Argon neé

NATIONAL LABORATORY ANL-21/39 Rev 3.17

PETSc/TAO Users Manual

Revision 3.17

Mathematics and Computer Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, lllinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free at OSTL.GOV
(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and
Technical Information.

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

PETSc/TAO Users Manual

Argonne National Laboratory

Mathematics and Computer Science Division

Prepared by

S. Balay ', S. Abhyankar 2, M. F. Adams 3, S. Benson !, J. Brown '°, P. Brune !, K. Buschel-
man !, E. M. Constantinescu !, L. Dalcin %, A. Dener !, V. Eijkhout ¢, W. D. Gropp !, V. Hapla
8. T. Isaac 4, P. Jolivet 2, D. Karpeev ', D. Kaushik !, M. G. Knepley '?, F. Kong "1, S.
Kruger ', D. A. May ”, L. Curfman McInnes !, R. Tran Mills !, L. Mitchell '3, T. Munson !,
J. E. Roman ', K. Rupp !, P. Sanan '®, J. Sarich !, B. F. Smith 7, S. Zampini 4, H. Zhang '°,
H. Zhang !, and J. Zhang !

!Mathematics and Computer Science Division, Argonne National Laboratory

2Electricity Infrastructure and Buildings Division, Pacific Northwest National Laboratory
3Computational Research, Lawrence Berkeley National Laboratory

4Extreme Computing Research Center, King Abdullah University of Science and Technology
5Department of Computer Science, Illinois Institute of Technology

6Texas Advanced Computing Center, University of Texas at Austin

"Department of Earth Sciences, University of Oxford

8Institute of Geophysics, ETH Zurich

9Department of Computer Science and Engineering, University at Buffalo

0Department of Computer Science, University of Colorado, Boulder

" Computational Frameworks, Idaho National Laboratory

2Toulouse Institute of Compute Science Research

3Department of Computer Science, Durham University

4 College of Computing, Georgia Tech

5 Tech-X Corporation

16DSIC, Universitat Politécnica de Valencia

17Flatiron Institute, Simons Foundation

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

PETSc/TAO Users Manual, Release 3.17.3

CONTENTS

1 Introduction to PETSc 1
1.1 About This Manual e 1
1.2 Getting Started Lo e 2

1.2.1 Suggested Reading L 2
1.2.2 Running PETSc Programs 4
1.2.3 Writing PETSc Programs 0 5
1.2.4 Simple PETSc Examples 0 6
1.3 Parallel and GPU Programming e 12
1.3.1 MPI Parallelism o 12
1.3.2 CPU SIMD parallelism e 16
1.3.3 CPU OpenMP parallelism 16
1.3.4 GPU kernel parallelism 16
1.3.5 GPU stream parallelism L 16
1.4 Compiling and Running Programs Lo o 17
1.5 Profiling Programs L 17
1.6 Writing C/C++ or Fortran Applications o 19
1.7 Directory Structure e e e e e 20
2 Programming with PETSc/TAO 23
2.1 Vectors and Parallel Data o 23
2.1.1 Creating Vectors i e e e 24
2.1.2 Assembling (putting values in) vectors L. 27
2.1.3 Basic Vector Operations L e 31
2.1.4 Local/global vectors and communicating between vectors. 32
2.1.5 DM - Local/global vectors and ghost updates 32
2.1.6 Application Orderings e 38
2.2 Matrices L e e e e e e 40
2.2.1 Creating matrices oL e e 41
2.2.2 Low-level matrix creation routineso oL 41
2.2.3 Assembling (putting values into) matrices L o L. 41
2.2.4 Basic Matrix Operations 51
2.2.5 Matrix-Free Matrices e 52
2.2.6 Other Matrix Operations 53
2.2.7 Partitioning oL 55
2.3 KSP: Linear System Solvers e 57
2.3.1 Using KSP 0o e 57
2.3.2 Solving Successive Linear Systems L oo 58
2.3.3 Krylov Methods o o e 59
2.3.4 Preconditioners L e 64
2.3.5 Solving Block Matrices o L e e 7

PETSc/TAO Users Manual, Release 3.17.3

2.3.6 Solving Singular Systems 80

2.3.7 Using External Linear Solvers 80

2.4 SNES: Nonlinear Solvers e 83
2.4.1 Basic SNES Usage o e 83

2.4.2 The Nonlinear Solvers e 91

2.4.3 General Options e 95

2.4.4 Inexact Newton-like Methods 97

2.4.5 Matrix-Free Methods 98

2.4.6 Finite Difference Jacobian Approximations 113

2.4.7 Variational Inequalities Lo 115

2.4.8 Nonlinear Preconditioning Lo e 115

2.5 TS: Scalable ODE and DAE Solvers 116
2.5.1 Basic TS Options 118

2.5.2 DAE Formulations e 120

2.5.3 Using Implicit-Explicit (IMEX) Methods 121

2.5.4 GLEE methods e 124

2.5.5 Using fully implicit methods 125

2.5.6 Using the Explicit Runge-Kutta timestepper with variable timesteps 126

2.5.7 Special Cases e e 126

2.5.8 Monitoring and visualizing solutions oo oL 127

2.5.9 Error control via variable time-stepping Lo Lo 127
2.5.10 Handling of discontinuities 128
2.5.11 Explicit integrators with finite flement mass matrices 129
2.5.12 Using TChem from PETSc o 129
2.5.13 Using Sundials from PETSc o 129

2.6 Performing sensitivity analysis oo 130
2.6.1 Using the discrete adjoint methodso Lo 130

2.6.2 Checkpointing 0 it e e e e 133

2.7 Solving Steady-State Problems with Pseudo-Timestepping 133
2.8 TAO: Optimization Solvers e 135
2.8.1 Getting Started: A Simple TAO Example 135

2.8.2 TAO Workflow e 137

2.8.3 TAO Algorithms e 148

2.8.4 Advanced Options 171

2.8.5 Adding a Solver e 173

2.9 High Level Support for Multigrid with KSPSetDM() and SNESSetDM() 179
2.9.1 Adaptive Interpolation 179

2.10 DMPlex: Unstructured Grids in PETSc oo oo o 181
2.10.1 Representing Unstructured Grids o e 181
2.10.2 Data on Unstructured Grids (PetscSection) 183
2.10.3 Evaluating Residuals 185
2.10.4 Saving and Loading Data with HDF5 o 187
2.10.5 Networks. oL e e e 190
2.10.6 Metric-based mesh adaptation L L o Lo 193

2.11 PetscDT: Discretization Technology in PETSc 195
2.11.1 Quadrature e 195
2.11.2 Probability Distributions Lo 195

2.12 PetscFE: Finite Element Infrastructure in PETSc 196
2.12.1 Using Pointwise Functions to Specify Finite Element Problems 196
2.12.2 Describing a particular finite element problem to PETSc 196
2.12.3 Assembling finite element residuals and Jacobians oL 198

3 Additional Information 199
3.1 PETSc for Fortran Users it e 199
iv CONTENTS

PETSc/TAO Users Manual, Release 3.17.3

311 SYNoPpSIS . . v v e e e e e e 199

3.1.2 Cus. Fortran Interfaces 199

3.1.3 Sample Fortran Programs o 203

3.2 Using MATLAB with PETSc e e e e 215
3.2.1 Dumping Data for MATLAB 215

3.2.2 Sending Data to an Interactive MATLAB Session 216

3.2.3 Using the MATLAB Compute Engine 217

3.2.4 Licensing the MATLAB Compute Engine on a cluster 218

3.3 Profiling 219
3.3.1 Basic Profiling Information L oo 219

3.3.2 Profiling Application Codes e 227

3.3.3 Profiling Multiple Sections of Code L oo 228

3.3.4 Restricting Event Logging Lo 229

3.3.5 Interpreting -log _info Output: Informative Messages 229

3.3.6 THime 230

3.3.7 Saving Output toa File 230

3.3.8 Accurate Profiling and Paging Overheads 230

3.4 Hints for Performance Tuning L 231
3.4.1 Maximizing Memory Bandwidth L o0 oL 231

3.4.2 Performance Pitfalls and Adviceo o 237

3.5 The Use of BLAS and LAPACK in PETSc and external libraries 241
3.5.1 32 or 64 bit BLAS/LAPACK integers« v o v i e 242

3.5.2 Shared memory BLAS/LAPACK parallelism 242

3.5.3 Available BLAS/LAPACK librarieso i it 242

3.6 Other PETSc Features e 243
3.6.1 PETScon aprocesssubset 243

3.6.2 Runtime Options 0 i e e e 243

3.6.3 Viewers: Looking at PETSc Objects 247

3.6.4 Using SAWs with PETSc. e 249

3.6.5 Debugging e 250

3.6.6 Error Handling L e 250

3.6.7 Numbers e e 252

3.6.8 Parallel Communication 252

3.6.9 Graphics e 252
3.6.10 Developer Environments 257
3.6.11 Emacs USers o o v it e e e e e e e 257
3.6.12 Visual Studio Code Users e 258
3.6.13 Viand Vim Users o 0 e e 258
3.6.14 Eclipse Users o o o i i e e e e e e e 260
3.6.15 Qt Creator Users o i it e 261
3.6.16 Visual Studio Users L 263
3.6.17 XCode Users (The Apple GUI Development System) 263

3.7 Unimportant and Advanced Features of Matrices and Solvers 263
3.7.1 Extracting Submatrices 263

3.7.2 Matrix Factorization o 264

3.7.3 Unimportant Details of KSP o 266

3.7.4 Unimportant Details of PC 0 o o 266

3.8 Running PETSc Tests o . o e 267
3.8.1 Quick start with the tests 267

3.8.2 Understanding test output and more information 268

3.9 Acknowledgments e 269
Bibliography 273

CONTENTS v

PETSc/TAO Users Manual, Release 3.17.3

Vi

CONTENTS

CHAPTER
ONE

INTRODUCTION TO PETSC

1.1 About This Manual

This manual describes the use of the Portable, Extensible Toolkit for Scientific Computation (PETSc) and
the Toolkit for Advanced Optimization (TAO) for the numerical solution of partial differential equations and
related problems on high-performance computers. PETSc/TAO is a suite of data structures and routines
that provide the building blocks for the implementation of large-scale application codes on parallel (and
serial) computers. PETSc uses the MPI standard for all distributed memory communication.

PETSc/TAO includes a large suite of parallel linear solvers, nonlinear solvers, time integrators, and opti-
mization that may be used in application codes written in Fortran, C, C++, and Python (via petscdpy; see
Getting Started). PETSc provides many of the mechanisms needed within parallel application codes, such
as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to
employ the level of abstraction that is most appropriate for a particular problem. By using techniques of
object-oriented programming, PETSc provides enormous flexibility for users.

PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning
curve than packages such as MATLAB or a simple subroutine library. In particular, for individuals without
some computer science background, experience programming in C, C++4, python, or Fortran and experience
using a debugger such as gdb or 11db, it may require a significant amount of time to take full advantage of
the features that enable efficient software use. However, the power of the PETSc design and the algorithms
it incorporates may make the efficient implementation of many application codes simpler than “rolling them”
yourself.

e For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the
classes of problems for which effective MATLAB code can be written.

o There are several packages (listed on https://petsc.org/), built on PETSc, that may satisfy your needs
without requiring directly using PETSc. We recommend reviewing these packages functionality before
starting to code directly with PETSc.

e PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential
code. Certainly all parts of a previously sequential code need not be parallelized but the matrix
generation portion must be parallelized to expect any kind of reasonable performance. Do not expect
to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel.

Since PETSc is under continued development, small changes in usage and calling sequences of routines will
occur. PETSc has been supported for twenty-five years; see mailing list information on our website for
information on contacting support.

https://petsc.org/

PETSc/TAO Users Manual, Release 3.17.3

1.2 Getting Started

PETSc consists of a collection of classes, which are discussed in detail in later parts of the manual (Pro-
gramming with PETSc/TAO and Additional Information). The important PETSc classes include

o index sets (IS), including permutations, for indexing into vectors, renumbering, etc;

« vectors (Vec);

o matrices (Mat) (generally sparse);

o over thirty Krylov subspace methods (KSP);

o dozens of preconditioners, including multigrid, block solvers, and sparse direct solvers (PC);
 nonlinear solvers (SNES);

o timesteppers for solving time-dependent (nonlinear) PDEs, including support for differential algebraic
equations, and the computation of adjoints (sensitivities/gradients of the solutions) (TS);

» managing interactions between mesh data structures and vectors, matrices, and solvers (DM);
o scalable optimization algorithms (Tao).

Each class consist of an abstract interface (simply a set of calling sequences; an abstract base class in C++)
and an implementation for each algorithm and data structure. Thus, PETSc provides clean and effective
codes for the various phases of solving PDEs, with a uniform approach for each type of problem. This
design enables easy comparison and use of different algorithms (for example, to experiment with different
Krylov subspace methods, preconditioners, or truncated Newton methods). Hence, PETSc provides a rich
environment for modeling scientific applications as well as for rapid algorithm design and prototyping.

The classes enable easy customization and extension of both algorithms and implementations. This approach
promotes code reuse and flexibility, and also separates the issues of parallelism from the choice of algorithms.
The PETSc infrastructure creates a foundation for building large-scale applications.

It is useful to consider the interrelationships among different pieces of PETSc. Numerical Libraries in
PETSc is a diagram of some of these pieces. The figure illustrates the library’s hierarchical organization,
which enables users to employ the solvers that are most appropriate for a particular problem.

1.2.1 Suggested Reading

The manual is divided into three parts:
e Introduction to PETSc
o Programming with PETSc/TAO
o Additional Information

Introduction to PETSc describes the basic procedure for using the PETSc library and presents two simple
examples of solving linear systems with PETSc. This section conveys the typical style used throughout the
library and enables the application programmer to begin using the software immediately.

Programming with PETSc/TAO explains in detail the use of the various PETSc libraries, such as vectors,
matrices, index sets, linear and nonlinear solvers, and graphics. Additional Information describes a variety
of useful information, including profiling, the options database, viewers, error handling, and some details of
PETSc design.

PETSc has evolved to become quite a comprehensive package, and therefore this manual can be rather
intimidating for new users. Bear in mind that PETSc can be used efficiently before one understands all
of the material presented here. Furthermore, the definitive reference for any PETSc function is always the

2 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

Application Codes ‘ ‘ Higher-Level Libraries ‘ ‘
PETSc
TS (Time Steppers) DM (Domain Management)
Backward Rosenbrock- Distributed Plex (Un-
Euler Euler RK | BDF | SSP | ARKIMEX W B Array structured)
SNES (Nonlinear Solvers) TAO (Optimization)
ine| Newton Trust Levenber-
Newton Line Newton 'Tust | eas | NGMRES | NASM | ASPIN | --- Newton venere
Search Region Marquardt

KSP (Krylov Subspace Methods)

GMRES | Richardson CG | CGS | Bi-CGStab | TFQMR | MINRES | GCR | Chebyshev |Pipelined CG

PC (Preconditioners)

Increasing Level of Abstraction

Additive | Block |, pi IcC ILU LU SOR | MG | AMG | BDDC | Shell
Schwarz Jacobi
Mat (Operators) ‘

Compressed Block Symmetric .
Sparse Row CSR Block CSR Dense CUSPARSE | ViennaCL | FFT Shell

Vec (Vectors) ‘ IS (Index Sets)
Standard CUDA ViennaCL e General Block Stride

BLAS/LAPACK ‘ ‘ MPI ‘ ‘

Fig. 1.1: Numerical Libraries in PETSc

1.2. Getting Started 3

PETSc/TAO Users Manual, Release 3.17.3

online manual page. Manual pages for all PETSc functions can be accessed here. The manual pages provide
hyperlinked indices (organized by both concept and routine name) to the tutorial examples and enable easy
movement among related topics.

Visual Studio Code, Eclipse, Emacs, and Vim users may find their development environment’s options for
searching in the source code (for example, etags and ctags for Emacs and Vim) are extremely useful for
exploring the PETSc source code. Details of these feature are provided in Developer Environments.

The complete PETSc distribution, manual pages, and additional information are available via the PETSc
home page. The PETSc home page also contains details regarding installation, new features and changes in
recent versions of PETSc, machines that we currently support, and a frequently asked questions (FAQ) list.

