Actual source code: sbaij.c


  2: /*
  3:     Defines the basic matrix operations for the SBAIJ (compressed row)
  4:   matrix storage format.
  5: */
  6: #include <../src/mat/impls/baij/seq/baij.h>
  7: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  8: #include <petscblaslapack.h>

 10: #include <../src/mat/impls/sbaij/seq/relax.h>
 11: #define USESHORT
 12: #include <../src/mat/impls/sbaij/seq/relax.h>

 14: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 15: #define TYPE SBAIJ
 16: #define TYPE_SBAIJ
 17: #define TYPE_BS
 18: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 19: #undef TYPE_BS
 20: #define TYPE_BS _BS
 21: #define TYPE_BS_ON
 22: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 23: #undef TYPE_BS
 24: #undef TYPE_SBAIJ
 25: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 26: #undef TYPE
 27: #undef TYPE_BS_ON

 29: #if defined(PETSC_HAVE_ELEMENTAL)
 30: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
 31: #endif
 32: #if defined(PETSC_HAVE_SCALAPACK)
 33: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
 34: #endif
 35: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Basic(Mat, MatType, MatReuse, Mat *);

 37: /*
 38:      Checks for missing diagonals
 39: */
 40: PetscErrorCode MatMissingDiagonal_SeqSBAIJ(Mat A, PetscBool *missing, PetscInt *dd)
 41: {
 42:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 43:   PetscInt     *diag, *ii = a->i, i;

 45:   PetscFunctionBegin;
 46:   PetscCall(MatMarkDiagonal_SeqSBAIJ(A));
 47:   *missing = PETSC_FALSE;
 48:   if (A->rmap->n > 0 && !ii) {
 49:     *missing = PETSC_TRUE;
 50:     if (dd) *dd = 0;
 51:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
 52:   } else {
 53:     diag = a->diag;
 54:     for (i = 0; i < a->mbs; i++) {
 55:       if (diag[i] >= ii[i + 1]) {
 56:         *missing = PETSC_TRUE;
 57:         if (dd) *dd = i;
 58:         break;
 59:       }
 60:     }
 61:   }
 62:   PetscFunctionReturn(PETSC_SUCCESS);
 63: }

 65: PetscErrorCode MatMarkDiagonal_SeqSBAIJ(Mat A)
 66: {
 67:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 68:   PetscInt      i, j;

 70:   PetscFunctionBegin;
 71:   if (!a->diag) {
 72:     PetscCall(PetscMalloc1(a->mbs, &a->diag));
 73:     a->free_diag = PETSC_TRUE;
 74:   }
 75:   for (i = 0; i < a->mbs; i++) {
 76:     a->diag[i] = a->i[i + 1];
 77:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
 78:       if (a->j[j] == i) {
 79:         a->diag[i] = j;
 80:         break;
 81:       }
 82:     }
 83:   }
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: static PetscErrorCode MatGetRowIJ_SeqSBAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool blockcompressed, PetscInt *nn, const PetscInt *inia[], const PetscInt *inja[], PetscBool *done)
 88: {
 89:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 90:   PetscInt      i, j, n = a->mbs, nz = a->i[n], *tia, *tja, bs = A->rmap->bs, k, l, cnt;
 91:   PetscInt    **ia = (PetscInt **)inia, **ja = (PetscInt **)inja;

 93:   PetscFunctionBegin;
 94:   *nn = n;
 95:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
 96:   if (symmetric) {
 97:     PetscCall(MatToSymmetricIJ_SeqAIJ(n, a->i, a->j, PETSC_FALSE, 0, 0, &tia, &tja));
 98:     nz = tia[n];
 99:   } else {
100:     tia = a->i;
101:     tja = a->j;
102:   }

104:   if (!blockcompressed && bs > 1) {
105:     (*nn) *= bs;
106:     /* malloc & create the natural set of indices */
107:     PetscCall(PetscMalloc1((n + 1) * bs, ia));
108:     if (n) {
109:       (*ia)[0] = oshift;
110:       for (j = 1; j < bs; j++) (*ia)[j] = (tia[1] - tia[0]) * bs + (*ia)[j - 1];
111:     }

113:     for (i = 1; i < n; i++) {
114:       (*ia)[i * bs] = (tia[i] - tia[i - 1]) * bs + (*ia)[i * bs - 1];
115:       for (j = 1; j < bs; j++) (*ia)[i * bs + j] = (tia[i + 1] - tia[i]) * bs + (*ia)[i * bs + j - 1];
116:     }
117:     if (n) (*ia)[n * bs] = (tia[n] - tia[n - 1]) * bs + (*ia)[n * bs - 1];

119:     if (inja) {
120:       PetscCall(PetscMalloc1(nz * bs * bs, ja));
121:       cnt = 0;
122:       for (i = 0; i < n; i++) {
123:         for (j = 0; j < bs; j++) {
124:           for (k = tia[i]; k < tia[i + 1]; k++) {
125:             for (l = 0; l < bs; l++) (*ja)[cnt++] = bs * tja[k] + l;
126:           }
127:         }
128:       }
129:     }

131:     if (symmetric) { /* deallocate memory allocated in MatToSymmetricIJ_SeqAIJ() */
132:       PetscCall(PetscFree(tia));
133:       PetscCall(PetscFree(tja));
134:     }
135:   } else if (oshift == 1) {
136:     if (symmetric) {
137:       nz = tia[A->rmap->n / bs];
138:       /*  add 1 to i and j indices */
139:       for (i = 0; i < A->rmap->n / bs + 1; i++) tia[i] = tia[i] + 1;
140:       *ia = tia;
141:       if (ja) {
142:         for (i = 0; i < nz; i++) tja[i] = tja[i] + 1;
143:         *ja = tja;
144:       }
145:     } else {
146:       nz = a->i[A->rmap->n / bs];
147:       /* malloc space and  add 1 to i and j indices */
148:       PetscCall(PetscMalloc1(A->rmap->n / bs + 1, ia));
149:       for (i = 0; i < A->rmap->n / bs + 1; i++) (*ia)[i] = a->i[i] + 1;
150:       if (ja) {
151:         PetscCall(PetscMalloc1(nz, ja));
152:         for (i = 0; i < nz; i++) (*ja)[i] = a->j[i] + 1;
153:       }
154:     }
155:   } else {
156:     *ia = tia;
157:     if (ja) *ja = tja;
158:   }
159:   PetscFunctionReturn(PETSC_SUCCESS);
160: }

162: static PetscErrorCode MatRestoreRowIJ_SeqSBAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool blockcompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
163: {
164:   PetscFunctionBegin;
165:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
166:   if ((!blockcompressed && A->rmap->bs > 1) || (symmetric || oshift == 1)) {
167:     PetscCall(PetscFree(*ia));
168:     if (ja) PetscCall(PetscFree(*ja));
169:   }
170:   PetscFunctionReturn(PETSC_SUCCESS);
171: }

173: PetscErrorCode MatDestroy_SeqSBAIJ(Mat A)
174: {
175:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

177:   PetscFunctionBegin;
178: #if defined(PETSC_USE_LOG)
179:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->N, a->nz));
180: #endif
181:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
182:   if (a->free_diag) PetscCall(PetscFree(a->diag));
183:   PetscCall(ISDestroy(&a->row));
184:   PetscCall(ISDestroy(&a->col));
185:   PetscCall(ISDestroy(&a->icol));
186:   PetscCall(PetscFree(a->idiag));
187:   PetscCall(PetscFree(a->inode.size));
188:   if (a->free_imax_ilen) PetscCall(PetscFree2(a->imax, a->ilen));
189:   PetscCall(PetscFree(a->solve_work));
190:   PetscCall(PetscFree(a->sor_work));
191:   PetscCall(PetscFree(a->solves_work));
192:   PetscCall(PetscFree(a->mult_work));
193:   PetscCall(PetscFree(a->saved_values));
194:   if (a->free_jshort) PetscCall(PetscFree(a->jshort));
195:   PetscCall(PetscFree(a->inew));
196:   PetscCall(MatDestroy(&a->parent));
197:   PetscCall(PetscFree(A->data));

199:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
200:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJGetArray_C", NULL));
201:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJRestoreArray_C", NULL));
202:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
203:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
204:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetColumnIndices_C", NULL));
205:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_seqaij_C", NULL));
206:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_seqbaij_C", NULL));
207:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetPreallocation_C", NULL));
208:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetPreallocationCSR_C", NULL));
209: #if defined(PETSC_HAVE_ELEMENTAL)
210:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_elemental_C", NULL));
211: #endif
212: #if defined(PETSC_HAVE_SCALAPACK)
213:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_scalapack_C", NULL));
214: #endif
215:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
216:   PetscFunctionReturn(PETSC_SUCCESS);
217: }

219: PetscErrorCode MatSetOption_SeqSBAIJ(Mat A, MatOption op, PetscBool flg)
220: {
221:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
222: #if defined(PETSC_USE_COMPLEX)
223:   PetscInt bs;
224: #endif

226:   PetscFunctionBegin;
227: #if defined(PETSC_USE_COMPLEX)
228:   PetscCall(MatGetBlockSize(A, &bs));
229: #endif
230:   switch (op) {
231:   case MAT_ROW_ORIENTED:
232:     a->roworiented = flg;
233:     break;
234:   case MAT_KEEP_NONZERO_PATTERN:
235:     a->keepnonzeropattern = flg;
236:     break;
237:   case MAT_NEW_NONZERO_LOCATIONS:
238:     a->nonew = (flg ? 0 : 1);
239:     break;
240:   case MAT_NEW_NONZERO_LOCATION_ERR:
241:     a->nonew = (flg ? -1 : 0);
242:     break;
243:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
244:     a->nonew = (flg ? -2 : 0);
245:     break;
246:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
247:     a->nounused = (flg ? -1 : 0);
248:     break;
249:   case MAT_FORCE_DIAGONAL_ENTRIES:
250:   case MAT_IGNORE_OFF_PROC_ENTRIES:
251:   case MAT_USE_HASH_TABLE:
252:   case MAT_SORTED_FULL:
253:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
254:     break;
255:   case MAT_HERMITIAN:
256: #if defined(PETSC_USE_COMPLEX)
257:     if (flg) { /* disable transpose ops */
258:       PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for Hermitian with block size greater than 1");
259:       A->ops->multtranspose    = NULL;
260:       A->ops->multtransposeadd = NULL;
261:       A->symmetric             = PETSC_BOOL3_FALSE;
262:     }
263: #endif
264:     break;
265:   case MAT_SYMMETRIC:
266:   case MAT_SPD:
267: #if defined(PETSC_USE_COMPLEX)
268:     if (flg) { /* An hermitian and symmetric matrix has zero imaginary part (restore back transpose ops) */
269:       A->ops->multtranspose    = A->ops->mult;
270:       A->ops->multtransposeadd = A->ops->multadd;
271:     }
272: #endif
273:     break;
274:     /* These options are handled directly by MatSetOption() */
275:   case MAT_STRUCTURALLY_SYMMETRIC:
276:   case MAT_SYMMETRY_ETERNAL:
277:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
278:   case MAT_STRUCTURE_ONLY:
279:   case MAT_SPD_ETERNAL:
280:     /* These options are handled directly by MatSetOption() */
281:     break;
282:   case MAT_IGNORE_LOWER_TRIANGULAR:
283:     a->ignore_ltriangular = flg;
284:     break;
285:   case MAT_ERROR_LOWER_TRIANGULAR:
286:     a->ignore_ltriangular = flg;
287:     break;
288:   case MAT_GETROW_UPPERTRIANGULAR:
289:     a->getrow_utriangular = flg;
290:     break;
291:   case MAT_SUBMAT_SINGLEIS:
292:     break;
293:   default:
294:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %d", op);
295:   }
296:   PetscFunctionReturn(PETSC_SUCCESS);
297: }

299: PetscErrorCode MatGetRow_SeqSBAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
300: {
301:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

303:   PetscFunctionBegin;
304:   PetscCheck(!A || a->getrow_utriangular, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatGetRow is not supported for SBAIJ matrix format. Getting the upper triangular part of row, run with -mat_getrow_uppertriangular, call MatSetOption(mat,MAT_GETROW_UPPERTRIANGULAR,PETSC_TRUE) or MatGetRowUpperTriangular()");

