Actual source code: dualspace.c
1: #include <petsc/private/petscfeimpl.h>
2: #include <petscdmplex.h>
4: PetscClassId PETSCDUALSPACE_CLASSID = 0;
6: PetscLogEvent PETSCDUALSPACE_SetUp;
8: PetscFunctionList PetscDualSpaceList = NULL;
9: PetscBool PetscDualSpaceRegisterAllCalled = PETSC_FALSE;
11: /*
12: PetscDualSpaceLatticePointLexicographic_Internal - Returns all tuples of size 'len' with nonnegative integers that sum up to at most 'max'.
13: Ordering is lexicographic with lowest index as least significant in ordering.
14: e.g. for len == 2 and max == 2, this will return, in order, {0,0}, {1,0}, {2,0}, {0,1}, {1,1}, {0,2}.
16: Input Parameters:
17: + len - The length of the tuple
18: . max - The maximum sum
19: - tup - A tuple of length len+1: tup[len] > 0 indicates a stopping condition
21: Output Parameter:
22: . tup - A tuple of len integers whose sum is at most 'max'
24: Level: developer
26: .seealso: `PetscDualSpaceType`, `PetscDualSpaceTensorPointLexicographic_Internal()`
27: */
28: PetscErrorCode PetscDualSpaceLatticePointLexicographic_Internal(PetscInt len, PetscInt max, PetscInt tup[])
29: {
30: PetscFunctionBegin;
31: while (len--) {
32: max -= tup[len];
33: if (!max) {
34: tup[len] = 0;
35: break;
36: }
37: }
38: tup[++len]++;
39: PetscFunctionReturn(PETSC_SUCCESS);
40: }
42: /*
43: PetscDualSpaceTensorPointLexicographic_Internal - Returns all tuples of size 'len' with nonnegative integers that are all less than or equal to 'max'.
44: Ordering is lexicographic with lowest index as least significant in ordering.
45: e.g. for len == 2 and max == 2, this will return, in order, {0,0}, {1,0}, {2,0}, {0,1}, {1,1}, {2,1}, {0,2}, {1,2}, {2,2}.
47: Input Parameters:
48: + len - The length of the tuple
49: . max - The maximum value
50: - tup - A tuple of length len+1: tup[len] > 0 indicates a stopping condition
52: Output Parameter:
53: . tup - A tuple of len integers whose entries are at most 'max'
55: Level: developer
57: .seealso: `PetscDualSpaceType`, `PetscDualSpaceLatticePointLexicographic_Internal()`
58: */
59: PetscErrorCode PetscDualSpaceTensorPointLexicographic_Internal(PetscInt len, PetscInt max, PetscInt tup[])
60: {
61: PetscInt i;
63: PetscFunctionBegin;
64: for (i = 0; i < len; i++) {
65: if (tup[i] < max) {
66: break;
67: } else {
68: tup[i] = 0;
69: }
70: }
71: tup[i]++;
72: PetscFunctionReturn(PETSC_SUCCESS);
73: }
75: /*@C
76: PetscDualSpaceRegister - Adds a new `PetscDualSpaceType`
78: Not Collective
80: Input Parameters:
81: + name - The name of a new user-defined creation routine
82: - create_func - The creation routine itself
84: Sample usage:
85: .vb
86: PetscDualSpaceRegister("my_space", MyPetscDualSpaceCreate);
87: .ve
89: Then, your PetscDualSpace type can be chosen with the procedural interface via
90: .vb
91: PetscDualSpaceCreate(MPI_Comm, PetscDualSpace *);
92: PetscDualSpaceSetType(PetscDualSpace, "my_dual_space");
93: .ve
94: or at runtime via the option
95: .vb
96: -petscdualspace_type my_dual_space
97: .ve
99: Level: advanced
101: Note:
102: `PetscDualSpaceRegister()` may be called multiple times to add several user-defined `PetscDualSpace`
104: .seealso: `PetscDualSpace`, `PetscDualSpaceType`, `PetscDualSpaceRegisterAll()`, `PetscDualSpaceRegisterDestroy()`
105: @*/
106: PetscErrorCode PetscDualSpaceRegister(const char sname[], PetscErrorCode (*function)(PetscDualSpace))
107: {
108: PetscFunctionBegin;
109: PetscCall(PetscFunctionListAdd(&PetscDualSpaceList, sname, function));
110: PetscFunctionReturn(PETSC_SUCCESS);
111: }
113: /*@C
114: PetscDualSpaceSetType - Builds a particular `PetscDualSpace` based on its `PetscDualSpaceType`
116: Collective on sp
118: Input Parameters:
119: + sp - The `PetscDualSpace` object
120: - name - The kind of space
122: Options Database Key:
123: . -petscdualspace_type <type> - Sets the PetscDualSpace type; use -help for a list of available types
125: Level: intermediate
127: .seealso: `PetscDualSpace`, `PetscDualSpaceType`, `PetscDualSpaceGetType()`, `PetscDualSpaceCreate()`
128: @*/
129: PetscErrorCode PetscDualSpaceSetType(PetscDualSpace sp, PetscDualSpaceType name)
130: {
131: PetscErrorCode (*r)(PetscDualSpace);
132: PetscBool match;
134: PetscFunctionBegin;
136: PetscCall(PetscObjectTypeCompare((PetscObject)sp, name, &match));
137: if (match) PetscFunctionReturn(PETSC_SUCCESS);
139: if (!PetscDualSpaceRegisterAllCalled) PetscCall(PetscDualSpaceRegisterAll());
140: PetscCall(PetscFunctionListFind(PetscDualSpaceList, name, &r));
141: PetscCheck(r, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscDualSpace type: %s", name);
143: PetscTryTypeMethod(sp, destroy);
144: sp->ops->destroy = NULL;
146: PetscCall((*r)(sp));
147: PetscCall(PetscObjectChangeTypeName((PetscObject)sp, name));
148: PetscFunctionReturn(PETSC_SUCCESS);
149: }
151: /*@C
152: PetscDualSpaceGetType - Gets the `PetscDualSpaceType` name (as a string) from the object.
154: Not Collective
156: Input Parameter:
157: . sp - The `PetscDualSpace`
159: Output Parameter:
160: . name - The `PetscDualSpaceType` name
162: Level: intermediate
164: .seealso: `PetscDualSpace`, `PetscDualSpaceType`, `PetscDualSpaceSetType()`, `PetscDualSpaceCreate()`
165: @*/
166: PetscErrorCode PetscDualSpaceGetType(PetscDualSpace sp, PetscDualSpaceType *name)
167: {
168: PetscFunctionBegin;
171: if (!PetscDualSpaceRegisterAllCalled) PetscCall(PetscDualSpaceRegisterAll());
172: *name = ((PetscObject)sp)->type_name;
173: PetscFunctionReturn(PETSC_SUCCESS);
174: }
176: static PetscErrorCode PetscDualSpaceView_ASCII(PetscDualSpace sp, PetscViewer v)
177: {
178: PetscViewerFormat format;
179: PetscInt pdim, f;
181: PetscFunctionBegin;
182: PetscCall(PetscDualSpaceGetDimension(sp, &pdim));
183: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)sp, v));
184: PetscCall(PetscViewerASCIIPushTab(v));
185: if (sp->k) {
186: PetscCall(PetscViewerASCIIPrintf(v, "Dual space for %" PetscInt_FMT "-forms %swith %" PetscInt_FMT " components, size %" PetscInt_FMT "\n", PetscAbsInt(sp->k), sp->k < 0 ? "(stored in dual form) " : "", sp->Nc, pdim));
187: } else {
188: PetscCall(PetscViewerASCIIPrintf(v, "Dual space with %" PetscInt_FMT " components, size %" PetscInt_FMT "\n", sp->Nc, pdim));
189: }
190: PetscTryTypeMethod(sp, view, v);
191: PetscCall(PetscViewerGetFormat(v, &format));
192: if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
193: PetscCall(PetscViewerASCIIPushTab(v));
194: for (f = 0; f < pdim; ++f) {
195: PetscCall(PetscViewerASCIIPrintf(v, "Dual basis vector %" PetscInt_FMT "\n", f));
196: PetscCall(PetscViewerASCIIPushTab(v));
197: PetscCall(PetscQuadratureView(sp->functional[f], v));
198: PetscCall(PetscViewerASCIIPopTab(v));
199: }
200: PetscCall(PetscViewerASCIIPopTab(v));
201: }
202: PetscCall(PetscViewerASCIIPopTab(v));
203: PetscFunctionReturn(PETSC_SUCCESS);
204: }
206: /*@C
207: PetscDualSpaceViewFromOptions - View a `PetscDualSpace` based on values in the options database
209: Collective on A
211: Input Parameters:
212: + A - the `PetscDualSpace` object
213: . obj - Optional object, provides the options prefix
214: - name - command line option name
216: Level: intermediate
218: .seealso: `PetscDualSpace`, `PetscDualSpaceView()`, `PetscObjectViewFromOptions()`, `PetscDualSpaceCreate()`
219: @*/
220: PetscErrorCode PetscDualSpaceViewFromOptions(PetscDualSpace A, PetscObject obj, const char name[])
221: {
222: PetscFunctionBegin;
224: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
225: PetscFunctionReturn(PETSC_SUCCESS);
226: }
228: /*@
229: PetscDualSpaceView - Views a `PetscDualSpace`
231: Collective on sp
233: Input Parameters:
234: + sp - the `PetscDualSpace` object to view
235: - v - the viewer
237: Level: beginner
239: .seealso: `PetscViewer`, `PetscDualSpaceDestroy()`, `PetscDualSpace`
240: @*/
241: PetscErrorCode PetscDualSpaceView(PetscDualSpace sp, PetscViewer v)
242: {
243: PetscBool iascii;
245: PetscFunctionBegin;
248: if (!v) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)sp), &v));
249: PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERASCII, &iascii));
250: if (iascii) PetscCall(PetscDualSpaceView_ASCII(sp, v));
251: PetscFunctionReturn(PETSC_SUCCESS);
252: }
254: /*@
255: PetscDualSpaceSetFromOptions - sets parameters in a `PetscDualSpace` from the options database
257: Collective on sp
259: Input Parameter:
260: . sp - the `PetscDualSpace` object to set options for
262: Options Database Keys:
263: + -petscdualspace_order <order> - the approximation order of the space
264: . -petscdualspace_form_degree <deg> - the form degree, say 0 for point evaluations, or 2 for area integrals
265: . -petscdualspace_components <c> - the number of components, say d for a vector field
266: . -petscdualspace_refcell <celltype> - Reference cell type name
267: . -petscdualspace_lagrange_continuity - Flag for continuous element
268: . -petscdualspace_lagrange_tensor - Flag for tensor dual space
269: . -petscdualspace_lagrange_trimmed - Flag for trimmed dual space
270: . -petscdualspace_lagrange_node_type <nodetype> - Lagrange node location type
271: . -petscdualspace_lagrange_node_endpoints - Flag for nodes that include endpoints