Note to Fortran Programmers: In most of the manual, the examples and calling sequences are given for
the C/C++ family of programming languages. However, Fortran programmers can use all of the functionality
of PETSc from Fortran, with only minor differences in the user interface. PETSc for Fortran Users provides
a discussion of the differences between using PETSc from Fortran and C, as well as several complete Fortran
examples.

Note to Python Programmers: To program with PETSc in Python you need to enable Python bindings
(i.e petscdpy) with the configure option - -with-petsc4py=1. See the PETSc installation guide for more
details.

1.2.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variable $PETSC DIR, indicating the full
path of the PETSc home directory. For example, under the Unix bash shell a command of the form

$ export PETSC DIR=$HOME/petsc

can be placed in the user’s .bashrc or other startup file. In addition, the user may need to set the
environment variable $PETSC ARCH to specify a particular configuration of the PETSc libraries. Note that
$PETSC ARCH is just a name selected by the installer to refer to the libraries compiled for a particular
set of compiler options and machine type. Using different values of $PETSC_ARCH allows one to switch
between several different sets (say debug and optimized) of libraries easily. To determine if you need to set
$PETSC_ARCH, look in the directory indicated by $PETSC_DIR, if there are subdirectories beginning with
arch then those subdirectories give the possible values for $PETSC ARCH.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communication
[For94]. Thus, to execute PETSc programs, users must know the procedure for beginning MPT jobs on their
selected computer system(s). For instance, when using the MPICH implementation of MPI and many others,
the following command initiates a program that uses eight processors:

’$ mpiexec -n 8 ./petsc program name petsc options

PETSc also comes with a script that automatically uses the correct mpiexec for your configuration.

’$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 8 ./petsc _program_name petsc_options

All PETSc-compliant programs support the use of the -help option as well as the -version option.

Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option -help.

o -log view - summarize the program’s performance (see Profiling)
o -fp_trap - stop on floating-point exceptions; for example divide by zero

o -malloc_dump - enable memory tracing; dump list of unfreed memory at conclusion of the run, see
Detecting Memory Allocation Problems,

4 Chapter 1. Introduction to PETSc

docs/index.html
https://code.visualstudio.com/
https://petsc.org/
https://petsc.org/
https://www.mpich.org/

PETSc/TAO Users Manual, Release 3.17.3

o -malloc_debug - enable memory debugging (by default this is activated for the debugging version
of PETSc), see Detecting Memory Allocation Problems,

o -start in debugger [noxterm,gdb,1ldb] [-display name] - start all processes in debug-
ger. See Debugging, for more information on debugging PETSc programs.

« -on _error attach debugger [noxterm,gdb,lldb] [-display name] - start debugger only
on encountering an error

e -info - print a great deal of information about what the program is doing as it runs

1.2.3 Writing PETSc Programs

Most PETSc programs begin with a call to

ierr = PetscInitialize(int *argc,char ***argv,char *file,char *help);if (ierr) return,
~ierr;

which initializes PET'Sc and MPI. The arguments argc and argv are the command line arguments delivered
in all C and C++ programs. The argument file optionally indicates an alternative name for the PETSc
options file, .petscrc, which resides by default in the user’s home directory. Runtime Options provides
details regarding this file and the PETSc options database, which can be used for runtime customization.
The final argument, help, is an optional character string that will be printed if the program is run with the
-help option. In Fortran the initialization command has the form

call PetscInitialize(character(*) file,integer ierr)

PetscInitialize() automatically calls MPI Init () if MPI has not been not previously initialized. In
certain circumstances in which MPT needs to be initialized directly (or is initialized by some other library),
the user can first call MPI _Init() (or have the other library do it), and then call PetscInitial-
ize(). By default, PetscInitialize() sets the PETSc “world” communicator PETSC_COMM WORLD
to MPI_COMM_WORLD.

For those not familiar with MPI, a communicator is a way of indicating a collection of processes that will
be involved together in a calculation or communication. Communicators have the variable type MPI_Comm.
In most cases users can employ the communicator PETSC_COMM_WORLD to indicate all processes in a given
run and PETSC_COMM_SELF to indicate a single process.

MPI provides routines for generating new communicators consisting of subsets of processors, though most
users rarely need to use these. The book Using MPI, by Lusk, Gropp, and Skjellum [GLS94] provides an
excellent introduction to the concepts in MPI. See also the MPI homepage. Note that PETSc users need
not program much message passing directly with MPI, but they must be familiar with the basic concepts of
message passing and distributed memory computing.

All PETSc routines return a PetscErrorCode, which is an integer indicating whether an error has occurred
during the call. The error code is set to be nonzero if an error has been detected; otherwise, it is zero. For
the C/C++ interface, the error variable is the routine’s return value, while for the Fortran version, each
PETSc routine has as its final argument an integer error variable.

All PETSc programs should call PetscFinalize() as their final (or nearly final) statement, as given
below in the C/C++ and Fortran formats, respectively:

ierr = PetscFinalize();
return ierr;

call PetscFinalize(ierr)

1.2. Getting Started 5

https://www.mcs.anl.gov/research/projects/mpi/

PETSc/TAO Users Manual, Release 3.17.3

This routine handles options to be called at the conclusion of the program, and calls MPI_Finalize()
if PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either the user or
another software package), the user is responsible for calling MPI Finalize().

1.2.4 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example that solves
the one-dimensional Laplacian problem with finite differences. This sequential code, which can be found
in $PETSC DIR/src/ksp/ksp/tutorials/exl.c, illustrates the solution of a linear system with KSP,
the interface to the preconditioners, Krylov subspace methods, and direct linear solvers of PETSc. Following
the code we highlight a few of the most important parts of this example.

Listing: src/ksp/ksp/tutorials/exl.c

static char help[] = "Solves a tridiagonal linear system with KSP.\n\n";

/*
Include "petscksp.h" so that we can use KSP solvers. Note that this file
automatically includes:

petscsys.h - base PETSc routines petscvec.h - vectors
petscmat.h - matrices petscpc.h - preconditioners
petscis.h - 1ndex sets

petscviewer.h - viewers
Note: The corresponding parallel example is ex23.c
*/
#include <petscksp.h>

int main(int argc,char **args)

{
Vec X, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */
PetscReal norm; /* norm of solution error */
PetscInt i,n = 10,col[3],its;
PetscMPIInt size;
PetscScalar value[3];

PetscCall(PetscInitialize(&argc,&args, (char*)0,help));

PetscCallMPI(MPI Comm size(PETSC COMM WORLD,&size));

PetscCheck(size == 1,PETSC_COMM WORLD,PETSC ERR WRONG MPI SIZE,"This is a,
—uniprocessor example only!");

PetscCall(PetscOptionsGetInt (NULL,NULL,"-n",&n,NULL));

/* ______________ S e e e e e e e e e e e e e e e e e e -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/

(continues on next page)

6 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

PetscCall
PetscCall
PetscCall
PetscCall
PetscCall
PetscCall

VecCreate(PETSC_COMM WORLD, &x)) ;
PetscObjectSetName((PetscObject) x, "Solution"));
VecSetSizes(x,PETSC DECIDE,n));
VecSetFromOptions(x));

VecDuplicate(x,&b));

VecDuplicate(x,&u));

PR

/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.
*/
PetscCall(MatCreate(PETSC COMM WORLD,&A));
PetscCall(MatSetSizes(A,PETSC DECIDE,PETSC DECIDE,n,n));
PetscCall(MatSetFromOptions(A));
PetscCall(MatSetUp(A));

/*
Assemble matrix

*/

value[0] = -1.0; value[l] = 2.0; value[2] = -1.0;

for (i=1; i<n-1; i++) {
col[0] = i-1; col[l] = i; col[2] = i+1;
PetscCall(MatSetValues(A,1,&1,3,col,value, INSERT VALUES));

}

i =n - 1; col[O] =n - 2; col[l] =n - 1;
PetscCall(MatSetValues(A,1,&1,2,col,value, INSERT VALUES));

i = 0; col[0] = 0; col[1l] = 1; value[O] = 2.0; value[l] = -1.0;

PetscCall(MatSetValues(A,1,&1,2,col,value, INSERT VALUES));
PetscCall(MatAssemblyBegin(A,MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (A,MAT FINAL ASSEMBLY));

/*
Set exact solution; then compute right-hand-side vector.
*/
PetscCall(VecSet(u,1.0));
PetscCall(MatMult(A,u,b));

Create the linear solver and set various options
_________________ _______________*/

PetscCall(KSPCreate(PETSC COMM WORLD,&ksp));

/*
Set operators. Here the matrix that defines the linear system
also serves as the matrix that defines the preconditioner.

*/

PetscCall(KSPSetOperators(ksp,A,A));

/*
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the KSP context,
we can then directly call any KSP and PC routines to set

(continues on next page)

1.2. Getting Started 7

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

various options.
- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions();
*/
PetscCall(KSPGetPC(ksp,&pc));
PetscCall(PCSetType(pc,PCIJACOBI));
PetscCall(KSPSetTolerances(ksp,1l.e-5,PETSC DEFAULT,PETSC DEFAULT,PETSC DEFAULT));

/*

Set runtime options, e.g.,
-ksp_type <type> -pc _type <type> -ksp monitor -ksp rtol <rtol>

These options will override those specified above as long as
KSPSetFromOptions() is called after any other customization
routines.

*/

PetscCall(KSPSetFromOptions(ksp));

PetscCall(KSPSolve(ksp,b,x));

/*
View solver info; we could instead use the option -ksp view to
print this info to the screen at the conclusion of KSPSolve().
*/
PetscCall(KSPView(ksp,PETSC VIEWER STDOUT WORLD));

PetscCall(VecAXPY(x,-1.0,u));

PetscCall(VecNorm(x,NORM 2,&norm));

PetscCall(KSPGetIterationNumber(ksp,&its));

PetscCall(PetscPrintf (PETSC_COMM WORLD, "Norm of error %g, Iterations %D\n",
— (double)norm,its));

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.
*/
PetscCall(VecDestroy(&x)); PetscCall(VecDestroy(&u));
PetscCall(VecDestroy(&b)); PetscCall(MatDestroy(&A));
PetscCall(KSPDestroy(&ksp));

/*
Always call PetscFinalize() before exiting a program. This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime
options are chosen (e.g., -log view).
*/
PetscCall(PetscFinalize());
return 0;

8 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

Include Files

The C/C++ include files for PETSc should be used via statements such as

’ #include <petscksp.h>

where petscksp.h is the include file for the linear solver library. Each PETSc program must specify an
include file that corresponds to the highest level PETSc objects needed within the program; all of the required
lower level include files are automatically included within the higher level files. For example, petscksp.
h includes petscmat.h (matrices), petscvec.h (vectors), and petscsys.h (base PETSc file). The
PETSc include files are located in the directory $PETSC_DIR/include. See Fortran Include Files for a
discussion of PETSc include files in Fortran programs.

The Options Database

As shown in Simple PETSc Exzamples, the user can input control data at run time using the options database.
In this example the command PetscOptionsGetInt (NULL,NULL,"-n",&n,&flg); checks whether
the user has provided a command line option to set the value of n, the problem dimension. If so, the variable
N is set accordingly; otherwise, N remains unchanged. A complete description of the options database may
be found in Runtime Options.

Vectors

One creates a new parallel or sequential vector, X, of global dimension M with the commands

VecCreate(MPI_Comm comm,Vec *X);
VecSetSizes(Vec x, PetscInt m, PetscInt M);

where comm denotes the MPI communicator and m is the optional local size which may be PETSC_DECIDE.
The type of storage for the vector may be set with either calls to VecSetType() or VecSetFromOp-
tions (). Additional vectors of the same type can be formed with

VecDuplicate(Vec old,Vec *new);

The commands

VecSet(Vec x,PetscScalar value);
VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT VALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value
to each component. More detailed information about PETSc vectors, including their basic operations,
scattering/gathering, index sets, and distributed arrays, is discussed in Chapter Vectors and Parallel Data.

Note the use of the PETSc variable type PetscScalar in this example. The PetscScalar is simply
defined to be double in C/C++ (or correspondingly double precision in Fortran) for versions of
PETSc that have not been compiled for use with complex numbers. The PetscScalar data type enables
identical code to be used when the PETSc libraries have been compiled for use with complex numbers.
Numbers discusses the use of complex numbers in PETSc programs.

1.2. Getting Started 9

PETSc/TAO Users Manual, Release 3.17.3

Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix, A,
which has M global rows and N global columns, with the routines

MatCreate(MPI_Comm comm,Mat *A);
MatSetSizes(Mat A,PETSC DECIDE,PETSC DECIDE,PetscInt M,PetscInt N);

where the matrix format can be specified at runtime via the options database. The user could alternatively
specify each processes’ number of local rows and columns using m and n.

’MatSetSizes(Mat A,PetscInt m,PetscInt n,PETSC DETERMINE,PETSC DETERMINE);

Generally one then sets the “type” of the matrix, with, for example,

’ MatSetType (A,MATAIJ);

This causes the matrix A to used the compressed sparse row storage format to store the matrix entries. See
MatType for a list of all matrix types. Values can then be set with the command

MatSetValues(Mat A,PetscInt m,PetscInt *im,PetscInt n,PetscInt *in,PetscScalar,
—*values,INSERT VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

MatAssemblyBegin(A,MAT FINAL ASSEMBLY);
MatAssemblyEnd (A,MAT FINAL ASSEMBLY);

Matrices discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system, AX = b, the user can then use KSP to
solve the system with the following sequence of commands:

KSPCreate(MPI_Comm comm,KSP *ksp);
KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat);
KSPSetFromOptions (KSP ksp);

KSPSolve(KSP ksp,Vec b,Vec x);

KSPDestroy (KSP ksp);

The user first creates the KSP context and sets the operators associated with the system (matrix that defines
the linear system, Amat and matrix from which the preconditioner is constructed, Pmat). The user then sets
various options for customized solution, solves the linear system, and finally destroys the KSP context. We
emphasize the command KSPSetFromOptions (), which enables the user to customize the linear solution
method at runtime by using the options database, which is discussed in Runtime Options. Through this
database, the user not only can select an iterative method and preconditioner, but also can prescribe the
convergence tolerance, set various monitoring routines, etc. (see, e.g., Profiling Programs).

KSP: Linear System Solvers describes in detail the KSP package, including the PC and KSP packages for
preconditioners and Krylov subspace methods.

10 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

Nonlinear Solvers

Most PDE problems of interest are inherently nonlinear. PETSc provides an interface to tackle the nonlin-
ear problems directly called SNES. SNES: Nonlinear Solvers describes the nonlinear solvers in detail. We
recommend most PETSc users work directly with SNES, rather than using PETSc for the linear problem
within a nonlinear solver.

Error Checking

All PETSc routines return an integer indicating whether an error has occurred during the call. The PETSc
macro PetscCall(ierr) checks the value of ierr and calls the PETSc error handler upon error detection.
PetscCall(ierr) should be used in all subroutines to enable a complete error traceback. Below, we
indicate a traceback generated by error detection within a sample PETSc program. The error occurred on
line 3618 of the file $PETSC_DIR/src/mat/impls/aij/seq/aij . c and was caused by trying to allocate
too large an array in memory. The routine was called in the program eX3. C on line 66. See Error Checking
for details regarding error checking when using the PETSc Fortran interface.

$ cd $PETSC DIR/src/ksp/ksp/tutorials

$ make ex3

$ mpiexec -n 1 ./ex3 -m 100000

[OIPETSC ERROR: --------------------- Error Message ----------mmmmmmi oo
[O]PETSC ERROR: Out of memory. This could be due to allocating

[@]PETSC ERROR: too large an object or bleeding by not properly

[O]PETSC ERROR: destroying unneeded objects.

[O]PETSC ERROR: Memory allocated 11282182704 Memory used by process 7075897344
[@]PETSC ERROR: Try running with -malloc dump or -malloc view for info.

[O]PETSC ERROR: Memory requested 18446744072169447424

[O]PETSC ERROR: See https://www.mcs.anl.gov/petsc/documentation/faq.html for trouble,
—shooting.