306:   /* Get the upper triangular part of the row */
307:   PetscCall(MatGetRow_SeqBAIJ_private(A, row, nz, idx, v, a->i, a->j, a->a));
308:   PetscFunctionReturn(PETSC_SUCCESS);
309: }

311: PetscErrorCode MatRestoreRow_SeqSBAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
312: {
313:   PetscFunctionBegin;
314:   if (nz) *nz = 0;
315:   if (idx) PetscCall(PetscFree(*idx));
316:   if (v) PetscCall(PetscFree(*v));
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: PetscErrorCode MatGetRowUpperTriangular_SeqSBAIJ(Mat A)
321: {
322:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

324:   PetscFunctionBegin;
325:   a->getrow_utriangular = PETSC_TRUE;
326:   PetscFunctionReturn(PETSC_SUCCESS);
327: }

329: PetscErrorCode MatRestoreRowUpperTriangular_SeqSBAIJ(Mat A)
330: {
331:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

333:   PetscFunctionBegin;
334:   a->getrow_utriangular = PETSC_FALSE;
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: PetscErrorCode MatTranspose_SeqSBAIJ(Mat A, MatReuse reuse, Mat *B)
339: {
340:   PetscFunctionBegin;
341:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
342:   if (reuse == MAT_INITIAL_MATRIX) {
343:     PetscCall(MatDuplicate(A, MAT_COPY_VALUES, B));
344:   } else if (reuse == MAT_REUSE_MATRIX) {
345:     PetscCall(MatCopy(A, *B, SAME_NONZERO_PATTERN));
346:   }
347:   PetscFunctionReturn(PETSC_SUCCESS);
348: }

350: PetscErrorCode MatView_SeqSBAIJ_ASCII(Mat A, PetscViewer viewer)
351: {
352:   Mat_SeqSBAIJ     *a = (Mat_SeqSBAIJ *)A->data;
353:   PetscInt          i, j, bs = A->rmap->bs, k, l, bs2 = a->bs2;
354:   PetscViewerFormat format;
355:   PetscInt         *diag;
356:   const char       *matname;

358:   PetscFunctionBegin;
359:   PetscCall(PetscViewerGetFormat(viewer, &format));
360:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
361:     PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
362:   } else if (format == PETSC_VIEWER_ASCII_MATLAB) {
363:     Mat aij;

365:     if (A->factortype && bs > 1) {
366:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "Warning: matrix is factored with bs>1. MatView() with PETSC_VIEWER_ASCII_MATLAB is not supported and ignored!\n"));
367:       PetscFunctionReturn(PETSC_SUCCESS);
368:     }
369:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &aij));
370:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
371:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)aij, matname));
372:     PetscCall(MatView_SeqAIJ(aij, viewer));
373:     PetscCall(MatDestroy(&aij));
374:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
375:     Mat B;

377:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &B));
378:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
379:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)B, matname));
380:     PetscCall(MatView_SeqAIJ(B, viewer));
381:     PetscCall(MatDestroy(&B));
382:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
383:     PetscFunctionReturn(PETSC_SUCCESS);
384:   } else {
385:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
386:     if (A->factortype) { /* for factored matrix */
387:       PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "matrix is factored with bs>1. Not implemented yet");

389:       diag = a->diag;
390:       for (i = 0; i < a->mbs; i++) { /* for row block i */
391:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
392:         /* diagonal entry */
393: #if defined(PETSC_USE_COMPLEX)
394:         if (PetscImaginaryPart(a->a[diag[i]]) > 0.0) {
395:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]]), (double)PetscImaginaryPart(1.0 / a->a[diag[i]])));
396:         } else if (PetscImaginaryPart(a->a[diag[i]]) < 0.0) {
397:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]]), -(double)PetscImaginaryPart(1.0 / a->a[diag[i]])));
398:         } else {
399:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]])));
400:         }
401: #else
402:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[diag[i]], (double)(1.0 / a->a[diag[i]])));
403: #endif
404:         /* off-diagonal entries */
405:         for (k = a->i[i]; k < a->i[i + 1] - 1; k++) {
406: #if defined(PETSC_USE_COMPLEX)
407:           if (PetscImaginaryPart(a->a[k]) > 0.0) {
408:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", bs * a->j[k], (double)PetscRealPart(a->a[k]), (double)PetscImaginaryPart(a->a[k])));
409:           } else if (PetscImaginaryPart(a->a[k]) < 0.0) {
410:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", bs * a->j[k], (double)PetscRealPart(a->a[k]), -(double)PetscImaginaryPart(a->a[k])));
411:           } else {
412:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k], (double)PetscRealPart(a->a[k])));
413:           }
414: #else
415:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[k], (double)a->a[k]));
416: #endif
417:         }
418:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
419:       }

421:     } else {                         /* for non-factored matrix */
422:       for (i = 0; i < a->mbs; i++) { /* for row block i */
423:         for (j = 0; j < bs; j++) {   /* for row bs*i + j */
424:           PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i * bs + j));
425:           for (k = a->i[i]; k < a->i[i + 1]; k++) { /* for column block */
426:             for (l = 0; l < bs; l++) {              /* for column */
427: #if defined(PETSC_USE_COMPLEX)
428:               if (PetscImaginaryPart(a->a[bs2 * k + l * bs + j]) > 0.0) {
429:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j]), (double)PetscImaginaryPart(a->a[bs2 * k + l * bs + j])));
430:               } else if (PetscImaginaryPart(a->a[bs2 * k + l * bs + j]) < 0.0) {
431:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j]), -(double)PetscImaginaryPart(a->a[bs2 * k + l * bs + j])));
432:               } else {
433:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j])));
434:               }
435: #else
436:               PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k] + l, (double)a->a[bs2 * k + l * bs + j]));
437: #endif
438:             }
439:           }
440:           PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
441:         }
442:       }
443:     }
444:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
445:   }
446:   PetscCall(PetscViewerFlush(viewer));
447:   PetscFunctionReturn(PETSC_SUCCESS);
448: }

450: #include <petscdraw.h>
451: static PetscErrorCode MatView_SeqSBAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
452: {
453:   Mat           A = (Mat)Aa;
454:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
455:   PetscInt      row, i, j, k, l, mbs = a->mbs, color, bs = A->rmap->bs, bs2 = a->bs2;
456:   PetscReal     xl, yl, xr, yr, x_l, x_r, y_l, y_r;
457:   MatScalar    *aa;
458:   PetscViewer   viewer;

460:   PetscFunctionBegin;
461:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
462:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

464:   /* loop over matrix elements drawing boxes */

466:   PetscDrawCollectiveBegin(draw);
467:   PetscCall(PetscDrawString(draw, .3 * (xl + xr), .3 * (yl + yr), PETSC_DRAW_BLACK, "symmetric"));
468:   /* Blue for negative, Cyan for zero and  Red for positive */
469:   color = PETSC_DRAW_BLUE;
470:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
471:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
472:       y_l = A->rmap->N - row - 1.0;
473:       y_r = y_l + 1.0;
474:       x_l = a->j[j] * bs;
475:       x_r = x_l + 1.0;
476:       aa  = a->a + j * bs2;
477:       for (k = 0; k < bs; k++) {
478:         for (l = 0; l < bs; l++) {
479:           if (PetscRealPart(*aa++) >= 0.) continue;
480:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
481:         }
482:       }
483:     }
484:   }
485:   color = PETSC_DRAW_CYAN;
486:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
487:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
488:       y_l = A->rmap->N - row - 1.0;
489:       y_r = y_l + 1.0;
490:       x_l = a->j[j] * bs;
491:       x_r = x_l + 1.0;
492:       aa  = a->a + j * bs2;
493:       for (k = 0; k < bs; k++) {
494:         for (l = 0; l < bs; l++) {
495:           if (PetscRealPart(*aa++) != 0.) continue;
496:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
497:         }
498:       }
499:     }
500:   }
501:   color = PETSC_DRAW_RED;
502:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
503:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
504:       y_l = A->rmap->N - row - 1.0;
505:       y_r = y_l + 1.0;
506:       x_l = a->j[j] * bs;
507:       x_r = x_l + 1.0;
508:       aa  = a->a + j * bs2;
509:       for (k = 0; k < bs; k++) {
510:         for (l = 0; l < bs; l++) {
511:           if (PetscRealPart(*aa++) <= 0.) continue;
512:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
513:         }
514:       }
515:     }
516:   }
517:   PetscDrawCollectiveEnd(draw);
518:   PetscFunctionReturn(PETSC_SUCCESS);
519: }

521: static PetscErrorCode MatView_SeqSBAIJ_Draw(Mat A, PetscViewer viewer)
522: {
523:   PetscReal xl, yl, xr, yr, w, h;
524:   PetscDraw draw;
525:   PetscBool isnull;

527:   PetscFunctionBegin;
528:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
529:   PetscCall(PetscDrawIsNull(draw, &isnull));
530:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

532:   xr = A->rmap->N;
533:   yr = A->rmap->N;
534:   h  = yr / 10.0;
535:   w  = xr / 10.0;
536:   xr += w;
537:   yr += h;
538:   xl = -w;
539:   yl = -h;
540:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
541:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
542:   PetscCall(PetscDrawZoom(draw, MatView_SeqSBAIJ_Draw_Zoom, A));
543:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
544:   PetscCall(PetscDrawSave(draw));
545:   PetscFunctionReturn(PETSC_SUCCESS);
546: }

548: /* Used for both MPIBAIJ and MPISBAIJ matrices */
549: #define MatView_SeqSBAIJ_Binary MatView_SeqBAIJ_Binary

551: PetscErrorCode MatView_SeqSBAIJ(Mat A, PetscViewer viewer)
552: {
553:   PetscBool iascii, isbinary, isdraw;

555:   PetscFunctionBegin;
556:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
557:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
558:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
559:   if (iascii) {
560:     PetscCall(MatView_SeqSBAIJ_ASCII(A, viewer));
561:   } else if (isbinary) {
562:     PetscCall(MatView_SeqSBAIJ_Binary(A, viewer));
563:   } else if (isdraw) {
564:     PetscCall(MatView_SeqSBAIJ_Draw(A, viewer));
565:   } else {
566:     Mat         B;
567:     const char *matname;
568:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &B));
569:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
570:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)B, matname));
571:     PetscCall(MatView(B, viewer));
572:     PetscCall(MatDestroy(&B));
573:   }
574:   PetscFunctionReturn(PETSC_SUCCESS);
575: }

577: PetscErrorCode MatGetValues_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
578: {
579:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
580:   PetscInt     *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
581:   PetscInt     *ai = a->i, *ailen = a->ilen;
582:   PetscInt      brow, bcol, ridx, cidx, bs = A->rmap->bs, bs2 = a->bs2;
583:   MatScalar    *ap, *aa = a->a;

585:   PetscFunctionBegin;
586:   for (k = 0; k < m; k++) { /* loop over rows */
587:     row  = im[k];
588:     brow = row / bs;
589:     if (row < 0) {
590:       v += n;
591:       continue;
592:     } /* negative row */
593:     PetscCheck(row < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->N - 1);
594:     rp   = aj + ai[brow];
595:     ap   = aa + bs2 * ai[brow];
596:     nrow = ailen[brow];
597:     for (l = 0; l < n; l++) { /* loop over columns */
598:       if (in[l] < 0) {
599:         v++;
600:         continue;
601:       } /* negative column */
602:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
603:       col  = in[l];
604:       bcol = col / bs;
605:       cidx = col % bs;
606:       ridx = row % bs;
607:       high = nrow;
608:       low  = 0; /* assume unsorted */
609:       while (high - low > 5) {
610:         t = (low + high) / 2;
611:         if (rp[t] > bcol) high = t;
612:         else low = t;
613:       }
614:       for (i = low; i < high; i++) {
615:         if (rp[i] > bcol) break;
616:         if (rp[i] == bcol) {
617:           *v++ = ap[bs2 * i + bs * cidx + ridx];
618:           goto finished;
619:         }
620:       }
621:       *v++ = 0.0;
622:     finished:;
623:     }
624:   }
625:   PetscFunctionReturn(PETSC_SUCCESS);
626: }

628: PetscErrorCode MatPermute_SeqSBAIJ(Mat A, IS rowp, IS colp, Mat *B)
629: {
630:   Mat C;