272: . -petscdualspace_lagrange_node_exponent - Gauss-Jacobi weight function exponent
273: . -petscdualspace_lagrange_use_moments - Use moments (where appropriate) for functionals
274: - -petscdualspace_lagrange_moment_order <order> - Quadrature order for moment functionals
276: Level: intermediate
278: .seealso: `PetscDualSpaceView()`, `PetscDualSpace`, `PetscObjectSetFromOptions()`
279: @*/
280: PetscErrorCode PetscDualSpaceSetFromOptions(PetscDualSpace sp)
281: {
282: DMPolytopeType refCell = DM_POLYTOPE_TRIANGLE;
283: const char *defaultType;
284: char name[256];
285: PetscBool flg;
287: PetscFunctionBegin;
289: if (!((PetscObject)sp)->type_name) {
290: defaultType = PETSCDUALSPACELAGRANGE;
291: } else {
292: defaultType = ((PetscObject)sp)->type_name;
293: }
294: if (!PetscSpaceRegisterAllCalled) PetscCall(PetscSpaceRegisterAll());
296: PetscObjectOptionsBegin((PetscObject)sp);
297: PetscCall(PetscOptionsFList("-petscdualspace_type", "Dual space", "PetscDualSpaceSetType", PetscDualSpaceList, defaultType, name, 256, &flg));
298: if (flg) {
299: PetscCall(PetscDualSpaceSetType(sp, name));
300: } else if (!((PetscObject)sp)->type_name) {
301: PetscCall(PetscDualSpaceSetType(sp, defaultType));
302: }
303: PetscCall(PetscOptionsBoundedInt("-petscdualspace_order", "The approximation order", "PetscDualSpaceSetOrder", sp->order, &sp->order, NULL, 0));
304: PetscCall(PetscOptionsInt("-petscdualspace_form_degree", "The form degree of the dofs", "PetscDualSpaceSetFormDegree", sp->k, &sp->k, NULL));
305: PetscCall(PetscOptionsBoundedInt("-petscdualspace_components", "The number of components", "PetscDualSpaceSetNumComponents", sp->Nc, &sp->Nc, NULL, 1));
306: PetscTryTypeMethod(sp, setfromoptions, PetscOptionsObject);
307: PetscCall(PetscOptionsEnum("-petscdualspace_refcell", "Reference cell shape", "PetscDualSpaceSetReferenceCell", DMPolytopeTypes, (PetscEnum)refCell, (PetscEnum *)&refCell, &flg));
308: if (flg) {
309: DM K;
311: PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, refCell, &K));
312: PetscCall(PetscDualSpaceSetDM(sp, K));
313: PetscCall(DMDestroy(&K));
314: }
316: /* process any options handlers added with PetscObjectAddOptionsHandler() */
317: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)sp, PetscOptionsObject));
318: PetscOptionsEnd();
319: sp->setfromoptionscalled = PETSC_TRUE;
320: PetscFunctionReturn(PETSC_SUCCESS);
321: }
323: /*@
324: PetscDualSpaceSetUp - Construct a basis for a `PetscDualSpace`
326: Collective on sp
328: Input Parameter:
329: . sp - the `PetscDualSpace` object to setup
331: Level: intermediate
333: .seealso: `PetscDualSpaceView()`, `PetscDualSpaceDestroy()`, `PetscDualSpace`
334: @*/
335: PetscErrorCode PetscDualSpaceSetUp(PetscDualSpace sp)
336: {
337: PetscFunctionBegin;
339: if (sp->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
340: PetscCall(PetscLogEventBegin(PETSCDUALSPACE_SetUp, sp, 0, 0, 0));
341: sp->setupcalled = PETSC_TRUE;
342: PetscTryTypeMethod(sp, setup);
343: PetscCall(PetscLogEventEnd(PETSCDUALSPACE_SetUp, sp, 0, 0, 0));
344: if (sp->setfromoptionscalled) PetscCall(PetscDualSpaceViewFromOptions(sp, NULL, "-petscdualspace_view"));
345: PetscFunctionReturn(PETSC_SUCCESS);
346: }
348: static PetscErrorCode PetscDualSpaceClearDMData_Internal(PetscDualSpace sp, DM dm)
349: {
350: PetscInt pStart = -1, pEnd = -1, depth = -1;
352: PetscFunctionBegin;
353: if (!dm) PetscFunctionReturn(PETSC_SUCCESS);
354: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
355: PetscCall(DMPlexGetDepth(dm, &depth));
357: if (sp->pointSpaces) {
358: PetscInt i;
360: for (i = 0; i < pEnd - pStart; i++) PetscCall(PetscDualSpaceDestroy(&(sp->pointSpaces[i])));
361: }
362: PetscCall(PetscFree(sp->pointSpaces));
364: if (sp->heightSpaces) {
365: PetscInt i;
367: for (i = 0; i <= depth; i++) PetscCall(PetscDualSpaceDestroy(&(sp->heightSpaces[i])));
368: }
369: PetscCall(PetscFree(sp->heightSpaces));
371: PetscCall(PetscSectionDestroy(&(sp->pointSection)));
372: PetscCall(PetscQuadratureDestroy(&(sp->intNodes)));
373: PetscCall(VecDestroy(&(sp->intDofValues)));
374: PetscCall(VecDestroy(&(sp->intNodeValues)));
375: PetscCall(MatDestroy(&(sp->intMat)));
376: PetscCall(PetscQuadratureDestroy(&(sp->allNodes)));
377: PetscCall(VecDestroy(&(sp->allDofValues)));
378: PetscCall(VecDestroy(&(sp->allNodeValues)));
379: PetscCall(MatDestroy(&(sp->allMat)));
380: PetscCall(PetscFree(sp->numDof));
381: PetscFunctionReturn(PETSC_SUCCESS);
382: }
384: /*@
385: PetscDualSpaceDestroy - Destroys a `PetscDualSpace` object
387: Collective on sp
389: Input Parameter:
390: . sp - the `PetscDualSpace` object to destroy
392: Level: beginner
394: .seealso: `PetscDualSpace`, `PetscDualSpaceView()`, `PetscDualSpace()`, `PetscDualSpaceCreate()`
395: @*/
396: PetscErrorCode PetscDualSpaceDestroy(PetscDualSpace *sp)
397: {
398: PetscInt dim, f;
399: DM dm;
401: PetscFunctionBegin;
402: if (!*sp) PetscFunctionReturn(PETSC_SUCCESS);
405: if (--((PetscObject)(*sp))->refct > 0) {
406: *sp = NULL;
407: PetscFunctionReturn(PETSC_SUCCESS);
408: }
409: ((PetscObject)(*sp))->refct = 0;
411: PetscCall(PetscDualSpaceGetDimension(*sp, &dim));
412: dm = (*sp)->dm;
414: PetscTryTypeMethod((*sp), destroy);
415: PetscCall(PetscDualSpaceClearDMData_Internal(*sp, dm));
417: for (f = 0; f < dim; ++f) PetscCall(PetscQuadratureDestroy(&(*sp)->functional[f]));
418: PetscCall(PetscFree((*sp)->functional));
419: PetscCall(DMDestroy(&(*sp)->dm));
420: PetscCall(PetscHeaderDestroy(sp));
421: PetscFunctionReturn(PETSC_SUCCESS);
422: }
424: /*@
425: PetscDualSpaceCreate - Creates an empty `PetscDualSpace` object. The type can then be set with `PetscDualSpaceSetType()`.
427: Collective
429: Input Parameter:
430: . comm - The communicator for the `PetscDualSpace` object
432: Output Parameter:
433: . sp - The `PetscDualSpace` object
435: Level: beginner
437: .seealso: `PetscDualSpace`, `PetscDualSpaceSetType()`, `PETSCDUALSPACELAGRANGE`
438: @*/
439: PetscErrorCode PetscDualSpaceCreate(MPI_Comm comm, PetscDualSpace *sp)
440: {
441: PetscDualSpace s;
443: PetscFunctionBegin;
445: PetscCall(PetscCitationsRegister(FECitation, &FEcite));
446: *sp = NULL;
447: PetscCall(PetscFEInitializePackage());
449: PetscCall(PetscHeaderCreate(s, PETSCDUALSPACE_CLASSID, "PetscDualSpace", "Dual Space", "PetscDualSpace", comm, PetscDualSpaceDestroy, PetscDualSpaceView));
451: s->order = 0;
452: s->Nc = 1;
453: s->k = 0;
454: s->spdim = -1;
455: s->spintdim = -1;
456: s->uniform = PETSC_TRUE;
457: s->setupcalled = PETSC_FALSE;
459: *sp = s;
460: PetscFunctionReturn(PETSC_SUCCESS);
461: }
463: /*@
464: PetscDualSpaceDuplicate - Creates a duplicate `PetscDualSpace` object that is not setup.
466: Collective on sp
468: Input Parameter:
469: . sp - The original `PetscDualSpace`
471: Output Parameter:
472: . spNew - The duplicate `PetscDualSpace`
474: Level: beginner
476: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`, `PetscDualSpaceSetType()`
477: @*/
478: PetscErrorCode PetscDualSpaceDuplicate(PetscDualSpace sp, PetscDualSpace *spNew)
479: {
480: DM dm;
481: PetscDualSpaceType type;
482: const char *name;
484: PetscFunctionBegin;
487: PetscCall(PetscDualSpaceCreate(PetscObjectComm((PetscObject)sp), spNew));
488: PetscCall(PetscObjectGetName((PetscObject)sp, &name));
489: PetscCall(PetscObjectSetName((PetscObject)*spNew, name));
490: PetscCall(PetscDualSpaceGetType(sp, &type));
491: PetscCall(PetscDualSpaceSetType(*spNew, type));
492: PetscCall(PetscDualSpaceGetDM(sp, &dm));
493: PetscCall(PetscDualSpaceSetDM(*spNew, dm));
495: (*spNew)->order = sp->order;
496: (*spNew)->k = sp->k;
497: (*spNew)->Nc = sp->Nc;
498: (*spNew)->uniform = sp->uniform;
499: PetscTryTypeMethod(sp, duplicate, *spNew);
500: PetscFunctionReturn(PETSC_SUCCESS);
501: }
503: /*@
504: PetscDualSpaceGetDM - Get the `DM` representing the reference cell of a `PetscDualSpace`
506: Not collective
508: Input Parameter:
509: . sp - The `PetscDualSpace`
511: Output Parameter:
512: . dm - The reference cell, that is a `DM` that consists of a single cell
514: Level: intermediate
516: .seealso: `PetscDualSpace`, `PetscDualSpaceSetDM()`, `PetscDualSpaceCreate()`
517: @*/
518: PetscErrorCode PetscDualSpaceGetDM(PetscDualSpace sp, DM *dm)
519: {
520: PetscFunctionBegin;
523: *dm = sp->dm;
524: PetscFunctionReturn(PETSC_SUCCESS);
525: }
527: /*@
528: PetscDualSpaceSetDM - Get the `DM` representing the reference cell
530: Not collective
532: Input Parameters:
533: + sp - The `PetscDual`Space
534: - dm - The reference cell
536: Level: intermediate
538: .seealso: `PetscDualSpace`, `DM`, `PetscDualSpaceGetDM()`, `PetscDualSpaceCreate()`
539: @*/
540: PetscErrorCode PetscDualSpaceSetDM(PetscDualSpace sp, DM dm)
541: {
542: PetscFunctionBegin;
545: PetscCheck(!sp->setupcalled, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change DM after dualspace is set up");
546: PetscCall(PetscObjectReference((PetscObject)dm));
547: if (sp->dm && sp->dm != dm) PetscCall(PetscDualSpaceClearDMData_Internal(sp, sp->dm));
548: PetscCall(DMDestroy(&sp->dm));
549: sp->dm = dm;
550: PetscFunctionReturn(PETSC_SUCCESS);
551: }
553: /*@
554: PetscDualSpaceGetOrder - Get the order of the dual space
556: Not collective
558: Input Parameter:
559: . sp - The `PetscDualSpace`
561: Output Parameter:
562: . order - The order
564: Level: intermediate
566: .seealso: `PetscDualSpace`, `PetscDualSpaceSetOrder()`, `PetscDualSpaceCreate()`
567: @*/
568: PetscErrorCode PetscDualSpaceGetOrder(PetscDualSpace sp, PetscInt *order)
569: {
570: PetscFunctionBegin;
573: *order = sp->order;
574: PetscFunctionReturn(PETSC_SUCCESS);
575: }
577: /*@
578: PetscDualSpaceSetOrder - Set the order of the dual space
580: Not collective
582: Input Parameters:
583: + sp - The `PetscDualSpace`
584: - order - The order
586: Level: intermediate
588: .seealso: `PetscDualSpace`, `PetscDualSpaceGetOrder()`, `PetscDualSpaceCreate()`
589: @*/
590: PetscErrorCode PetscDualSpaceSetOrder(PetscDualSpace sp, PetscInt order)
591: {
592: PetscFunctionBegin;
594: PetscCheck(!sp->setupcalled, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change order after dualspace is set up");
595: sp->order = order;
596: PetscFunctionReturn(PETSC_SUCCESS);
597: }
599: /*@
600: PetscDualSpaceGetNumComponents - Return the number of components for this space
602: Input Parameter:
603: . sp - The `PetscDualSpace`
605: Output Parameter:
606: . Nc - The number of components
608: Level: intermediate
610: Note:
611: A vector space, for example, will have d components, where d is the spatial dimension
613: .seealso: `PetscDualSpaceSetNumComponents()`, `PetscDualSpaceGetDimension()`, `PetscDualSpaceCreate()`, `PetscDualSpace`
614: @*/
615: PetscErrorCode PetscDualSpaceGetNumComponents(PetscDualSpace sp, PetscInt *Nc)
616: {
617: PetscFunctionBegin;
620: *Nc = sp->Nc;
621: PetscFunctionReturn(PETSC_SUCCESS);
622: }
624: /*@
625: PetscDualSpaceSetNumComponents - Set the number of components for this space
627: Input Parameters:
628: + sp - The `PetscDualSpace`
629: - order - The number of components
631: Level: intermediate
633: .seealso: `PetscDualSpaceGetNumComponents()`, `PetscDualSpaceCreate()`, `PetscDualSpace`
634: @*/
635: PetscErrorCode PetscDualSpaceSetNumComponents(PetscDualSpace sp, PetscInt Nc)
636: {
637: PetscFunctionBegin;
639: PetscCheck(!sp->setupcalled, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change number of components after dualspace is set up");
640: sp->Nc = Nc;
641: PetscFunctionReturn(PETSC_SUCCESS);
642: }
644: /*@
645: PetscDualSpaceGetFunctional - Get the i-th basis functional in the dual space
647: Not collective
649: Input Parameters:
650: + sp - The `PetscDualSpace`
651: - i - The basis number
653: Output Parameter:
654: . functional - The basis functional
656: Level: intermediate
658: .seealso: `PetscDualSpace`, `PetscQuadrature`, `PetscDualSpaceGetDimension()`, `PetscDualSpaceCreate()`
659: @*/
660: PetscErrorCode PetscDualSpaceGetFunctional(PetscDualSpace sp, PetscInt i, PetscQuadrature *functional)
661: {
662: PetscInt dim;
664: PetscFunctionBegin;
667: PetscCall(PetscDualSpaceGetDimension(sp, &dim));
668: PetscCheck(!(i < 0) && !(i >= dim), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Functional index %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", i, dim);
669: *functional = sp->functional[i];
670: PetscFunctionReturn(PETSC_SUCCESS);
671: }
673: /*@
674: PetscDualSpaceGetDimension - Get the dimension of the dual space, i.e. the number of basis functionals
676: Not collective
678: Input Parameter:
679: . sp - The `PetscDualSpace`
681: Output Parameter:
682: . dim - The dimension
684: Level: intermediate
686: .seealso: `PetscDualSpace`, `PetscDualSpaceGetFunctional()`, `PetscDualSpaceCreate()`
687: @*/
688: PetscErrorCode PetscDualSpaceGetDimension(PetscDualSpace sp, PetscInt *dim)
689: {
690: PetscFunctionBegin;
693: if (sp->spdim < 0) {
694: PetscSection section;
696: PetscCall(PetscDualSpaceGetSection(sp, §ion));
697: if (section) {
698: PetscCall(PetscSectionGetStorageSize(section, &(sp->spdim)));
699: } else sp->spdim = 0;
700: }
701: *dim = sp->spdim;
702: PetscFunctionReturn(PETSC_SUCCESS);
703: }
705: /*@
706: PetscDualSpaceGetInteriorDimension - Get the interior dimension of the dual space, i.e. the number of basis functionals assigned to the interior of the reference domain
708: Not collective
710: Input Parameter:
711: . sp - The `PetscDualSpace`
713: Output Parameter:
714: . dim - The dimension
716: Level: intermediate
718: .seealso: `PetscDualSpace`, `PetscDualSpaceGetFunctional()`, `PetscDualSpaceCreate()`
719: @*/
720: PetscErrorCode PetscDualSpaceGetInteriorDimension(PetscDualSpace sp, PetscInt *intdim)
721: {
722: PetscFunctionBegin;
725: if (sp->spintdim < 0) {
726: PetscSection section;
728: PetscCall(PetscDualSpaceGetSection(sp, §ion));
729: if (section) {
730: PetscCall(PetscSectionGetConstrainedStorageSize(section, &(sp->spintdim)));
731: } else sp->spintdim = 0;
732: }
733: *intdim = sp->spintdim;
734: PetscFunctionReturn(PETSC_SUCCESS);
735: }
737: /*@
738: PetscDualSpaceGetUniform - Whether this dual space is uniform
740: Not collective
742: Input Parameters:
743: . sp - A dual space
745: Output Parameters:
746: . uniform - `PETSC_TRUE` if (a) the dual space is the same for each point in a stratum of the reference `DMPLEX`, and
747: (b) every symmetry of each point in the reference `DMPLEX` is also a symmetry of the point's dual space.
749: Level: advanced
751: Note:
752: All of the usual spaces on simplex or tensor-product elements will be uniform, only reference cells
753: with non-uniform strata (like trianguar-prisms) or anisotropic hp dual spaces will not be uniform.
755: .seealso: `PetscDualSpace`, `PetscDualSpaceGetPointSubspace()`, `PetscDualSpaceGetSymmetries()`
756: @*/
757: PetscErrorCode PetscDualSpaceGetUniform(PetscDualSpace sp, PetscBool *uniform)
758: {
759: PetscFunctionBegin;
762: *uniform = sp->uniform;
763: PetscFunctionReturn(PETSC_SUCCESS);
764: }
766: /*@C
767: PetscDualSpaceGetNumDof - Get the number of degrees of freedom for each spatial (topological) dimension
769: Not collective
771: Input Parameter:
772: . sp - The `PetscDualSpace`
774: Output Parameter:
775: . numDof - An array of length dim+1 which holds the number of dofs for each dimension
777: Level: intermediate
779: .seealso: `PetscDualSpace`, `PetscDualSpaceGetFunctional()`, `PetscDualSpaceCreate()`
780: @*/
781: PetscErrorCode PetscDualSpaceGetNumDof(PetscDualSpace sp, const PetscInt **numDof)
782: {
783: PetscFunctionBegin;
786: PetscCheck(sp->uniform, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "A non-uniform space does not have a fixed number of dofs for each height");
787: if (!sp->numDof) {
788: DM dm;
789: PetscInt depth, d;
790: PetscSection section;
792: PetscCall(PetscDualSpaceGetDM(sp, &dm));
793: PetscCall(DMPlexGetDepth(dm, &depth));
794: PetscCall(PetscCalloc1(depth + 1, &(sp->numDof)));
795: PetscCall(PetscDualSpaceGetSection(sp, §ion));
796: for (d = 0; d <= depth; d++) {
797: PetscInt dStart, dEnd;
799: PetscCall(DMPlexGetDepthStratum(dm, d, &dStart, &dEnd));
800: if (dEnd <= dStart) continue;
801: PetscCall(PetscSectionGetDof(section, dStart, &(sp->numDof[d])));
802: }
803: }
804: *numDof = sp->numDof;
805: PetscCheck(*numDof, PetscObjectComm((PetscObject)sp), PETSC_ERR_LIB, "Empty numDof[] returned from dual space implementation");
806: PetscFunctionReturn(PETSC_SUCCESS);
807: }
809: /* create the section of the right size and set a permutation for topological ordering */
810: PetscErrorCode PetscDualSpaceSectionCreate_Internal(PetscDualSpace sp, PetscSection *topSection)
811: {
812: DM dm;
813: PetscInt pStart, pEnd, cStart, cEnd, c, depth, count, i;
814: PetscInt *seen, *perm;
815: PetscSection section;
817: PetscFunctionBegin;
818: dm = sp->dm;
819: PetscCall(PetscSectionCreate(PETSC_COMM_SELF, §ion));
820: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
821: PetscCall(PetscSectionSetChart(section, pStart, pEnd));
822: PetscCall(PetscCalloc1(pEnd - pStart, &seen));
823: PetscCall(PetscMalloc1(pEnd - pStart, &perm));
824: PetscCall(DMPlexGetDepth(dm, &depth));
825: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd));
826: for (c = cStart, count = 0; c < cEnd; c++) {
827: PetscInt closureSize = -1, e;
828: PetscInt *closure = NULL;
830: perm[count++] = c;
831: seen[c - pStart] = 1;
832: PetscCall(DMPlexGetTransitiveClosure(dm, c, PETSC_TRUE, &closureSize, &closure));
833: for (e = 0; e < closureSize; e++) {
834: PetscInt point = closure[2 * e];
836: if (seen[point - pStart]) continue;
837: perm[count++] = point;
838: seen[point - pStart] = 1;
839: }
840: PetscCall(DMPlexRestoreTransitiveClosure(dm, c, PETSC_TRUE, &closureSize, &closure));
841: }
842: PetscCheck(count == pEnd - pStart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Bad topological ordering");
843: for (i = 0; i < pEnd - pStart; i++)
844: if (perm[i] != i) break;
845: if (i < pEnd - pStart) {
846: IS permIS;
848: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, pEnd - pStart, perm, PETSC_OWN_POINTER, &permIS));
849: PetscCall(ISSetPermutation(permIS));
850: PetscCall(PetscSectionSetPermutation(section, permIS));
851: PetscCall(ISDestroy(&permIS));
852: } else {
853: PetscCall(PetscFree(perm));
854: }
855: PetscCall(PetscFree(seen));
856: *topSection = section;
857: PetscFunctionReturn(PETSC_SUCCESS);
858: }