[@]PETSC ERROR: Petsc Development GIT revision: v3.7.1-224-9g9c9a9c5 GIT Date: 2016-
—05-18 22:43:00 -0500

[@]PETSC ERROR: ./ex3 on a arch-darwin-double-debug named Patricks-MacBook-Pro-2.
—local by patrick Mon Jun 27 18:04:03 2016

[O]PETSC ERROR: Configure options PETSC DIR=/Users/patrick/petsc PETSC_ ARCH=arch-
—darwin-double-debug --download-mpich --download-f2cblaslapack --with-cc=clang --
—with-cxx=clang++ --with-fc=gfortran --with-debugging=1 --with-precision=double --
—with-scalar-type=real --with-viennacl=0 --download-c2html -download-sowing
[O]PETSC ERROR: #1 MatSegAIJSetPreallocation SegAIJ() line 3618 in /Users/patrick/
—petsc/src/mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #2 PetscTrMallocDefault() line 188 in /Users/patrick/petsc/src/sys/
—memory/mtr.c

[O]PETSC ERROR: #3 MatSegAIJSetPreallocation SegAIJ() line 3618 in /Users/patrick/
—petsc/src/mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #4 MatSeqAIJSetPreallocation() line 3562 in /Users/patrick/petsc/src/
—mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #5 main() line 66 in /Users/patrick/petsc/src/ksp/ksp/tutorials/ex3.c
[@]PETSC ERROR: PETSc Option Table entries:

[0]PETSC ERROR: -m 100000

[O]PETSC ERROR: ------cecmema End of Error Message ------- send entire error,
—message to petsc-maint@mcs.anl.gov----------

When running the debug version of the PETSc libraries, it does a great deal of checking for memory cor-
ruption (writing outside of array bounds etc). The macro CHKMEMQ can be called anywhere in the code to
check the current status of the memory for corruption. By putting several (or many) of these macros into
your code you can usually easily track down in what small segment of your code the corruption has occurred.
One can also use Valgrind to track down memory errors; see the FAQ.

1.2. Getting Started 11

https://petsc.org/release/faq/

PETSc/TAO Users Manual, Release 3.17.3

1.3 Parallel and GPU Programming

Numerical computing today has multiple levels of parallelism (concurrency).
o Low-level, single instruction multiple data (SIMD) parallelism
e Medium-level, multiple instruction shared memory parallelism, and
e High-level, distributed memory parallelism

Traditional CPUs support the lower two levels via, for example, Intel AVX-like instructions (CPU SIMD
parallelism) and Unix threads, often managed by using OpenMP pragmas (CPU OpenMP parallelism), (or
multiple processes). GPUs also support the lower two levels via kernel functions (GPU kernel parallelism)
and streams (GPU stream parallelism). Distributed memory parallelism is created by combining multiple
CPUs and/or GPUs and using MPI for communication (MPI Parallelism).

In addition there is also concurrency between computations (floating point operations) and data movement
(from memory to caches and registers and via MPI between distinct memory nodes).

PETSc provides support for all these levels of parallelism but its strongest support is for MPI-based dis-
tributed memory parallelism.

1.3.1 MPI Parallelism

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interprocessor
communication, the user is free to employ MPI routines as needed throughout an application code. However,
by default the user is shielded from many of the details of message passing within PETSc, since these are
hidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc provides tools
such as generalized vector scatters/gathers to assist in the management of parallel data.

Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,
matrix, or solver) to indicate the processors over which the object is to be distributed. For example, as
mentioned above, some commands for matrix, vector, and linear solver creation are:

MatCreate(MPI_Comm comm,Mat *A);
VecCreate(MPI_Comm comm,Vec *X);
KSPCreate(MPI_Comm comm,KSP *ksp);

The creation routines are collective over all processors in the communicator; thus, all processors in the
communicator must call the creation routine. In addition, if a sequence of collective routines is being used,
they must be called in the same order on each processor.

The next example, given below, illustrates the solution of a linear system in parallel. This code, corresponding
to KSP Tutorial ex2, handles the two-dimensional Laplacian discretized with finite differences, where the
linear system is again solved with KSP. The code performs the same tasks as the sequential version within
Simple PETSc Examples. Note that the user interface for initiating the program, creating vectors and
matrices, and solving the linear system is exactly the same for the uniprocessor and multiprocessor examples.
The primary difference between the examples in Simple PETSc Examples and here is that each processor
forms only its local part of the matrix and vectors in the parallel case.

Listing: src/ksp/ksp/tutorials/ex2.c

static char help[] = "Solves a linear system in parallel with KSP.\n\
Input parameters include:\n\
-view exact sol : write exact solution vector to stdout\n\

(continues on next page)

12 Chapter 1. Introduction to PETSc

../../src/ksp/ksp/tutorials/ex2.c.html

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

-m <mesh x> : number of mesh points in x-direction\n\

-n <mesh_y> : number of mesh points in y-direction\n\n";
/*

Include "petscksp.h" so that we can use KSP solvers.
*/

#include <petscksp.h>

int main(int argc,char **args)
{
Vec X,b,u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PetscReal norm; /* norm of solution error */
PetscInt i,j,Ii,J,Istart,Iend,m = 8,n = 7,its;
PetscBool flg;
PetscScalar H

PetscCall(PetscInitialize(&argc,&args, (char*)0,help));
PetscCall(PetscOptionsGetInt (NULL,NULL,"-m",&m,NULL));
PetscCall(PetscOptionsGetInt (NULL,NULL,"-n",&n,NULL));
/* oo oo oo oo oooa oo
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

Performance tuning note: For problems of substantial size,

preallocation of matrix memory is crucial for attaining good

performance. See the matrix chapter of the users manual for details.
*/
PetscCall(MatCreate(PETSC COMM WORLD,&A));
PetscCall(MatSetSizes(A,PETSC DECIDE,PETSC DECIDE,m*n,m*n));
PetscCall(MatSetFromOptions(A));
PetscCall(MatMPIAIJSetPreallocation(A,5,NULL,5,NULL));
PetscCall(MatSeqAIJSetPreallocation(A,5,NULL));
PetscCall(MatSeqSBAIJSetPreallocation(A,1,5,NULL));
PetscCall(MatMPISBAIJSetPreallocation(A,1,5,NULL,5,NULL));
PetscCall(MatMPISELLSetPreallocation(A,5,NULL,5,NULL));
PetscCall(MatSeqSELLSetPreallocation(A,5,NULL));

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/

PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));

/*
Set matrix elements for the 2-D, five-point stencil in parallel.
- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the

(continues on next page)

1.3. Parallel and GPU Programming 13

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

appropriate processor during matrix assembly).
- Always specify global rows and columns of matrix entries.

Note: this uses the less common natural ordering that orders first

all the unknowns for x = h then for x = 2h etc; Hence you see J = Ii +- n
instead of J = I +- m as you might expect. The more standard ordering
would first do all variables for y = h, then y = 2h etc.

*/

for (Ii=Istart; Ii<Iend; Ii++) {
v=-1.0; 1=1Ii/n; j = Ii - i*n;
if (i>0) {J = Ii - n; PetscCall(MatSetValues(A,1,&Ii,1,&3,&v,ADD VALUES));}
if (i<m-1) {J = Ii + n; PetscCall(MatSetValues(A,1,&TIi,1,&3,&v,ADD VALUES));}
if (j=0) {J = Ii - 1; PetscCall(MatSetValues(A,1,&I1i,1,&],&v,ADD VALUES));}
if (j<n-1) {J = Ii + 1; PetscCall(MatSetValues(A,1,&Ii,1,&]3,&v,ADD VALUES));}

v = 4.0; PetscCall(MatSetValues(A,1,&I1,1,&I1,&v,ADD VALUES));
}

/*
Assemble matrix, using the 2-step process:
MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.
*/
PetscCall(MatAssemblyBegin(A,MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (A,MAT FINAL ASSEMBLY));

/* A is symmetric. Set symmetric flag to enable ICC/Cholesky preconditioner */
PetscCall(MatSetOption(A,MAT SYMMETRIC,PETSC TRUE));

/*
Create parallel vectors.

- We form 1 vector from scratch and then duplicate as needed.

- When using VecCreate(), VecSetSizes and VecSetFromOptions()
in this example, we specify only the
vector's global dimension; the parallel partitioning is determined
at runtime.

- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.

- The user can alternatively specify the local vector and matrix
dimensions when more sophisticated partitioning is needed
(replacing the PETSC DECIDE argument in the VecSetSizes() statement
below).

*/
PetscCall(VecCreate(PETSC COMM WORLD,&u))
PetscCall(VecSetSizes(u,PETSC DECIDE,m*n)
PetscCall(VecSetFromOptions(u));
PetscCall(VecDuplicate(u,&b));
PetscCall(VecDuplicate(b,&x));

);

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0;

(continues on next page)

14 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

*/
PetscCall(VecSet(u,1.0));
PetscCall(MatMult(A,u,b));

/*

View the exact solution vector if desired
*/
flg = PETSC FALSE;
PetscCall(PetscOptionsGetBool (NULL,NULL,"-view exact sol",&flg,NULL));
if (flg) PetscCall(VecView(u,PETSC VIEWER STDOUT WORLD));

PetscCall(KSPCreate(PETSC COMM WORLD,&ksp));

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

*/

PetscCall(KSPSetOperators(ksp,A,A));

/*

Set linear solver defaults for this problem (optional).

- By extracting the KSP and PC contexts from the KSP context,
we can then directly call any KSP and PC routines to set
various options.

- The following two statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/
PetscCall(KSPSetTolerances(ksp,1l.e-2/((m+1)*(n+1)),1.e-50,PETSC DEFAULT,PETSC
—DEFAULT)) ;

/*
Set runtime options, e.g.,
-ksp_type <type> -pc type <type> -ksp monitor -ksp rtol <rtol>
These options will override those specified above as long as
KSPSetFromOptions() 1is called after any other customization

routines.

*/

PetscCall(KSPSetFromOptions(ksp));

/* ________________ o e oo oMo a4 e e e e e -
Solve the linear system

____________________ ______________*/

PetscCall(KSPSolve(ksp,b,x));

/* ________________ e,
Check the solution and clean up

____________________ ______________*/

PetscCall(VecAXPY(x,-1.0,u));
PetscCall(VecNorm(x,NORM 2,&norm));
PetscCall(KSPGetIterationNumber(ksp,&its));

(continues on next page)

1.3. Parallel and GPU Programming

15

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

/*
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
An alternative is PetscFPrintf(), which prints to a file.
*/
PetscCall(PetscPrintf(PETSC COMM WORLD,"Norm of error %g iterations %D\n",
— (double)norm,its));

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.
*/
PetscCall(KSPDestroy(&ksp));
PetscCall(VecDestroy(&u)); PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&b)); PetscCall(MatDestroy(&A));

/*
Always call PetscFinalize() before exiting a program. This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime
options are chosen (e.g., -log view).
*/
PetscCall(PetscFinalize());
return 0;

1.3.2 CPU SIMD parallelism
1.3.3 CPU OpenMP parallelism
1.3.4 GPU kernel parallelism

1.3.5 GPU stream parallelism

16 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

1.4 Compiling and Running Programs

The output below illustrates compiling and running a PETSc program using MPICH on an OS X laptop.
Note that different machines will have compilation commands as determined by the configuration process.
See Writing C/C++ or Fortran Applications for a discussion about how to compile your PETSc programs.
Users who are experiencing difficulties linking PETSc programs should refer to the FAQ on the PETSc
website https://petsc.org/ or given in the file $PETSC_DIR/docs/faq.html.

$ cd $PETSC DIR/src/ksp/ksp/tutorials

$ make ex2

/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -0 ex2.0 -c -g3 -I/Users/
—patrick/petsc/include -I/Users/patrick/petsc/arch-darwin-double-debug/include -I/
—opt/X1l/include -I/opt/local/include “pwd” /ex2.c
/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -g3 -0 ex2 ex2.o0 -Wl,-rpath,
—/Users/patrick/petsc/arch-darwin-double-debug/1lib -L/Users/patrick/petsc/arch-
—darwin-double-debug/lib -1lpetsc -1f2clapack -1f2cblas -lmpifort -lgfortran -lgcc_
—ext.10.5 -lquadmath -1m -lclang rt.osx -lmpicxx -lc++ -1dl -lmpi -1lpmpi -1System
/bin/rm -f ex2.o0

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex2

Norm of error 0.000156044 iterations 6

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 2 ./ex2

Norm of error 0.000411674 iterations 7

1.5 Profiling Programs

The option -10g view activates printing of a performance summary, including times, floating point op-
eration (flop) rates, and message-passing activity. Profiling provides details about profiling, including in-
terpretation of the output data below. This particular example involves the solution of a linear system on
one processor using GMRES and ILU. The low floating point operation (flop) rates in this example are due
to the fact that the code solved a tiny system. We include this example merely to demonstrate the ease of
extracting performance information.

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex1l -n 1000 -pc_type ilu -ksp_type,
—gmres -ksp rtol l.e-7 -log view

Event Count Time (sec) Flops ---
—Global --- --- Stage ---- Total
Max Ratio Max Ratio Max Ratio Mess AvglLen Reduct T

~SF %M %L %R ST %F %M %L %R Mflop/s

VecMDot 1 1.0 3.2830e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0
-5 0 06 6 06 5 0 0 0 609
VecNorm 3 1.0 4.4550e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0O,
~14 0 0 0 014 0 0 0 1346
VecScale 2 1.0 4.0110e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0
-5 0 06 6 06 5 0 0 0 499
VecCopy 1 1.0 3.2280e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 0 06 6 0 0 0 0 0
VecSet 11 1.0 2.5537e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 0 06 06 2 0 0 0 0 0

(continues on next page)

1.4. Compiling and Running Programs 17

https://petsc.org/

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

VecAXPY 2 1.0 2.0930e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0,
~10 06 06 06 010 06 0 0 1911

VecMAXPY 2 1.0 1.1280e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0O,
~10 06 0 0 010 0 0 0 3546

VecNormalize 2 1.0 9.3970e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~14 0 0 6 114 0 0 0 638

MatMult 2 1.0 1.1177e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 0 124 0 0 0 894

MatSolve 2 1.0 1.9933e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 06 124 0 0 0 501

MatLUFactorNum 1 1.0 3.5081e-05 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 2,
~10 0 06 6 210 06 0 06 114

MatILUFactorSym 1 1.0 4.4259e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3
-0 06 06 0 3 0 0 0 0 0

MatAssemblyBegin 11.0 8.2015e-08 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 06 06 06 0 0 0 0 0 0

MatAssemblyEnd 1 1.0 3.3536e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 06 06 0 2 0 0 0 0 0

MatGetRowI] 1 1.0 1.5960e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 06 06 0 0 0 0 0 0 0

MatGetOrdering 1 1.0 3.9791e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3
-0 06 06 06 3 0 0 0 0 0

MatView 2 1.0 6.7909e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5
-0 06 06 0 5 0 0 0 0 0

KSPGMRESOrthog 11.0 7.5970e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~10 06 06 06 110 06 0 0 526

KSPSetUp 1 1.0 3.4424e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 06 06 06 2 0 0 0 0 0

KSPSolve 1 1.0 2.7264e-04 1.0 3.30e+04 1.0 0.0e+00 0.0e+00 0.0e+00 19,
79 0 0 06 1979 06 0 06 121

PCSetUp 1 1.0 1.5234e-04 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 11,
~10 06 06 0 1110 06 0 0 26

PCApply 2 1.0 2.1022e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 0 124 0 0 0 475

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

Vector 8 8 76224 0.

Matrix 2 2 134212 0.

Krylov Solver 1 1 18400 0.
Preconditioner 1 1 1032 0.
Index Set 3 3 10328 0.
Viewer 1 0 0 0.

18 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

1.6 Writing C/C++ or Fortran Applications

The examples throughout the library demonstrate the software usage and can serve as templates for
developing custom applications. We suggest that new PETSc users examine programs in the direc-
tories $PETSC DIR/src/<library>/tutorials where <library> denotes any of the PETSc li-
braries (listed in the following section), such as SNES or KSP or TS. The manual pages located at
https://petsc.org/release/documentation/ provide links (organized by both routine names and concepts)
to the tutorial examples.