632:   PetscFunctionBegin;
633:   PetscCall(MatConvert(A, MATSEQBAIJ, MAT_INITIAL_MATRIX, &C));
634:   PetscCall(MatPermute(C, rowp, colp, B));
635:   PetscCall(MatDestroy(&C));
636:   if (rowp == colp) PetscCall(MatConvert(*B, MATSEQSBAIJ, MAT_INPLACE_MATRIX, B));
637:   PetscFunctionReturn(PETSC_SUCCESS);
638: }

640: PetscErrorCode MatSetValuesBlocked_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
641: {
642:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ *)A->data;
643:   PetscInt          *rp, k, low, high, t, ii, jj, row, nrow, i, col, l, rmax, N, lastcol = -1;
644:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
645:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs, stepval;
646:   PetscBool          roworiented = a->roworiented;
647:   const PetscScalar *value       = v;
648:   MatScalar         *ap, *aa = a->a, *bap;

650:   PetscFunctionBegin;
651:   if (roworiented) stepval = (n - 1) * bs;
652:   else stepval = (m - 1) * bs;

654:   for (k = 0; k < m; k++) { /* loop over added rows */
655:     row = im[k];
656:     if (row < 0) continue;
657:     PetscCheck(row < a->mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block index row too large %" PetscInt_FMT " max %" PetscInt_FMT, row, a->mbs - 1);
658:     rp   = aj + ai[row];
659:     ap   = aa + bs2 * ai[row];
660:     rmax = imax[row];
661:     nrow = ailen[row];
662:     low  = 0;
663:     high = nrow;
664:     for (l = 0; l < n; l++) { /* loop over added columns */
665:       if (in[l] < 0) continue;
666:       col = in[l];
667:       PetscCheck(col < a->nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block index column too large %" PetscInt_FMT " max %" PetscInt_FMT, col, a->nbs - 1);
668:       if (col < row) {
669:         if (a->ignore_ltriangular) continue; /* ignore lower triangular block */
670:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
671:       }
672:       if (roworiented) value = v + k * (stepval + bs) * bs + l * bs;
673:       else value = v + l * (stepval + bs) * bs + k * bs;

675:       if (col <= lastcol) low = 0;
676:       else high = nrow;

678:       lastcol = col;
679:       while (high - low > 7) {
680:         t = (low + high) / 2;
681:         if (rp[t] > col) high = t;
682:         else low = t;
683:       }
684:       for (i = low; i < high; i++) {
685:         if (rp[i] > col) break;
686:         if (rp[i] == col) {
687:           bap = ap + bs2 * i;
688:           if (roworiented) {
689:             if (is == ADD_VALUES) {
690:               for (ii = 0; ii < bs; ii++, value += stepval) {
691:                 for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
692:               }
693:             } else {
694:               for (ii = 0; ii < bs; ii++, value += stepval) {
695:                 for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
696:               }
697:             }
698:           } else {
699:             if (is == ADD_VALUES) {
700:               for (ii = 0; ii < bs; ii++, value += stepval) {
701:                 for (jj = 0; jj < bs; jj++) *bap++ += *value++;
702:               }
703:             } else {
704:               for (ii = 0; ii < bs; ii++, value += stepval) {
705:                 for (jj = 0; jj < bs; jj++) *bap++ = *value++;
706:               }
707:             }
708:           }
709:           goto noinsert2;
710:         }
711:       }
712:       if (nonew == 1) goto noinsert2;
713:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new block index nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
714:       MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
715:       N = nrow++ - 1;
716:       high++;
717:       /* shift up all the later entries in this row */
718:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
719:       PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
720:       PetscCall(PetscArrayzero(ap + bs2 * i, bs2));
721:       rp[i] = col;
722:       bap   = ap + bs2 * i;
723:       if (roworiented) {
724:         for (ii = 0; ii < bs; ii++, value += stepval) {
725:           for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
726:         }
727:       } else {
728:         for (ii = 0; ii < bs; ii++, value += stepval) {
729:           for (jj = 0; jj < bs; jj++) *bap++ = *value++;
730:         }
731:       }
732:     noinsert2:;
733:       low = i;
734:     }
735:     ailen[row] = nrow;
736:   }
737:   PetscFunctionReturn(PETSC_SUCCESS);
738: }

740: /*
741:     This is not yet used
742: */
743: PetscErrorCode MatAssemblyEnd_SeqSBAIJ_SeqAIJ_Inode(Mat A)
744: {
745:   Mat_SeqSBAIJ   *a  = (Mat_SeqSBAIJ *)A->data;
746:   const PetscInt *ai = a->i, *aj = a->j, *cols;
747:   PetscInt        i = 0, j, blk_size, m = A->rmap->n, node_count = 0, nzx, nzy, *ns, row, nz, cnt, cnt2, *counts;
748:   PetscBool       flag;

750:   PetscFunctionBegin;
751:   PetscCall(PetscMalloc1(m, &ns));
752:   while (i < m) {
753:     nzx = ai[i + 1] - ai[i]; /* Number of nonzeros */
754:     /* Limits the number of elements in a node to 'a->inode.limit' */
755:     for (j = i + 1, blk_size = 1; j < m && blk_size < a->inode.limit; ++j, ++blk_size) {
756:       nzy = ai[j + 1] - ai[j];
757:       if (nzy != (nzx - j + i)) break;
758:       PetscCall(PetscArraycmp(aj + ai[i] + j - i, aj + ai[j], nzy, &flag));
759:       if (!flag) break;
760:     }
761:     ns[node_count++] = blk_size;

763:     i = j;
764:   }
765:   if (!a->inode.size && m && node_count > .9 * m) {
766:     PetscCall(PetscFree(ns));
767:     PetscCall(PetscInfo(A, "Found %" PetscInt_FMT " nodes out of %" PetscInt_FMT " rows. Not using Inode routines\n", node_count, m));
768:   } else {
769:     a->inode.node_count = node_count;

771:     PetscCall(PetscMalloc1(node_count, &a->inode.size));
772:     PetscCall(PetscArraycpy(a->inode.size, ns, node_count));
773:     PetscCall(PetscFree(ns));
774:     PetscCall(PetscInfo(A, "Found %" PetscInt_FMT " nodes of %" PetscInt_FMT ". Limit used: %" PetscInt_FMT ". Using Inode routines\n", node_count, m, a->inode.limit));

776:     /* count collections of adjacent columns in each inode */
777:     row = 0;
778:     cnt = 0;
779:     for (i = 0; i < node_count; i++) {
780:       cols = aj + ai[row] + a->inode.size[i];
781:       nz   = ai[row + 1] - ai[row] - a->inode.size[i];
782:       for (j = 1; j < nz; j++) {
783:         if (cols[j] != cols[j - 1] + 1) cnt++;
784:       }
785:       cnt++;
786:       row += a->inode.size[i];
787:     }
788:     PetscCall(PetscMalloc1(2 * cnt, &counts));
789:     cnt = 0;
790:     row = 0;
791:     for (i = 0; i < node_count; i++) {
792:       cols            = aj + ai[row] + a->inode.size[i];
793:       counts[2 * cnt] = cols[0];
794:       nz              = ai[row + 1] - ai[row] - a->inode.size[i];
795:       cnt2            = 1;
796:       for (j = 1; j < nz; j++) {
797:         if (cols[j] != cols[j - 1] + 1) {
798:           counts[2 * (cnt++) + 1] = cnt2;
799:           counts[2 * cnt]         = cols[j];
800:           cnt2                    = 1;
801:         } else cnt2++;
802:       }
803:       counts[2 * (cnt++) + 1] = cnt2;
804:       row += a->inode.size[i];
805:     }
806:     PetscCall(PetscIntView(2 * cnt, counts, NULL));
807:   }
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: PetscErrorCode MatAssemblyEnd_SeqSBAIJ(Mat A, MatAssemblyType mode)
812: {
813:   Mat_SeqSBAIJ *a      = (Mat_SeqSBAIJ *)A->data;
814:   PetscInt      fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
815:   PetscInt      m = A->rmap->N, *ip, N, *ailen = a->ilen;
816:   PetscInt      mbs = a->mbs, bs2 = a->bs2, rmax = 0;
817:   MatScalar    *aa = a->a, *ap;

819:   PetscFunctionBegin;
820:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);

822:   if (m) rmax = ailen[0];
823:   for (i = 1; i < mbs; i++) {
824:     /* move each row back by the amount of empty slots (fshift) before it*/
825:     fshift += imax[i - 1] - ailen[i - 1];
826:     rmax = PetscMax(rmax, ailen[i]);
827:     if (fshift) {
828:       ip = aj + ai[i];
829:       ap = aa + bs2 * ai[i];
830:       N  = ailen[i];
831:       PetscCall(PetscArraymove(ip - fshift, ip, N));
832:       PetscCall(PetscArraymove(ap - bs2 * fshift, ap, bs2 * N));
833:     }
834:     ai[i] = ai[i - 1] + ailen[i - 1];
835:   }
836:   if (mbs) {
837:     fshift += imax[mbs - 1] - ailen[mbs - 1];
838:     ai[mbs] = ai[mbs - 1] + ailen[mbs - 1];
839:   }
840:   /* reset ilen and imax for each row */
841:   for (i = 0; i < mbs; i++) ailen[i] = imax[i] = ai[i + 1] - ai[i];
842:   a->nz = ai[mbs];

844:   /* diagonals may have moved, reset it */
845:   if (a->diag) PetscCall(PetscArraycpy(a->diag, ai, mbs));
846:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT " block size %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, A->rmap->bs, fshift * bs2);

848:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT ", block size %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded, %" PetscInt_FMT " used\n", m, A->rmap->N, A->rmap->bs, fshift * bs2, a->nz * bs2));
849:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues is %" PetscInt_FMT "\n", a->reallocs));
850:   PetscCall(PetscInfo(A, "Most nonzeros blocks in any row is %" PetscInt_FMT "\n", rmax));

852:   A->info.mallocs += a->reallocs;
853:   a->reallocs         = 0;
854:   A->info.nz_unneeded = (PetscReal)fshift * bs2;
855:   a->idiagvalid       = PETSC_FALSE;
856:   a->rmax             = rmax;

858:   if (A->cmap->n < 65536 && A->cmap->bs == 1) {
859:     if (a->jshort && a->free_jshort) {
860:       /* when matrix data structure is changed, previous jshort must be replaced */
861:       PetscCall(PetscFree(a->jshort));
862:     }
863:     PetscCall(PetscMalloc1(a->i[A->rmap->n], &a->jshort));
864:     for (i = 0; i < a->i[A->rmap->n]; i++) a->jshort[i] = a->j[i];
865:     A->ops->mult   = MatMult_SeqSBAIJ_1_ushort;
866:     A->ops->sor    = MatSOR_SeqSBAIJ_ushort;
867:     a->free_jshort = PETSC_TRUE;
868:   }
869:   PetscFunctionReturn(PETSC_SUCCESS);
870: }

872: /*
873:    This function returns an array of flags which indicate the locations of contiguous
874:    blocks that should be zeroed. for eg: if bs = 3  and is = [0,1,2,3,5,6,7,8,9]
875:    then the resulting sizes = [3,1,1,3,1] corresponding to sets [(0,1,2),(3),(5),(6,7,8),(9)]
876:    Assume: sizes should be long enough to hold all the values.
877: */
878: PetscErrorCode MatZeroRows_SeqSBAIJ_Check_Blocks(PetscInt idx[], PetscInt n, PetscInt bs, PetscInt sizes[], PetscInt *bs_max)
879: {
880:   PetscInt  i, j, k, row;
881:   PetscBool flg;

883:   PetscFunctionBegin;
884:   for (i = 0, j = 0; i < n; j++) {
885:     row = idx[i];
886:     if (row % bs != 0) { /* Not the beginning of a block */
887:       sizes[j] = 1;
888:       i++;
889:     } else if (i + bs > n) { /* Beginning of a block, but complete block doesn't exist (at idx end) */
890:       sizes[j] = 1;          /* Also makes sure at least 'bs' values exist for next else */
891:       i++;
892:     } else { /* Beginning of the block, so check if the complete block exists */
893:       flg = PETSC_TRUE;
894:       for (k = 1; k < bs; k++) {
895:         if (row + k != idx[i + k]) { /* break in the block */
896:           flg = PETSC_FALSE;
897:           break;
898:         }
899:       }
900:       if (flg) { /* No break in the bs */
901:         sizes[j] = bs;
902:         i += bs;
903:       } else {
904:         sizes[j] = 1;
905:         i++;
906:       }
907:     }
908:   }
909:   *bs_max = j;
910:   PetscFunctionReturn(PETSC_SUCCESS);
911: }