860: /* mark boundary points and set up */
861: PetscErrorCode PetscDualSpaceSectionSetUp_Internal(PetscDualSpace sp, PetscSection section)
862: {
863: DM dm;
864: DMLabel boundary;
865: PetscInt pStart, pEnd, p;
867: PetscFunctionBegin;
868: dm = sp->dm;
869: PetscCall(DMLabelCreate(PETSC_COMM_SELF, "boundary", &boundary));
870: PetscCall(PetscDualSpaceGetDM(sp, &dm));
871: PetscCall(DMPlexMarkBoundaryFaces(dm, 1, boundary));
872: PetscCall(DMPlexLabelComplete(dm, boundary));
873: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
874: for (p = pStart; p < pEnd; p++) {
875: PetscInt bval;
877: PetscCall(DMLabelGetValue(boundary, p, &bval));
878: if (bval == 1) {
879: PetscInt dof;
881: PetscCall(PetscSectionGetDof(section, p, &dof));
882: PetscCall(PetscSectionSetConstraintDof(section, p, dof));
883: }
884: }
885: PetscCall(DMLabelDestroy(&boundary));
886: PetscCall(PetscSectionSetUp(section));
887: PetscFunctionReturn(PETSC_SUCCESS);
888: }
890: /*@
891: PetscDualSpaceGetSection - Create a `PetscSection` over the reference cell with the layout from this space
893: Collective on sp
895: Input Parameters:
896: . sp - The `PetscDualSpace`
898: Output Parameter:
899: . section - The section
901: Level: advanced
903: .seealso: `PetscDualSpace`, `PetscSection`, `PetscDualSpaceCreate()`, `DMPLEX`
904: @*/
905: PetscErrorCode PetscDualSpaceGetSection(PetscDualSpace sp, PetscSection *section)
906: {
907: PetscInt pStart, pEnd, p;
909: PetscFunctionBegin;
910: if (!sp->dm) {
911: *section = NULL;
912: PetscFunctionReturn(PETSC_SUCCESS);
913: }
914: if (!sp->pointSection) {
915: /* mark the boundary */
916: PetscCall(PetscDualSpaceSectionCreate_Internal(sp, &(sp->pointSection)));
917: PetscCall(DMPlexGetChart(sp->dm, &pStart, &pEnd));
918: for (p = pStart; p < pEnd; p++) {
919: PetscDualSpace psp;
921: PetscCall(PetscDualSpaceGetPointSubspace(sp, p, &psp));
922: if (psp) {
923: PetscInt dof;
925: PetscCall(PetscDualSpaceGetInteriorDimension(psp, &dof));
926: PetscCall(PetscSectionSetDof(sp->pointSection, p, dof));
927: }
928: }
929: PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, sp->pointSection));
930: }
931: *section = sp->pointSection;
932: PetscFunctionReturn(PETSC_SUCCESS);
933: }
935: /* this assumes that all of the point dual spaces store their interior dofs first, which is true when the point DMs
936: * have one cell */
937: PetscErrorCode PetscDualSpacePushForwardSubspaces_Internal(PetscDualSpace sp, PetscInt sStart, PetscInt sEnd)
938: {
939: PetscReal *sv0, *v0, *J;
940: PetscSection section;
941: PetscInt dim, s, k;
942: DM dm;
944: PetscFunctionBegin;
945: PetscCall(PetscDualSpaceGetDM(sp, &dm));
946: PetscCall(DMGetDimension(dm, &dim));
947: PetscCall(PetscDualSpaceGetSection(sp, §ion));
948: PetscCall(PetscMalloc3(dim, &v0, dim, &sv0, dim * dim, &J));
949: PetscCall(PetscDualSpaceGetFormDegree(sp, &k));
950: for (s = sStart; s < sEnd; s++) {
951: PetscReal detJ, hdetJ;
952: PetscDualSpace ssp;
953: PetscInt dof, off, f, sdim;
954: PetscInt i, j;
955: DM sdm;
957: PetscCall(PetscDualSpaceGetPointSubspace(sp, s, &ssp));
958: if (!ssp) continue;
959: PetscCall(PetscSectionGetDof(section, s, &dof));
960: PetscCall(PetscSectionGetOffset(section, s, &off));
961: /* get the first vertex of the reference cell */
962: PetscCall(PetscDualSpaceGetDM(ssp, &sdm));
963: PetscCall(DMGetDimension(sdm, &sdim));
964: PetscCall(DMPlexComputeCellGeometryAffineFEM(sdm, 0, sv0, NULL, NULL, &hdetJ));
965: PetscCall(DMPlexComputeCellGeometryAffineFEM(dm, s, v0, J, NULL, &detJ));
966: /* compactify Jacobian */
967: for (i = 0; i < dim; i++)
968: for (j = 0; j < sdim; j++) J[i * sdim + j] = J[i * dim + j];
969: for (f = 0; f < dof; f++) {
970: PetscQuadrature fn;
972: PetscCall(PetscDualSpaceGetFunctional(ssp, f, &fn));
973: PetscCall(PetscQuadraturePushForward(fn, dim, sv0, v0, J, k, &(sp->functional[off + f])));
974: }
975: }
976: PetscCall(PetscFree3(v0, sv0, J));
977: PetscFunctionReturn(PETSC_SUCCESS);
978: }
980: /*@C
981: PetscDualSpaceApply - Apply a functional from the dual space basis to an input function
983: Input Parameters:
984: + sp - The `PetscDualSpace` object
985: . f - The basis functional index
986: . time - The time
987: . cgeom - A context with geometric information for this cell, we use v0 (the initial vertex) and J (the Jacobian) (or evaluated at the coordinates of the functional)
988: . numComp - The number of components for the function
989: . func - The input function
990: - ctx - A context for the function
992: Output Parameter:
993: . value - numComp output values
995: Calling Sequence of func:
996: .vb
997: func(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt numComponents, PetscScalar values[], void *ctx)
998: .ve
1000: Level: beginner
1002: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1003: @*/
1004: PetscErrorCode PetscDualSpaceApply(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFEGeom *cgeom, PetscInt numComp, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1005: {
1006: PetscFunctionBegin;
1010: PetscUseTypeMethod(sp, apply, f, time, cgeom, numComp, func, ctx, value);
1011: PetscFunctionReturn(PETSC_SUCCESS);
1012: }
1014: /*@C
1015: PetscDualSpaceApplyAll - Apply all functionals from the dual space basis to the result of an evaluation at the points returned by `PetscDualSpaceGetAllData()`
1017: Input Parameters:
1018: + sp - The `PetscDualSpace` object
1019: - pointEval - Evaluation at the points returned by `PetscDualSpaceGetAllData()`
1021: Output Parameter:
1022: . spValue - The values of all dual space functionals
1024: Level: advanced
1026: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1027: @*/
1028: PetscErrorCode PetscDualSpaceApplyAll(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1029: {
1030: PetscFunctionBegin;
1032: PetscUseTypeMethod(sp, applyall, pointEval, spValue);
1033: PetscFunctionReturn(PETSC_SUCCESS);
1034: }
1036: /*@C
1037: PetscDualSpaceApplyInterior - Apply interior functionals from the dual space basis to the result of an evaluation at the points returned by `PetscDualSpaceGetInteriorData()`
1039: Input Parameters:
1040: + sp - The `PetscDualSpace` object
1041: - pointEval - Evaluation at the points returned by `PetscDualSpaceGetInteriorData()`
1043: Output Parameter:
1044: . spValue - The values of interior dual space functionals
1046: Level: advanced
1048: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1049: @*/
1050: PetscErrorCode PetscDualSpaceApplyInterior(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1051: {
1052: PetscFunctionBegin;
1054: PetscUseTypeMethod(sp, applyint, pointEval, spValue);
1055: PetscFunctionReturn(PETSC_SUCCESS);
1056: }
1058: /*@C
1059: PetscDualSpaceApplyDefault - Apply a functional from the dual space basis to an input function by assuming a point evaluation functional.
1061: Input Parameters:
1062: + sp - The `PetscDualSpace` object
1063: . f - The basis functional index
1064: . time - The time
1065: . cgeom - A context with geometric information for this cell, we use v0 (the initial vertex) and J (the Jacobian)
1066: . Nc - The number of components for the function
1067: . func - The input function
1068: - ctx - A context for the function
1070: Output Parameter:
1071: . value - The output value
1073: Calling Sequence of func:
1074: .vb
1075: func(PetscInt dim, PetscReal time, const PetscReal x[],PetscInt numComponents, PetscScalar values[], void *ctx)
1076: .ve
1078: Level: advanced
1080: Note:
1081: The idea is to evaluate the functional as an integral $ n(f) = \int dx n(x) . f(x) $ where both n and f have Nc components.
1083: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1084: @*/
1085: PetscErrorCode PetscDualSpaceApplyDefault(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFEGeom *cgeom, PetscInt Nc, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1086: {
1087: DM dm;
1088: PetscQuadrature n;
1089: const PetscReal *points, *weights;
1090: PetscReal x[3];
1091: PetscScalar *val;
1092: PetscInt dim, dE, qNc, c, Nq, q;
1093: PetscBool isAffine;
1095: PetscFunctionBegin;
1098: PetscCall(PetscDualSpaceGetDM(sp, &dm));
1099: PetscCall(PetscDualSpaceGetFunctional(sp, f, &n));
1100: PetscCall(PetscQuadratureGetData(n, &dim, &qNc, &Nq, &points, &weights));
1101: PetscCheck(dim == cgeom->dim, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_SIZ, "The quadrature spatial dimension %" PetscInt_FMT " != cell geometry dimension %" PetscInt_FMT, dim, cgeom->dim);
1102: PetscCheck(qNc == Nc, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_SIZ, "The quadrature components %" PetscInt_FMT " != function components %" PetscInt_FMT, qNc, Nc);
1103: PetscCall(DMGetWorkArray(dm, Nc, MPIU_SCALAR, &val));
1104: *value = 0.0;
1105: isAffine = cgeom->isAffine;
1106: dE = cgeom->dimEmbed;
1107: for (q = 0; q < Nq; ++q) {
1108: if (isAffine) {
1109: CoordinatesRefToReal(dE, cgeom->dim, cgeom->xi, cgeom->v, cgeom->J, &points[q * dim], x);
1110: PetscCall((*func)(dE, time, x, Nc, val, ctx));
1111: } else {
1112: PetscCall((*func)(dE, time, &cgeom->v[dE * q], Nc, val, ctx));
1113: }
1114: for (c = 0; c < Nc; ++c) *value += val[c] * weights[q * Nc + c];
1115: }
