
Hybrid Partitioning in Zoltan
Nick Aase, Karen Devine

Summer, 2011

1 Introduction

When used for partitioning, Zoltan has a wide range of algorithms available to it.
Traditionally they have fallen into two categories: geometric-based partitioning, and
topology-based partitioning. Each method has its own strengths and weaknesses
which ultimately come down to the tradeoff between speed and quality, and the
onus is placed upon the user to determine which is more desirable for the project at
hand.

In our project we strived to develop a hybrid partitioning algorithm; one that
attempts to take advantage of the efficiency of geometric methods, as well as the
precision of topological ones. The reasoning behind this concept is that problem sets
with large amounts of data may be more easily digestible by topological methods if
they are first reduced into managable pieces based on their geometry.

The two subjects chosen for this project were the Recursive Coordinate Bisection
(RCB) algorithm and Parallel Hypergraph partitioning (PHG). RCB is an extremely
fast method of partitioning, but it can be clumsy at times when it “cuts” across
a coordinate plane. On the other hand, PHG has a good understanding of the
relationships between data, making its partitioning quite accurate, but it suffers
from having to spend a great deal of time finding those relationships.

For further information on implementing hybrid partitioning, please see the
developer’s guide at http://www.cs.sandia.gov/Zoltan/dev html/dev hybrid.html

2 Parallel hypergraphs and geometric input

In order for Zoltan to support hybrid partitioning, it is necessary to properly and
frequently obtain, preserve, and communicate coordinate data. The first step that
needed to be taken was to modify PHG to support coordinate information. Hyper-
graph objects carry a substantial amount of data already, but we had to add an
array of floating point values to store the coordinates. Currently, when a hyper-
graph is built and geometric information is available from the input, each vertex
will have a corresponding subset within the array defining its coordinates; that is,

1

∀ vx∈H: ∃Cx = {c0, c1, ..., cn−1}, where vx is an arbitrary vertex in the hypergraph
H, Cx is its corresponding coordinate subset, and n is the number of dimensions in
the system. In this way, Zoltan can treat each coordinate subset as an element of
that vertex

3 PHG, MPI and 2-dimensional representation

PHG is interesting in that multiple processors can share partial data that describes
the properties of hyperedges and vertices. This sort of system can be represented in
a 2-dimensional distribution similar to Table 1. A populated field represents that a
processor on the y-axis has data related to the vertex on the x-axis. In this example,
you can see that processor P0 and P2 share data describing vertices v0 and v2.

Processor v0 v1 v2

P0 x x
P1 x
P2 x x

Table 1: Before communication

Using Message Passing Interface (MPI) communicators, it is possible to com-
municate with processors by column. We use an MPI Allreduce call to collect data
from each processor, which groups them into a usable form. Consider Table 2.

Processor v0 v1 v2

P0 x
P1 x
P2 x

Table 2: After communication

This same sort of operation is performed with weight data, so implementing it
on coordinate data was simply another step in setting up PHG to support coordinate
information from the input. Afterwards the entirity of a vertex’s data will be unique
to a single processor, with the number of global vertices ==

∑numProc−1
i=0 (number of

local verticesi).

2

4 Matching

There are several matching methods already native to Zoltan and specific to PHG,
but we needed to create a new method in order to use RCB on the hypergraph data.
Before the actual matching occurs several specialized callbacks and parameters are
registered. Doing this is crucial if RCB and PHG are to interface properly with each
other.

The next task is to physically call RCB. It was easy enough to send PHG data
to RCB as we simply used the Zoltan LB Partition wrapper, not unlike other
standard load balancing partitioners. However, getting matchings back from RCB
to PHG was another matter entirely. Thanks to Dr. Devine’s work, we were able
to ostensibly comondeer one of RCB’s unused return values: since all matching
algorithms conform syntactically to the afforementioned load-balancing wrapper,
there are some arguments and/or values that are never used depending on what data
that partitioner needs In the case of RCB, the return value *export global ids,
which is defined in its prototype, was never actually computed. Dr. Devine was able
to rewire RCB so that, when using hybrid partitioning, it would return the IDs of
the matchings we need for each hypergraph (which are referred to in the matching
procedure as candidates).

This new matching procedure is similar to PHG’s agglomerative matching,
whereby candidate vertices are selected to represent groups of similar vertices. These
candidates then make up the standard vertices in the resultant coarse hypergraph.
The major difference is that standard agglomerative matching determines its candi-
dates by the connectivity of vertices to one another; the more heavily connected a
subset of vertices is, the more likely they will share the same candidate. Using RCB
means making the assumption that related vertices will be geometrically similar:
recursive geometric cuts will be more likely to naturally bisect less connected parts
of the hypergraph, and the vertices that are members of the resulting subdomains
will share the same candidates. Given RCB’s track record, this method should be
significantly faster than the agglomerative matching.