913: /* Only add/insert a(i,j) with i<=j (blocks).
914:    Any a(i,j) with i>j input by user is ignored.
915: */

917: PetscErrorCode MatSetValues_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
918: {
919:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
920:   PetscInt     *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N, lastcol = -1;
921:   PetscInt     *imax = a->imax, *ai = a->i, *ailen = a->ilen, roworiented = a->roworiented;
922:   PetscInt     *aj = a->j, nonew = a->nonew, bs = A->rmap->bs, brow, bcol;
923:   PetscInt      ridx, cidx, bs2                 = a->bs2;
924:   MatScalar    *ap, value, *aa                  = a->a, *bap;

926:   PetscFunctionBegin;
927:   for (k = 0; k < m; k++) { /* loop over added rows */
928:     row  = im[k];           /* row number */
929:     brow = row / bs;        /* block row number */
930:     if (row < 0) continue;
931:     PetscCheck(row < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->N - 1);
932:     rp   = aj + ai[brow];       /*ptr to beginning of column value of the row block*/
933:     ap   = aa + bs2 * ai[brow]; /*ptr to beginning of element value of the row block*/
934:     rmax = imax[brow];          /* maximum space allocated for this row */
935:     nrow = ailen[brow];         /* actual length of this row */
936:     low  = 0;
937:     high = nrow;
938:     for (l = 0; l < n; l++) { /* loop over added columns */
939:       if (in[l] < 0) continue;
940:       PetscCheck(in[l] < A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->N - 1);
941:       col  = in[l];
942:       bcol = col / bs; /* block col number */

944:       if (brow > bcol) {
945:         if (a->ignore_ltriangular) continue; /* ignore lower triangular values */
946:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
947:       }

949:       ridx = row % bs;
950:       cidx = col % bs; /*row and col index inside the block */
951:       if ((brow == bcol && ridx <= cidx) || (brow < bcol)) {
952:         /* element value a(k,l) */
953:         if (roworiented) value = v[l + k * n];
954:         else value = v[k + l * m];

956:         /* move pointer bap to a(k,l) quickly and add/insert value */
957:         if (col <= lastcol) low = 0;
958:         else high = nrow;

960:         lastcol = col;
961:         while (high - low > 7) {
962:           t = (low + high) / 2;
963:           if (rp[t] > bcol) high = t;
964:           else low = t;
965:         }
966:         for (i = low; i < high; i++) {
967:           if (rp[i] > bcol) break;
968:           if (rp[i] == bcol) {
969:             bap = ap + bs2 * i + bs * cidx + ridx;
970:             if (is == ADD_VALUES) *bap += value;
971:             else *bap = value;
972:             /* for diag block, add/insert its symmetric element a(cidx,ridx) */
973:             if (brow == bcol && ridx < cidx) {
974:               bap = ap + bs2 * i + bs * ridx + cidx;
975:               if (is == ADD_VALUES) *bap += value;
976:               else *bap = value;
977:             }
978:             goto noinsert1;
979:           }
980:         }

982:         if (nonew == 1) goto noinsert1;
983:         PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
984:         MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);

986:         N = nrow++ - 1;
987:         high++;
988:         /* shift up all the later entries in this row */
989:         PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
990:         PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
991:         PetscCall(PetscArrayzero(ap + bs2 * i, bs2));
992:         rp[i]                          = bcol;
993:         ap[bs2 * i + bs * cidx + ridx] = value;
994:         /* for diag block, add/insert its symmetric element a(cidx,ridx) */
995:         if (brow == bcol && ridx < cidx) ap[bs2 * i + bs * ridx + cidx] = value;
996:         A->nonzerostate++;
997:       noinsert1:;
998:         low = i;
999:       }
1000:     } /* end of loop over added columns */
1001:     ailen[brow] = nrow;
1002:   } /* end of loop over added rows */
1003:   PetscFunctionReturn(PETSC_SUCCESS);
1004: }

1006: PetscErrorCode MatICCFactor_SeqSBAIJ(Mat inA, IS row, const MatFactorInfo *info)
1007: {
1008:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)inA->data;
1009:   Mat           outA;
1010:   PetscBool     row_identity;

1012:   PetscFunctionBegin;
1013:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 is supported for in-place icc");
1014:   PetscCall(ISIdentity(row, &row_identity));
1015:   PetscCheck(row_identity, PETSC_COMM_SELF, PETSC_ERR_SUP, "Matrix reordering is not supported");
1016:   PetscCheck(inA->rmap->bs == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Matrix block size %" PetscInt_FMT " is not supported", inA->rmap->bs); /* Need to replace MatCholeskyFactorSymbolic_SeqSBAIJ_MSR()! */

1018:   outA            = inA;
1019:   inA->factortype = MAT_FACTOR_ICC;
1020:   PetscCall(PetscFree(inA->solvertype));
1021:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

1023:   PetscCall(MatMarkDiagonal_SeqSBAIJ(inA));
1024:   PetscCall(MatSeqSBAIJSetNumericFactorization_inplace(inA, row_identity));

1026:   PetscCall(PetscObjectReference((PetscObject)row));
1027:   PetscCall(ISDestroy(&a->row));
1028:   a->row = row;
1029:   PetscCall(PetscObjectReference((PetscObject)row));
1030:   PetscCall(ISDestroy(&a->col));
1031:   a->col = row;

1033:   /* Create the invert permutation so that it can be used in MatCholeskyFactorNumeric() */
1034:   if (a->icol) PetscCall(ISInvertPermutation(row, PETSC_DECIDE, &a->icol));

1036:   if (!a->solve_work) PetscCall(PetscMalloc1(inA->rmap->N + inA->rmap->bs, &a->solve_work));

1038:   PetscCall(MatCholeskyFactorNumeric(outA, inA, info));
1039:   PetscFunctionReturn(PETSC_SUCCESS);
1040: }

1042: PetscErrorCode MatSeqSBAIJSetColumnIndices_SeqSBAIJ(Mat mat, PetscInt *indices)
1043: {
1044:   Mat_SeqSBAIJ *baij = (Mat_SeqSBAIJ *)mat->data;
1045:   PetscInt      i, nz, n;

1047:   PetscFunctionBegin;
1048:   nz = baij->maxnz;
1049:   n  = mat->cmap->n;
1050:   for (i = 0; i < nz; i++) baij->j[i] = indices[i];

1052:   baij->nz = nz;
1053:   for (i = 0; i < n; i++) baij->ilen[i] = baij->imax[i];

1055:   PetscCall(MatSetOption(mat, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
1056:   PetscFunctionReturn(PETSC_SUCCESS);
1057: }

1059: /*@
1060:   MatSeqSBAIJSetColumnIndices - Set the column indices for all the rows
1061:   in a `MATSEQSBAIJ` matrix.

1063:   Input Parameters:
1064: +  mat     - the `MATSEQSBAIJ` matrix
1065: -  indices - the column indices

1067:   Level: advanced

1069:   Notes:
1070:   This can be called if you have precomputed the nonzero structure of the
1071:   matrix and want to provide it to the matrix object to improve the performance
1072:   of the `MatSetValues()` operation.

1074:   You MUST have set the correct numbers of nonzeros per row in the call to
1075:   `MatCreateSeqSBAIJ()`, and the columns indices MUST be sorted.

1077:   MUST be called before any calls to `MatSetValues()`

1079:  .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreateSeqSBAIJ`
1080: @*/
1081: PetscErrorCode MatSeqSBAIJSetColumnIndices(Mat mat, PetscInt *indices)
1082: {
1083:   PetscFunctionBegin;
1086:   PetscUseMethod(mat, "MatSeqSBAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
1087:   PetscFunctionReturn(PETSC_SUCCESS);
1088: }

1090: PetscErrorCode MatCopy_SeqSBAIJ(Mat A, Mat B, MatStructure str)
1091: {
1092:   PetscBool isbaij;

1094:   PetscFunctionBegin;
1095:   PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isbaij, MATSEQSBAIJ, MATMPISBAIJ, ""));
1096:   PetscCheck(isbaij, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for matrix type %s", ((PetscObject)B)->type_name);
1097:   /* If the two matrices have the same copy implementation and nonzero pattern, use fast copy. */
1098:   if (str == SAME_NONZERO_PATTERN && A->ops->copy == B->ops->copy) {
1099:     Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1100:     Mat_SeqSBAIJ *b = (Mat_SeqSBAIJ *)B->data;

1102:     PetscCheck(a->i[a->mbs] == b->i[b->mbs], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different");
1103:     PetscCheck(a->mbs == b->mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of rows in two matrices are different");
1104:     PetscCheck(a->bs2 == b->bs2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Different block size");
1105:     PetscCall(PetscArraycpy(b->a, a->a, a->bs2 * a->i[a->mbs]));
1106:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
1107:   } else {
1108:     PetscCall(MatGetRowUpperTriangular(A));
1109:     PetscCall(MatCopy_Basic(A, B, str));
1110:     PetscCall(MatRestoreRowUpperTriangular(A));
1111:   }
1112:   PetscFunctionReturn(PETSC_SUCCESS);
1113: }

1115: static PetscErrorCode MatSeqSBAIJGetArray_SeqSBAIJ(Mat A, PetscScalar *array[])
1116: {
1117:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

1119:   PetscFunctionBegin;
1120:   *array = a->a;
1121:   PetscFunctionReturn(PETSC_SUCCESS);
1122: }

1124: static PetscErrorCode MatSeqSBAIJRestoreArray_SeqSBAIJ(Mat A, PetscScalar *array[])
1125: {
1126:   PetscFunctionBegin;
1127:   *array = NULL;
1128:   PetscFunctionReturn(PETSC_SUCCESS);
1129: }

1131: PetscErrorCode MatAXPYGetPreallocation_SeqSBAIJ(Mat Y, Mat X, PetscInt *nnz)
1132: {
1133:   PetscInt      bs = Y->rmap->bs, mbs = Y->rmap->N / bs;
1134:   Mat_SeqSBAIJ *x = (Mat_SeqSBAIJ *)X->data;
1135:   Mat_SeqSBAIJ *y = (Mat_SeqSBAIJ *)Y->data;

1137:   PetscFunctionBegin;
1138:   /* Set the number of nonzeros in the new matrix */
1139:   PetscCall(MatAXPYGetPreallocation_SeqX_private(mbs, x->i, x->j, y->i, y->j, nnz));
1140:   PetscFunctionReturn(PETSC_SUCCESS);
1141: }

1143: PetscErrorCode MatAXPY_SeqSBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1144: {
1145:   Mat_SeqSBAIJ *x = (Mat_SeqSBAIJ *)X->data, *y = (Mat_SeqSBAIJ *)Y->data;
1146:   PetscInt      bs = Y->rmap->bs, bs2 = bs * bs;
1147:   PetscBLASInt  one = 1;

1149:   PetscFunctionBegin;
1150:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
1151:     PetscBool e = x->nz == y->nz && x->mbs == y->mbs ? PETSC_TRUE : PETSC_FALSE;
1152:     if (e) {
1153:       PetscCall(PetscArraycmp(x->i, y->i, x->mbs + 1, &e));
1154:       if (e) {
1155:         PetscCall(PetscArraycmp(x->j, y->j, x->i[x->mbs], &e));
1156:         if (e) str = SAME_NONZERO_PATTERN;
1157:       }
1158:     }
1159:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
1160:   }
1161:   if (str == SAME_NONZERO_PATTERN) {
1162:     PetscScalar  alpha = a;
1163:     PetscBLASInt bnz;
1164:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1165:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1166:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1167:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1168:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
1169:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1170:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
1171:   } else {
1172:     Mat       B;
1173:     PetscInt *nnz;
1174:     PetscCheck(bs == X->rmap->bs, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrices must have same block size");
1175:     PetscCall(MatGetRowUpperTriangular(X));
1176:     PetscCall(MatGetRowUpperTriangular(Y));
1177:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
1178:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1179:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1180:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1181:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1182:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
1183:     PetscCall(MatAXPYGetPreallocation_SeqSBAIJ(Y, X, nnz));
1184:     PetscCall(MatSeqSBAIJSetPreallocation(B, bs, 0, nnz));

