJV. The input argument U contains the
current value of u. On return, set IER = 0 if FKINJTIMES was successful, and nonzero otherwise.

If preconditioning is to be included, the following routine must be supplied, for solution of the
preconditioner linear system:

SUBROUTINE FKPSOL (U, USCALE, FVAL, FSCALE, VTEM, FTEM, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEM(*), FTEM(*)

Typically this routine will use only U, FVAL, VTEM and FTEM. It must solve the preconditioned linear
system Pz = r, where r = VTEM is input, and store the solution z in VTEM as well. Here P is the
right preconditioner. If scaling is being used, the routine supplied must also account for scaling
on either coordinate or function value, as given in the arrays USCALE and FSCALE, respectively.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FKPSET (U, USCALE, FVAL, FSCALE, VTEMP1, VTEMP2, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEMP1(*), VTEMP2(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioned linear systems by FKPSOL. The variables U through FSCALE are for use in
the preconditioning setup process. Typically, the system function FKFUN is called before any calls
to FKPSET, so that FVAL will have been updated. U is the current solution iterate. The arrays
VTEMP1 and VTEMP2 are available for work space. If scaling is being used, USCALE and FSCALE are
available for those operations requiring scaling. NEQ is the problem size.

On return, set IER = 0 if FKPSET was successful or set IER = 1 if an error occurred.

If the user calls FKINSPILSSETPREC, the routine FKPSET must be provided, even if it is not needed!

and must return IER=0.

5. Problem solution

Solving the nonlinear system is accomplished by making the following call:

CALL FKINSOL (U, GLOBALSTRAT, USCALE, FSCALE, IER)

The arguments are as follows. U is an array containing the initial guess on input, and the solution
on return. GLOBALSTRAT is an integer (type INTEGER) defining the global strategy choice (1 specifies
Inexact Newton, while 2 indicates line search). USCALE is an array of scaling factors for the U vector.
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FSCALE is an array of scaling factors for the FVAL vector. IER is an integer completion flag and will
have one of the following values: 0 to indicate success, 1 to indicate that the initial guess satisfies
F (u) = 0 within tolerances, 2 to indicate apparent stalling (small step), or a negative value to
indicate an error or failure. These values correspond to the KINSol returns (see §5.5.3 and §10.2).
The values of the optional outputs are available in IOPT and ROPT (see Table 6.2).

6. Memory deallocation

To free the internal memory created by the call to FKINMALLOC, make the call

CALL FKINFREE

6.4 FKINSOL optional input and output

In order to keep the number of user-callable fkinsol interface routines to a minimum, optional inputs
to the kinsol solver are passed through only two routines: FKINSETIIN for integer optional inputs
and FKINSETRIN for real optional inputs. These functions should be called as follows:

CALL FKINSETIIN (KEY, IVAL, IER)

CALL FKINSETRIN (KEY, RVAL, IER)

where KEY is a quoted string indicating which optional input is set (see Table 6.1), IVAL is the integer
input value to the used, RVAL is the real input value to be used, and IER is an integer return flag
which is set to 0 on success and a negative value if a filure occurred.

The optional outputs from the kinsol solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 15, and ROUT (real type) of
dimension at least 2. These arrays are owned (and allocated) by the user and are passed as arguments
to FKINMALLOC. Table 6.2 lists the entries in these two arrays and specifies the optional variable as
well as the kinsol function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §5.5.4 and §5.5.5.

6.5 Usage of the FKINBBD interface to KINBBDPRE

The fkinbbd interface sub-module is a package of C functions which, as part of the fkinsol interface
module, support the use of the kinsol solver with the parallel nvector parallel module and
the kinbbdpre preconditioner module (see §5.7), for the solution of nonlinear problems in a mixed
Fortran/C setting.

The user-callable functions in this package, with the corresponding kinsol and kinbbdpre func-
tions, are as follows:

• FKINBBDINIT interfaces to KINBBDPrecAlloc.

• FKINBBDSPGMR interfaces to KINBBDSpgmr and spgmr optional input functions.