1116: PetscCall(DMRestoreWorkArray(dm, Nc, MPIU_SCALAR, &val));
1117: PetscFunctionReturn(PETSC_SUCCESS);
1118: }
1120: /*@C
1121: PetscDualSpaceApplyAllDefault - Apply all functionals from the dual space basis to the result of an evaluation at the points returned by `PetscDualSpaceGetAllData()`
1123: Input Parameters:
1124: + sp - The `PetscDualSpace` object
1125: - pointEval - Evaluation at the points returned by `PetscDualSpaceGetAllData()`
1127: Output Parameter:
1128: . spValue - The values of all dual space functionals
1130: Level: advanced
1132: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1133: @*/
1134: PetscErrorCode PetscDualSpaceApplyAllDefault(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1135: {
1136: Vec pointValues, dofValues;
1137: Mat allMat;
1139: PetscFunctionBegin;
1143: PetscCall(PetscDualSpaceGetAllData(sp, NULL, &allMat));
1144: if (!(sp->allNodeValues)) PetscCall(MatCreateVecs(allMat, &(sp->allNodeValues), NULL));
1145: pointValues = sp->allNodeValues;
1146: if (!(sp->allDofValues)) PetscCall(MatCreateVecs(allMat, NULL, &(sp->allDofValues)));
1147: dofValues = sp->allDofValues;
1148: PetscCall(VecPlaceArray(pointValues, pointEval));
1149: PetscCall(VecPlaceArray(dofValues, spValue));
1150: PetscCall(MatMult(allMat, pointValues, dofValues));
1151: PetscCall(VecResetArray(dofValues));
1152: PetscCall(VecResetArray(pointValues));
1153: PetscFunctionReturn(PETSC_SUCCESS);
1154: }
1156: /*@C
1157: PetscDualSpaceApplyInteriorDefault - Apply interior functionals from the dual space basis to the result of an evaluation at the points returned by `PetscDualSpaceGetInteriorData()`
1159: Input Parameters:
1160: + sp - The `PetscDualSpace` object
1161: - pointEval - Evaluation at the points returned by `PetscDualSpaceGetInteriorData()`
1163: Output Parameter:
1164: . spValue - The values of interior dual space functionals
1166: Level: advanced
1168: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1169: @*/
1170: PetscErrorCode PetscDualSpaceApplyInteriorDefault(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1171: {
1172: Vec pointValues, dofValues;
1173: Mat intMat;
1175: PetscFunctionBegin;
1179: PetscCall(PetscDualSpaceGetInteriorData(sp, NULL, &intMat));
1180: if (!(sp->intNodeValues)) PetscCall(MatCreateVecs(intMat, &(sp->intNodeValues), NULL));
1181: pointValues = sp->intNodeValues;
1182: if (!(sp->intDofValues)) PetscCall(MatCreateVecs(intMat, NULL, &(sp->intDofValues)));
1183: dofValues = sp->intDofValues;
1184: PetscCall(VecPlaceArray(pointValues, pointEval));
1185: PetscCall(VecPlaceArray(dofValues, spValue));
1186: PetscCall(MatMult(intMat, pointValues, dofValues));
1187: PetscCall(VecResetArray(dofValues));
1188: PetscCall(VecResetArray(pointValues));
1189: PetscFunctionReturn(PETSC_SUCCESS);
1190: }
1192: /*@
1193: PetscDualSpaceGetAllData - Get all quadrature nodes from this space, and the matrix that sends quadrature node values to degree-of-freedom values
1195: Input Parameter:
1196: . sp - The dualspace
1198: Output Parameters:
1199: + allNodes - A `PetscQuadrature` object containing all evaluation nodes
1200: - allMat - A `Mat` for the node-to-dof transformation
1202: Level: advanced
1204: .seealso: `PetscQuadrature`, `PetscDualSpace`, `PetscDualSpaceCreate()`, `Mat`
1205: @*/
1206: PetscErrorCode PetscDualSpaceGetAllData(PetscDualSpace sp, PetscQuadrature *allNodes, Mat *allMat)
1207: {
1208: PetscFunctionBegin;
1212: if ((!sp->allNodes || !sp->allMat) && sp->ops->createalldata) {
1213: PetscQuadrature qpoints;
1214: Mat amat;
1216: PetscUseTypeMethod(sp, createalldata, &qpoints, &amat);
1217: PetscCall(PetscQuadratureDestroy(&(sp->allNodes)));
1218: PetscCall(MatDestroy(&(sp->allMat)));
1219: sp->allNodes = qpoints;
1220: sp->allMat = amat;
1221: }
1222: if (allNodes) *allNodes = sp->allNodes;
1223: if (allMat) *allMat = sp->allMat;
1224: PetscFunctionReturn(PETSC_SUCCESS);
1225: }
1227: /*@
1228: PetscDualSpaceCreateAllDataDefault - Create all evaluation nodes and the node-to-dof matrix by examining functionals
1230: Input Parameter:
1231: . sp - The dualspace
1233: Output Parameters:
1234: + allNodes - A `PetscQuadrature` object containing all evaluation nodes
1235: - allMat - A `Mat` for the node-to-dof transformation
1237: Level: advanced
1239: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`, `Mat`, `PetscQuadrature`
1240: @*/
1241: PetscErrorCode PetscDualSpaceCreateAllDataDefault(PetscDualSpace sp, PetscQuadrature *allNodes, Mat *allMat)
1242: {
1243: PetscInt spdim;
1244: PetscInt numPoints, offset;
1245: PetscReal *points;
1246: PetscInt f, dim;
1247: PetscInt Nc, nrows, ncols;
1248: PetscInt maxNumPoints;
1249: PetscQuadrature q;
1250: Mat A;
1252: PetscFunctionBegin;
1253: PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
1254: PetscCall(PetscDualSpaceGetDimension(sp, &spdim));
1255: if (!spdim) {
1256: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allNodes));
1257: PetscCall(PetscQuadratureSetData(*allNodes, 0, 0, 0, NULL, NULL));
1258: }
1259: nrows = spdim;
1260: PetscCall(PetscDualSpaceGetFunctional(sp, 0, &q));
1261: PetscCall(PetscQuadratureGetData(q, &dim, NULL, &numPoints, NULL, NULL));
1262: maxNumPoints = numPoints;
1263: for (f = 1; f < spdim; f++) {
1264: PetscInt Np;
1266: PetscCall(PetscDualSpaceGetFunctional(sp, f, &q));
1267: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Np, NULL, NULL));
1268: numPoints += Np;
1269: maxNumPoints = PetscMax(maxNumPoints, Np);
1270: }
1271: ncols = numPoints * Nc;
1272: PetscCall(PetscMalloc1(dim * numPoints, &points));
1273: PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, nrows, ncols, maxNumPoints * Nc, NULL, &A));
1274: for (f = 0, offset = 0; f < spdim; f++) {
1275: const PetscReal *p, *w;
1276: PetscInt Np, i;
1277: PetscInt fnc;
1279: PetscCall(PetscDualSpaceGetFunctional(sp, f, &q));
1280: PetscCall(PetscQuadratureGetData(q, NULL, &fnc, &Np, &p, &w));
1281: PetscCheck(fnc == Nc, PETSC_COMM_SELF, PETSC_ERR_PLIB, "functional component mismatch");
1282: for (i = 0; i < Np * dim; i++) points[offset * dim + i] = p[i];
1283: for (i = 0; i < Np * Nc; i++) PetscCall(MatSetValue(A, f, offset * Nc, w[i], INSERT_VALUES));
1284: offset += Np;
1285: }
1286: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1287: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1288: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allNodes));
1289: PetscCall(PetscQuadratureSetData(*allNodes, dim, 0, numPoints, points, NULL));
1290: *allMat = A;
1291: PetscFunctionReturn(PETSC_SUCCESS);
1292: }
1294: /*@
1295: PetscDualSpaceGetInteriorData - Get all quadrature points necessary to compute the interior degrees of freedom from
1296: this space, as well as the matrix that computes the degrees of freedom from the quadrature values. Degrees of
1297: freedom are interior degrees of freedom if they belong (by `PetscDualSpaceGetSection()`) to interior points in the
1298: reference `DMPLEX`: complementary boundary degrees of freedom are marked as constrained in the section returned by
1299: `PetscDualSpaceGetSection()`).
1301: Input Parameter:
1302: . sp - The dualspace
1304: Output Parameters:
1305: + intNodes - A `PetscQuadrature` object containing all evaluation points needed to evaluate interior degrees of freedom
1306: - intMat - A matrix that computes dual space values from point values: size [spdim0 x (npoints * nc)], where spdim0 is
1307: the size of the constrained layout (`PetscSectionGetConstrainStorageSize()`) of the dual space section,
1308: npoints is the number of points in intNodes and nc is `PetscDualSpaceGetNumComponents()`.
1310: Level: advanced
1312: .seealso: `PetscDualSpace`, `PetscQuadrature`, `Mat`, `PetscDualSpaceCreate()`, `PetscDualSpaceGetDimension()`, `PetscDualSpaceGetNumComponents()`, `PetscQuadratureGetData()`
1313: @*/
1314: PetscErrorCode PetscDualSpaceGetInteriorData(PetscDualSpace sp, PetscQuadrature *intNodes, Mat *intMat)
1315: {
1316: PetscFunctionBegin;
1320: if ((!sp->intNodes || !sp->intMat) && sp->ops->createintdata) {
1321: PetscQuadrature qpoints;
1322: Mat imat;
1324: PetscUseTypeMethod(sp, createintdata, &qpoints, &imat);
1325: PetscCall(PetscQuadratureDestroy(&(sp->intNodes)));
1326: PetscCall(MatDestroy(&(sp->intMat)));
1327: sp->intNodes = qpoints;
1328: sp->intMat = imat;
1329: }
1330: if (intNodes) *intNodes = sp->intNodes;
1331: if (intMat) *intMat = sp->intMat;
1332: PetscFunctionReturn(PETSC_SUCCESS);
1333: }
1335: /*@
1336: PetscDualSpaceCreateInteriorDataDefault - Create quadrature points by examining interior functionals and create the matrix mapping quadrature point values to interior dual space values
1338: Input Parameter:
1339: . sp - The dualspace
1341: Output Parameters:
1342: + intNodes - A `PetscQuadrature` object containing all evaluation points needed to evaluate interior degrees of freedom
1343: - intMat - A matrix that computes dual space values from point values: size [spdim0 x (npoints * nc)], where spdim0 is
1344: the size of the constrained layout (`PetscSectionGetConstrainStorageSize()`) of the dual space section,
1345: npoints is the number of points in allNodes and nc is `PetscDualSpaceGetNumComponents()`.