1186:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));

1188:     PetscCall(MatHeaderMerge(Y, &B));
1189:     PetscCall(PetscFree(nnz));
1190:     PetscCall(MatRestoreRowUpperTriangular(X));
1191:     PetscCall(MatRestoreRowUpperTriangular(Y));
1192:   }
1193:   PetscFunctionReturn(PETSC_SUCCESS);
1194: }

1196: PetscErrorCode MatIsSymmetric_SeqSBAIJ(Mat A, PetscReal tol, PetscBool *flg)
1197: {
1198:   PetscFunctionBegin;
1199:   *flg = PETSC_TRUE;
1200:   PetscFunctionReturn(PETSC_SUCCESS);
1201: }

1203: PetscErrorCode MatIsStructurallySymmetric_SeqSBAIJ(Mat A, PetscBool *flg)
1204: {
1205:   PetscFunctionBegin;
1206:   *flg = PETSC_TRUE;
1207:   PetscFunctionReturn(PETSC_SUCCESS);
1208: }

1210: PetscErrorCode MatIsHermitian_SeqSBAIJ(Mat A, PetscReal tol, PetscBool *flg)
1211: {
1212:   PetscFunctionBegin;
1213:   *flg = PETSC_FALSE;
1214:   PetscFunctionReturn(PETSC_SUCCESS);
1215: }

1217: PetscErrorCode MatConjugate_SeqSBAIJ(Mat A)
1218: {
1219: #if defined(PETSC_USE_COMPLEX)
1220:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1221:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1222:   MatScalar    *aa = a->a;

1224:   PetscFunctionBegin;
1225:   for (i = 0; i < nz; i++) aa[i] = PetscConj(aa[i]);
1226: #else
1227:   PetscFunctionBegin;
1228: #endif
1229:   PetscFunctionReturn(PETSC_SUCCESS);
1230: }

1232: PetscErrorCode MatRealPart_SeqSBAIJ(Mat A)
1233: {
1234:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1235:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1236:   MatScalar    *aa = a->a;

1238:   PetscFunctionBegin;
1239:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1240:   PetscFunctionReturn(PETSC_SUCCESS);
1241: }

1243: PetscErrorCode MatImaginaryPart_SeqSBAIJ(Mat A)
1244: {
1245:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1246:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1247:   MatScalar    *aa = a->a;

1249:   PetscFunctionBegin;
1250:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1251:   PetscFunctionReturn(PETSC_SUCCESS);
1252: }

1254: PetscErrorCode MatZeroRowsColumns_SeqSBAIJ(Mat A, PetscInt is_n, const PetscInt is_idx[], PetscScalar diag, Vec x, Vec b)
1255: {
1256:   Mat_SeqSBAIJ      *baij = (Mat_SeqSBAIJ *)A->data;
1257:   PetscInt           i, j, k, count;
1258:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2, row, col;
1259:   PetscScalar        zero = 0.0;
1260:   MatScalar         *aa;
1261:   const PetscScalar *xx;
1262:   PetscScalar       *bb;
1263:   PetscBool         *zeroed, vecs = PETSC_FALSE;

1265:   PetscFunctionBegin;
1266:   /* fix right hand side if needed */
1267:   if (x && b) {
1268:     PetscCall(VecGetArrayRead(x, &xx));
1269:     PetscCall(VecGetArray(b, &bb));
1270:     vecs = PETSC_TRUE;
1271:   }

1273:   /* zero the columns */
1274:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
1275:   for (i = 0; i < is_n; i++) {
1276:     PetscCheck(is_idx[i] >= 0 && is_idx[i] < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", is_idx[i]);
1277:     zeroed[is_idx[i]] = PETSC_TRUE;
1278:   }
1279:   if (vecs) {
1280:     for (i = 0; i < A->rmap->N; i++) {
1281:       row = i / bs;
1282:       for (j = baij->i[row]; j < baij->i[row + 1]; j++) {
1283:         for (k = 0; k < bs; k++) {
1284:           col = bs * baij->j[j] + k;
1285:           if (col <= i) continue;
1286:           aa = ((MatScalar *)(baij->a)) + j * bs2 + (i % bs) + bs * k;
1287:           if (!zeroed[i] && zeroed[col]) bb[i] -= aa[0] * xx[col];
1288:           if (zeroed[i] && !zeroed[col]) bb[col] -= aa[0] * xx[i];
1289:         }
1290:       }
1291:     }
1292:     for (i = 0; i < is_n; i++) bb[is_idx[i]] = diag * xx[is_idx[i]];
1293:   }

1295:   for (i = 0; i < A->rmap->N; i++) {
1296:     if (!zeroed[i]) {
1297:       row = i / bs;
1298:       for (j = baij->i[row]; j < baij->i[row + 1]; j++) {
1299:         for (k = 0; k < bs; k++) {
1300:           col = bs * baij->j[j] + k;
1301:           if (zeroed[col]) {
1302:             aa    = ((MatScalar *)(baij->a)) + j * bs2 + (i % bs) + bs * k;
1303:             aa[0] = 0.0;
1304:           }
1305:         }
1306:       }
1307:     }
1308:   }
1309:   PetscCall(PetscFree(zeroed));
1310:   if (vecs) {
1311:     PetscCall(VecRestoreArrayRead(x, &xx));
1312:     PetscCall(VecRestoreArray(b, &bb));
1313:   }

1315:   /* zero the rows */
1316:   for (i = 0; i < is_n; i++) {
1317:     row   = is_idx[i];
1318:     count = (baij->i[row / bs + 1] - baij->i[row / bs]) * bs;
1319:     aa    = ((MatScalar *)(baij->a)) + baij->i[row / bs] * bs2 + (row % bs);
1320:     for (k = 0; k < count; k++) {
1321:       aa[0] = zero;
1322:       aa += bs;
1323:     }
1324:     if (diag != 0.0) PetscUseTypeMethod(A, setvalues, 1, &row, 1, &row, &diag, INSERT_VALUES);
1325:   }
1326:   PetscCall(MatAssemblyEnd_SeqSBAIJ(A, MAT_FINAL_ASSEMBLY));
1327:   PetscFunctionReturn(PETSC_SUCCESS);
1328: }

1330: PetscErrorCode MatShift_SeqSBAIJ(Mat Y, PetscScalar a)
1331: {
1332:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)Y->data;

1334:   PetscFunctionBegin;
1335:   if (!Y->preallocated || !aij->nz) PetscCall(MatSeqSBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL));
1336:   PetscCall(MatShift_Basic(Y, a));
1337:   PetscFunctionReturn(PETSC_SUCCESS);
1338: }

1340: static struct _MatOps MatOps_Values = {MatSetValues_SeqSBAIJ,
1341:                                        MatGetRow_SeqSBAIJ,
1342:                                        MatRestoreRow_SeqSBAIJ,
1343:                                        MatMult_SeqSBAIJ_N,
1344:                                        /*  4*/ MatMultAdd_SeqSBAIJ_N,
1345:                                        MatMult_SeqSBAIJ_N, /* transpose versions are same as non-transpose versions */
1346:                                        MatMultAdd_SeqSBAIJ_N,
1347:                                        NULL,
1348:                                        NULL,
1349:                                        NULL,
1350:                                        /* 10*/ NULL,
1351:                                        NULL,
1352:                                        MatCholeskyFactor_SeqSBAIJ,
1353:                                        MatSOR_SeqSBAIJ,
1354:                                        MatTranspose_SeqSBAIJ,
1355:                                        /* 15*/ MatGetInfo_SeqSBAIJ,
1356:                                        MatEqual_SeqSBAIJ,
1357:                                        MatGetDiagonal_SeqSBAIJ,
1358:                                        MatDiagonalScale_SeqSBAIJ,
1359:                                        MatNorm_SeqSBAIJ,
1360:                                        /* 20*/ NULL,
1361:                                        MatAssemblyEnd_SeqSBAIJ,
1362:                                        MatSetOption_SeqSBAIJ,
1363:                                        MatZeroEntries_SeqSBAIJ,
1364:                                        /* 24*/ NULL,
1365:                                        NULL,
1366:                                        NULL,
1367:                                        NULL,
1368:                                        NULL,
1369:                                        /* 29*/ MatSetUp_Seq_Hash,
1370:                                        NULL,
1371:                                        NULL,
1372:                                        NULL,
1373:                                        NULL,
1374:                                        /* 34*/ MatDuplicate_SeqSBAIJ,
1375:                                        NULL,
1376:                                        NULL,
1377:                                        NULL,
1378:                                        MatICCFactor_SeqSBAIJ,
1379:                                        /* 39*/ MatAXPY_SeqSBAIJ,
1380:                                        MatCreateSubMatrices_SeqSBAIJ,
1381:                                        MatIncreaseOverlap_SeqSBAIJ,
1382:                                        MatGetValues_SeqSBAIJ,
1383:                                        MatCopy_SeqSBAIJ,
1384:                                        /* 44*/ NULL,
1385:                                        MatScale_SeqSBAIJ,
1386:                                        MatShift_SeqSBAIJ,
1387:                                        NULL,
1388:                                        MatZeroRowsColumns_SeqSBAIJ,
1389:                                        /* 49*/ NULL,
1390:                                        MatGetRowIJ_SeqSBAIJ,
1391:                                        MatRestoreRowIJ_SeqSBAIJ,
1392:                                        NULL,
1393:                                        NULL,
1394:                                        /* 54*/ NULL,
1395:                                        NULL,
1396:                                        NULL,
1397:                                        MatPermute_SeqSBAIJ,
1398:                                        MatSetValuesBlocked_SeqSBAIJ,
1399:                                        /* 59*/ MatCreateSubMatrix_SeqSBAIJ,
1400:                                        NULL,
1401:                                        NULL,
1402:                                        NULL,
1403:                                        NULL,
1404:                                        /* 64*/ NULL,
1405:                                        NULL,
1406:                                        NULL,
1407:                                        NULL,
1408:                                        NULL,
1409:                                        /* 69*/ MatGetRowMaxAbs_SeqSBAIJ,
1410:                                        NULL,
1411:                                        MatConvert_MPISBAIJ_Basic,
1412:                                        NULL,
1413:                                        NULL,
1414:                                        /* 74*/ NULL,
1415:                                        NULL,
1416:                                        NULL,
1417:                                        NULL,
1418:                                        NULL,
1419:                                        /* 79*/ NULL,
1420:                                        NULL,
1421:                                        NULL,
1422:                                        MatGetInertia_SeqSBAIJ,
1423:                                        MatLoad_SeqSBAIJ,
1424:                                        /* 84*/ MatIsSymmetric_SeqSBAIJ,
1425:                                        MatIsHermitian_SeqSBAIJ,
1426:                                        MatIsStructurallySymmetric_SeqSBAIJ,
1427:                                        NULL,
1428:                                        NULL,
1429:                                        /* 89*/ NULL,
1430:                                        NULL,
1431:                                        NULL,
1432:                                        NULL,
1433:                                        NULL,
1434:                                        /* 94*/ NULL,
1435:                                        NULL,
1436:                                        NULL,
1437:                                        NULL,
1438:                                        NULL,
1439:                                        /* 99*/ NULL,
1440:                                        NULL,
1441:                                        NULL,
1442:                                        MatConjugate_SeqSBAIJ,
1443:                                        NULL,
1444:                                        /*104*/ NULL,
1445:                                        MatRealPart_SeqSBAIJ,
1446:                                        MatImaginaryPart_SeqSBAIJ,
1447:                                        MatGetRowUpperTriangular_SeqSBAIJ,
1448:                                        MatRestoreRowUpperTriangular_SeqSBAIJ,
1449:                                        /*109*/ NULL,
1450:                                        NULL,
1451:                                        NULL,
1452:                                        NULL,
1453:                                        MatMissingDiagonal_SeqSBAIJ,
1454:                                        /*114*/ NULL,
1455:                                        NULL,
1456:                                        NULL,
1457:                                        NULL,
1458:                                        NULL,
1459:                                        /*119*/ NULL,
1460:                                        NULL,
1461:                                        NULL,
1462:                                        NULL,
1463:                                        NULL,
1464:                                        /*124*/ NULL,
1465:                                        NULL,
1466:                                        NULL,
1467:                                        NULL,
1468:                                        NULL,
1469:                                        /*129*/ NULL,
1470:                                        NULL,
1471:                                        NULL,
1472:                                        NULL,
1473:                                        NULL,
1474:                                        /*134*/ NULL,
1475:                                        NULL,
1476:                                        NULL,
1477:                                        NULL,
1478:                                        NULL,
1479:                                        /*139*/ MatSetBlockSizes_Default,
1480:                                        NULL,
1481:                                        NULL,
1482:                                        NULL,
1483:                                        NULL,
1484:                                        /*144*/ MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ,
1485:                                        NULL,
1486:                                        NULL,
1487:                                        NULL,
1488:                                        NULL,
1489:                                        NULL,
1490:                                        /*150*/ NULL,
1491:                                        NULL};