To develop an application program that uses PETSc, we suggest the following:
e Download and install PETSc.
e For completely new applications
1. Make a directory for your source code: for example, mkdir $HOME/application
2. Change to that directory; for example, cd $HOME/application

3. Copy an example in the directory that corresponds to the problems of interest into your directory,
for example, cp $PETSC DIR/src/snes/tutorials/ex19.c ex19.c

4. Select an application build process. The PETSC DIR (and PETSC ARCH if the --
prefix=directoryname option was not used when configuring PETSc) environmental vari-
able(s) must be set for any of these approaches.

— make (recommended). Copy $PETSC_DIR/share/petsc/Makefile.user or
$PETSC_DIR/share/petsc/Makefile.basic.user to your directory, for example, cp
$PETSC DIR/share/petsc/Makefile.user makefile

Examine the comments in your makefile
Makefile.user uses the pkg-config tool and is the recommended approach.
Use make ex19 to compile your program

— CMake. Copy $PETSC_DIR/share/petsc/CMakeLists.txt to your directory, for example, Cp
$PETSC DIR/share/petsc/CMakeLists.txt CMakeLists.txt

Edit CMakeLists.txt, read the comments on usage and change the name of application from
ex1 to your application executable name.

5. Run the program, for example, ./ex19
6. Start to modify the program for developing your application.
e For adding PETSc to an existing application
1. Start with a working version of your code that you build and run to confirm that it works.

2. Upgrade your build process. The PETSC DIR (and PETSC ARCH if the --
prefix=directoryname option was not used when configuring PETSc) environmental
variable(s) must be set for any of these approaches.

— Using make. Update the application makefile to add the appropriate PETSc include directo-
ries and libraries.

* Recommended approach. Examine the comments in
$PETSC_DIR/shared/petsc/Makefile.user and transfer selected portions of that
file to your makefile.

x Minimalist. Add the line

1.6. Writing C/C++ or Fortran Applications 19

https://petsc.org/release/documentation/
https://en.wikipedia.org/wiki/Pkg-config

PETSc/TAO Users Manual, Release 3.17.3

include ${PETSC DIR}/1lib/petsc/conf/variables

to the bottom of your makefile. This will provide a set of PETSc specific
make variables you may use in your makefile. See the comments in the file
$PETSC_DIR/shared/petsc/Makefile.basic.user for details on the usage.

x Simple, but hands the build process over to PETSc’s control. Add the lines

include ${PETSC DIR}/lib/petsc/conf/variables
include ${PETSC DIR}/lib/petsc/conf/rules
include ${PETSC DIR}/1lib/petsc/conf/tests

to the Dbottom of your makefile. See the comments in the file
$PETSC_DIR/shared/petsc/Makefile.basic.user for details on the usage. Since
PETSc’s rules now control the build process you will likely need to simplify and remove
much of your makefile.

* Not recommended since you must change your makefile for each new configura-
tion/computing system. This approach does not require that the environmental variable
PETSC DIR be set when building your application since the information will be hard-
wired in your makefile. Run the following command in the PETSc root directory to get
the information needed by your makefile:

$ make getlinklibs getincludedirs getcflags getcxxflags,
—getfortranflags getccompiler getfortrancompiler getcxxcompiler

All the libraries listed need to be linked into your executable and the include directories
and flags need to be passed to the compiler(s). Usually this is done by setting LD-
FLAGS=<list of library flags and libraries> and CFLAGS=<list of -I
and other flags> and FFLAGS=<1list of -I and other flags> etc in your
makefile.

— Using CMake. Update the application CMakeLists.txt by examining the code and comments
in $PETSC_DIR/share/petsc/CMakeLists.txt

3. Rebuild your application and ensure it still runs correctly.

4. Add a PetscInitialize() near the beginning of your code and PetscFinalize() near the
end with appropriate include commands (and use commands in Fortran)

5. Rebuild your application and ensure it still runs correctly.

6. Slowly start utilizing PETSc functionality in your code, ensure that your code continues to build
and run correctly.

1.7 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. The root
directory of PETSc contains the following directories:

o docs (only in the tarball distribution of PETSc; not the git repository) - All documentation for
PETSc. The files manual.pdf contains the hyperlinked users manual, suitable for printing or on-
screen viewering. Includes the subdirectory - manualpages (on-line manual pages).

o conf - Base PETSc configuration files that define the standard make variables and rules used by
PETSc

o include - All include files for PETSc that are visible to the user.

20 Chapter 1. Introduction to PETSc

PETSc/TAO Users Manual, Release 3.17.3

o include/petsc/finclude - PETSc include files for Fortran.

o include/petsc/private - Private PETSc include files that should not need to be used by appli-
cation programmers.

o share - Some small test matrices in data files
e Src - The source code for all PETSc libraries, which currently includes
— Vec - vectors,

* 15 - index sets,

mat - matrices,

— Kksp - complete linear equations solvers,
* Ksp - Krylov subspace accelerators,
* PC - preconditioners,

snes - nonlinear solvers

ts - ODE solvers and timestepping,
— dm - data management between meshes and solvers, vectors, and matrices,
— SYS - general system-related routines,
*x Logging - PETSc logging and profiling routines,
*x classes - low-level classes
draw - simple graphics,
viewer - mechanism for printing and visualizing PETSc objects,
bag - mechanism for saving and loading from disk user data stored in C structs.
random - random number generators.
Each PETSc source code library directory has the following subdirectories:

« tutorials - Programs designed to teach users about PETSc. These codes can serve as tem-
plates for the design of custom applications.

e tests - Programs designed for thorough testing of PETSc. As such, these codes are not in-
tended for examination by users.

o interface - The calling sequences for the abstract interface to the component. In other words,
provides the abstract base classes for the objects. Code here does not know about particular imple-
mentations.

e impls - Source code for one or more implementations of the class for particular data structures or
algorithms.

o utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.

1.7. Directory Structure 21

PETSc/TAO Users Manual, Release 3.17.3

22 Chapter 1. Introduction to PETSc

CHAPTER
TWO

PROGRAMMING WITH PETSC/TAO

2.1 Vectors and Parallel Data

Vectors (denoted by Vec) are used to store discrete PDE solutions, right-hand sides for linear systems, etc.
Users can create and manipulate entries in vectors directly with a basic, low-level interface or they can use
the PETSc DM objects to connect actions on vectors to the type of discretization and grid that they are
working with. These higher level interfaces handle much of the details of the interactions with vectors and
hence are preferred in most situations. This chapter is organized as follows:

e Creating Vectors
— User managed
— DMDA - Creating vectors for structured grids
— DMSTAG - Creating vectors for staggered grids

DMPLEX - Creating vectors for unstructured grids
DMNETWORK - Creating vectors for networks

e Setting vector values

— For generic vectors

DMDA - Setting vector values
— DMSTAG - Setting vector values
— DMPLEX - Setting vector values
— DMNETWORK - Setting vector values
e Basic Vector Operations
e Local/global vectors and communicating between vectors

— DM - Local/global vectors and ghost updates

Communication for generic vectors

Local to global mappings

Global Vectors with locations for ghost values

o Application Orderings

23

PETSc/TAO Users Manual, Release 3.17.3

2.1.1 Creating Vectors

PETSc provides many ways to create vectors. The most basic, where the user is responsible for managing
the parallel distribution of the vector entries, and a variety of higher-level approaches, based on DM, for
classes of problems such as structured grids, staggered grids, unstructured grids, networks, and particles.

The two basic CPU vector types are sequential and parallel (MPI-based). The most basic way to create a
sequential vector with m components, is using the command

’VecCreateSeq(PETSC_COMM_SELF,PetscInt m,Vec *x);

To create a parallel vector one can either specify the number of components that will be stored on each
process or let PETSc decide. The command

’VecCreateMPI(MPIfComm comm,PetscInt m,PetscInt M,Vec *x);

creates a vector distributed over all processes in the communicator, comm, where m indicates the number of
components to store on the local process, and M is the total number of vector components. Either the local
or global dimension, but not both, can be set to PETSC_DECIDE or PETSC_DETERMINE, respectively, to
indicate that PETSc should decide or determine it. More generally, one can use the routines

VecCreate(MPI_Comm comm,Vec *v);
VecSetSizes(Vec v, PetscInt m, PetscInt M);
VecSetFromOptions(Vec v);

which automatically generates the appropriate vector type (sequential or parallel) over all processes in comm.
The option -vec_ type mpi can be used in conjunction with VecCreate() and VecSetFromOptions()
to specify the use of MPI vectors even for the uniprocessor case.

We emphasize that all processes in comm must call the vector creation routines, since these routines are
collective over all processes in the communicator. If you are not familiar with MPI communicators, see the
discussion in Writing PETSc Programs on page . In addition, if a sequence of VecCreateXXX() routines
is used, they must be called in the same order on each process in the communicator.

Instead of, or before calling VecSetFromOptions (), one can call

’VecSetType(Vec v,VecType <VECSEQ or VECMPI etc>)

One can create vectors whose entries are stored on GPUs using, for example,

’VecCreateMPICUDA(MPLComm comm,PetscInt m,PetscInt M,Vec *x);

or call VecSetType() with a VecType of VECCUDA, VECHIP, VECKOKKOS. These GPU based vectors
allow one to set values on either the CPU or GPU but do their computations on the GPU.

For applications running in parallel that involve multi-dimensional structured grids, unstructured grids,
networks, etc it is cumbersome and complicated to explicitly determine the needed local and global sizes of
the vectors. Hence PETSc provides a powerful abstract object called the DM to help manage the vectors and
matrices needed for such applications. Parallel vectors can be created easily with

DMCreateGlobalVector (DM dm,Vec *v)

The DM object, see DMDA - Creating vectors for structured grids and DMPlex: Unstructured Grids in PETSc
for more details on DM for structured grids and for unstructured grids, manages creating the correctly sized
parallel vectors efficiently. One controls the type of vector that DM creates by calling

’DMSetVecType(DM dm,VecType vt)

24 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

or by calling DMSetFromOptions (DM dm) and using the option -dm vec type <standard or cuda
or kokkos etc>

DMDA - Creating vectors for structured grids

Each DM type is suitable for a family of problems. The first of these DMDA are intended for use with logically
regular rectangular grids when communication of nonlocal data is needed before certain local computations
can occur. PETSc distributed arrays are designed only for the case in which data can be thought of as being
stored in a standard multidimensional array; thus, DMDAs are not intended for parallelizing unstructured
grid problems, etc.

For example, a typical situation one encounters in solving PDEs in parallel is that, to evaluate a local function,
T (X), each process requires its local portion of the vector X as well as its ghost points (the bordering portions
of the vector that are owned by neighboring processes). Figure Ghost Points for Two Stencil Types on the
Seventh Process illustrates the ghost points for the seventh process of a two-dimensional, regular parallel
grid. Each box represents a process; the ghost points for the seventh process’s local part of a parallel array
are shown in gray.

Proc 6 Proc 6

ProcO| Proc 1 ProcO| Proc 1

Box-type stencil Star-type stencil
Fig. 2.1: Ghost Points for Two Stencil Types on the Seventh Process

The DMDA object only contains the parallel data layout information and communication information and is
used to create vectors and matrices with the proper layout.

One creates a distributed array communication data structure in two dimensions with the command

DMDACreate2d (MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
—.DMDAStencilType st,PetscInt M, PetscInt N,PetscInt m,PetscInt n,PetscInt dof,
—PetscInt s,PetscInt *1x,PetscInt *ly,DM *da);

The arguments M and N indicate the global numbers of grid points in each direction, while m and n denote
the process partition in each direction; m*n must equal the number of processes in the MPI communica-
tor, comm. Instead of specifying the process layout, one may use PETSC_DECIDE for m and n so that
PETSc will determine the partition using MPI. The type of periodicity of the array is specified by xpe-
riod and yperiod, which can be DM_BOUNDARY NONE (no periodicity), DM _BOUNDARY PERIODIC (pe-
riodic in that direction), DM_BOUNDARY_ TWIST (periodic in that direction, but identified in reverse order),
DM BOUNDARY GHOSTED , or DM_BOUNDARY_ MIRROR. The argument dof indicates the number of degrees
of freedom at each array point, and S is the stencil width (i.e., the width of the ghost point region). The
optional arrays Lx and ly may contain the number of nodes along the x and y axis for each cell, i.e. the
dimension of 1X is m and the dimension of 1y is n; alternately, NULL may be passed in.

2.1. Vectors and Parallel Data 25

PETSc/TAO Users Manual, Release 3.17.3

Two types of distributed array communication data structures can be created, as specified by
st. Star-type stencils that radiate outward only in the coordinate directions are indicated by
DMDA STENCIL STAR, while box-type stencils are specified by DMDA STENCIL BOX. For example, for
the two-dimensional case, DMDA_ STENCIL STAR with width 1 corresponds to the standard 5-point stencil,
while DMDA STENCIL BOX with width 1 denotes the standard 9-point stencil. In both instances the ghost
points are identical, the only difference being that with star-type stencils certain ghost points are ignored,
decreasing substantially the number of messages sent. Note that the DMDA STENCIL STAR stencils can
save interprocess communication in two and three dimensions.

These DMDA stencils have nothing directly to do with any finite difference stencils one might chose to use for
a discretization; they only ensure that the correct values are in place for application of a user-defined finite
difference stencil (or any other discretization technique).

The commands for creating distributed array communication data structures in one and three dimensions
are analogous:

DMDACreateld (MPI_Comm comm,DMBoundaryType xperiod,PetscInt M,PetscInt w,PetscInt s,
—PetscInt *1c,DM *inra);

DMDACreate3d(MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
—DMBoundaryType zperiod, DMDAStencilType stencil type,PetscInt M,PetscInt N,PetscInt,
—P,PetscInt m,PetscInt n,PetscInt p,PetscInt w,PetscInt s,PetscInt *1x,PetscInt *1ly,
—PetscInt *1z,DM *inra);

The routines to create distributed arrays are collective, so that all processes in the communicator comm must
call DACreateXXX().

DMSTAG - Creating vectors for staggered grids

For regular grids with staggered data (living on elements, faces, edges, and/or vertices), the DMSTAG object
is available. It behaves much like DMDA; see the DMSTAG manual page for more information.

DMPLEX - Creating vectors for unstructured grids

See DMPlex: Unstructured Grids in PETSc for discussion of creating vectors with DMPLEX.

DMNETWORK - Creating vectors for networks

See Networks for discussion of creating vectors with DMNETWORK.

One can examine (print out) a vector with the command

VecView(Vec x,PetscViewer v);

To print the vector to the screen, one can use the viewer PETSC_VIEWER STDOUT WORLD, which ensures
that parallel vectors are printed correctly to stdout. To display the vector in an X-window, one can use
the default X-windows viewer PETSC_VIEWER DRAW WORLD, or one can create a viewer with the routine
PetscViewerDrawOpenX(). A variety of viewers are discussed further in Viewers: Looking at PETSc
Objects.

To create a new vector of the same format as an existing vector, one uses the command

VecDuplicate(Vec old,Vec *new);

To create several new vectors of the same format as an existing vector, one uses the command

26 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

VecDuplicateVecs(Vec old,PetscInt n,Vec **new);

This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Duplicating Multiple Vectors, the Fortran interface for VecDuplicateVecs () differs slightly.

When a vector is no longer needed, it should be destroyed with the command

’VecDestroy(Vec *X);

To destroy an array of vectors, use the command

’VecDestroyVecs(PetscInt n,Vec **vecs);

Note that the Fortran interface for VecDestroyVecs () differs slightly, as described in Duplicating Multiple
Vectors.

It is also possible to create vectors that use an array provided by the user, rather than having PETSc
internally allocate the array space. Such vectors can be created with the routines such as

VecCreateSegWithArray(PETSC _COMM_SELF,PetscInt bs,PetscInt n,PetscScalar *array,Vec,
~*V);

VecCreateMPIWithArray (MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt N,PetscScalar,
—*array,Vec *vv);

VecCreateMPICUDAWithArray (MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt N,PetscScalar,
—*array,Vec *vv);

For GPU vectors the array pointer should be a GPU memory location.

Note that here one must provide the value n; it cannot be PETSC_DECIDE and the user is responsible for
providing enough space in the array; n*sizeof (PetscScalar).