1347: Level: advanced
1349: .seealso: `PetscDualSpace`, `PetscQuadrature`, `Mat`, `PetscDualSpaceCreate()`, `PetscDualSpaceGetInteriorData()`
1350: @*/
1351: PetscErrorCode PetscDualSpaceCreateInteriorDataDefault(PetscDualSpace sp, PetscQuadrature *intNodes, Mat *intMat)
1352: {
1353: DM dm;
1354: PetscInt spdim0;
1355: PetscInt Nc;
1356: PetscInt pStart, pEnd, p, f;
1357: PetscSection section;
1358: PetscInt numPoints, offset, matoffset;
1359: PetscReal *points;
1360: PetscInt dim;
1361: PetscInt *nnz;
1362: PetscQuadrature q;
1363: Mat imat;
1365: PetscFunctionBegin;
1367: PetscCall(PetscDualSpaceGetSection(sp, §ion));
1368: PetscCall(PetscSectionGetConstrainedStorageSize(section, &spdim0));
1369: if (!spdim0) {
1370: *intNodes = NULL;
1371: *intMat = NULL;
1372: PetscFunctionReturn(PETSC_SUCCESS);
1373: }
1374: PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
1375: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
1376: PetscCall(PetscDualSpaceGetDM(sp, &dm));
1377: PetscCall(DMGetDimension(dm, &dim));
1378: PetscCall(PetscMalloc1(spdim0, &nnz));
1379: for (p = pStart, f = 0, numPoints = 0; p < pEnd; p++) {
1380: PetscInt dof, cdof, off, d;
1382: PetscCall(PetscSectionGetDof(section, p, &dof));
1383: PetscCall(PetscSectionGetConstraintDof(section, p, &cdof));
1384: if (!(dof - cdof)) continue;
1385: PetscCall(PetscSectionGetOffset(section, p, &off));
1386: for (d = 0; d < dof; d++, off++, f++) {
1387: PetscInt Np;
1389: PetscCall(PetscDualSpaceGetFunctional(sp, off, &q));
1390: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Np, NULL, NULL));
1391: nnz[f] = Np * Nc;
1392: numPoints += Np;
1393: }
1394: }
1395: PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, spdim0, numPoints * Nc, 0, nnz, &imat));
1396: PetscCall(PetscFree(nnz));
1397: PetscCall(PetscMalloc1(dim * numPoints, &points));
1398: for (p = pStart, f = 0, offset = 0, matoffset = 0; p < pEnd; p++) {
1399: PetscInt dof, cdof, off, d;
1401: PetscCall(PetscSectionGetDof(section, p, &dof));
1402: PetscCall(PetscSectionGetConstraintDof(section, p, &cdof));
1403: if (!(dof - cdof)) continue;
1404: PetscCall(PetscSectionGetOffset(section, p, &off));
1405: for (d = 0; d < dof; d++, off++, f++) {
1406: const PetscReal *p;
1407: const PetscReal *w;
1408: PetscInt Np, i;
1410: PetscCall(PetscDualSpaceGetFunctional(sp, off, &q));
1411: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Np, &p, &w));
1412: for (i = 0; i < Np * dim; i++) points[offset + i] = p[i];
1413: for (i = 0; i < Np * Nc; i++) PetscCall(MatSetValue(imat, f, matoffset + i, w[i], INSERT_VALUES));
1414: offset += Np * dim;
1415: matoffset += Np * Nc;
1416: }
1417: }
1418: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, intNodes));
1419: PetscCall(PetscQuadratureSetData(*intNodes, dim, 0, numPoints, points, NULL));
1420: PetscCall(MatAssemblyBegin(imat, MAT_FINAL_ASSEMBLY));
1421: PetscCall(MatAssemblyEnd(imat, MAT_FINAL_ASSEMBLY));
1422: *intMat = imat;
1423: PetscFunctionReturn(PETSC_SUCCESS);
1424: }
1426: /*@
1427: PetscDualSpaceEqual - Determine if two dual spaces are equivalent
1429: Input Parameters:
1430: + A - A `PetscDualSpace` object
1431: - B - Another `PetscDualSpace` object
1433: Output Parameter:
1434: . equal - `PETSC_TRUE` if the dual spaces are equivalent
1436: Level: advanced
1438: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1439: @*/
1440: PetscErrorCode PetscDualSpaceEqual(PetscDualSpace A, PetscDualSpace B, PetscBool *equal)
1441: {
1442: PetscInt sizeA, sizeB, dimA, dimB;
1443: const PetscInt *dofA, *dofB;
1444: PetscQuadrature quadA, quadB;
1445: Mat matA, matB;
1447: PetscFunctionBegin;
1451: *equal = PETSC_FALSE;
1452: PetscCall(PetscDualSpaceGetDimension(A, &sizeA));
1453: PetscCall(PetscDualSpaceGetDimension(B, &sizeB));
1454: if (sizeB != sizeA) PetscFunctionReturn(PETSC_SUCCESS);
1455: PetscCall(DMGetDimension(A->dm, &dimA));
1456: PetscCall(DMGetDimension(B->dm, &dimB));
1457: if (dimA != dimB) PetscFunctionReturn(PETSC_SUCCESS);
1459: PetscCall(PetscDualSpaceGetNumDof(A, &dofA));
1460: PetscCall(PetscDualSpaceGetNumDof(B, &dofB));
1461: for (PetscInt d = 0; d < dimA; d++) {
1462: if (dofA[d] != dofB[d]) PetscFunctionReturn(PETSC_SUCCESS);
1463: }
1465: PetscCall(PetscDualSpaceGetInteriorData(A, &quadA, &matA));
1466: PetscCall(PetscDualSpaceGetInteriorData(B, &quadB, &matB));
1467: if (!quadA && !quadB) {
1468: *equal = PETSC_TRUE;
1469: } else if (quadA && quadB) {
1470: PetscCall(PetscQuadratureEqual(quadA, quadB, equal));
1471: if (*equal == PETSC_FALSE) PetscFunctionReturn(PETSC_SUCCESS);
1472: if (!matA && !matB) PetscFunctionReturn(PETSC_SUCCESS);
1473: if (matA && matB) PetscCall(MatEqual(matA, matB, equal));
1474: else *equal = PETSC_FALSE;
1475: }
1476: PetscFunctionReturn(PETSC_SUCCESS);
1477: }
1479: /*@C
1480: PetscDualSpaceApplyFVM - Apply a functional from the dual space basis to an input function by assuming a point evaluation functional at the cell centroid.
1482: Input Parameters:
1483: + sp - The `PetscDualSpace` object
1484: . f - The basis functional index
1485: . time - The time
1486: . cgeom - A context with geometric information for this cell, we currently just use the centroid
1487: . Nc - The number of components for the function
1488: . func - The input function
1489: - ctx - A context for the function
1491: Output Parameter:
1492: . value - The output value (scalar)
1494: Calling Sequence of func:
1495: .vb
1496: func(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt numComponents, PetscScalar values[], void *ctx)
1497: .ve
1498: Level: advanced
1500: Note:
1501: The idea is to evaluate the functional as an integral $ n(f) = \int dx n(x) . f(x)$ where both n and f have Nc components.
1503: .seealso: `PetscDualSpace`, `PetscDualSpaceCreate()`
1504: @*/
1505: PetscErrorCode PetscDualSpaceApplyFVM(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFVCellGeom *cgeom, PetscInt Nc, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1506: {
1507: DM dm;
1508: PetscQuadrature n;
1509: const PetscReal *points, *weights;
1510: PetscScalar *val;
1511: PetscInt dimEmbed, qNc, c, Nq, q;
1513: PetscFunctionBegin;
1516: PetscCall(PetscDualSpaceGetDM(sp, &dm));
1517: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
1518: PetscCall(PetscDualSpaceGetFunctional(sp, f, &n));
1519: PetscCall(PetscQuadratureGetData(n, NULL, &qNc, &Nq, &points, &weights));
1520: PetscCheck(qNc == Nc, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_SIZ, "The quadrature components %" PetscInt_FMT " != function components %" PetscInt_FMT, qNc, Nc);
1521: PetscCall(DMGetWorkArray(dm, Nc, MPIU_SCALAR, &val));
1522: *value = 0.;
1523: for (q = 0; q < Nq; ++q) {
1524: PetscCall((*func)(dimEmbed, time, cgeom->centroid, Nc, val, ctx));
1525: for (c = 0; c < Nc; ++c) *value += val[c] * weights[q * Nc + c];
1526: }
1527: PetscCall(DMRestoreWorkArray(dm, Nc, MPIU_SCALAR, &val));
1528: PetscFunctionReturn(PETSC_SUCCESS);
1529: }
1531: /*@
1532: PetscDualSpaceGetHeightSubspace - Get the subset of the dual space basis that is supported on a mesh point of a
1533: given height. This assumes that the reference cell is symmetric over points of this height.
1535: Not collective
1537: Input Parameters:
1538: + sp - the `PetscDualSpace` object
1539: - height - the height of the mesh point for which the subspace is desired
1541: Output Parameter:
1542: . subsp - the subspace. Note that the functionals in the subspace are with respect to the intrinsic geometry of the
1543: point, which will be of lesser dimension if height > 0.
1545: Level: advanced
1547: Notes:
1548: If the dual space is not defined on mesh points of the given height (e.g. if the space is discontinuous and
1549: pointwise values are not defined on the element boundaries), or if the implementation of `PetscDualSpace` does not
1550: support extracting subspaces, then NULL is returned.
1552: This does not increment the reference count on the returned dual space, and the user should not destroy it.
1554: .seealso: `PetscDualSpace`, `PetscSpaceGetHeightSubspace()`, `PetscDualSpace`, `PetscDualSpaceGetPointSubspace()`
1555: @*/
1556: PetscErrorCode PetscDualSpaceGetHeightSubspace(PetscDualSpace sp, PetscInt height, PetscDualSpace *subsp)
1557: {
1558: PetscInt depth = -1, cStart, cEnd;
1559: DM dm;
1561: PetscFunctionBegin;
1564: PetscCheck((sp->uniform), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "A non-uniform dual space does not have a single dual space at each height");
1565: *subsp = NULL;
1566: dm = sp->dm;
1567: PetscCall(DMPlexGetDepth(dm, &depth));
1568: PetscCheck(height >= 0 && height <= depth, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid height");
1569: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd));
1570: if (height == 0 && cEnd == cStart + 1) {
1571: *subsp = sp;
1572: PetscFunctionReturn(PETSC_SUCCESS);
1573: }
1574: if (!sp->heightSpaces) {
1575: PetscInt h;
1576: PetscCall(PetscCalloc1(depth + 1, &(sp->heightSpaces)));
1578: for (h = 0; h <= depth; h++) {
1579: if (h == 0 && cEnd == cStart + 1) continue;
1580: if (sp->ops->createheightsubspace) PetscCall((*sp->ops->createheightsubspace)(sp, height, &(sp->heightSpaces[h])));
1581: else if (sp->pointSpaces) {
1582: PetscInt hStart, hEnd;
1584: PetscCall(DMPlexGetHeightStratum(dm, h, &hStart, &hEnd));
1585: if (hEnd > hStart) {
1586: const char *name;
1588: PetscCall(PetscObjectReference((PetscObject)(sp->pointSpaces[hStart])));
1589: if (sp->pointSpaces[hStart]) {
1590: PetscCall(PetscObjectGetName((PetscObject)sp, &name));
1591: PetscCall(PetscObjectSetName((PetscObject)sp->pointSpaces[hStart], name));
1592: }
1593: sp->heightSpaces[h] = sp->pointSpaces[hStart];
1594: }
1595: }
1596: }
1597: }
1598: *subsp = sp->heightSpaces[height];
1599: PetscFunctionReturn(PETSC_SUCCESS);
1600: }
1602: /*@
1603: PetscDualSpaceGetPointSubspace - Get the subset of the dual space basis that is supported on a particular mesh point.
1605: Not collective
1607: Input Parameters:
1608: + sp - the `PetscDualSpace` object
1609: - point - the point (in the dual space's DM) for which the subspace is desired
1611: Output Parameters:
1612: bdsp - the subspace. The functionals in the subspace are with respect to the intrinsic geometry of the
1613: point, which will be of lesser dimension if height > 0.
1615: Level: advanced
1617: Notes:
1618: If the dual space is not defined on the mesh point (e.g. if the space is discontinuous and pointwise values are not
1619: defined on the element boundaries), or if the implementation of `PetscDualSpace` does not support extracting
1620: subspaces, then NULL is returned.
1622: This does not increment the reference count on the returned dual space, and the user should not destroy it.
1624: .seealso: `PetscDualSpace`, `PetscDualSpaceGetHeightSubspace()`
1625: @*/
1626: PetscErrorCode PetscDualSpaceGetPointSubspace(PetscDualSpace sp, PetscInt point, PetscDualSpace *bdsp)
1627: {
1628: PetscInt pStart = 0, pEnd = 0, cStart, cEnd;
1629: DM dm;
1631: PetscFunctionBegin;
1634: *bdsp = NULL;
1635: dm = sp->dm;
1636: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
1637: PetscCheck(point >= pStart && point <= pEnd, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid point");
1638: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd));
1639: if (point == cStart && cEnd == cStart + 1) { /* the dual space is only equivalent to the dual space on a cell if the reference mesh has just one cell */
1640: *bdsp = sp;
1641: PetscFunctionReturn(PETSC_SUCCESS);
1642: }
1643: if (!sp->pointSpaces) {
1644: PetscInt p;
1645: PetscCall(PetscCalloc1(pEnd - pStart, &(sp->pointSpaces)));
1647: for (p = 0; p < pEnd - pStart; p++) {
1648: if (p + pStart == cStart && cEnd == cStart + 1) continue;
1649: if (sp->ops->createpointsubspace) PetscCall((*sp->ops->createpointsubspace)(sp, p + pStart, &(sp->pointSpaces[p])));
1650: else if (sp->heightSpaces || sp->ops->createheightsubspace) {
1651: PetscInt dim, depth, height;
1652: DMLabel label;
1654: PetscCall(DMPlexGetDepth(dm, &dim));
1655: PetscCall(DMPlexGetDepthLabel(dm, &label));
1656: PetscCall(DMLabelGetValue(label, p + pStart, &depth));
1657: height = dim - depth;
1658: PetscCall(PetscDualSpaceGetHeightSubspace(sp, height, &(sp->pointSpaces[p])));
1659: PetscCall(PetscObjectReference((PetscObject)sp->pointSpaces[p]));
1660: }
1661: }
1662: }
1663: *bdsp = sp->pointSpaces[point - pStart];
1664: PetscFunctionReturn(PETSC_SUCCESS);
1665: }
1667: /*@C
1668: PetscDualSpaceGetSymmetries - Returns a description of the symmetries of this basis
1670: Not collective
1672: Input Parameter:
1673: . sp - the `PetscDualSpace` object
1675: Output Parameters:
1676: + perms - Permutations of the interior degrees of freedom, parameterized by the point orientation
1677: - flips - Sign reversal of the interior degrees of freedom, parameterized by the point orientation
1679: Level: developer
1681: Note:
1682: The permutation and flip arrays are organized in the following way
1683: .vb
1684: perms[p][ornt][dof # on point] = new local dof #
1685: flips[p][ornt][dof # on point] = reversal or not
1686: .ve
1688: .seealso: `PetscDualSpace`
1689: @*/
1690: PetscErrorCode PetscDualSpaceGetSymmetries(PetscDualSpace sp, const PetscInt ****perms, const PetscScalar ****flips)
1691: {
1692: PetscFunctionBegin;
1694: if (perms) {
1696: *perms = NULL;
1697: }
1698: if (flips) {
1700: *flips = NULL;
1701: }
1702: if (sp->ops->getsymmetries) PetscCall((sp->ops->getsymmetries)(sp, perms, flips));
1703: PetscFunctionReturn(PETSC_SUCCESS);
1704: }
1706: /*@
1707: PetscDualSpaceGetFormDegree - Get the form degree k for the k-form the describes the pushforwards/pullbacks of this
1708: dual space's functionals.