1493: PetscErrorCode MatStoreValues_SeqSBAIJ(Mat mat)
1494: {
1495:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)mat->data;
1496:   PetscInt      nz  = aij->i[mat->rmap->N] * mat->rmap->bs * aij->bs2;

1498:   PetscFunctionBegin;
1499:   PetscCheck(aij->nonew == 1, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

1501:   /* allocate space for values if not already there */
1502:   if (!aij->saved_values) PetscCall(PetscMalloc1(nz + 1, &aij->saved_values));

1504:   /* copy values over */
1505:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
1506:   PetscFunctionReturn(PETSC_SUCCESS);
1507: }

1509: PetscErrorCode MatRetrieveValues_SeqSBAIJ(Mat mat)
1510: {
1511:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)mat->data;
1512:   PetscInt      nz  = aij->i[mat->rmap->N] * mat->rmap->bs * aij->bs2;

1514:   PetscFunctionBegin;
1515:   PetscCheck(aij->nonew == 1, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
1516:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");

1518:   /* copy values over */
1519:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
1520:   PetscFunctionReturn(PETSC_SUCCESS);
1521: }

1523: static PetscErrorCode MatSeqSBAIJSetPreallocation_SeqSBAIJ(Mat B, PetscInt bs, PetscInt nz, PetscInt *nnz)
1524: {
1525:   Mat_SeqSBAIJ *b = (Mat_SeqSBAIJ *)B->data;
1526:   PetscInt      i, mbs, nbs, bs2;
1527:   PetscBool     skipallocation = PETSC_FALSE, flg = PETSC_FALSE, realalloc = PETSC_FALSE;

1529:   if (B->hash_active) {
1530:     PetscInt bs;
1531:     PetscCall(PetscMemcpy(&B->ops, &b->cops, sizeof(*(B->ops))));
1532:     PetscCall(PetscHMapIJVDestroy(&b->ht));
1533:     PetscCall(MatGetBlockSize(B, &bs));
1534:     if (bs > 1) PetscCall(PetscHSetIJDestroy(&b->bht));
1535:     PetscCall(PetscFree(b->dnz));
1536:     PetscCall(PetscFree(b->bdnz));
1537:     B->hash_active = PETSC_FALSE;
1538:   }
1539:   PetscFunctionBegin;
1540:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;

1542:   PetscCall(MatSetBlockSize(B, PetscAbs(bs)));
1543:   PetscCall(PetscLayoutSetUp(B->rmap));
1544:   PetscCall(PetscLayoutSetUp(B->cmap));
1545:   PetscCheck(B->rmap->N <= B->cmap->N, PETSC_COMM_SELF, PETSC_ERR_SUP, "SEQSBAIJ matrix cannot have more rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->N, B->cmap->N);
1546:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));

1548:   B->preallocated = PETSC_TRUE;

1550:   mbs = B->rmap->N / bs;
1551:   nbs = B->cmap->n / bs;
1552:   bs2 = bs * bs;

1554:   PetscCheck(mbs * bs == B->rmap->N && nbs * bs == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Number rows, cols must be divisible by blocksize");

1556:   if (nz == MAT_SKIP_ALLOCATION) {
1557:     skipallocation = PETSC_TRUE;
1558:     nz             = 0;
1559:   }

1561:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 3;
1562:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
1563:   if (nnz) {
1564:     for (i = 0; i < mbs; i++) {
1565:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
1566:       PetscCheck(nnz[i] <= nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than block row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " block rowlength %" PetscInt_FMT, i, nnz[i], nbs);
1567:     }
1568:   }

1570:   B->ops->mult             = MatMult_SeqSBAIJ_N;
1571:   B->ops->multadd          = MatMultAdd_SeqSBAIJ_N;
1572:   B->ops->multtranspose    = MatMult_SeqSBAIJ_N;
1573:   B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_N;

1575:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_no_unroll", &flg, NULL));
1576:   if (!flg) {
1577:     switch (bs) {
1578:     case 1:
1579:       B->ops->mult             = MatMult_SeqSBAIJ_1;
1580:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_1;
1581:       B->ops->multtranspose    = MatMult_SeqSBAIJ_1;
1582:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_1;
1583:       break;
1584:     case 2:
1585:       B->ops->mult             = MatMult_SeqSBAIJ_2;
1586:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_2;
1587:       B->ops->multtranspose    = MatMult_SeqSBAIJ_2;
1588:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_2;
1589:       break;
1590:     case 3:
1591:       B->ops->mult             = MatMult_SeqSBAIJ_3;
1592:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_3;
1593:       B->ops->multtranspose    = MatMult_SeqSBAIJ_3;
1594:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_3;
1595:       break;
1596:     case 4:
1597:       B->ops->mult             = MatMult_SeqSBAIJ_4;
1598:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_4;
1599:       B->ops->multtranspose    = MatMult_SeqSBAIJ_4;
1600:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_4;
1601:       break;
1602:     case 5:
1603:       B->ops->mult             = MatMult_SeqSBAIJ_5;
1604:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_5;
1605:       B->ops->multtranspose    = MatMult_SeqSBAIJ_5;
1606:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_5;
1607:       break;
1608:     case 6:
1609:       B->ops->mult             = MatMult_SeqSBAIJ_6;
1610:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_6;
1611:       B->ops->multtranspose    = MatMult_SeqSBAIJ_6;
1612:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_6;
1613:       break;
1614:     case 7:
1615:       B->ops->mult             = MatMult_SeqSBAIJ_7;
1616:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_7;
1617:       B->ops->multtranspose    = MatMult_SeqSBAIJ_7;
1618:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_7;
1619:       break;
1620:     }
1621:   }

1623:   b->mbs = mbs;
1624:   b->nbs = nbs;
1625:   if (!skipallocation) {
1626:     if (!b->imax) {
1627:       PetscCall(PetscMalloc2(mbs, &b->imax, mbs, &b->ilen));

1629:       b->free_imax_ilen = PETSC_TRUE;
1630:     }
1631:     if (!nnz) {
1632:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
1633:       else if (nz <= 0) nz = 1;
1634:       nz = PetscMin(nbs, nz);
1635:       for (i = 0; i < mbs; i++) b->imax[i] = nz;
1636:       PetscCall(PetscIntMultError(nz, mbs, &nz));
1637:     } else {
1638:       PetscInt64 nz64 = 0;
1639:       for (i = 0; i < mbs; i++) {
1640:         b->imax[i] = nnz[i];
1641:         nz64 += nnz[i];
1642:       }
1643:       PetscCall(PetscIntCast(nz64, &nz));
1644:     }
1645:     /* b->ilen will count nonzeros in each block row so far. */
1646:     for (i = 0; i < mbs; i++) b->ilen[i] = 0;
1647:     /* nz=(nz+mbs)/2; */ /* total diagonal and superdiagonal nonzero blocks */

1649:     /* allocate the matrix space */
1650:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
1651:     PetscCall(PetscMalloc3(bs2 * nz, &b->a, nz, &b->j, B->rmap->N + 1, &b->i));
1652:     PetscCall(PetscArrayzero(b->a, nz * bs2));
1653:     PetscCall(PetscArrayzero(b->j, nz));

1655:     b->singlemalloc = PETSC_TRUE;

1657:     /* pointer to beginning of each row */
1658:     b->i[0] = 0;
1659:     for (i = 1; i < mbs + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];

1661:     b->free_a  = PETSC_TRUE;
1662:     b->free_ij = PETSC_TRUE;
1663:   } else {
1664:     b->free_a  = PETSC_FALSE;
1665:     b->free_ij = PETSC_FALSE;
1666:   }

1668:   b->bs2     = bs2;
1669:   b->nz      = 0;
1670:   b->maxnz   = nz;
1671:   b->inew    = NULL;
1672:   b->jnew    = NULL;
1673:   b->anew    = NULL;
1674:   b->a2anew  = NULL;
1675:   b->permute = PETSC_FALSE;

1677:   B->was_assembled = PETSC_FALSE;
1678:   B->assembled     = PETSC_FALSE;
1679:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
1680:   PetscFunctionReturn(PETSC_SUCCESS);
1681: }

1683: PetscErrorCode MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
1684: {
1685:   PetscInt     i, j, m, nz, anz, nz_max = 0, *nnz;
1686:   PetscScalar *values      = NULL;
1687:   PetscBool    roworiented = ((Mat_SeqSBAIJ *)B->data)->roworiented;

1689:   PetscFunctionBegin;
1690:   PetscCheck(bs >= 1, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_OUTOFRANGE, "Invalid block size specified, must be positive but it is %" PetscInt_FMT, bs);
1691:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
1692:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
1693:   PetscCall(PetscLayoutSetUp(B->rmap));
1694:   PetscCall(PetscLayoutSetUp(B->cmap));
1695:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1696:   m = B->rmap->n / bs;

1698:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
1699:   PetscCall(PetscMalloc1(m + 1, &nnz));
1700:   for (i = 0; i < m; i++) {
1701:     nz = ii[i + 1] - ii[i];
1702:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
1703:     anz = 0;
1704:     for (j = 0; j < nz; j++) {
1705:       /* count only values on the diagonal or above */
1706:       if (jj[ii[i] + j] >= i) {
1707:         anz = nz - j;
1708:         break;
1709:       }
1710:     }
1711:     nz_max = PetscMax(nz_max, anz);
1712:     nnz[i] = anz;
1713:   }
1714:   PetscCall(MatSeqSBAIJSetPreallocation(B, bs, 0, nnz));
1715:   PetscCall(PetscFree(nnz));

1717:   values = (PetscScalar *)V;
1718:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
1719:   for (i = 0; i < m; i++) {
1720:     PetscInt        ncols = ii[i + 1] - ii[i];
1721:     const PetscInt *icols = jj + ii[i];
1722:     if (!roworiented || bs == 1) {
1723:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
1724:       PetscCall(MatSetValuesBlocked_SeqSBAIJ(B, 1, &i, ncols, icols, svals, INSERT_VALUES));
1725:     } else {
1726:       for (j = 0; j < ncols; j++) {
1727:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
1728:         PetscCall(MatSetValuesBlocked_SeqSBAIJ(B, 1, &i, 1, &icols[j], svals, INSERT_VALUES));
1729:       }
1730:     }
1731:   }
1732:   if (!V) PetscCall(PetscFree(values));
1733:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1734:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
1735:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
1736:   PetscFunctionReturn(PETSC_SUCCESS);
1737: }

1739: /*
1740:    This is used to set the numeric factorization for both Cholesky and ICC symbolic factorization
1741: */
1742: PetscErrorCode MatSeqSBAIJSetNumericFactorization_inplace(Mat B, PetscBool natural)
1743: {
1744:   PetscBool flg = PETSC_FALSE;
1745:   PetscInt  bs  = B->rmap->bs;

1747:   PetscFunctionBegin;
1748:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_no_unroll", &flg, NULL));
1749:   if (flg) bs = 8;