2.1.2 Assembling (putting values in) vectors

One can assign a single value to all components of a vector with the command

’VecSet(Vec X,PetscScalar value);

Assigning values to individual components of the vector is more complicated, in order to make it possible to
write efficient parallel code. Assigning a set of components is a two-step process: one first calls

’VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT VALUES);

any number of times on any or all of the processes. The argument N gives the number of components
being set in this insertion. The integer array indices contains the global component indices, and values
is the array of values to be inserted. Any process can set any components of the vector; PETSc ensures
that they are automatically stored in the correct location. Once all of the values have been inserted with
VecSetValues (), one must call

’VecAssemblyBegin(Vec X);

followed by

’VecAssemblyEnd(Vec X);

2.1. Vectors and Parallel Data 27

PETSc/TAO Users Manual, Release 3.17.3

to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.

Example usage of VecSetValues () may be found in $PETSC_DIR/src/vec/vec/tutorials/ex2.c
or ex2f.F.

Often, rather than inserting elements in a vector, one may wish to add values. This process is also done
with the command

VecSetValues(Vec x,PetscInt n,PetscInt *indices, PetscScalar *values,ADD VALUES);

Again one must call the assembly routines VecAssemblyBegin() and VecAssemblyEnd () after all of
the values have been added. Note that addition and insertion calls to VecSetValues () cannot be mixed.
Instead, one must add and insert vector elements in phases, with intervening calls to the assembly routines.
This phased assembly procedure overcomes the nondeterministic behavior that would occur if two different
processes generated values for the same location, with one process adding while the other is inserting its value.
(In this case the addition and insertion actions could be performed in either order, thus resulting in different
values at the particular location. Since PETSc does not allow the simultaneous use of INSERT VALUES
and ADD_VALUES this nondeterministic behavior will not occur in PETSc.)

You can call VecGetValues () to pull local values from a vector (but not off-process values), an alternative
method for extracting some components of a vector are the vector scatter routines. See Communication for
generic vectors for details.

It is also possible to interact directly with the arrays that the vector values are stored in. The routine
VecGetArray() returns a pointer to the elements local to the process:

’VecGetArray(Vec v,PetscScalar **array);

When access to the array is no longer needed, the user should call

’VecRestoreArray(Vec v, PetscScalar **array);

If the values do not need to be modified, the routines

VecGetArrayRead(Vec v, const PetscScalar **array);
VecRestoreArrayRead(Vec v, const PetscScalar **array);

should be used instead.

Minor differences exist in the Fortran interface for VecGetArray() and VecRestoreArray(), as dis-
cussed in Array Arguments. It is important to note that VecGetArray() and VecRestoreArray ()
do not copy the vector elements; they merely give users direct access to the vector elements. Thus, these
routines require essentially no time to call and can be used efficiently.

For GPU vectors one can access either the values on the CPU as described above or one can call, for example,

’VecCUDAGetArray(Vec v, PetscScalar **array); ‘

or

’VecGetArrayAndMemType(Vec v, PetscScalar **array,PetscMemType *mtype); ‘

which, in the first case, returns a GPU memory address and in the second case returns either a CPU or GPU
memory address depending on the type of the vector. For usage with GPUs one then can launch a GPU
kernel function that access the vector’s memory. In fact when computing on GPUs VecSetValues () is
not used! One always accesses the vector’s arrays and passes them to the GPU code.

28 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

It can also be convenient to treat the vectors entries as a Kokkos view. In this one first creates Kokkos
vectors and then calls

VecGetKokkosView(Vec v, Kokkos::View<const PetscScalar*,MemorySpace> *kv)

to access the vectors entries.

Of course in order to provide the correct values to a vector one must know what parts of the vector are
owned by each MPI rank. For standard MPI parallel vectors that are distributed across the processes by
ranges, it is possible to determine a process’s local range with the routine

VecGetOwnershipRange(Vec vec,PetscInt *low,PetscInt *high);

The argument Low indicates the first component owned by the local process, while high specifies one more
than the last owned by the local process. This command is useful, for instance, in assembling parallel vectors.

The number of elements stored locally can be accessed with

’VecGetLocalSize(Vec v,PetscInt *size);

The global vector length can be determined by

’VecGetSize(Vec v,PetscInt *size);

DMDA - Setting vector values

PETSc provides an easy way to set values into the DMDA vectors and access them using the natural grid
indexing. This is done with the routines

DMDAVecGetArray (DM da,Vec 1,void *array);
. use the array indexing it with 1 or 2 or 3 dimensions
. depending on the dimension of the DMDA ...
DMDAVecRestoreArray (DM da,Vec 1,void *array);
DMDAVecGetArrayRead (DM da,Vec 1,void *array);
. use the array indexing it with 1 or 2 or 3 dimensions
. depending on the dimension of the DMDA ...
DMDAVecRestoreArrayRead (DM da,Vec 1,void *array);

where array is a multidimensional C array with the same dimension as da, and

DMDAVecGetArrayDOF (DM da,Vec 1,void *array);

. use the array indexing it with 2 or 3 or 4 dimensions
... depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOF (DM da,Vec 1,void *array);
DMDAVecGetArrayDOFRead (DM da,Vec 1,void *array);

. use the array indexing it with 2 or 3 or 4 dimensions

. depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOFRead (DM da,Vec 1,void *array);

where array is a multidimensional C array with one more dimension than da. The vector 1 can be either
a global vector or a local vector. The array is accessed using the usual global indexing on the entire grid,
but the user may only refer to the local and ghost entries of this array as all other entries are undefined. For
example, for a scalar problem in two dimensions one could use

PetscScalar **f,**u;

(continues on next page)

2.1. Vectors and Parallel Data 29

PETSc/TAO Users Manual, Release 3.17.3

(continued from previous page)

DMDAVecGetArray (DM da,Vec local,é&u);
DMDAVecGetArray (DM da,Vec global,&f);

CFLAI0G] = ulillg] -

DMDAVecRestoreArray (DM da,Vec local,&u);
DMDAVecRestoreArray (DM da,Vec global,&f);

The recommended approach for multi-component PDEs is to declare a Struct representing the fields defined
at each node of the grid, e.g.

typedef struct {
PetscScalar u,v,omega, temperature;
} Node;

and write residual evaluation using

Node **f, **u;
DMDAVecGetArray (DM da,Vec local,é&u);
DMDAVecGetArray (DM da,Vec global,&f);

" f[i1051.omega = ...

DMDAVecRestoreArray (DM da,Vec local,é&u);
DMDAVecRestoreArray (DM da,Vec global,&f);

See SNES Tutorial ex5 for a complete example and see SNES Tutorial ex19 for an example for a multi-
component PDE.

The DMDAVecGetArray routines are also provided for GPU access with CUDA, HIP, and Kokkos. For
example,

DMDAVecGetKokkosOffsetView(DM da,Vec vec,Kokkos::View<const PetscScalar*xx*,
—MemorySpace> *ov)

where *XX* can contain any number of *. This allows one to write very natural Kokkos multi-dimensional
parallel for kernels that act on the local portion of DMDA vectors.

The global indices of the lower left corner of the local portion of vectors obtained from DMDA as well as the
local array size can be obtained with the commands

DMDAGetCorners (DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
—PetscInt *p);

DMDAGetGhostCorners (DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
—PetscInt *p);

The first version excludes any ghost points, while the second version includes them. The routine DMDAGet -
GhostCorners() deals with the fact that subarrays along boundaries of the problem domain have ghost
points only on their interior edges, but not on their boundary edges.

When either type of stencil is used, DMDA STENCIL STAR or DMDA STENCIL BOX, the local vec-
tors (with the ghost points) represent rectangular arrays, including the extra corner elements in the
DMDA STENCIL STAR case. This configuration provides simple access to the elements by employing two- (or
three-) dimensional indexing. The only difference between the two cases is that when DMDA STENCIL STAR
is used, the extra corner components are not scattered between the processes and thus contain undefined
values that should not be used.

30 Chapter 2. Programming with PETSc/TAO

../../src/snes/tutorials/ex5.c.html
../../src/snes/tutorials/ex19.c.html

PETSc/TAO Users Manual, Release 3.17.3

DMSTAG - Setting vector values

For regular grids with staggered data (living on elements, faces, edges, and/or vertices), the DMStag object

is available. It behaves much like DMDA; see the DMSTAG manual page for more information.

DMPLEX - Setting vector values

See DMPlex: Unstructured Grids in PETSc for discussion on setting vector values with DMPLEX.

DMNETWORK - Setting vector values

See Networks for discussion on setting vector values with DMNETWORK.
2.1.3 Basic Vector Operations

Table 2.1: PETSc Vector Operations

Function Name Operation
VecAXPY (Vec y,PetscScalar a,Vec x); y=y+ax*xzx
VecAYPX(Vec y,PetscScalar a,Vec x); y=xz+axy

VecWAXPY (Vec w,PetscScalar a,Vec x,Vec y);

wW=a*xxT+yY

VecAXPBY (Vec y,PetscScalar a,PetscScalar b,Vec x);

y=axr+bxy

VecScale(Vec x, PetscScalar a); T=axzT
VecDot(Vec x, Vec y, PetscScalar *r); r=2z! %y
VecTDot(Vec x, Vec y, PetscScalar *r); r=x'xy
VecNorm(Vec x, NormType type, PetscReal *r); r = ||| type
VecSum(Vec x, PetscScalar *r); r=>y.a;
VecCopy(Vec x, Vec y); Y=z

VecSwap(Vec x, Vec y);

y=x whilex =1y

VecPointwiseMult(Vec w,Vec x,Vec y);

Wi = Tj * Yi

VecPointwiseDivide(Vec w,Vec x,Vec y);

w; = T; /Y

VecMDot (Vec x,PetscInt n,Vec y[],PetscScalar *r);

rli] = 27 * y[i]

VecMTDot (Vec x,PetscInt n,Vec y[],PetscScalar *r);

r[i] = a7 xyli]

VecMAXPY (Vec y,PetscInt n, PetscScalar *a, Vec x[]);

y=y+,ai*xli

VecMax (Vec x, PetscInt *idx, PetscReal *r);

r = maxz;

VecMin(Vec x, PetscInt *idx, PetscReal *r); 7 = min x;
VecAbs (Vec x); x; = |ag]
VecReciprocal(Vec x); x; = 1/z;
VecShift(Vec x,PetscScalar s); T =585+ x;
VecSet (Vec x,PetscScalar alpha); T =«

As listed in the table, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes. The NormType
argument to VecNorm() is one of NORM_1, NORM_2, or NORM_INFINITY. The I-norm is), |z;|, the

2-norm is (), x2)/2 and the infinity norm is max; |x;|.

In addition to VecDot () and VecMDot () and VecNorm(), PETSc provides split phase versions of these
that allow several independent inner products and/or norms to share the same communication (thus im-
proving parallel efficiency). For example, one may have code such as

2.1. Vectors and Parallel Data 31

PETSc/TAO Users Manual, Release 3.17.3

VecDot(Vec x,Vec y,PetscScalar *dot);

VecMDot (Vec x,PetscInt nv, Vec y[],PetscScalar *dot);
VecNorm(Vec x,NormType NORM 2,PetscReal *norm2);
VecNorm(Vec x,NormType NORM 1,PetscReal *norml);

This code works fine, but it performs four separate parallel communication operations. Instead, one can
write

VecDotBegin(Vec x,Vec y,PetscScalar *dot);
VecMDotBegin(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);
VecNormBegin(Vec x,NormType NORM 2,PetscReal *norm2);
VecNormBegin(Vec x,NormType NORM 1,PetscReal *norml);
VecDotEnd(Vec x,Vec y,PetscScalar *dot);

VecMDotEnd(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);
VecNormEnd(Vec x,NormType NORM 2,PetscReal *norm2);
VecNormEnd (Vec x,NormType NORM 1,PetscReal *norml);

With this code, the communication is delayed until the first call to VeCxXXEnd () at which a single MPI
reduction is used to communicate all the required values. It is required that the calls to the VecxxxEnd ()
are performed in the same order as the calls to the VecxxxBegin () ; however, if you mistakenly make the
calls in the wrong order, PETSc will generate an error informing you of this. There are additional routines
VecTDotBegin() and VecTDotEnd(), VecMTDotBegin(), VecMTDotENnd ().

2.1.4 Local/global vectors and communicating between vectors

Many PDE problems require the use of ghost (or halo) values in each MPI rank or even more general parallel
communication of vector values. These values are needed in order to perform function evaluation on that
rank. The exact structure of the ghost values needed depends on the type of grid being used. DM provides a
uniform API for communicating the needed values. We introduce the concept in detail for DMDA.

2.1.5 DM - Local/global vectors and ghost updates

Each DM object defines the layout of two vectors: a distributed global vector and a local vector that includes
room for the appropriate ghost points. The DM object provides information about the size and layout of
these vectors, but does not internally allocate any associated storage space for field values. Instead, the user
can create vector objects that use the DM layout information with the routines

DMCreateGlobalVector(DM da,Vec *g);
DMCreatelLocalVector(DM da,Vec *1);

These vectors will generally serve as the building blocks for local and global PDE solutions, etc. If additional
vectors with such layout information are needed in a code, they can be obtained by duplicating 1 or g via
VecDuplicate() or VecDuplicateVecs().

We emphasize that a distributed array provides the information needed to communicate the ghost value
information between processes. In most cases, several different vectors can share the same communication
information (or, in other words, can share a given DM). The design of the DM object makes this easy, as each
DM operation may operate on vectors of the appropriate size, as obtained via DMCreateLocalVector()
and DMCreateGlobalVector() or as produced by VecDuplicate().

At certain stages of many applications, there is a need to work on a local portion of the vector, including
the ghost points. This may be done by scattering a global vector into its local parts by using the two-stage
commands

32 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

DMGlobalToLocalBegin(DM da,Vec g,InsertMode iora,Vec 1);
DMGlobalToLocalEnd (DM da,Vec g,InsertMode iora,Vec 1);

which allow the overlap of communication and computation. Since the global and local vectors, given by
g and 1, respectively, must be compatible with the distributed array, da, they should be generated by
DMCreateGlobalVector() and DMCreateLocalVector() (or be duplicates of such a vector obtained
via VecDuplicate()). The InsertMode can be either ADD VALUES or INSERT VALUES.

One can scatter the local patches into the distributed vector with the command

DMLocalToGlobal (DM da,Vec 1,InsertMode mode,Vec g);

or the commands

DMLocalToGlobalBegin(DM da,Vec 1,InsertMode mode,Vec g);
/* (Computation to overlap with communication) */
DMLocalToGlobalEnd (DM da,Vec 1,InsertMode mode,Vec g);

In general this is used with an InsertMode of ADD VALUES, because if one wishes to insert values into
the global vector they should just access the global vector directly and put in the values.

A third type of distributed array scatter is from a local vector (including ghost points that contain irrelevant
values) to a local vector with correct ghost point values. This scatter may be done with the commands

DMLocalToLocalBegin(DM da,Vec 11,InsertMode iora,Vec 12);
DMLocalToLocalEnd(DM da,Vec 11,InsertMode iora,Vec 12);

Since both local vectors, 11 and 12, must be compatible with the distributed array, da, they should be gen-
erated by DMCreateLocalVector() (or be duplicates of such vectors obtained via VecDuplicate()).
The InsertMode can be either ADD VALUES or INSERT VALUES.

In most applications the local ghosted vectors are only needed during user “function evaluations”. PETSc
provides an easy, light-weight (requiring essentially no CPU time) way to obtain these work vectors and
return them when they are no longer needed. This is done with the routines

DMGetLocalVector (DM da,Vec *1);
. use the local vector 1 ...
DMRestoreLocalVector (DM da,Vec *1);

Communication for generic vectors

Most users of PETSc, who can utilize a DM will not need to utilize the lower-level routines discussed in the
rest of this section and can skip ahead to Matrices.

To facilitate creating general vector scatters and gathers used, for example, in updating ghost points for
problems for which no DM currently exists PETSc employs the concept of an indez set, via the IS class. An
index set, which is a generalization of a set of integer indices, is used to define scatters, gathers, and similar
operations on vectors and matrices.