1710: Input Parameter:
1711: . dsp - The `PetscDualSpace`
1713: Output Parameter:
1714: . k - The *signed* degree k of the k. If k >= 0, this means that the degrees of freedom are k-forms, and are stored
1715: in lexicographic order according to the basis of k-forms constructed from the wedge product of 1-forms. So for example,
1716: the 1-form basis in 3-D is (dx, dy, dz), and the 2-form basis in 3-D is (dx wedge dy, dx wedge dz, dy wedge dz).
1717: If k < 0, this means that the degrees transform as k-forms, but are stored as (N-k) forms according to the
1718: Hodge star map. So for example if k = -2 and N = 3, this means that the degrees of freedom transform as 2-forms
1719: but are stored as 1-forms.
1721: Level: developer
1723: .seealso: `PetscDualSpace`, `PetscDTAltV`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransform()`, `PetscDualSpaceTransformType`
1724: @*/
1725: PetscErrorCode PetscDualSpaceGetFormDegree(PetscDualSpace dsp, PetscInt *k)
1726: {
1727: PetscFunctionBeginHot;
1730: *k = dsp->k;
1731: PetscFunctionReturn(PETSC_SUCCESS);
1732: }
1734: /*@
1735: PetscDualSpaceSetFormDegree - Set the form degree k for the k-form the describes the pushforwards/pullbacks of this
1736: dual space's functionals.
1738: Input Parameters:
1739: + dsp - The `PetscDualSpace`
1740: - k - The *signed* degree k of the k. If k >= 0, this means that the degrees of freedom are k-forms, and are stored
1741: in lexicographic order according to the basis of k-forms constructed from the wedge product of 1-forms. So for example,
1742: the 1-form basis in 3-D is (dx, dy, dz), and the 2-form basis in 3-D is (dx wedge dy, dx wedge dz, dy wedge dz).
1743: If k < 0, this means that the degrees transform as k-forms, but are stored as (N-k) forms according to the
1744: Hodge star map. So for example if k = -2 and N = 3, this means that the degrees of freedom transform as 2-forms
1745: but are stored as 1-forms.
1747: Level: developer
1749: .seealso: `PetscDualSpace`, `PetscDTAltV`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransform()`, `PetscDualSpaceTransformType`
1750: @*/
1751: PetscErrorCode PetscDualSpaceSetFormDegree(PetscDualSpace dsp, PetscInt k)
1752: {
1753: PetscInt dim;
1755: PetscFunctionBeginHot;
1757: PetscCheck(!dsp->setupcalled, PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change number of components after dualspace is set up");
1758: dim = dsp->dm->dim;
1759: PetscCheck(k >= -dim && k <= dim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unsupported %" PetscInt_FMT "-form on %" PetscInt_FMT "-dimensional reference cell", PetscAbsInt(k), dim);
1760: dsp->k = k;
1761: PetscFunctionReturn(PETSC_SUCCESS);
1762: }
1764: /*@
1765: PetscDualSpaceGetDeRahm - Get the k-simplex associated with the functionals in this dual space
1767: Input Parameter:
1768: . dsp - The `PetscDualSpace`
1770: Output Parameter:
1771: . k - The simplex dimension
1773: Level: developer
1775: Note:
1776: Currently supported values are
1777: .vb
1778: 0: These are H_1 methods that only transform coordinates
1779: 1: These are Hcurl methods that transform functions using the covariant Piola transform (COVARIANT_PIOLA_TRANSFORM)
1780: 2: These are the same as 1
1781: 3: These are Hdiv methods that transform functions using the contravariant Piola transform (CONTRAVARIANT_PIOLA_TRANSFORM)
1782: .ve
1784: .seealso: `PetscDualSpace`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransform()`, `PetscDualSpaceTransformType`
1785: @*/
1786: PetscErrorCode PetscDualSpaceGetDeRahm(PetscDualSpace dsp, PetscInt *k)
1787: {
1788: PetscInt dim;
1790: PetscFunctionBeginHot;
1793: dim = dsp->dm->dim;
1794: if (!dsp->k) *k = IDENTITY_TRANSFORM;
1795: else if (dsp->k == 1) *k = COVARIANT_PIOLA_TRANSFORM;
1796: else if (dsp->k == -(dim - 1)) *k = CONTRAVARIANT_PIOLA_TRANSFORM;
1797: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unsupported transformation");
1798: PetscFunctionReturn(PETSC_SUCCESS);
1799: }
1801: /*@C
1802: PetscDualSpaceTransform - Transform the function values
1804: Input Parameters:
1805: + dsp - The `PetscDualSpace`
1806: . trans - The type of transform
1807: . isInverse - Flag to invert the transform
1808: . fegeom - The cell geometry
1809: . Nv - The number of function samples
1810: . Nc - The number of function components
1811: - vals - The function values
1813: Output Parameter:
1814: . vals - The transformed function values
1816: Level: intermediate
1818: Note:
1819: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1821: .seealso: `PetscDualSpace`, `PetscDualSpaceTransformGradient()`, `PetscDualSpaceTransformHessian()`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransformType`
1822: @*/
1823: PetscErrorCode PetscDualSpaceTransform(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
1824: {
1825: PetscReal Jstar[9] = {0};
1826: PetscInt dim, v, c, Nk;
1828: PetscFunctionBeginHot;
1832: /* TODO: not handling dimEmbed != dim right now */
1833: dim = dsp->dm->dim;
1834: /* No change needed for 0-forms */
1835: if (!dsp->k) PetscFunctionReturn(PETSC_SUCCESS);
1836: PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(dsp->k), &Nk));
1837: /* TODO: use fegeom->isAffine */
1838: PetscCall(PetscDTAltVPullbackMatrix(dim, dim, isInverse ? fegeom->J : fegeom->invJ, dsp->k, Jstar));
1839: for (v = 0; v < Nv; ++v) {
1840: switch (Nk) {
1841: case 1:
1842: for (c = 0; c < Nc; c++) vals[v * Nc + c] *= Jstar[0];
1843: break;
1844: case 2:
1845: for (c = 0; c < Nc; c += 2) DMPlex_Mult2DReal_Internal(Jstar, 1, &vals[v * Nc + c], &vals[v * Nc + c]);
1846: break;
1847: case 3:
1848: for (c = 0; c < Nc; c += 3) DMPlex_Mult3DReal_Internal(Jstar, 1, &vals[v * Nc + c], &vals[v * Nc + c]);
1849: break;
1850: default:
1851: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported form size %" PetscInt_FMT " for transformation", Nk);
1852: }
1853: }
1854: PetscFunctionReturn(PETSC_SUCCESS);
1855: }
1857: /*@C
1858: PetscDualSpaceTransformGradient - Transform the function gradient values
1860: Input Parameters:
1861: + dsp - The `PetscDualSpace`
1862: . trans - The type of transform
1863: . isInverse - Flag to invert the transform
1864: . fegeom - The cell geometry
1865: . Nv - The number of function gradient samples
1866: . Nc - The number of function components
1867: - vals - The function gradient values
1869: Output Parameter:
1870: . vals - The transformed function gradient values
1872: Level: intermediate
1874: Note:
1875: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1877: .seealso: `PetscDualSpace`, `PetscDualSpaceTransform()`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransformType`
1878: @*/
1879: PetscErrorCode PetscDualSpaceTransformGradient(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
1880: {
1881: const PetscInt dim = dsp->dm->dim, dE = fegeom->dimEmbed;
1882: PetscInt v, c, d;
1884: PetscFunctionBeginHot;
1888: #ifdef PETSC_USE_DEBUG
1889: PetscCheck(dE > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid embedding dimension %" PetscInt_FMT, dE);
1890: #endif
1891: /* Transform gradient */
1892: if (dim == dE) {
1893: for (v = 0; v < Nv; ++v) {
1894: for (c = 0; c < Nc; ++c) {
1895: switch (dim) {
1896: case 1:
1897: vals[(v * Nc + c) * dim] *= fegeom->invJ[0];
1898: break;
1899: case 2:
1900: DMPlex_MultTranspose2DReal_Internal(fegeom->invJ, 1, &vals[(v * Nc + c) * dim], &vals[(v * Nc + c) * dim]);
1901: break;
1902: case 3:
1903: DMPlex_MultTranspose3DReal_Internal(fegeom->invJ, 1, &vals[(v * Nc + c) * dim], &vals[(v * Nc + c) * dim]);
1904: break;
1905: default:
1906: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
1907: }
1908: }
1909: }
1910: } else {
1911: for (v = 0; v < Nv; ++v) {
1912: for (c = 0; c < Nc; ++c) DMPlex_MultTransposeReal_Internal(fegeom->invJ, dim, dE, 1, &vals[(v * Nc + c) * dE], &vals[(v * Nc + c) * dE]);
1913: }
1914: }
1915: /* Assume its a vector, otherwise assume its a bunch of scalars */
1916: if (Nc == 1 || Nc != dim) PetscFunctionReturn(PETSC_SUCCESS);
1917: switch (trans) {
1918: case IDENTITY_TRANSFORM:
1919: break;
1920: case COVARIANT_PIOLA_TRANSFORM: /* Covariant Piola mapping $\sigma^*(F) = J^{-T} F \circ \phi^{-1)$ */
1921: if (isInverse) {
1922: for (v = 0; v < Nv; ++v) {
1923: for (d = 0; d < dim; ++d) {
1924: switch (dim) {
1925: case 2:
1926: DMPlex_MultTranspose2DReal_Internal(fegeom->J, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1927: break;
1928: case 3:
1929: DMPlex_MultTranspose3DReal_Internal(fegeom->J, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1930: break;
1931: default:
1932: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
1933: }
1934: }
1935: }
1936: } else {
1937: for (v = 0; v < Nv; ++v) {
1938: for (d = 0; d < dim; ++d) {
1939: switch (dim) {
1940: case 2:
1941: DMPlex_MultTranspose2DReal_Internal(fegeom->invJ, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1942: break;
1943: case 3:
1944: DMPlex_MultTranspose3DReal_Internal(fegeom->invJ, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1945: break;
1946: default:
1947: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
1948: }
1949: }
1950: }
1951: }
1952: break;
1953: case CONTRAVARIANT_PIOLA_TRANSFORM: /* Contravariant Piola mapping $\sigma^*(F) = \frac{1}{|\det J|} J F \circ \phi^{-1}$ */
1954: if (isInverse) {
1955: for (v = 0; v < Nv; ++v) {
1956: for (d = 0; d < dim; ++d) {
1957: switch (dim) {
1958: case 2:
1959: DMPlex_Mult2DReal_Internal(fegeom->invJ, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1960: break;
1961: case 3:
1962: DMPlex_Mult3DReal_Internal(fegeom->invJ, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1963: break;
1964: default:
1965: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
1966: }
1967: for (c = 0; c < Nc; ++c) vals[(v * Nc + c) * dim + d] *= fegeom->detJ[0];
1968: }
1969: }
1970: } else {
1971: for (v = 0; v < Nv; ++v) {
1972: for (d = 0; d < dim; ++d) {
1973: switch (dim) {
1974: case 2:
1975: DMPlex_Mult2DReal_Internal(fegeom->J, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1976: break;
1977: case 3:
1978: DMPlex_Mult3DReal_Internal(fegeom->J, dim, &vals[v * Nc * dim + d], &vals[v * Nc * dim + d]);