1751:   if (!natural) {
1752:     switch (bs) {
1753:     case 1:
1754:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_inplace;
1755:       break;
1756:     case 2:
1757:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2;
1758:       break;
1759:     case 3:
1760:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3;
1761:       break;
1762:     case 4:
1763:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4;
1764:       break;
1765:     case 5:
1766:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5;
1767:       break;
1768:     case 6:
1769:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6;
1770:       break;
1771:     case 7:
1772:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7;
1773:       break;
1774:     default:
1775:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N;
1776:       break;
1777:     }
1778:   } else {
1779:     switch (bs) {
1780:     case 1:
1781:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_NaturalOrdering_inplace;
1782:       break;
1783:     case 2:
1784:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2_NaturalOrdering;
1785:       break;
1786:     case 3:
1787:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3_NaturalOrdering;
1788:       break;
1789:     case 4:
1790:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4_NaturalOrdering;
1791:       break;
1792:     case 5:
1793:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5_NaturalOrdering;
1794:       break;
1795:     case 6:
1796:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6_NaturalOrdering;
1797:       break;
1798:     case 7:
1799:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7_NaturalOrdering;
1800:       break;
1801:     default:
1802:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N_NaturalOrdering;
1803:       break;
1804:     }
1805:   }
1806:   PetscFunctionReturn(PETSC_SUCCESS);
1807: }

1809: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqAIJ(Mat, MatType, MatReuse, Mat *);
1810: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqBAIJ(Mat, MatType, MatReuse, Mat *);
1811: static PetscErrorCode       MatFactorGetSolverType_petsc(Mat A, MatSolverType *type)
1812: {
1813:   PetscFunctionBegin;
1814:   *type = MATSOLVERPETSC;
1815:   PetscFunctionReturn(PETSC_SUCCESS);
1816: }

1818: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_petsc(Mat A, MatFactorType ftype, Mat *B)
1819: {
1820:   PetscInt n = A->rmap->n;

1822:   PetscFunctionBegin;
1823: #if defined(PETSC_USE_COMPLEX)
1824:   PetscCheck(A->hermitian != PETSC_BOOL3_TRUE || A->symmetric == PETSC_BOOL3_TRUE || (ftype != MAT_FACTOR_CHOLESKY && ftype != MAT_FACTOR_ICC), PETSC_COMM_SELF, PETSC_ERR_SUP, "Hermitian CHOLESKY or ICC Factor is not supported");
1825: #endif

1827:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
1828:   PetscCall(MatSetSizes(*B, n, n, n, n));
1829:   if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1830:     PetscCall(MatSetType(*B, MATSEQSBAIJ));
1831:     PetscCall(MatSeqSBAIJSetPreallocation(*B, A->rmap->bs, MAT_SKIP_ALLOCATION, NULL));

1833:     (*B)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqSBAIJ;
1834:     (*B)->ops->iccfactorsymbolic      = MatICCFactorSymbolic_SeqSBAIJ;
1835:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_CHOLESKY]));
1836:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_ICC]));
1837:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Factor type not supported");

1839:   (*B)->factortype     = ftype;
1840:   (*B)->canuseordering = PETSC_TRUE;
1841:   PetscCall(PetscFree((*B)->solvertype));
1842:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
1843:   PetscCall(PetscObjectComposeFunction((PetscObject)*B, "MatFactorGetSolverType_C", MatFactorGetSolverType_petsc));
1844:   PetscFunctionReturn(PETSC_SUCCESS);
1845: }

1847: /*@C
1848:    MatSeqSBAIJGetArray - gives access to the array where the numerical data for a `MATSEQSBAIJ` matrix is stored

1850:    Not Collective

1852:    Input Parameter:
1853: .  mat - a `MATSEQSBAIJ` matrix

1855:    Output Parameter:
1856: .   array - pointer to the data

1858:    Level: intermediate

1860: .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatSeqSBAIJRestoreArray()`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArray()`
1861: @*/
1862: PetscErrorCode MatSeqSBAIJGetArray(Mat A, PetscScalar **array)
1863: {
1864:   PetscFunctionBegin;
1865:   PetscUseMethod(A, "MatSeqSBAIJGetArray_C", (Mat, PetscScalar **), (A, array));
1866:   PetscFunctionReturn(PETSC_SUCCESS);
1867: }

1869: /*@C
1870:    MatSeqSBAIJRestoreArray - returns access to the array where the numerical data for a `MATSEQSBAIJ` matrix is stored obtained by `MatSeqSBAIJGetArray()`

1872:    Not Collective

1874:    Input Parameters:
1875: +  mat - a `MATSEQSBAIJ` matrix
1876: -  array - pointer to the data

1878:    Level: intermediate

1880: .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatSeqSBAIJGetArray()`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArray()`
1881: @*/
1882: PetscErrorCode MatSeqSBAIJRestoreArray(Mat A, PetscScalar **array)
1883: {
1884:   PetscFunctionBegin;
1885:   PetscUseMethod(A, "MatSeqSBAIJRestoreArray_C", (Mat, PetscScalar **), (A, array));
1886:   PetscFunctionReturn(PETSC_SUCCESS);
1887: }

1889: /*MC
1890:   MATSEQSBAIJ - MATSEQSBAIJ = "seqsbaij" - A matrix type to be used for sequential symmetric block sparse matrices,
1891:   based on block compressed sparse row format.  Only the upper triangular portion of the matrix is stored.

1893:   For complex numbers by default this matrix is symmetric, NOT Hermitian symmetric. To make it Hermitian symmetric you
1894:   can call `MatSetOption`(`Mat`, `MAT_HERMITIAN`).

1896:   Options Database Key:
1897:   . -mat_type seqsbaij - sets the matrix type to "seqsbaij" during a call to `MatSetFromOptions()`

1899:   Level: beginner

1901:   Notes:
1902:     By default if you insert values into the lower triangular part of the matrix they are simply ignored (since they are not
1903:      stored and it is assumed they symmetric to the upper triangular). If you call `MatSetOption`(`Mat`,`MAT_IGNORE_LOWER_TRIANGULAR`,`PETSC_FALSE`) or use
1904:      the options database `-mat_ignore_lower_triangular` false it will generate an error if you try to set a value in the lower triangular portion.

1906:     The number of rows in the matrix must be less than or equal to the number of columns

1908:   .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreateSeqSBAIJ()`, `MatType`, `MATMPISBAIJ`
1909: M*/
1910: PETSC_EXTERN PetscErrorCode MatCreate_SeqSBAIJ(Mat B)
1911: {
1912:   Mat_SeqSBAIJ *b;
1913:   PetscMPIInt   size;
1914:   PetscBool     no_unroll = PETSC_FALSE, no_inode = PETSC_FALSE;

1916:   PetscFunctionBegin;
1917:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
1918:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Comm must be of size 1");

1920:   PetscCall(PetscNew(&b));
1921:   B->data = (void *)b;
1922:   PetscCall(PetscMemcpy(B->ops, &MatOps_Values, sizeof(struct _MatOps)));

1924:   B->ops->destroy    = MatDestroy_SeqSBAIJ;
1925:   B->ops->view       = MatView_SeqSBAIJ;
1926:   b->row             = NULL;
1927:   b->icol            = NULL;
1928:   b->reallocs        = 0;
1929:   b->saved_values    = NULL;
1930:   b->inode.limit     = 5;
1931:   b->inode.max_limit = 5;

1933:   b->roworiented        = PETSC_TRUE;
1934:   b->nonew              = 0;
1935:   b->diag               = NULL;
1936:   b->solve_work         = NULL;
1937:   b->mult_work          = NULL;
1938:   B->spptr              = NULL;
1939:   B->info.nz_unneeded   = (PetscReal)b->maxnz * b->bs2;
1940:   b->keepnonzeropattern = PETSC_FALSE;

1942:   b->inew    = NULL;
1943:   b->jnew    = NULL;
1944:   b->anew    = NULL;
1945:   b->a2anew  = NULL;
1946:   b->permute = PETSC_FALSE;

1948:   b->ignore_ltriangular = PETSC_TRUE;

1950:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_ignore_lower_triangular", &b->ignore_ltriangular, NULL));

1952:   b->getrow_utriangular = PETSC_FALSE;

1954:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_getrow_uppertriangular", &b->getrow_utriangular, NULL));

1956:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJGetArray_C", MatSeqSBAIJGetArray_SeqSBAIJ));
1957:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJRestoreArray_C", MatSeqSBAIJRestoreArray_SeqSBAIJ));
1958:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqSBAIJ));
1959:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqSBAIJ));
1960:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetColumnIndices_C", MatSeqSBAIJSetColumnIndices_SeqSBAIJ));
1961:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_seqaij_C", MatConvert_SeqSBAIJ_SeqAIJ));
1962:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_seqbaij_C", MatConvert_SeqSBAIJ_SeqBAIJ));
1963:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetPreallocation_C", MatSeqSBAIJSetPreallocation_SeqSBAIJ));
1964:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetPreallocationCSR_C", MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ));
1965: #if defined(PETSC_HAVE_ELEMENTAL)
1966:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_elemental_C", MatConvert_SeqSBAIJ_Elemental));
1967: #endif
1968: #if defined(PETSC_HAVE_SCALAPACK)
1969:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_scalapack_C", MatConvert_SBAIJ_ScaLAPACK));
1970: #endif

1972:   B->symmetry_eternal            = PETSC_TRUE;
1973:   B->structural_symmetry_eternal = PETSC_TRUE;
1974:   B->symmetric                   = PETSC_BOOL3_TRUE;
1975:   B->structurally_symmetric      = PETSC_BOOL3_TRUE;
1976: #if defined(PETSC_USE_COMPLEX)
1977:   B->hermitian = PETSC_BOOL3_FALSE;
1978: #else
1979:   B->hermitian = PETSC_BOOL3_TRUE;
1980: #endif

1982:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQSBAIJ));

1984:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), ((PetscObject)B)->prefix, "Options for SEQSBAIJ matrix", "Mat");
1985:   PetscCall(PetscOptionsBool("-mat_no_unroll", "Do not optimize for inodes (slower)", NULL, no_unroll, &no_unroll, NULL));
1986:   if (no_unroll) PetscCall(PetscInfo(B, "Not using Inode routines due to -mat_no_unroll\n"));
1987:   PetscCall(PetscOptionsBool("-mat_no_inode", "Do not optimize for inodes (slower)", NULL, no_inode, &no_inode, NULL));
1988:   if (no_inode) PetscCall(PetscInfo(B, "Not using Inode routines due to -mat_no_inode\n"));
1989:   PetscCall(PetscOptionsInt("-mat_inode_limit", "Do not use inodes larger then this value", NULL, b->inode.limit, &b->inode.limit, NULL));
1990:   PetscOptionsEnd();
1991:   b->inode.use = (PetscBool)(!(no_unroll || no_inode));
1992:   if (b->inode.limit > b->inode.max_limit) b->inode.limit = b->inode.max_limit;
1993:   PetscFunctionReturn(PETSC_SUCCESS);
1994: }

1996: /*@C
1997:    MatSeqSBAIJSetPreallocation - Creates a sparse symmetric matrix in block AIJ (block
1998:    compressed row) `MATSEQSBAIJ` format.  For good matrix assembly performance the
1999:    user should preallocate the matrix storage by setting the parameter `nz`
2000:    (or the array `nnz`).

2002:    Collective

2004:    Input Parameters:
2005: +  B - the symmetric matrix
2006: .  bs - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2007:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2008: .  nz - number of block nonzeros per block row (same for all rows)
2009: -  nnz - array containing the number of block nonzeros in the upper triangular plus
2010:          diagonal portion of each block (possibly different for each block row) or `NULL`

2012:    Options Database Keys:
2013: +   -mat_no_unroll - uses code that does not unroll the loops in the
2014:                      block calculations (much slower)
2015: -   -mat_block_size - size of the blocks to use (only works if a negative bs is passed in

2017:    Level: intermediate

2019:    Notes:
2020:    Specify the preallocated storage with either `nz` or `nnz` (not both).
2021:    Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
2022:    allocation.  See [Sparse Matrices](sec_matsparse) for details.

2024:    You can call `MatGetInfo()` to get information on how effective the preallocation was;
2025:    for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
2026:    You can also run with the option `-info` and look for messages with the string
2027:    malloc in them to see if additional memory allocation was needed.