The following command creates an index set based on a list of integers:

ISCreateGeneral (MPI_Comm comm,PetscInt n,PetscInt *indices,PetscCopyMode mode, IS,
*18);

When mode is PETSC COPY VALUES, this routine copies the n indices passed to it by the integer array
indices. Thus, the user should be sure to free the integer array indices when it is no longer needed,

2.1. Vectors and Parallel Data 33

PETSc/TAO Users Manual, Release 3.17.3

perhaps directly after the call to ISCreateGeneral(). The communicator, comm, should consist of all
processes that will be using the IS.

Another standard index set is defined by a starting point (first) and a stride (step), and can be created
with the command

’ISCreateStride(MPI7Comm comm,PetscInt n,PetscInt first,PetscInt step,IS *is);

Index sets can be destroyed with the command

’ ISDestroy (IS &is);

On rare occasions the user may need to access information directly from an index set. Several commands
assist in this process:

ISGetSize(IS is,PetscInt *size);
ISStrideGetInfo(IS is,PetscInt *first,PetscInt *stride);
ISGetIndices (IS is,PetscInt **indices);

The function ISGetIndices () returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ISRestoreIndices(IS is, PetscInt **indices);

should be called to ensure that the system can free the space it may have used to generate the list of indices.

A blocked version of the index sets can be created with the command

ISCreateBlock(MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt *indices,PetscCopyMode,,
—mode, IS *is);

This version is used for defining operations in which each element of the index set refers to a block of
bs vector entries. Related routines analogous to those described above exist as well, including ISBlock-

GetIndices(), ISBlockGetSize(), ISBlockGetLocalSize(), ISGetBlockSize(). See the man
pages for details.

Most PETSc applications use a particular DM object to manage the details of the communication needed for
their grids. In some rare cases however codes need to directly setup their required communication patterns.
This is done using PETSc’s VecScatter and PetscSF (for more general data than vectors). One can select
any subset of the components of a vector to insert or add to any subset of the components of another vector.
We refer to these operations as generalized scatters, though they are actually a combination of scatters and
gathers.

To copy selected components from one vector to another, one uses the following set of commands:

VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);
VecScatterBegin(VecScatter ctx,Vec x,Vec y,INSERT VALUES,SCATTER FORWARD);
VecScatterEnd(VecScatter ctx,Vec x,Vec y,INSERT VALUES,SCATTER FORWARD) ;
VecScatterDestroy(VecScatter *ctx);

Here iX denotes the index set of the first vector, while 1y indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the
index set of the first vector, 1X, equals the number in the destination index set, 1y, and that the vectors
be long enough to contain all the indices referred to in the index sets. If both X and Yy are parallel,
their communicator must have the same set of processes, but their process order can be different. The
argument INSERT VALUES specifies that the vector elements will be inserted into the specified locations
of the destination vector, overwriting any existing values. To add the components, rather than insert them,

34 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

the user should select the option ADD VALUES instead of INSERT VALUES. One can also use MAX VALUES
or MIN VALUES to replace destination with the maximal or minimal of its current value and the scattered
values.

To perform a conventional gather operation, the user simply makes the destination index set, 1y, be a stride
index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending) index
set consisting of a stride. The scatter routines are collective operations (i.e. all processes that own a parallel
vector must call the scatter routines). When scattering from a parallel vector to sequential vectors, each
process has its own sequential vector that receives values from locations as indicated in its own index set.
Similarly, in scattering from sequential vectors to a parallel vector, each process has its own sequential vector
that makes contributions to the parallel vector.

Caution: When INSERT VALUES is used, if two different processes contribute different values to the same
component in a parallel vector, either value may end up being inserted. When ADD VALUES is used, the
correct sum is added to the correct location.

In some cases one may wish to “undo” a scatter, that is perform the scatter backwards, switching the roles
of the sender and receiver. This is done by using

VecScatterBegin(VecScatter ctx,Vec y,Vec x,INSERT VALUES,SCATTER REVERSE);
VecScatterEnd(VecScatter ctx,Vec y,Vec x,INSERT VALUES,SCATTER REVERSE);

Note that the roles of the first two arguments to these routines must be swapped whenever the SCAT -
TER _REVERSE option is used.

Once a VecScatter object has been created it may be used with any vectors that have the appropriate
parallel data layout. That is, one can call VecScatterBegin() and VecScatterEnd() with different
vectors than used in the call to VecScatterCreate() aslong as they have the same parallel layout (number
of elements on each process are the same). Usually, these “different” vectors would have been obtained via
calls to VecDuplicate() from the original vectors used in the call to VecScatterCreate().

There is a PETSc routine that is nearly the opposite of VecSetValues (), that is, VecGetValues (), but
it can only get local values from the vector. To get off-process values, the user should create a new vector
where the components are to be stored, and then perform the appropriate vector scatter. For example, if
one desires to obtain the values of the 100th and 200th entries of a parallel vector, p, one could use a code
such as that below. In this example, the values of the 100th and 200th components are placed in the array
values. In this example each process now has the 100th and 200th component, but obviously each process
could gather any elements it needed, or none by creating an index set with no entries.

Vec p, X; /* initial vector, destination vector */
VecScatter scatter; /* scatter context */
IS from, to; /* index sets that define the scatter */

PetscScalar *values;
PetscInt idx from[] = {100,200}, idx to[] = {0,1};

VecCreateSeq(PETSC _COMM SELF,2,&x);

ISCreateGeneral (PETSC_COMM_SELF,2,idx_from,PETSC_ COPY_VALUES,&from);
ISCreateGeneral (PETSC COMM SELF,2,idx to,PETSC COPY VALUES,&to);
VecScatterCreate(p, from,x,to,&scatter);
VecScatterBegin(scatter,p,x, INSERT VALUES,SCATTER FORWARD);
VecScatterEnd(scatter,p,x, INSERT VALUES,SCATTER FORWARD) ;
VecGetArray(x,&values);

ISDestroy(&from);

ISDestroy(&to);

VecScatterDestroy(&scatter);

The scatter comprises two stages, in order to allow overlap of communication and computation. The intro-
duction of the VecScatter context allows the communication patterns for the scatter to be computed once

2.1. Vectors and Parallel Data 35

PETSc/TAO Users Manual, Release 3.17.3

and then reused repeatedly. Generally, even setting up the communication for a scatter requires communi-
cation; hence, it is best to reuse such information when possible.

Generalized scatters provide a very general method for managing the communication of required ghost
values for unstructured grid computations. One scatters the global vector into a local “ghosted” work
vector, performs the computation on the local work vectors, and then scatters back into the global solution
vector. In the simplest case this may be written as

VecScatterBegin(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT VALUES, ,
—.ScatterMode SCATTER FORWARD) ;

VecScatterEnd(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT VALUES,
—ScatterMode SCATTER FORWARD) ;

/* For example, do local calculations from localin to localout */

VecScatterBegin(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD VALUES,
—ScatterMode SCATTER REVERSE);

VecScatterEnd(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD VALUES,
—ScatterMode SCATTER REVERSE);

Local to global mappings

In many applications one works with a global representation of a vector (usually on a vector obtained with
VecCreateMPI()) and a local representation of the same vector that includes ghost points required for
local computation. PETSc provides routines to help map indices from a local numbering scheme to the
PETSc global numbering scheme. This is done via the following routines

ISLocalToGlobalMappingCreate (MPI_Comm comm,PetscInt bs,PetscInt N,PetscInt* globalnum,
—PetscCopyMode mode,ISLocalToGlobalMapping* ctx);
ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,PetscInt n,PetscInt *in,
—PetscInt *out);

ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,IS* isout);
ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping *ctx);

Here N denotes the number of local indices, globalnum contains the global number of each local num-
ber, and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed
to apply the mapping with either ISLocalToGlobalMappingApply () or ISLocalToGlobalMappin-

gApplyIS().

Note that the ISLocalToGlobalMapping routines serve a different purpose than the AO routines. In the
former case they provide a mapping from a local numbering scheme (including ghost points) to a global
numbering scheme, while in the latter they provide a mapping between two global numbering schemes. In
fact, many applications may use both AO and ISLocalToGlobalMapping routines. The AO routines are
first used to map from an application global ordering (that has no relationship to parallel processing etc.) to
the PETSc ordering scheme (where each process has a contiguous set of indices in the numbering). Then in
order to perform function or Jacobian evaluations locally on each process, one works with a local numbering
scheme that includes ghost points. The mapping from this local numbering scheme back to the global PETSc
numbering can be handled with the ISLocalToGlobalMapping routines.

If one is given a list of block indices in a global numbering, the routine

ISGlobalToLocalMappingApplyBlock(ISLocalToGlobalMapping ctx,
—ISGlobalToLocalMappingMode type,PetscInt nin,PetscInt idxin[],PetscInt *nout,
—PetscInt idxout[]);

will provide a new list of indices in the local numbering. Again, negative values in 1dXin are left unmapped.
But, in addition, if type is set to IS GTOLM MASK , then nout is set to nin and all global values in

36 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

idxin that are not represented in the local to global mapping are replaced by -1. When type is set to
IS GTOLM DROP, the values in idxin that are not represented locally in the mapping are not included
in idxout, so that potentially nout is smaller than nin. Omne must pass in an array long enough to
hold all the indices. One can call ISGlobalTolLocalMappingApplyBlock() with idxout equal to
NULL to determine the required length (returned in nout) and then allocate the required space and call
ISGlobalToLocalMappingApplyBlock() a second time to set the values.

Often it is convenient to set elements into a vector using the local node numbering rather than the global
node numbering (e.g., each process may maintain its own sublist of vertices and elements and number them
locally). To set values into a vector with the local numbering, one must first call

’VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping ctx);

and then call

VecSetValuesLocal(Vec x,PetscInt n,const PetscInt indices[],const PetscScalar,
—values[],INSERT VALUES);

Now the indices use the local numbering, rather than the global, meaning the entries lie in [0,) where n
is the local size of the vector.

To assemble global stiffness matrices, one can use these global indices with MatSetValues() or MatSet-
ValuesStencil(). Alternately, the global node number of each local node, including the ghost nodes,
can be obtained by calling

DMGetLocalToGlobalMapping (DM da,ISLocalToGlobalMapping *map);

followed by

VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping map);
MatSetLocalToGlobalMapping(Mat A,ISLocalToGlobalMapping rmapping,
—ISLocalToGlobalMapping cmapping);

Now entries may be added to the vector and matrix using the local numbering and VecSetValuesLocal()
and MatSetValuesLocal().

The example SNES Tutorial ex5 illustrates the use of a distributed array in the solution of a nonlinear
problem. The analogous Fortran program is SNES Tutorial ex5f; see SNES: Nonlinear Solvers for a discussion
of the nonlinear solvers.

Global Vectors with locations for ghost values

There are two minor drawbacks to the basic approach described above:

o the extra memory requirement for the local work vector, Localin, which duplicates the memory in
globalin, and

o the extra time required to copy the local values from localin to globalin.

An alternative approach is to allocate global vectors with space preallocated for the ghost values; this may
be done with either

VecCreateGhost (MPI _Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt *ghosts,
~Vec *vv)

or

2.1. Vectors and Parallel Data 37

../../src/snes/tutorials/ex5.c.html
../../src/snes/tutorials/ex5f.F90.html

PETSc/TAO Users Manual, Release 3.17.3

VecCreateGhostWithArray(MPI_Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt,
—*ghosts,PetscScalar *array,Vec *vv)

Here n is the number of local vector entries, N is the number of global entries (or NULL) and nghost is
the number of ghost entries. The array ghosts is of size nghost and contains the global vector location
for each local ghost location. Using VecDuplicate() or VecDuplicateVecs() on a ghosted vector will
generate additional ghosted vectors.

In many ways, a ghosted vector behaves just like any other MPI vector created by VecCreateMPI(). The
difference is that the ghosted vector has an additional “local” representation that allows one to access the
ghost locations. This is done through the call to

VecGhostGetLocalForm(Vec g,Vec *1);

The vector 1 is a sequential representation of the parallel vector g that shares the same array space (and
hence numerical values); but allows one to access the “ghost” values past “the end of the” array. Note that
one access the entries in 1 using the local numbering of elements and ghosts, while they are accessed in @
using the global numbering.

A common usage of a ghosted vector is given by

VecGhostUpdateBegin(Vec globalin,InsertMode INSERT VALUES, ScatterMode SCATTER
—.FORWARD) ;
VecGhostUpdateEnd(Vec globalin,InsertMode INSERT VALUES, ScatterMode SCATTER FORWARD) ;
VecGhostGetLocalForm(Vec globalin,Vec *localin);
VecGhostGetLocalForm(Vec globalout,Vec *localout);

Do local calculations from localin to localout ...
VecGhostRestoreLocalForm(Vec globalin,Vec *localin);
VecGhostRestoreLocalForm(Vec globalout,Vec *localout);
VecGhostUpdateBegin(Vec globalout,InsertMode ADD VALUES, ScatterMode SCATTER REVERSE);
VecGhostUpdateEnd(Vec globalout,InsertMode ADD VALUES, ScatterMode SCATTER REVERSE);

The routines VecGhostUpdateBegin() and VecGhostUpdateEnd() are equivalent to the routines
VecScatterBegin() and VecScatterEnd() above except that since they are scattering into the ghost
locations, they do not need to copy the local vector values, which are already in place. In addition, the
user does not have to allocate the local work vector, since the ghosted vector already has allocated slots to
contain the ghost values.

The input arguments INSERT VALUES and SCATTER FORWARD cause the ghost values to be correctly
updated from the appropriate process. The arguments ADD VALUES and SCATTER REVERSE update the
“local” portions of the vector from all the other processes’ ghost values. This would be appropriate, for
example, when performing a finite element assembly of a load vector. One can also use MAX VALUES or

MIN VALUES with SCATTER REVERSE.

Partitioning discusses the important topic of partitioning an unstructured grid.

2.1.6 Application Orderings

When writing parallel PDE codes, there is extra complexity caused by having multiple ways of indexing
(numbering) and ordering objects such as vertices and degrees of freedom. For example, a grid generator or
partitioner may renumber the nodes, requiring adjustment of the other data structures that refer to these
objects; see Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes).
PETSc provides a variety of tools to help to manage the mapping amongst the various numbering systems.
The most basic are the AQ (application ordering), which enables mapping between different global (cross-
process) numbering schemes.

38 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

In many applications it is desirable to work with one or more “orderings” (or numberings) of degrees of
freedom, cells, nodes, etc. Doing so in a parallel environment is complicated by the fact that each process
cannot keep complete lists of the mappings between different orderings. In addition, the orderings used in
the PETSc linear algebra routines (often contiguous ranges) may not correspond to the “natural” orderings
for the application.

PETSc provides certain utility routines that allow one to deal cleanly and efficiently with the various order-
ings. To define a new application ordering (called an AO in PETSc), one can call the routine

AOCreateBasic(MPI_Comm comm,PetscInt n,const PetscInt apordering[],const PetscInt,
—.petscordering[],A0 *ao);

The arrays apordering and petscordering, respectively, contain a list of integers in the application
ordering and their corresponding mapped values in the PETSc ordering. Each process can provide whatever
subset of the ordering it chooses, but multiple processes should never contribute duplicate values. The
argument N indicates the number of local contributed values.

For example, consider a vector of length 5, where node 0 in the application ordering corresponds to node 3
in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond, respectively,
to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as

{07]‘7 27 3’ 4} - {3’ 27 1747 0}'

The user can create the PETSc A0 mappings in a number of ways. For example, if using two processes, one
could call

’AOCreateBasic(PETSC_COMM_WORLD,Z,{0,3},{3,4},&ao);

on the first process and

’AOCreateBasic(PETSC_COMM_WORLD,B,{1,2,4},{2,1,0},&ao);

on the other process.

Once the application ordering has been created, it can be used with either of the commands

AOPetscToApplication(AO0 ao,PetscInt n,PetscInt *indices);
AOApplicationToPetsc(AO ao,PetscInt n,PetscInt *indices);

Upon input, the n-dimensional array indices specifies the indices to be mapped, while upon output,
indices contains the mapped values. Since we, in general, employ a parallel database for the AO mappings,
it is crucial that all processes that called AOCreateBasic () also call these routines; these routines cannot be
called by just a subset of processes in the MPI communicator that was used in the call to AOCreateBasic().