• FKINBBDSPBCG interfaces to KINBBDSpbcg and spbcg optional input functions.

• FKINBBDSPTFQMR interfaces to KINBBDSptfmqr and sptfqmr optional input functions.

• FKINBBDOPT interfaces to kinbbdpre optional output functions.

• FKINBBDFREE interfaces to KINBBDPrecFree.

In addition to the Fortran right-hand side function FKFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within kinbbdpre or kinsol):
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Table 6.1: Keys for setting fkinsol optional inputs

Integer optional inputs FKINSETIIN
Key Optional input Default value

PRNT LEVEL Verbosity level of output 0
MAX NITER Maximum no. of nonlinear iterations 200
ETA FORM Form of η coefficient 1 (KIN ETACHOICE1)

MAX SETUPS Maximum no. of iterations without prec. setup 10
MAX SP SETUPS Maximum no. of iterations without residual check 5
NO INIT SETUP No initial preconditioner setup FALSE

NO MIN EPS Lower bound on ε FALSE

NO RES MON No residual monitoring FALSE

Real optional inputs (FKINSETRIN)
Key Optional input Default value

FNORM TOL Function-norm stopping tolerance 3
√
uround

SSTEP TOL Scaled-step stopping tolerance uround2/3

MAX STEP Max. scaled length of Newton step 1000‖Duu0‖2
RERR FUNC Relative error for F.D. Jv

√
uround

ETA CONST Constant value of η 0.1
ETA PARAMS Values of γ and α 0.9 and 2.0
RMON CONST Constant value of ω 0.9

RMON PARAMS Values of ωmin and ωmax 0.00001 and 0.9

fkinbbd routine (Fortran) kinsol function (C) kinsol function type
FKLOCFN FKINgloc KINLocalFn

FKCOMMF FKINgcomm KINCommFn

FKJTIMES FKINJtimes KINSpilsJacTimesVecFn

As with the rest of the fkinsol routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §6.2, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fkinbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §6.3 are grayed-out.

1. Nonlinear system function specification

2. nvector module initialization

3. Problem specification

4. Linear solver specification

To initialize the kinbbdpre preconditioner, make the following call:

CALL FKINBBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, IER)

The arguments are as follows. NLOCAL is the local size of vectors for this process. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients; these may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block; these may be smaller than MUDQ and MLDQ. IER is a return completion flag. A
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Table 6.2: Description of the fkinsol optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output kinsol function
kinsol main solver

1 LENRW KINGetWorkSpace

2 LENIW KINGetWorkSpace

3 NNI KINGetNumNonlinSolvIters

4 NFE KINGetNumFuncEvals

5 NBCF KINGetNumBetaCondFails

6 NBKTRK KINGetNumBacktrackOps

kindense linear solver
7 LENRWLS KINDenseGetWorkSpace

8 LENIWLS KINDenseGetWorkSpace

9 LS FLAG KINDenseGetLastFlag

10 NFELS KINDenseGetNumFuncEvals

11 NJE KINDenseGetNumJacEvals

kinband linear solver
7 LENRWLS KINBandGetWorkSpace

8 LENIWLS KINBandGetWorkSpace

9 LS FLAG KINBandGetLastFlag

10 NFELS KINBandGetNumFuncEvals

11 NJE KINBandGetNumJacEvals

kinspgmr, kinspbcg, kinsptfqmr linear solvers
7 LENRWLS KINSpilsGetWorkSpace

8 LENIWLS KINSpilsGetWorkSpace

9 LS FLAG KINSpilsGetLastFlag

10 NFELS KINSpilsGetNumFuncEvals

11 NJTV KINSpilsGetNumJacEvals

12 NPE KINSpilsGetNumPrecEvals

13 NPS KINSpilsGetNumPrecSolves

14 NLI KINSpilsGetNumLinIters

15 NCFL KINSpilsGetNumConvFails

Real output array ROUT

Index Optional output kinsol function
1 FNORM KINGetFuncNorm

2 SSTEP KINGetStepLength
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value of 0 indicates success, while a value of −1 indicates that a memory failure occurred or that
an input had an illegal value.