2029:    If the `nnz` parameter is given then the `nz` parameter is ignored

2031: .seealso: [](chapter_matrices), `Mat`, [Sparse Matrices](sec_matsparse), `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatCreateSBAIJ()`
2032: @*/
2033: PetscErrorCode MatSeqSBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt nz, const PetscInt nnz[])
2034: {
2035:   PetscFunctionBegin;
2039:   PetscTryMethod(B, "MatSeqSBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[]), (B, bs, nz, nnz));
2040:   PetscFunctionReturn(PETSC_SUCCESS);
2041: }

2043: /*@C
2044:    MatSeqSBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATSEQSBAIJ` format using the given nonzero structure and (optional) numerical values

2046:    Input Parameters:
2047: +  B - the matrix
2048: .  bs - size of block, the blocks are ALWAYS square.
2049: .  i - the indices into j for the start of each local row (starts with zero)
2050: .  j - the column indices for each local row (starts with zero) these must be sorted for each row
2051: -  v - optional values in the matrix

2053:    Level: advanced

2055:    Notes:
2056:    The order of the entries in values is specified by the `MatOption` `MAT_ROW_ORIENTED`.  For example, C programs
2057:    may want to use the default `MAT_ROW_ORIENTED` = `PETSC_TRUE` and use an array v[nnz][bs][bs] where the second index is
2058:    over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2059:    `MAT_ROW_ORIENTED` = `PETSC_FALSE` and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2060:    block column and the second index is over columns within a block.

2062:    Any entries below the diagonal are ignored

2064:    Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries
2065:    and usually the numerical values as well

2067: .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValuesBlocked()`, `MatSeqSBAIJSetPreallocation()`, `MATSEQSBAIJ`
2068: @*/
2069: PetscErrorCode MatSeqSBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2070: {
2071:   PetscFunctionBegin;
2075:   PetscTryMethod(B, "MatSeqSBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2076:   PetscFunctionReturn(PETSC_SUCCESS);
2077: }

2079: /*@C
2080:    MatCreateSeqSBAIJ - Creates a sparse symmetric matrix in (block
2081:    compressed row) `MATSEQSBAIJ` format.  For good matrix assembly performance the
2082:    user should preallocate the matrix storage by setting the parameter `nz`
2083:    (or the array `nnz`).

2085:    Collective

2087:    Input Parameters:
2088: +  comm - MPI communicator, set to `PETSC_COMM_SELF`
2089: .  bs - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2090:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2091: .  m - number of rows
2092: .  n - number of columns
2093: .  nz - number of block nonzeros per block row (same for all rows)
2094: -  nnz - array containing the number of block nonzeros in the upper triangular plus
2095:          diagonal portion of each block (possibly different for each block row) or `NULL`

2097:    Output Parameter:
2098: .  A - the symmetric matrix

2100:    Options Database Keys:
2101: +   -mat_no_unroll - uses code that does not unroll the loops in the
2102:                      block calculations (much slower)
2103: -   -mat_block_size - size of the blocks to use

2105:    Level: intermediate

2107:    Notes:
2108:    It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2109:    MatXXXXSetPreallocation() paradigm instead of this routine directly.
2110:    [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

2112:    The number of rows and columns must be divisible by blocksize.
2113:    This matrix type does not support complex Hermitian operation.

2115:    Specify the preallocated storage with either `nz` or `nnz` (not both).
2116:    Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
2117:    allocation.  See [Sparse Matrices](sec_matsparse) for details.

2119:    If the `nnz` parameter is given then the `nz` parameter is ignored

2121: .seealso: [](chapter_matrices), `Mat`, [Sparse Matrices](sec_matsparse), `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatCreateSBAIJ()`
2122: @*/
2123: PetscErrorCode MatCreateSeqSBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
2124: {
2125:   PetscFunctionBegin;
2126:   PetscCall(MatCreate(comm, A));
2127:   PetscCall(MatSetSizes(*A, m, n, m, n));
2128:   PetscCall(MatSetType(*A, MATSEQSBAIJ));
2129:   PetscCall(MatSeqSBAIJSetPreallocation(*A, bs, nz, (PetscInt *)nnz));
2130:   PetscFunctionReturn(PETSC_SUCCESS);
2131: }

2133: PetscErrorCode MatDuplicate_SeqSBAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
2134: {
2135:   Mat           C;
2136:   Mat_SeqSBAIJ *c, *a  = (Mat_SeqSBAIJ *)A->data;
2137:   PetscInt      i, mbs = a->mbs, nz = a->nz, bs2 = a->bs2;

2139:   PetscFunctionBegin;
2140:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");
2141:   PetscCheck(a->i[mbs] == nz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupt matrix");

2143:   *B = NULL;
2144:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2145:   PetscCall(MatSetSizes(C, A->rmap->N, A->cmap->n, A->rmap->N, A->cmap->n));
2146:   PetscCall(MatSetBlockSizesFromMats(C, A, A));
2147:   PetscCall(MatSetType(C, MATSEQSBAIJ));
2148:   c = (Mat_SeqSBAIJ *)C->data;

2150:   C->preallocated       = PETSC_TRUE;
2151:   C->factortype         = A->factortype;
2152:   c->row                = NULL;
2153:   c->icol               = NULL;
2154:   c->saved_values       = NULL;
2155:   c->keepnonzeropattern = a->keepnonzeropattern;
2156:   C->assembled          = PETSC_TRUE;

2158:   PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
2159:   PetscCall(PetscLayoutReference(A->cmap, &C->cmap));
2160:   c->bs2 = a->bs2;
2161:   c->mbs = a->mbs;
2162:   c->nbs = a->nbs;

2164:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2165:     c->imax           = a->imax;
2166:     c->ilen           = a->ilen;
2167:     c->free_imax_ilen = PETSC_FALSE;
2168:   } else {
2169:     PetscCall(PetscMalloc2((mbs + 1), &c->imax, (mbs + 1), &c->ilen));
2170:     for (i = 0; i < mbs; i++) {
2171:       c->imax[i] = a->imax[i];
2172:       c->ilen[i] = a->ilen[i];
2173:     }
2174:     c->free_imax_ilen = PETSC_TRUE;
2175:   }

2177:   /* allocate the matrix space */
2178:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2179:     PetscCall(PetscMalloc1(bs2 * nz, &c->a));
2180:     c->i            = a->i;
2181:     c->j            = a->j;
2182:     c->singlemalloc = PETSC_FALSE;
2183:     c->free_a       = PETSC_TRUE;
2184:     c->free_ij      = PETSC_FALSE;
2185:     c->parent       = A;
2186:     PetscCall(PetscObjectReference((PetscObject)A));
2187:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2188:     PetscCall(MatSetOption(C, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2189:   } else {
2190:     PetscCall(PetscMalloc3(bs2 * nz, &c->a, nz, &c->j, mbs + 1, &c->i));
2191:     PetscCall(PetscArraycpy(c->i, a->i, mbs + 1));
2192:     c->singlemalloc = PETSC_TRUE;
2193:     c->free_a       = PETSC_TRUE;
2194:     c->free_ij      = PETSC_TRUE;
2195:   }
2196:   if (mbs > 0) {
2197:     if (cpvalues != MAT_SHARE_NONZERO_PATTERN) PetscCall(PetscArraycpy(c->j, a->j, nz));
2198:     if (cpvalues == MAT_COPY_VALUES) {
2199:       PetscCall(PetscArraycpy(c->a, a->a, bs2 * nz));
2200:     } else {
2201:       PetscCall(PetscArrayzero(c->a, bs2 * nz));
2202:     }
2203:     if (a->jshort) {
2204:       /* cannot share jshort, it is reallocated in MatAssemblyEnd_SeqSBAIJ() */
2205:       /* if the parent matrix is reassembled, this child matrix will never notice */
2206:       PetscCall(PetscMalloc1(nz, &c->jshort));
2207:       PetscCall(PetscArraycpy(c->jshort, a->jshort, nz));

2209:       c->free_jshort = PETSC_TRUE;
2210:     }
2211:   }

2213:   c->roworiented = a->roworiented;
2214:   c->nonew       = a->nonew;

2216:   if (a->diag) {
2217:     if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2218:       c->diag      = a->diag;
2219:       c->free_diag = PETSC_FALSE;
2220:     } else {
2221:       PetscCall(PetscMalloc1(mbs, &c->diag));
2222:       for (i = 0; i < mbs; i++) c->diag[i] = a->diag[i];
2223:       c->free_diag = PETSC_TRUE;
2224:     }
2225:   }
2226:   c->nz         = a->nz;
2227:   c->maxnz      = a->nz; /* Since we allocate exactly the right amount */
2228:   c->solve_work = NULL;
2229:   c->mult_work  = NULL;

2231:   *B = C;
2232:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
2233:   PetscFunctionReturn(PETSC_SUCCESS);
2234: }

2236: /* Used for both SeqBAIJ and SeqSBAIJ matrices */
2237: #define MatLoad_SeqSBAIJ_Binary MatLoad_SeqBAIJ_Binary

2239: PetscErrorCode MatLoad_SeqSBAIJ(Mat mat, PetscViewer viewer)
2240: {
2241:   PetscBool isbinary;

2243:   PetscFunctionBegin;
2244:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
2245:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
2246:   PetscCall(MatLoad_SeqSBAIJ_Binary(mat, viewer));
2247:   PetscFunctionReturn(PETSC_SUCCESS);
2248: }

2250: /*@
2251:      MatCreateSeqSBAIJWithArrays - Creates an sequential `MATSEQSBAIJ` matrix using matrix elements
2252:               (upper triangular entries in CSR format) provided by the user.

2254:      Collective

2256:    Input Parameters:
2257: +  comm - must be an MPI communicator of size 1
2258: .  bs - size of block
2259: .  m - number of rows
2260: .  n - number of columns
2261: .  i - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that row block row of the matrix
2262: .  j - column indices
2263: -  a - matrix values

2265:    Output Parameter:
2266: .  mat - the matrix

2268:    Level: advanced

2270:    Notes:
2271:        The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
2272:     once the matrix is destroyed

2274:        You cannot set new nonzero locations into this matrix, that will generate an error.

2276:        The `i` and `j` indices are 0 based

2278:        When block size is greater than 1 the matrix values must be stored using the `MATSBAIJ` storage format. For block size of 1
2279:        it is the regular CSR format excluding the lower triangular elements.

2281: .seealso: [](chapter_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSBAIJ()`, `MatCreateSeqSBAIJ()`
2282: @*/
2283: PetscErrorCode MatCreateSeqSBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
2284: {
2285:   PetscInt      ii;
2286:   Mat_SeqSBAIJ *sbaij;

2288:   PetscFunctionBegin;
2289:   PetscCheck(bs == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "block size %" PetscInt_FMT " > 1 is not supported yet", bs);
2290:   PetscCheck(m == 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");

2292:   PetscCall(MatCreate(comm, mat));
2293:   PetscCall(MatSetSizes(*mat, m, n, m, n));
2294:   PetscCall(MatSetType(*mat, MATSEQSBAIJ));
2295:   PetscCall(MatSeqSBAIJSetPreallocation(*mat, bs, MAT_SKIP_ALLOCATION, NULL));
2296:   sbaij = (Mat_SeqSBAIJ *)(*mat)->data;
2297:   PetscCall(PetscMalloc2(m, &sbaij->imax, m, &sbaij->ilen));

2299:   sbaij->i = i;
2300:   sbaij->j = j;
2301:   sbaij->a = a;

2303:   sbaij->singlemalloc   = PETSC_FALSE;
2304:   sbaij->nonew          = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
2305:   sbaij->free_a         = PETSC_FALSE;
2306:   sbaij->free_ij        = PETSC_FALSE;
2307:   sbaij->free_imax_ilen = PETSC_TRUE;

2309:   for (ii = 0; ii < m; ii++) {
2310:     sbaij->ilen[ii] = sbaij->imax[ii] = i[ii + 1] - i[ii];
2311:     PetscCheck(i[ii + 1] >= i[ii], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
2312:   }
2313:   if (PetscDefined(USE_DEBUG)) {
2314:     for (ii = 0; ii < sbaij->i[m]; ii++) {
2315:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
2316:       PetscCheck(j[ii] < n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index too large at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
2317:     }
2318:   }

2320:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
2321:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
2322:   PetscFunctionReturn(PETSC_SUCCESS);
2323: }

2325: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
2326: {
2327:   PetscFunctionBegin;
2328:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPISBAIJ(comm, inmat, n, scall, outmat));
2329:   PetscFunctionReturn(PETSC_SUCCESS);
2330: }