5 Reduction factor

When using hybrid partitioning, the user passes a parameter in the input file called
HYBRID REDUCTION FACTOR, which is a number > 0 and ≤ 1 that gets passed into
RCB. This parameter defines the aggressiveness of the overall procedure. This

3

number simply determines the amount by which the larger graph will be reduced (e.g.
for the original, fine hypergraph, Hf , where the number of vertices |Vf | == 1000,
and a reduction factor of f == 0.1, the coarse hypergraph, Hc, will have |Vc| == 100
vertices).

This gives the user more control over the balance between quality and efficiency.

6 Results

We ran experiments primarily with 2 and 128 processors on the Odin cluster at
Sandia National Labs, though there were brief, undocumented forees with 16 and 32
processors as well. Odin has two AMD Opteron 2.2GHz processors and 4GB of RAM
on each node, which are connected with a Myrinet network [1]. The partitioning
methods used were RCB, PHG, and hybrid partitioning with a reduction factor of
0.01, 0.05, and 0.1. Each run went through 10 iterations of the scenario. The runs
with 128 processors were given 5 different meshes to run on, whereas the 2 processor
runs only ran on the 4 smaller meshes, as the cluster was undergoing diagnostics at
the time of the experiements.

Shockstem 3D Shockstem 3D 108 RPI Slac 1.5M Slac 6M

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

Hybrid 0.01
Hybrid 0.05
Hybrid 0.1
PHG
RCB

Figure 1: Runtimes on 128 processors

4

You can see from Figure 1 and 2 that at 128 processors the hybrid methods are
mainly slower than PHG and less accurate than RCB: both results are the inverse
of what we had hoped. There was better news looking at where the processes were
taking their time though:

The dramatic decrease in the matching time meant that RCB was, indeed, help-
ing on that front.

When we ran our simulations in serial, however, we saw some very different
results:

In general the hybrid times beat the PHG times, and the hybrid cuts beat the
RCB cuts.

Looking at individual timers in this serial run, we can see that RCB has still
drastically reduced the matching time. In addition, the slowdown in the coarse
partitioning has been greatly reduced.

7 Conclusion and discussion

The parallel implementation of hybrid partitioning is obviously not functioning as
desired, but we believe that there is ultimately a great deal of promise in this method.
Seeing the results from our serial runs is encouraging, and it would be worth the
effort to continue forward.

Perhaps it would be helpful to check for any communication issues arising be-
tween processors. The whole system could potentially drag, was a single processor
waiting for a message. Additionally, Dr. Catalyurek had suggested only using
RCB-based coarsening on the largest, most complex hypergraphs, and then revert
to standard agglomerative matching for coarser iterations.

At this moment, there could be four different ways to use Dr. Catalyurek’s
method: the first, and perhaps simplest of the three, would be to hardwire in the
number of coarsening levels to give to RCB. A second way would be to define a new
parameter to allow the user to select the number of RCB-based coarsenings. A third
would be to write a short algorithm to determine and use the optimal number of
layers based off of the input. Finally, there could be an option of user input, with a
default to be either of the other ways.

5

Shockstem 3D Shockstem 3D 108 RPI Slac 1.5M Slac 6M

0.0000

200000.0000

400000.0000

600000.0000

800000.0000

1000000.0000

1200000.0000

1400000.0000

1600000.0000

1800000.0000

Hybrid 0.01
Hybrid 0.05
Hybrid 0.1
PHG
RCB

Figure 2: Cuts on 128 processors

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps
Build

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps
Build

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps
Build

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps
Build

Figure 3: Timing by percentage on 128 processors (UL, Shockstem 3D; UR, Shock-
stem 3D – 108; LL, RPI; LR, Slac1.5

6

Shockstem 3D Shockstem 3D 108 RPI Slac 1.5M

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

1.00E+02

Hybrid 0.01
Hybrid 0.05
Hybrid 0.1
PHG

Figure 4: Runtimes in serial on 2 processors

Shockstem 3D Shockstem 3D 108 RPI Slac 1.5M

0

5000

10000

15000

20000

25000

30000

Hybrid 0.01
Hybrid 0.05
Hybrid 0.1
PHG
RCB

Figure 5: Cuts in serial on 2 processors

7

References

[1] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A.
Riesen. A Repartitioning Hypergraph Model for Dynamic Load Balancing. Sandia
National Labs, 2009.

August 2011.

8

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps

Hybrid 0.01 Hybrid 0.05 Hybrid 0.1 PHG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Final_Output
Return_Lists
Project_Up
Refinement
Coarse_Partition
Coarsening
Matching
Vcycle
Rdivide
Vmaps

Figure 6: Timing by percentage on 2 processors (UL, Shockstem 3D; UR, Shockstem
3D – 108; LL, RPI; LR, Slac1.5

9

	Introduction
	Parallel hypergraphs and geometric input
	PHG, MPI and 2-dimensional representation
	Matching
	Reduction factor
	Results
	Conclusion and discussion