To specify the spgmr linear system solver and use the kinbbdpre preconditioner, make the
following call:

CALL FKINBBDSPGMR (MAXL, MAXLRST, IER)

Its arguments are the same as those of FKINSPGMR (see step 4 in §6.3).
To specify the spbcg linear system solver and use the kinbbdpre preconditioner, make the
following call:

CALL FKINBBDSPBCG (MAXL, IER)

Its arguments are the same as those of FKINSPGMR (see step 4 in §6.3).
To specify the sptfqmr linear system solver and use the kinbbdpre preconditioner, make the
following call:

CALL FKINBBDSPTFQMR (MAXL, IER)

Its arguments are the same as those of FKINSPGMR (see step 4 in §6.3).
Optionally, to specify that spgmr, spbcg, or sptfqmr should use the supplied FKJTIMES, make
the call

CALL FKINSPILSSETJAC (FLAG, IER)

with FLAG 6= 0. (see step 4 in §6.3).

5. Problem solution

6. kinbbdpre Optional outputs

Optional outputs specific to the spgmr, spbcg, or sptfqmr solver are listed in Table 6.2. To
obtain the optional outputs associated with the kinbbdpre module, make the following call:

CALL FKINBBDOPT (LENRBBD, LENIBBD, NGEBBD)

The arguments returned are as follows. LENRBBD is the length of real preconditioner work space,
in realtype words. LENIBBD is the length of integer preconditioner work space, in integer words.
These sizes are local to the current process. NGEBBD is the cumulative number of G(u) evaluations
(calls to FKLOCFN) so far.

7. Memory deallocation

To free the internal memory created by the call to FKINBBDINIT, before calling FKINFREE and
FNVFREEP, the user must call

CALL FKINBBDFREE

8. User-supplied routines

The following two routines must be supplied for use with the kinbbdpre module:

SUBROUTINE FKLOCFN (NLOC, ULOC, GLOC, IER)

DIMENSION ULOC(*), GLOC(*)
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This routine is to evaluate the function G(u) approximating F (possibly identical to F ), in terms
of the array ULOC (of length NLOC), which is the sub-vector of u local to this processor. The
resulting (local) sub-vector is to be stored in the array GLOC. IER is an error return flag which
should be set to 0 if successful, a positive value if a recoverable error occurred (in which case
kinsol will attempt to correct), or a negative value if FKLOCFN failed unrecoverably (in which
case the solution process is halted).

SUBROUTINE FKCOMMFN (NLOC, ULOC, IER)

DIMENSION ULOC(*)

This routine is to perform the inter-processor communication necessary for the FKLOCFN routine.
Each call to FKCOMMFN is preceded by a call to the system function routine FKFUN with the same
argument ULOC. IER is an error return flag which should be set to 0 if successful, a positive value
if a recoverable error occurred (in which case kinsol will attempt to correct), or a negative value
if FKCOMMFN failed recoverably (in which case the solution process is halted).

The subroutine FKCOMMFN must be supplied even if it is not needed and must return IER=0. !

Optionally, the user can supply a routine FKINJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 4 in §6.3.





Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two provided
within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);
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realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 7.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 7.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for the data array.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded linear solvers, as well as the interfaces to the
banded preconditioners provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the interfaces to the
dense linear solver.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with an x that is guaranteed to
have all nonzero components.

continued on next page
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continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z: zi =
cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n− 1. This routine returns TRUE if all components of
x are nonzero (successful inversion) and returns FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns FALSE if any element failed the constraint
test, TRUE if all passed. It also sets a mask vector m, with elements equal
to 1.0 where the constraint test failed, and 0.0 where the test passed.
This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

7.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.
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Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
7.1. Their names are obtained from those in Table 7.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneVectorArrayEmpty Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);
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Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )
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#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 7.1 Their names are obtained from those in Table 7.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneVectorArrayEmpty Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.
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N_Vector *N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.3 NVECTOR functions used by KINSOL

In Table 7.2 below, we list the vector functions in the nvector module within the kinsol package.
The table also shows, for each function, which of the code modules uses the function. The kinsol
column shows function usage within the main solver module, while the remaining five columns show
function usage within each of the four kinsol linear solvers (kinspils stands for any of kinspgmr,
kinspbcg, or kinsptfqmr), the kinbbdpre preconditioner module, and the fkinsol module.