1979: break;
1980: default:
1981: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
1982: }
1983: for (c = 0; c < Nc; ++c) vals[(v * Nc + c) * dim + d] /= fegeom->detJ[0];
1984: }
1985: }
1986: }
1987: break;
1988: }
1989: PetscFunctionReturn(PETSC_SUCCESS);
1990: }
1992: /*@C
1993: PetscDualSpaceTransformHessian - Transform the function Hessian values
1995: Input Parameters:
1996: + dsp - The `PetscDualSpace`
1997: . trans - The type of transform
1998: . isInverse - Flag to invert the transform
1999: . fegeom - The cell geometry
2000: . Nv - The number of function Hessian samples
2001: . Nc - The number of function components
2002: - vals - The function gradient values
2004: Output Parameter:
2005: . vals - The transformed function Hessian values
2007: Level: intermediate
2009: Note:
2010: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2012: .seealso: `PetscDualSpace`, `PetscDualSpaceTransform()`, `PetscDualSpacePullback()`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransformType`
2013: @*/
2014: PetscErrorCode PetscDualSpaceTransformHessian(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
2015: {
2016: const PetscInt dim = dsp->dm->dim, dE = fegeom->dimEmbed;
2017: PetscInt v, c;
2019: PetscFunctionBeginHot;
2023: #ifdef PETSC_USE_DEBUG
2024: PetscCheck(dE > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid embedding dimension %" PetscInt_FMT, dE);
2025: #endif
2026: /* Transform Hessian: J^{-T}_{ik} J^{-T}_{jl} H(f)_{kl} = J^{-T}_{ik} H(f)_{kl} J^{-1}_{lj} */
2027: if (dim == dE) {
2028: for (v = 0; v < Nv; ++v) {
2029: for (c = 0; c < Nc; ++c) {
2030: switch (dim) {
2031: case 1:
2032: vals[(v * Nc + c) * dim * dim] *= PetscSqr(fegeom->invJ[0]);
2033: break;
2034: case 2:
2035: DMPlex_PTAP2DReal_Internal(fegeom->invJ, &vals[(v * Nc + c) * dim * dim], &vals[(v * Nc + c) * dim * dim]);
2036: break;
2037: case 3:
2038: DMPlex_PTAP3DReal_Internal(fegeom->invJ, &vals[(v * Nc + c) * dim * dim], &vals[(v * Nc + c) * dim * dim]);
2039: break;
2040: default:
2041: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %" PetscInt_FMT " for transformation", dim);
2042: }
2043: }
2044: }
2045: } else {
2046: for (v = 0; v < Nv; ++v) {
2047: for (c = 0; c < Nc; ++c) DMPlex_PTAPReal_Internal(fegeom->invJ, dim, dE, &vals[(v * Nc + c) * dE * dE], &vals[(v * Nc + c) * dE * dE]);
2048: }
2049: }
2050: /* Assume its a vector, otherwise assume its a bunch of scalars */
2051: if (Nc == 1 || Nc != dim) PetscFunctionReturn(PETSC_SUCCESS);
2052: switch (trans) {
2053: case IDENTITY_TRANSFORM:
2054: break;
2055: case COVARIANT_PIOLA_TRANSFORM: /* Covariant Piola mapping $\sigma^*(F) = J^{-T} F \circ \phi^{-1)$ */
2056: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Piola mapping for Hessians not yet supported");
2057: case CONTRAVARIANT_PIOLA_TRANSFORM: /* Contravariant Piola mapping $\sigma^*(F) = \frac{1}{|\det J|} J F \circ \phi^{-1}$ */
2058: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Piola mapping for Hessians not yet supported");
2059: }
2060: PetscFunctionReturn(PETSC_SUCCESS);
2061: }
2063: /*@C
2064: PetscDualSpacePullback - Transform the given functional so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2066: Input Parameters:
2067: + dsp - The `PetscDualSpace`
2068: . fegeom - The geometry for this cell
2069: . Nq - The number of function samples
2070: . Nc - The number of function components
2071: - pointEval - The function values
2073: Output Parameter:
2074: . pointEval - The transformed function values
2076: Level: advanced
2078: Notes:
2079: Functions transform in a complementary way (pushforward) to functionals, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2081: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2083: .seealso: `PetscDualSpace`, `PetscDualSpacePushforward()`, `PetscDualSpaceTransform()`, `PetscDualSpaceGetDeRahm()`
2084: @*/
2085: PetscErrorCode PetscDualSpacePullback(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2086: {
2087: PetscDualSpaceTransformType trans;
2088: PetscInt k;
2090: PetscFunctionBeginHot;
2094: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2095: This determines their transformation properties. */
2096: PetscCall(PetscDualSpaceGetDeRahm(dsp, &k));
2097: switch (k) {
2098: case 0: /* H^1 point evaluations */
2099: trans = IDENTITY_TRANSFORM;
2100: break;
2101: case 1: /* Hcurl preserves tangential edge traces */
2102: trans = COVARIANT_PIOLA_TRANSFORM;
2103: break;
2104: case 2:
2105: case 3: /* Hdiv preserve normal traces */
2106: trans = CONTRAVARIANT_PIOLA_TRANSFORM;
2107: break;
2108: default:
2109: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %" PetscInt_FMT " for transformation", k);
2110: }
2111: PetscCall(PetscDualSpaceTransform(dsp, trans, PETSC_TRUE, fegeom, Nq, Nc, pointEval));
2112: PetscFunctionReturn(PETSC_SUCCESS);
2113: }
2115: /*@C
2116: PetscDualSpacePushforward - Transform the given function so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2118: Input Parameters:
2119: + dsp - The `PetscDualSpace`
2120: . fegeom - The geometry for this cell
2121: . Nq - The number of function samples
2122: . Nc - The number of function components
2123: - pointEval - The function values
2125: Output Parameter:
2126: . pointEval - The transformed function values
2128: Level: advanced
2130: Notes:
2131: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2133: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2135: .seealso: `PetscDualSpace`, `PetscDualSpacePullback()`, `PetscDualSpaceTransform()`, `PetscDualSpaceGetDeRahm()`
2136: @*/
2137: PetscErrorCode PetscDualSpacePushforward(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2138: {
2139: PetscDualSpaceTransformType trans;
2140: PetscInt k;
2142: PetscFunctionBeginHot;
2146: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2147: This determines their transformation properties. */
2148: PetscCall(PetscDualSpaceGetDeRahm(dsp, &k));
2149: switch (k) {
2150: case 0: /* H^1 point evaluations */
2151: trans = IDENTITY_TRANSFORM;
2152: break;
2153: case 1: /* Hcurl preserves tangential edge traces */
2154: trans = COVARIANT_PIOLA_TRANSFORM;
2155: break;
2156: case 2:
2157: case 3: /* Hdiv preserve normal traces */
2158: trans = CONTRAVARIANT_PIOLA_TRANSFORM;
2159: break;
2160: default:
2161: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %" PetscInt_FMT " for transformation", k);
2162: }
2163: PetscCall(PetscDualSpaceTransform(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval));
2164: PetscFunctionReturn(PETSC_SUCCESS);
2165: }
2167: /*@C
2168: PetscDualSpacePushforwardGradient - Transform the given function gradient so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2170: Input Parameters:
2171: + dsp - The `PetscDualSpace`
2172: . fegeom - The geometry for this cell
2173: . Nq - The number of function gradient samples
2174: . Nc - The number of function components
2175: - pointEval - The function gradient values
2177: Output Parameter:
2178: . pointEval - The transformed function gradient values
2180: Level: advanced
2182: Notes:
2183: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2185: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2187: .seealso: `PetscDualSpace`, `PetscDualSpacePushforward()`, `PPetscDualSpacePullback()`, `PetscDualSpaceTransform()`, `PetscDualSpaceGetDeRahm()`
2188: @*/
2189: PetscErrorCode PetscDualSpacePushforwardGradient(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2190: {
2191: PetscDualSpaceTransformType trans;
2192: PetscInt k;
2194: PetscFunctionBeginHot;
2198: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2199: This determines their transformation properties. */
2200: PetscCall(PetscDualSpaceGetDeRahm(dsp, &k));
2201: switch (k) {
2202: case 0: /* H^1 point evaluations */
2203: trans = IDENTITY_TRANSFORM;
2204: break;
2205: case 1: /* Hcurl preserves tangential edge traces */
2206: trans = COVARIANT_PIOLA_TRANSFORM;
2207: break;
2208: case 2:
2209: case 3: /* Hdiv preserve normal traces */
2210: trans = CONTRAVARIANT_PIOLA_TRANSFORM;
2211: break;
2212: default:
2213: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %" PetscInt_FMT " for transformation", k);
2214: }
2215: PetscCall(PetscDualSpaceTransformGradient(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval));
2216: PetscFunctionReturn(PETSC_SUCCESS);
2217: }
2219: /*@C
2220: PetscDualSpacePushforwardHessian - Transform the given function Hessian so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2222: Input Parameters:
2223: + dsp - The `PetscDualSpace`
2224: . fegeom - The geometry for this cell
2225: . Nq - The number of function Hessian samples
2226: . Nc - The number of function components
2227: - pointEval - The function gradient values
2229: Output Parameter:
2230: . pointEval - The transformed function Hessian values
2232: Level: advanced
2234: Notes:
2235: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2237: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2239: .seealso: `PetscDualSpace`, `PetscDualSpacePushforward()`, `PPetscDualSpacePullback()`, `PetscDualSpaceTransform()`, `PetscDualSpaceGetDeRahm()`
2240: @*/
2241: PetscErrorCode PetscDualSpacePushforwardHessian(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2242: {
2243: PetscDualSpaceTransformType trans;
2244: PetscInt k;
2246: PetscFunctionBeginHot;
2250: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2251: This determines their transformation properties. */
2252: PetscCall(PetscDualSpaceGetDeRahm(dsp, &k));
2253: switch (k) {
2254: case 0: /* H^1 point evaluations */
2255: trans = IDENTITY_TRANSFORM;
2256: break;
2257: case 1: /* Hcurl preserves tangential edge traces */
2258: trans = COVARIANT_PIOLA_TRANSFORM;
2259: break;
2260: case 2:
2261: case 3: /* Hdiv preserve normal traces */
2262: trans = CONTRAVARIANT_PIOLA_TRANSFORM;
2263: break;
2264: default:
2265: SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %" PetscInt_FMT " for transformation", k);
2266: }
2267: PetscCall(PetscDualSpaceTransformHessian(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval));
2268: PetscFunctionReturn(PETSC_SUCCESS);
2269: }