An alternative routine to create the application ordering, AO, is

AOCreateBasicIS(IS apordering,IS petscordering,A0 *ao);

where index sets are used instead of integer arrays.

The mapping routines

AOPetscToApplicationIS(AO ao,IS indices);
AOApplicationToPetscIS(AO ao,IS indices);

will map index sets (IS objects) between orderings. Both the AOXXXToYyy () and AOXXXToYyyIS()
routines can be used regardless of whether the AQO was created with a AOCreateBasic() or AOCreate-
BasicIS().

2.1. Vectors and Parallel Data 39

PETSc/TAO Users Manual, Release 3.17.3

The AO context should be destroyed with AODestroy (A0 *ao) and viewed with AOView(AO ao,
PetscViewer viewer).

Although we refer to the two orderings as “PETSc” and “application” orderings, the user is free to use them
both for application orderings and to maintain relationships among a variety of orderings by employing
several AQ contexts.

The AOXXToxX () routines allow negative entries in the input integer array. These entries are not mapped;
they simply remain unchanged. This functionality enables, for example, mapping neighbor lists that use
negative numbers to indicate nonexistent neighbors due to boundary conditions, etc.

Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, the DMDA structure provides an
application ordering AQ (see Application Orderings) that maps between the natural ordering on a rectangular
grid and the ordering PETSc uses to parallelize. This ordering context can be obtained with the command

DMDAGetAO (DM da,A0 *ao);

In Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes) we indicate
the orderings for a two-dimensional distributed array, divided among four processes.

Processor 2 Processor 3 Processor 2 Processor 3
26 27 28 29 30 22 23 24 29 30
21 22 23 24 25 19 20 21 27 28
16 17 18 19 20 16 17 18 25 26
11 12 13 14 15 7 8 9 14 15

6 7 8 9 10 4 5 6 12 13

1 2 3 4 5 1 2 3 10 11
Processor O Processor 1 Processor O Processor 1

Natural Ordering PETSc Ordering

Fig. 2.2: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes)

2.2 Matrices

PETSc provides a variety of matrix implementations because no single matrix format is appropriate for all
problems. Currently, we support dense storage and compressed sparse row storage (both sequential and
parallel versions) for CPU and GPU based matrices, as well as several specialized formats. Additional
specialized formats can be easily added.

This chapter describes the basics of using PETSc matrices in general (regardless of the particular format
chosen) and discusses tips for efficient use of the several simple uniprocess and parallel matrix types. The
use of PETSc matrices involves the following actions: create a particular type of matrix, insert values into it,
process the matrix, use the matrix for various computations, and finally destroy the matrix. The application
code does not need to know or care about the particular storage formats of the matrices.

40 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

2.2.1 Creating matrices

As with vectors, PETSc has APIs that allow the user to specify the exact details of the matrix creation
process but also DM based creation routines that handle most of the details automatically for specific families
of applications. This is done with

’ DMCreateMatrix (DM dm,Mat *A)

The type of matrix created can be controlled with either

’DMSetMatType(DM dm,MatType <MATAIJ or MATBAIJ or MATAIJCUSPARSE etc>)

or with

’ DMSetSetFromOptions (DM dm)

and the options database option -dm mat type <aij or baij or aijcusparse etc> Matrices can
be created for CPU usage, for GPU usage and for usage on both the CPUs and GPUs.

The creation of DM objects is discussed in DMDA - Creating vectors for structured grids, DMPLEX - Creating
vectors for unstructured grids, DMNETWORK - Creating vectors for networks.

2.2.2 Low-level matrix creation routines

When using a DM is not practical for a particular application on can create matrices directly using

MatCreate(MPI_Comm comm,Mat *A)
MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N)

This routine generates a sequential matrix when running one process and a parallel matrix for two or more
processes; the particular matrix format is set by the user via options database commands. The user specifies
either the global matrix dimensions, given by M and N or the local dimensions, given by m and n while PETSc
completely controls memory allocation. This routine facilitates switching among various matrix types, for
example, to determine the format that is most efficient for a certain application. By default, MatCreate()
employs the sparse AlJ format, which is discussed in detail Sparse Matrices. See the manual pages for further
information about available matrix formats.

2.2.3 Assembling (putting values into) matrices

To insert or add entries to a matrix on CPUs, one can call a variant of MatSetValues(), either

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
—const PetscScalar values[],INSERT VALUES);

or

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
—const PetscScalar values[],ADD VALUES);

This routine inserts or adds a logically dense subblock of dimension m*n into the matrix. The integer indices
idxmand idxn, respectively, indicate the global row and column numbers to be inserted. MatSetValues ()
uses the standard C convention, where the row and column matrix indices begin with zero regardless of the
storage format employed. The array values is logically two-dimensional, containing the values that are to be
inserted. By default the values are given in row major order, which is the opposite of the Fortran convention,

2.2. Matrices 41

PETSc/TAO Users Manual, Release 3.17.3

meaning that the value to be put in row idxm[i] and column idxn[j] is located in values[i*n+j].
To allow the insertion of values in column major order, one can call the command

MatSetOption(Mat A,MAT ROW ORIENTED,PETSC FALSE);

Warning: Several of the sparse implementations do not currently support the column-oriented option.

This notation should not be a mystery to anyone. For example, to insert one matrix into another when using
MATLAB, one uses the command A(im,in) = B; where im and in contain the indices for the rows and
columns. This action is identical to the calls above to MatSetValues().

When using the block compressed sparse row matrix format (MATSEQBAIJ or MATMPIBAIJ), one can
insert elements more efficiently using the block variant, MatSetValuesBlocked() or MatSetValues-
BlockedLocal().

The function MatSetOption() accepts several other inputs; see the manual page for details.

After the matrix elements have been inserted or added into the matrix, they must be processed (also called
“agsembled”) before they can be used. The routines for matrix processing are

MatAssemblyBegin(Mat A,MAT FINAL ASSEMBLY);
MatAssemblyEnd(Mat A,MAT FINAL ASSEMBLY);

By placing other code between these two calls, the user can perform computations while messages are in
transit. Calls to MatSetValues () with the INSERT VALUES and ADD VALUES options cannot be mixed
without intervening calls to the assembly routines. For such intermediate assembly calls the second routine
argument typically should be MAT FLUSH ASSEMBLY, which omits some of the work of the full assembly
process. MAT FINAL ASSEMBLY is required only in the last matrix assembly before a matrix is used.

Even though one may insert values into PETSc matrices without regard to which process eventually stores
them, for efficiency reasons we usually recommend generating most entries on the process where they are
destined to be stored. To help the application programmer with this task for matrices that are distributed
across the processes by ranges, the routine

MatGetOwnershipRange(Mat A,PetscInt *first row,PetscInt *last row);

informs the user that all rows from first row to last row-1 (since the value returned in last row is
one more than the global index of the last local row) will be stored on the local process.

In the sparse matrix implementations, once the assembly routines have been called, the matrices are com-
pressed and can be used for matrix-vector multiplication, etc. Any space for preallocated nonzeros that
was not filled by a call to MatSetValues() or a related routine is compressed out by assembling with
MAT FINAL ASSEMBLY. If you intend to use that extra space later, be sure to insert explicit zeros before
assembling with MAT FINAL ASSEMBLY so the space will not be compressed out. Once the matrix has been
assembled, inserting new values will be expensive since it will require copies and possible memory allocation.

One may repeatedly assemble matrices that retain the same nonzero pattern (such as within a nonlinear or
time-dependent problem). Where possible, data structures and communication information will be reused
(instead of regenerated) during successive steps, thereby increasing efficiency. See KSP Tutorial ex5 for a
simple example of solving two linear systems that use the same matrix data structure.

For matrices associated with DMDA there is a higher-level interface for providing the numerical values based
on the concept of stencils. See the manual page of MatSetValuesStencil() for usage.

For GPUs the routines MatSetPreallocationC00() and MatSetValuesC00O() should be used for
efficient matrix assembly instead of MatSetValues().

We now introduce the various families of PETSc matrices. DMCreateMatrix () manages the preallocation
process (introduced below) automatically so many users do not need to worry about the details of the
preallocation process.

42 Chapter 2. Programming with PETSc/TAO

../../src/ksp/ksp/tutorials/ex5.c.html

PETSc/TAO Users Manual, Release 3.17.3

Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called the compressed
sparse row format, CSR). This section discusses tips for efficiently using this matrix format for large-scale
applications. Additional formats (such as block compressed row and block diagonal storage, which are
generally much more efficient for problems with multiple degrees of freedom per node) are discussed below.
Beginning users need not concern themselves initially with such details and may wish to proceed directly to
Basic Matriz Operations. However, when an application code progresses to the point of tuning for efficiency
and/or generating timing results, it is crucial to read this information.

Sequential Al) Sparse Matrices

In the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of corre-
sponding column numbers and an array of pointers to the beginning of each row. Note that the diagonal
matrix entries are stored with the rest of the nonzeros (not separately).

To create a sequential ALJ sparse matrix, A, with m rows and n columns, one uses the command

MatCreateSeqAIJ(PETSC COMM SELF,PetscInt m,PetscInt n,PetscInt nz,PetscInt *nnz,Mat,
<*A);

where NZ or NNz can be used to preallocate matrix memory, as discussed below. The user can set Nz=0 and
nnz=NULL for PETSc to control all matrix memory allocation.

The sequential and parallel ALJ matrix storage formats by default employ i-nodes (identical nodes) when
possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrix information
for increased efficiency. Related options database keys are -mat _no _inode (do not use inodes) and -
mat_inode limit <limit> (set inode limit (max limit=5)). Note that problems with a single degree of
freedom per grid node will automatically not use I-nodes.

The internal data representation for the AIJ formats employs zero-based indexing.

Preallocation of Memory for Sequential Al) Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new is intrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate

the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via
MatCreateSeqAIl().

One can use the scalar Nz to specify the expected number of nonzeros for each row. This is generally fine
if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation,

If different rows have very different numbers of nonzeros, one should attempt to indicate (nearly) the exact
number of elements intended for the various rows with the optional array, Nnnz of length m, where m is the
number of rows, for example

PetscInt nnz[m];
nnz[0] = <nonzeros in row 0>
nnz[1l] = <nonzeros in row 1>

nnz[m-1] = <nonzeros in row m-1>

2.2. Matrices 43

PETSc/TAO Users Manual, Release 3.17.3

In this case, the assembly process will require no additional memory allocations if the NNz estimates are
correct. If, however, the NNz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency.

Using the array nnz to preallocate memory is especially important for efficient matrix assembly if the number
of nonzeros varies considerably among the rows. One can generally set NNz either by knowing in advance the
problem structure (e.g., the stencil for finite difference problems on a structured grid) or by precomputing
the information by using a segment of code similar to that for the regular matrix assembly. The overhead
of determining the NNz array will be quite small compared with the overhead of the inherently expensive
mallocs and moves of data that are needed for dynamic allocation during matrix assembly. Always guess
high if an exact value is not known (extra space is cheaper than too little).

Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows, one could
proceed as follows for finite difference methods:

1. Allocate integer array nNnz.

2. Loop over grid, counting the expected number of nonzeros for the row(s) associated with the various
grid points.

3. Create the sparse matrix via MatCreateSeqAIJ () or alternative.

4. Loop over the grid, generating matrix entries and inserting in matrix via MatSetValues().
For (vertex-based) finite element type calculations, an analogous procedure is as follows:

1. Allocate integer array nnz.

2. Loop over vertices, computing the number of neighbor vertices, which determines the number of nonze-
ros for the corresponding matrix row(s).

3. Create the sparse matrix via MatCreateSegAIJ () or alternative.
4. Loop over elements, generating matrix entries and inserting in matrix via MatSetValues().

The -info option causes the routines MatAssemblyBegin() and MatAssemblyEnd() to print infor-
mation about the success of the preallocation. Consider the following example for the MATSEQAIJ matrix
format:

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:20 unneeded, 100 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 0

The first line indicates that the user preallocated 120 spaces but only 100 were used. The second line indicates
that the user preallocated enough space so that PETSc did not have to internally allocate additional space
(an expensive operation). In the next example the user did not preallocate sufficient space, as indicated by
the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:47 unneeded, 1000 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem unusual,
they are actually very efficient because they alleviate the need for dynamic construction of the matrix data
structure, which can be very expensive.

44 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

Parallel Al) Sparse Matrices

Parallel sparse matrices with the AIJ format can be created with the command

MatCreateAIJ=(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt d nz,
—PetscInt *d nnz, PetscInt o nz,PetscInt *o nnz,Mat *A);

A is the newly created matrix, while the arguments m, M, and N, indicate the number of local rows and
the number of global rows and columns, respectively. In the PETSc partitioning scheme, all the matrix
columns are local and n is the number of columns corresponding to local part of a parallel vector. Either
the local or global parameters can be replaced with PETSC_DECIDE, so that PETSc will determine them.
The matrix is stored with a fixed number of rows on each process, given by m, or determined by PETSc if

m is PETSC_DECIDE.

If PETSC_DECIDE is not used for the arguments m and n, then the user must ensure that they are chosen
to be compatible with the vectors. To do this, one first considers the matrix-vector product y = Ax. The m
that is used in the matrix creation routine MatCreateAIJ () must match the local size used in the vector
creation routine VecCreateMPI() for y. Likewise, the n used must match that used as the local size in
VecCreateMPI () for x.

The user must set d nz=0, 0 nz=0, d Nnz=NULL, and 0_nnz=NULL for PETSc to control dynamic
allocation of matrix memory space. Analogous to Nz and NNz for the routine MatCreateSeqAIJ (), these
arguments optionally specify nonzero information for the diagonal (d_nz and d_nnz) and off-diagonal (0_nz
and 0_Nnnz) parts of the matrix. For a square global matrix, we define each process’s diagonal portion to
be its local rows and the corresponding columns (a square submatrix); each process’s off-diagonal portion
encompasses the remainder of the local matrix (a rectangular submatrix). The rank in the MPT communicator
determines the absolute ordering of the blocks. That is, the process with rank 0 in the communicator given
to MatCreateAIJ() contains the top rows of the matrix; the i*® process in that communicator contains
the it block of the matrix.

Preallocation of Memory for Parallel Al Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix assem-
bly, as this reduces the number of allocations and copies required. We present an example for three processes
to indicate how this may be done for the MATMPIAIJ matrix format. Consider the 8 by 8 matrix, which is
partitioned by default with three rows on the first process, three on the second and two on the third.

1 2 0| 0 3 0] 0 4
0O 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 O
0O 18 0 | 19 20 21 | O O
0O 0 0 | 22 23 0 | 24 O

25 26 27 | O O 28 | 29 O
30 0 0 | 31 32 33 | 0 34

The “diagonal” submatrix, d, on the first process is given by

12 0
05 6 |,
9 0 10

2.2. Matrices 45

PETSc/TAO Users Manual, Release 3.17.3

while the “off-diagonal” submatrix, 0, matrix is given by
0
7
1

3 0 0 4
0 0 8 0
0 0 0

—_
—

2

For the first process one could set d Nz to 2 (since each row has 2 nonzeros) or, alternatively, set d_nnz to
{2,2,2}. The 0_nz could be set to 2 since each row of the 0 matrix has 2 nonzeros, or 0_nnz could be set
to {2,2,2}.

For the second process the d submatrix is given by

15 16 17
19 20 21
22 23 0

Thus, one could set d Nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively one
could set d_nnz to {3, 3,2}, thereby indicating that the first two rows will have 3 nonzeros while the third
has 2. The corresponding 0 submatrix for the second process is

13 0 14 0 O
0 18 0 0 O
0 0 0 24 0

so that one could set 0_nz to 2 or 0_nnz to {2,1,1}.

Note that the user never directly works with the d and 0 submatrices, except when preallocating storage
space as indicated above. Also, the user need not preallocate exactly the correct amount of space; as long
as a sufficiently close estimate is given, the high efficiency for matrix assembly will remain.