There is one subtlety in the kinspils column hidden by the table explained here for the case of the
kinspgmr module. The dot product function N VDotProd is called both within the implementation file
kinsol spgmr.c for the kinspgmr solver and within the implementation files sundials spgmr.c and
sundials iterative.c for the generic spgmr solver upon which the kinspgmr solver is implemented.
Also, although N VDiv is not called within the implementation file kinsol spgmr.c, it is called within
the implementation file sundials spgmr.c and so is required by the kinspgmr solver module. This
issue does not arise for the other two kinsol linear solvers because the generic dense and band solvers
(used in the implementation of kindense and kinband) do not make calls to any vector functions.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of vector functions by the kinsol code modules in order to use kinsol. The information is
presented as an implementation detail for the interested reader.

The vector functions listed in Table 7.1 that are not used by kinsol are: N VAddConst, N VWrmsNorm,
N VWrmsNormMask, N VCompare, and N VInvTest. Therefore a user-supplied nvector module for kin-
sol could omit these five functions.
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Table 7.2: List of vector functions usage by KINSOL code modules
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N VClone X X X

N VCloneEmpty X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X X

N VSetArrayPointer X X

N VLinearSum X X X

N VConst X

N VProd X X X X

N VDiv X X

N VScale X X X X X

N VAbs X

N VInv X

N VDotProd X X X

N VMaxNorm X

N VMin X

N VWL2Norm X X X X

N VL1Norm X

N VConstrMask X

N VMinQuotient X



Chapter 8

Providing Alternate Linear Solver
Modules

The central kinsol module interfaces with the linear solver module to be used by way of calls to four
routines. These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are
as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification routine (like that described in
§5.5.2) which will attach the above four routines to the main kinsol memory block. The kinsol
memory block is a structure defined in the header file kinsol impl.h. A pointer to such a structure
is defined as the type KINMem. The four fields in a KINMem structure that must point to the linear
solver’s functions are kin linit, kin lsetup, kin lsolve, and kin lfree, respectively. Note that of
the four interface routines, only the lsolve routine is required. The lfree routine must be provided
only if the solver specification routine makes any memory allocation. For consistency with the existing
kinsol linear solver modules, we recommend that the return value of the specification function be 0
for a successful return or a negative value if an error occurs (the pointer to the main kinsol memory
block is NULL, an input is illegal, the nvector implementation is not compatible, a memory allocation
fails, etc.)

To facilitate data exchange between the four interface functions, the field kin lmem in the kinsol
memory block can be used to attach a linear solver-specific memory block.

These four routines that interface between kinsol and the linear solver module necessarily have
fixed call sequences. Thus, a user wishing to implement another linear solver within the kinsol
package must adhere to this set of interfaces. The following is a complete description of the call list
for each of these routines. Note that the call list of each routine includes a pointer to the main kinsol
memory block, by which the routine can access various data related to the kinsol solution. The
contents of this memory block are given in the file kinsol impl.h (but not reproduced here, for the
sake of space).

8.1 Initialization function

The type definition of linit is
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linit

Definition int (*linit)(KINMem kin mem);

Purpose The purpose of linit is to complete initializations for a specific linear solver, such as
counters and statistics.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value An linit function should return 0 if it has successfully initialized the kinsol linear
solver and −1 otherwise.

8.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(KINMem kin mem);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It may
recompute Jacobian-related data if it deems necessary.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value The lsetup routine should return 0 if successful and a non-zero value otherwise.

8.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(KINMem kin mem, N Vector x,

N Vector b, realtype *res norm);

Purpose The routine lsolve must solve the linear equation Jx = b, where J = ∂F/∂u is
evaluated at the current iterate and the right-hand side vector b is input.

Arguments kin mem is the kinsol memory pointer of type KINMem.

x is a vector set to an initial guess prior to calling lsolve. On return it should
contain the solution to Jx = b.

b is the right-hand side vector b, set to −F (u), evaluated at the current iterate.

res norm holds the value of the L2 norm of the residual vector upon return.

Return value lsolve should return 0 if successful. If an error occurs and recovery could be possible
by calling again the lsetup function, then it should return a positive value. Otherwise,
lsolve should return a negative value.

8.4 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(KINMem kin mem);

Purpose The routine lfree should free any linear solver memory allocated by the linit routine.

Arguments kin mem is the kinsol memory pointer of type KINMem.

Return value This routine has no return value.



8.4 Memory deallocation function 87

Notes This routine is called once a problem has been completed and the linear solver is no
longer needed.





Chapter 9

Generic Linear Solvers in
SUNDIALS

In this chapter, we describe five generic linear solver code modules that are included in sundials,
but which are of potential use as generic packages in themselves, either in conjunction with the use
of kinsol or separately. These modules are:

• The dense matrix package, which includes functions for small dense matrices treated as simple
array types.

• The band matrix package, which includes the matrix type BandMat, macros and functions for
BandMat matrices.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

• The spbcg package, which includes a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, which includes a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these generic solvers begin
with the prefix sundials . But despite this, each of the solvers is in fact generic, in that it is usable
completely independently of sundials.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
spgmr, spbcg, and sptfqmr are only summarized briefly, since they are less likely to be of direct
use in connection with kinsol. The functions for small dense matrices are fully described, because we
expect that they will be useful in the implementation of preconditioners used with the combination
of kinsol and the kinspgmr, kinspbcg, or kinsptfqmr solver.

9.1 The DENSE module

Relative to the sundials source tree, the files comprising the dense generic linear solver are as follows:

• header files (located in source tree/shared/include)
sundials dense.h sundials smalldense.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials dense.c sundials smalldense.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense package by itself (see §2.5 for details):
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• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the ABS macro and RAbs function.

The eight files listed above can be extracted from the sundials source tree and compiled by
themselves into a dense library or into a larger user code.

9.1.1 Type DenseMat

The type DenseMat is defined to be a pointer to a structure with a size and a data field:

typedef struct {

long int size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a dense
matrix, while the data field is a two dimensional array used for component storage. The elements of a
dense matrix are stored columnwise (i.e columns are stored one on top of the other in memory). If A is
of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given by the expression
(A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros below allow a user
to efficiently access individual matrix elements without writing out explicit data structure references
and without knowing too much about the underlying element storage. The only storage assumption
needed is that elements are stored columnwise and that a pointer to the j-th column of elements can
be obtained via the DENSE COL macro. Users should use these macros whenever possible.

9.1.2 Accessor Macros

The following two macros are defined by the dense module to provide access to data in the DenseMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N ×N DenseMat A, 0 ≤ j ≤ N − 1. The type of
the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is referenced
by col j[i].

9.1.3 Functions

The following functions for DenseMat matrices are available in the dense package. For full details,
see the header file sundials dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;
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• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

9.1.4 Small Dense Matrix Functions

The following functions for small dense matrices are available in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc returns
NULL. The underlying type of the dense matrix returned is realtype**. If we allocate a dense
matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th element of
the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th column of
a. The location a[0] contains a pointer to n2 contiguous locations which contain the elements
of a.

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in the
array if successful. It returns NULL if the memory request could not be satisfied.

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper triangular
matrix, then the upper triangular part of a (including its diagonal) contains U and the
strictly lower triangular part of a contains the multipliers, I − L.

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization. In this case it returns the column index (numbered from one) at which it
encountered the zero.

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU-factored
and the pivot array p has been set by a successful call to gefa(a,n,p). The solution x is written
into the b array.
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• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally appear
on paper. It is intended as a debugging tool with small values of n. The elements are printed
using the %g option. A blank line is printed before and after the matrix.