As described above, the option -info will print information about the success of preallocation during matrix
assembly. For the MATMPIAIJ and MATMPIBAIJ formats, PETSc will also list the number of elements owned
by on each process that were generated on a different process. For example, the statements

MatAssemblyBegin_MPIAIJ:Stash has 10 entries, uses 0 mallocs
MatAssemblyBegin MPIAIJ:Stash has 3 entries, uses 0 mallocs
MatAssemblyBegin MPIAIJ:Stash has 5 entries, uses 0 mallocs

indicate that very few values have been generated on different processes. On the other hand, the statements

MatAssemblyBegin_MPIAIJ:Stash has 100000 entries, uses 100 mallocs
MatAssemblyBegin MPIAIJ:Stash has 77777 entries, uses 70 mallocs

indicate that many values have been generated on the “wrong” processes. This situation can be very
inefficient, since the transfer of values to the “correct” process is generally expensive. By using the command
MatGetOwnershipRange() in application codes, the user should be able to generate most entries on the
owning process.

Note: Tt is fine to generate some entries on the “wrong” process. Often this can lead to cleaner, simpler, less
buggy codes. One should never make code overly complicated in order to generate all values locally. Rather,
one should organize the code in such a way that most values are generated locally.

The routine MatCreateAIJCusparse() allows one to create GPU based matrices for NVIDIA systems.
MatCreateAIJKokkos () can create matrices for use with CPU, OpenMP, NVIDIA, AMD, or Intel
based GPU systems.

46 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

Limited-Memory Variable Metric (LMVM) Matrices

Variable metric methods, also known as quasi-Newton methods, are frequently used for root finding problems
and approximate Jacobian matrices or their inverses via sequential nonlinear updates based on the secant
condition. The limited-memory variants do not store the full explicit Jacobian, and instead compute forward
products and inverse applications based on a fixed number of stored update vectors.

Table 2.2: PETSc LMVM matrix implementations.

Method PETSc Type Name Property

“Good” Broyden [ref- | MATLMVMBrdn Imvmbrdn Square

Gril2]

“Bad” Broyden [ref- | MATLMVMBadBrdn Imvmbadbrdn Square
1ri12]

Symmetric Rank-1 [ref- | MATLMVMSR1 Ilmvmsrl Symmetric

NW99]

Davidon-Fletcher- MATLMVMDFP Imvmdfp SPD

Powell (DFP) [ref-

NW99]

MATLMVMBFGS Imvmbfgs SPD
Broyden-Fletcher-Goldfarb-Shanno (BFGS)

[ref-N'W99]

Restricted Broyden | MATLMVMSymBrdn Imvmsymbrdn SPD
Family [ref-EM17]

Restricted Broyden | MATLMVMDiagBrdn Ilmvmdiagbrdn SPD
Family (full-memory

diagonal)

PETSc implements seven different LMVM matrices listed in the table above. They can be created using the
MatCreate() and MatSetType() workflow, and share a number of common interface functions. We will
review the most important ones below:

o MatLMVMAllocate(Mat B, Vec X, Vec F) — Creates the internal data structures necessary to
store nonlinear updates and compute forward/inverse applications. The X vector defines the solution
space while the F defines the function space for the history of updates.

o MatLMVMUpdate(MatB, Vec X, Vec F) — Applies a nonlinear update to the approximate Jacobian
such that sy = xx — zx—1 and yx = f(zr) — f(zk—_1), where k is the index for the update.

o MatLMVMReset(Mat B, PetscBool destructive) — Flushes the accumulated nonlinear updates
and resets the matrix to the initial state. If destructive = PETSC TRUE, the reset also destroys
the internal data structures and necessitates another allocation call before the matrix can be updated
and used for products and solves.

o MatLMVMSetJO(Mat B, Mat JO) — Defines the initial Jacobian to apply the updates to. If no
initial Jacobian is provided, the updates are applied to an identity matrix.

LMVM matrices can be applied to vectors in forward mode via MatMult() or MatMultAdd(), and
in inverse mode via MatSolve(). They also support MatGetVecs(), MatDuplicate() and Mat-
Copy () operations. The maximum number of s; and y; update vectors stored can be changed via -
mat lmvm_num_vecs option.

Restricted Broyden Family, DFP and BFGS methods additionally implement special Jacobian initialization
and scaling options available via -mat_lmvm_scale type <none,scalar,diagonal>. We describe
these choices below:

2.2. Matrices a7

PETSc/TAO Users Manual, Release 3.17.3

e none — Sets the initial Jacobian to be equal to the identity matrix. No extra computations are required
when obtaining the search direction or updating the approximation. However, the number of function
evaluations required to converge the Newton solution is typically much larger than what is required
when using other initializations.

o scalar — Defines the initial Jacobian as a scalar multiple of the identity matrix. The scalar value o
is chosen by solving the one dimensional optimization problem

min ||c®Y — o* 1 9|%,
o2

where S and Y are the matrices whose columns contain a subset of update vectors s, and yj, and
a € [0,1] is defined by the user via -mat_lmvm_alpha and has a different default value for each
LMVM implementation (e.g.: default a = 1 for BFGS produces the well-known y! sj./ylyi scalar
initialization). The number of updates to be used in the S and Y matrices is 1 by default (i.e.: the
latest update only) and can be changed via -mat_lmvm_scalar hist. This technique is inspired
by Gilbert and Lemarechal [ref-GL89).

o diagonal — Uses a full-memory restricted Broyden update formula to construct a diagonal matrix for
the Jacobian initialization. Although the full-memory formula is utilized, the actual memory footprint
is restricted to only the vector representing the diagonal and some additional work vectors used in its
construction. The diagonal terms are also re-scaled with every update as suggested in [ref-GL89]. This
initialization requires the most computational effort of the available choices but typically results in a
significant reduction in the number of function evaluations taken to compute a solution.

Note that the user-provided initial Jacobian via MatLMVMSetJO () overrides and disables all built-in ini-
tialization methods.

Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each process stores its entries in a
column-major array in the usual Fortran style. To create a sequential, dense PETSc matrix, A of dimensions
m by N, the user should call

MatCreateSegDense(PETSC COMM SELF,PetscInt m,PetscInt n,PetscScalar *data,Mat *A);

The variable data enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely set data to NULL
for PETSc to control matrix memory allocation. To create a parallel, dense matrix, A, the user should call

MatCreateDense(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscScalar,
—*data,Mat *A)

The arguments m, n, M, and N, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Either the local or global parameters can be replaced with PETSC_DECIDE, so
that PETSc will determine them. The matrix is stored with a fixed number of rows on each process, given
by m, or determined by PETSc if m is PETSC_DECIDE.

PETSc does not provide parallel dense direct solvers, instead interfacing to external packages that provide
these solvers. Our focus is on sparse iterative solvers.

48 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

Block Matrices

Block matrices arise when coupling variables with different meaning, especially when solving problems with
constraints (e.g. incompressible flow) and “multi-physics” problems. Usually the number of blocks is small
and each block is partitioned in parallel. We illustrate for a 3 x 3 system with components labeled a, b, c.
With some numbering of unknowns, the matrix could be written as

Aaa Aab Aac
Apa App Abe
Aca Acb Acc

There are two fundamentally different ways that this matrix could be stored, as a single assembled sparse
matrix where entries from all blocks are merged together (“monolithic”), or as separate assembled matrices for
each block (“nested”). These formats have different performance characteristics depending on the operation
being performed. In particular, many preconditioners require a monolithic format, but some that are very
effective for solving block systems (see Solving Block Matrices) are more efficient when a nested format is
used. In order to stay flexible, we would like to be able to use the same code to assemble block matrices
in both monolithic and nested formats. Additionally, for software maintainability and testing, especially in
a multi-physics context where different groups might be responsible for assembling each of the blocks, it is
desirable to be able to use exactly the same code to assemble a single block independently as to assemble it
as part of a larger system. To do this, we introduce the four spaces shown in Fig. 2.3.

e The monolithic global space is the space in which the Krylov and Newton solvers operate, with collective
semantics across the entire block system.

e The split global space splits the blocks apart, but each split still has collective semantics.

e The split local space adds ghost points and separates the blocks. Operations in this space can be
performed with no parallel communication. This is often the most natural, and certainly the most
powerful, space for matrix assembly code.

e The monolithic local space can be thought of as adding ghost points to the monolithic global space,
but it is often more natural to use it simply as a concatenation of split local spaces on each process. It
is not common to explicitly manipulate vectors or matrices in this space (at least not during assembly),
but it is a useful for declaring which part of a matrix is being assembled.

The key to format-independent assembly is the function

MatGetLocalSubMatrix (Mat A,IS isrow,IS iscol,Mat *submat);

which provides a “view” submat into a matrix A that operates in the monolithic global space. The submat
transforms from the split local space defined by iscol to the split local space defined by isrow. The
index sets specify the parts of the monolithic local space that submat should operate in. If a nested matrix
format is used, then MatGetLocalSubMatrix() finds the nested block and returns it without making
any copies. In this case, submat is fully functional and has a parallel communicator. If a monolithic
matrix format is used, then MatGetLocalSubMatrix() returns a proxy matrix on PETSC_COMM SELF
that does not provide values or implement MatMult (), but does implement MatSetValuesLocal()
and, if isrow,iscol have a constant block size, MatSetValuesBlockedLocal(). Note that although
submat may not be a fully functional matrix and the caller does not even know a priori which communicator
it will reside on, it always implements the local assembly functions (which are not collective). The index
sets isrow,iscol can be obtained using DMCompositeGetLocalISs () if DMComposite is being used.
DMComposite can also be used to create matrices, in which case the MATNEST format can be specified
using -prefix _dm mat type nest and MATAILJ can be specified using -prefix dm mat type aij.
See SNES Tutorail ex28 for a simple example using this interface.

2.2. Matrices 49

../../src/snes/tutorials/ex28.c.html

PETSc/TAO Users Manual, Release 3.17.3

Monolithic Global Monolithic Local
Split Local
’\ rank 0 Split Global
rank 0 (LocalToGlobalMapping)
\, Loca'LToGlobal(
@et LocalSubMatrix())
rank 0
> rank 1 I I
rank 1 > I rank 1

rank 2
rank2

(GetSubMat rix() / GetSubVector (D

rank 2

Fig. 2.3: The relationship between spaces used for coupled assembly.

50 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

2.2.4 Basic Matrix Operations
Table 2.2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more
detail below.

The parallel matrix can multiply a vector with n local entries, returning a vector with m local entries. That
is, to form the product

MatMult(Mat A,Vec x,Vec y);

the vectors X and Yy should be generated with

VecCreateMPI(MPI_Comm comm,n,N,&x);
VecCreateMPI(MPI_Comm comm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSC DECIDE as the second argument to VecCreateMPI() or using VecCreate()), vectors and ma-
trices of the same dimension are automatically compatible for parallel matrix-vector operations.

Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,

MatMultTranspose(Mat A,Vec x,Vec y);

There are also versions that add the result to another vector:

MatMultAdd(Mat A,Vec x,Vec y,Vec w);
MatMultTransposeAdd(Mat A,Vec x,Vec y,Vec w);

These routines, respectively, produce w = A*z+y and w = AT 2 +y . In C it is legal for the vectors y and
W to be identical. In Fortran, this situation is forbidden by the language standard, but we allow it anyway.

One can print a matrix (sequential or parallel) to the screen with the command

] MatView(Mat mat,PETSC_VIEWER STDOUT WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero structure of the matrix into the
default X-window with the command

’ MatView(Mat mat,PETSC_VIEWER DRAW WORLD);

Also one can use

’MatView(Mat mat,PetscViewer viewer);

where viewer was obtained with PetscViewerDrawOpen(). Additional viewers and options are given
in the MatView() man page and Viewers: Looking at PETSc Objects.

2.2. Matrices 51

PETSc/TAO Users Manual, Release 3.17.3

Table 2.3: PETSc Matrix Operations

Function Name Operation
MatAXPY (Mat Y, PetscScalar a, Mat X, MatStructure s); | Y =Y +axX
MatAYPX(Mat Y, PetscScalar a, Mat X, MatStructure s); [Y =axY + X
MatMult(Mat A,Vec x, Vec y); y=Axzx
MatMultAdd(Mat A,Vec x, Vec y,Vec z); z=y+Axx
MatMultTranspose(Mat A,Vec x, Vec y); y=AT xx
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z); z=y+ AT xzx
MatNorm(Mat A,NormType type, PetscReal *r); T = Atype
MatDiagonalScale(Mat A,Vec 1,Vec r); A = diag(l) * A x diag(r)
MatScale(Mat A,PetscScalar a); A=axA
MatConvert(Mat A, MatType type, Mat *B); B=A
MatCopy(Mat A, Mat B, MatStructure s); B=A
MatGetDiagonal(Mat A, Vec Xx); x = diag(A)
MatTranspose(Mat A, MatReuse, Mat* B); B=AT
MatZeroEntries(Mat A); A=0
MatShift(Mat Y, PetscScalar a); Y=Y+axl

Table 2.4: Values of MatStructure

Name Meaning

SAME__NONZERO_PATTERN| the matrices have an identical nonzero pattern

DIFFER- the matrices may have a different nonzero pattern

ENT _NONZERO PATTERN

SUB- the second matrix has a subset of the nonzeros in the first matrix

SET _NONZERO PATTERN

UN- there is nothing known about the relation between the nonzero patterns of
KNOWN NONZERO PATTERN| the two matrices

The NormType argument to MatNorm() is one of NORM_1, NORM_INFINITY, and NORM FROBENIUS.

2.2.5 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create a Mat structure without ever actually generating the matrix:

MatCreateShell(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,void *ctx,
—~Mat *mat);

Here M and N are the global matrix dimensions (rows and columns), m and n are the local matrix dimensions,
and CtX is a pointer to data needed by any user-defined shell matrix operations; the manual page has
additional details about these parameters. Most matrix-free algorithms require only the application of the
linear operator to a vector. To provide this action, the user must write a routine with the calling sequence

UserMult(Mat mat,Vec x,Vec y);

and then associate it with the matrix, mat, by using the command

MatShellSetOperation(Mat mat,MatOperation MATOP_MULT, (void(*)(void)) PetscErrorCode,
— (*UserMult) (Mat,Vec,Vec));

52 Chapter 2. Programming with PETSc/TAO

PETSc/TAO Users Manual, Release 3.17.3

Here MATOP_MULT is the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such as UserMult()), the user should call MatShellGetContext() to obtain the user-defined
context, CtX, that was set by MatCreateShell(). This shell matrix can be used with the iterative linear
equation solvers discussed in the following chapters.

The routine MatShellSetOperation() can be used to set any other matrix operations as well. The
file $PETSC DIR/include/petscmat.h (source). provides a complete list of matrix operations, which
have the form MATOP_<OPERATION>, where <OPERATION> is the name (in all capital letters) of the user
interface routine (for example, MatMult() — MATOP_MULT). All user-provided functions have the same
calling sequence as the usual matrix interface routines, since the user-defined functions are intended to be
accessed through the same interface, e.g., MatMult (Mat,Vec,Vec) — UserMult(Mat,Vec,Vec). The
final argument for MatShellSetOperation() needs to be cast to a void *, since the final argument
could (depending on the MatOperation) be a variety of different functions.

Note that MatShellSetOperation() can also be used as a “backdoor” means of introducing user-defined
changes in matrix operations for other storage formats (for example, to override the default LU factorization
routine supplied within PETSc for the MATSEQAIJ format). However, we urge anyone who introduces such
changes to use caution, since it would be very easy to accidentally create a bug in the new routine that could
affect other routines as well.

See also Matriz-Free Methods for details on one set of helpful utilities for using the matrix-free approach for
nonlinear solvers.

2.2.6 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix
is generated. To retain a given matrix but reinitialize its contents, one can employ

MatZeroEntries(Mat A);

This routine will zero the matrix entries in the data structure but keep all the data that indicates where
the nonzeros are located. In this way a new matrix assembly will be much less expensive, since no memory
allocations or copies will be needed. Of course, one can also explicitly set selected matrix elements to zero
by calling MatSetValues().

By default, if new entries are made in locations where no nonzeros previously existed, space will be allocated
for the new entries. To prevent the allocation of additional memory and simply discard those new entries,
one can use the option

MatSetOption(Mat A,MAT NEW NONZERO LOCATIONS,PETSC FALSE);

Once the matrix has been assembled, one can factor it numerically without repeating the ordering or the
symbolic factorization. This option can save some computational time, although it does require that the
factorization is not done