9.2 The BAND module

Relative to the sundials source tree, the files comprising the band generic linear solver are as follows:

• header files (located in source tree/shared/include)
sundials band.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials band.c sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
band package by itself (see §2.5 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines of the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MIN, MAX, and ABS macros and
RAbs function.

The six files listed above can be extracted from the sundials source tree and compiled by them-
selves into a band library or into a larger user code.
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9.2.1 Type BandMat

The type BandMat is the type of a large band matrix A (possibly distributed). It is defined to be a
pointer to a structure defined by:

typedef struct {

long int size;

long int mu, ml, smu;

realtype **data;

} *BandMat;

The fields in the above structure are:

• size is the number of columns (which is the same as the number of rows);

• mu is the upper half-bandwidth, 0 ≤ mu ≤ size−1;

• ml is the lower half-bandwidth, 0 ≤ ml ≤ size−1;

• smu is the storage upper half-bandwidth, mu ≤ smu ≤ size−1. The BandFactor routine writes
the LU factors into the storage for A. The upper triangular factor U, however, may have an
upper half-bandwidth as big as min(size−1,mu+ml) because of partial pivoting. The smu field
holds the upper half-bandwidth allocated for A.

• data is a two dimensional array used for component storage. The elements of a band matrix of
type BandMat are stored columnwise (i.e. columns are stored one on top of the other in memory).
Only elements within the specified half-bandwidths are stored.

If we number rows and columns in the band matrix starting from 0, then

– data[0] is a pointer to (smu+ml+1)*size contiguous locations which hold the elements
within the band of A

– data[j] is a pointer to the uppermost element within the band in the j-th column. This
pointer may be treated as an array indexed from smu−mu (to access the uppermost element
within the band in the j-th column) to smu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to smu−mu−1 give access to extra storage elements
required by BandFactor.

– data[j][i-j+smu] is the (i, j)-th element, j−mu ≤ i ≤ j+ml.

The macros below allow a user to access individual matrix elements without writing out explicit
data structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer into the
j-th column of elements can be obtained via the BAND COL macro. Users should use these macros
whenever possible.

See Figure 9.1 for a diagram of the BandMat type.

9.2.2 Accessor Macros

The following three macros are defined by the band module to provide access to data in the BandMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 9.1: Diagram of the storage for a band matrix of type BandMat. Here A is an N×N band matrix
of type BandMat with upper and lower half-bandwidths mu and ml, respectively. The rows and columns
of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out
areas of the underlying component storage are used by the BandFactor and BandBacksolve routines.
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• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

9.2.3 Functions

The following functions for BandMat matrices are available in the band package. For full details, see
the header file sundials band.h.

• BandAllocMat: allocation of a BandMat matrix;

• BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve;

• BandFactor: LU factorization with partial pivoting;

• BandBacksolve: solution of Ax = b using LU factorization;

• BandZero: load a matrix with zeros;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandAddI: increment a matrix by the identity matrix;

• BandFreeMat: free memory for a BandMat matrix;

• BandFreePiv: free memory for a pivot array;

• BandPrint: print a BandMat matrix to standard output.

9.3 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spbcg and sptfqmr). For full details, including usage instructions, see
the header files sundials spgmr.h and sundials iterative.h.

Relative to the sundials source tree, the files comprising the spgmr generic linear solver are as
follows:

• header files (located in source tree/shared/include)
sundials spgmr.h sundials iterative.h sundials nvector.h

sundials types.h sundials math.h sundials config.h

• source files (located in source tree/shared/source)
sundials spgmr.c sundials iterative.c sundials nvector.c
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Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself (see §2.5 for details):

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the MAX and ABS macros and RAbs

and RSqrt functions.

The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic
N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.

The spgmr package can only be used in conjunction with an actual nvector implementation!

library, such as the nvector serial or nvector parallel provided with sundials.

The nine files listed above can be extracted from the sundials source tree and compiled by them-
selves into an spgmr library or into a larger user code.

9.3.1 Functions

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

9.4 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The spbcg package can only be used in conjunction with an actual nvector implementation!

library, such as the nvector serial or nvector parallel provided with sundials.

The files needed to use the spbcg module by itself are the same as for the spgmr module, with
sundials spbcgs.(h,c) replacing sundials spgmr.(h,c).
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9.4.1 Functions

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

9.5 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The sptfqmr package can only be used in conjunction with an actual nvector implementation !

library, such as the nvector serial or nvector parallel provided with sundials.
The files needed to use the sptfqmr module by itself are the same as for the spgmr module, with

sundials sptfqmr.(h,c) replacing sundials spgmr.(h,c).

9.5.1 Functions

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.





Chapter 10

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

10.1 KINSOL input constants

kinsol main solver module

KIN ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN ETACONSTANT 3 Use constant value for η.
KIN NONE 0 Use inexact Newton globalization.
KIN LINESEARCH 1 Use line search globalization.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC RIGHT 2 Preconditioning on the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

10.2 KINSOL output constants

kinsol main solver module

KIN SUCCESS 0 Successful function return.
KIN INITIAL GUESS OK 1 The initial user-supplied guess already satisfies the stopping

criterion.
KIN STEP LT STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN MEM NULL -1 The kin mem argument was NULL.
KIN ILL INPUT -2 One of the function inputs is illegal.
KIN NO MALLOC -3 The kinsol memory was not allocated by a call to

KINMalloc.
KIN MEM FAIL -4 A memory allocation failed.
KIN LINESEARCH NONCONV -5 The line search algorithm was unable to find an iterate suffi-

ciently distinct from the current iterate.
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KIN MAXITER REACHED -6 The maximum number of nonlinear iterations has been
reached.

KIN MXNEWT 5X EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled
step length test.

KIN LINESEARCH BCFAIL -8 The line search algorithm was unable to satisfy the β-
condition for nbcfails iterations.

KIN LINSOLV NO RECOVERY -9 The user-supplied routine preconditioner slve function failed
recoverably, but the preconditioner is already current.

KIN LINIT FAIL -10 The linear solver’s initialization function failed.
KIN LSETUP FAIL -11 The linear solver’s setup function failed in an unrecoverable

manner.
KIN LSOLVE FAIL -12 The linear solver’s solve function failed in an unrecoverable

manner.
KIN SYSFUNC FAIL -13 The system function failed in an unrecoverable manner.
KIN FIRST SYSFUNC ERR -14 The system function failed recoverably at the first call.
KIN REPTD SYSFUNC ERR -15 The system function had repeated recoverable errors.

kindense linear solver module

KINDENSE SUCCESS 0 Successful function return.
KINDENSE MEM NULL -1 The kin mem argument was NULL.
KINDENSE LMEM NULL -2 The kindense linear solver has not been initialized.
KINDENSE ILL INPUT -3 The kindense solver is not compatible with the current

nvector module.
KINDENSE MEM FAIL -4 A memory allocation request failed.

kinband linear solver module

KINBAND SUCCESS 0 Successful function return.
KINBAND MEM NULL -1 The kin mem argument was NULL.
KINBAND LMEM NULL -2 The kinband linear solver has not been initialized.
KINBAND ILL INPUT -3 The kinband solver is not compatible with the current nvec-

tor module, or an input value was illegal.
KINBAND MEM FAIL -4 A memory allocation request failed.

kinspils linear solver modules

KINSPILS SUCCESS 0 Successful function return.
KINSPILS MEM NULL -1 The kin mem argument was NULL.
KINSPILS LMEM NULL -2 The linear solver has not been initialized.
KINSPILS ILL INPUT -3 The solver is not compatible with the current nvector mod-

ule, or an input value was illegal.
KINSPILS MEM FAIL -4 A memory allocation request failed.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
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SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL -2 The Jacobian tims vector function failed.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.

spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL -2 The Jacobian tims vector function failed.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL -2 The Jacobian tims vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.

kinbbdpre preconditioner module

KINBBDPRE SUCCESS 0 Successful function return.
KINBBDPRE PDATA NULL -11 The preconditioner module has not been initialized.
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