Actual source code: fe.c
1: /* Basis Jet Tabulation
3: We would like to tabulate the nodal basis functions and derivatives at a set of points, usually quadrature points. We
4: follow here the derviation in http://www.math.ttu.edu/~kirby/papers/fiat-toms-2004.pdf. The nodal basis $\psi_i$ can
5: be expressed in terms of a prime basis $\phi_i$ which can be stably evaluated. In PETSc, we will use the Legendre basis
6: as a prime basis.
8: \psi_i = \sum_k \alpha_{ki} \phi_k
10: Our nodal basis is defined in terms of the dual basis $n_j$
12: n_j \cdot \psi_i = \delta_{ji}
14: and we may act on the first equation to obtain
16: n_j \cdot \psi_i = \sum_k \alpha_{ki} n_j \cdot \phi_k
17: \delta_{ji} = \sum_k \alpha_{ki} V_{jk}
18: I = V \alpha
20: so the coefficients of the nodal basis in the prime basis are
22: \alpha = V^{-1}
24: We will define the dual basis vectors $n_j$ using a quadrature rule.
26: Right now, we will just use the polynomial spaces P^k. I know some elements use the space of symmetric polynomials
27: (I think Nedelec), but we will neglect this for now. Constraints in the space, e.g. Arnold-Winther elements, can
28: be implemented exactly as in FIAT using functionals $L_j$.
30: I will have to count the degrees correctly for the Legendre product when we are on simplices.
32: We will have three objects:
33: - Space, P: this just need point evaluation I think
34: - Dual Space, P'+K: This looks like a set of functionals that can act on members of P, each n is defined by a Q
35: - FEM: This keeps {P, P', Q}
36: */
37: #include <petsc/private/petscfeimpl.h>
38: #include <petscdmplex.h>
40: PetscBool FEcite = PETSC_FALSE;
41: const char FECitation[] = "@article{kirby2004,\n"
42: " title = {Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions},\n"
43: " journal = {ACM Transactions on Mathematical Software},\n"
44: " author = {Robert C. Kirby},\n"
45: " volume = {30},\n"
46: " number = {4},\n"
47: " pages = {502--516},\n"
48: " doi = {10.1145/1039813.1039820},\n"
49: " year = {2004}\n}\n";
51: PetscClassId PETSCFE_CLASSID = 0;
53: PetscLogEvent PETSCFE_SetUp;
55: PetscFunctionList PetscFEList = NULL;
56: PetscBool PetscFERegisterAllCalled = PETSC_FALSE;
58: /*@C
59: PetscFERegister - Adds a new `PetscFEType`
61: Not Collective
63: Input Parameters:
64: + name - The name of a new user-defined creation routine
65: - create_func - The creation routine itself
67: Sample usage:
68: .vb
69: PetscFERegister("my_fe", MyPetscFECreate);
70: .ve
72: Then, your PetscFE type can be chosen with the procedural interface via
73: .vb
74: PetscFECreate(MPI_Comm, PetscFE *);
75: PetscFESetType(PetscFE, "my_fe");
76: .ve
77: or at runtime via the option
78: .vb
79: -petscfe_type my_fe
80: .ve
82: Level: advanced
84: Note:
85: `PetscFERegister()` may be called multiple times to add several user-defined `PetscFE`s
87: .seealso: `PetscFE`, `PetscFEType`, `PetscFERegisterAll()`, `PetscFERegisterDestroy()`
88: @*/
89: PetscErrorCode PetscFERegister(const char sname[], PetscErrorCode (*function)(PetscFE))
90: {
91: PetscFunctionBegin;
92: PetscCall(PetscFunctionListAdd(&PetscFEList, sname, function));
93: PetscFunctionReturn(PETSC_SUCCESS);
94: }
96: /*@C
97: PetscFESetType - Builds a particular `PetscFE`
99: Collective on fem
101: Input Parameters:
102: + fem - The `PetscFE` object
103: - name - The kind of FEM space
105: Options Database Key:
106: . -petscfe_type <type> - Sets the PetscFE type; use -help for a list of available types
108: Level: intermediate
110: .seealso: `PetscFEType`, `PetscFE`, `PetscFEGetType()`, `PetscFECreate()`
111: @*/
112: PetscErrorCode PetscFESetType(PetscFE fem, PetscFEType name)
113: {
114: PetscErrorCode (*r)(PetscFE);
115: PetscBool match;
117: PetscFunctionBegin;
119: PetscCall(PetscObjectTypeCompare((PetscObject)fem, name, &match));
120: if (match) PetscFunctionReturn(PETSC_SUCCESS);
122: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
123: PetscCall(PetscFunctionListFind(PetscFEList, name, &r));
124: PetscCheck(r, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscFE type: %s", name);
126: PetscTryTypeMethod(fem, destroy);
127: fem->ops->destroy = NULL;
129: PetscCall((*r)(fem));
130: PetscCall(PetscObjectChangeTypeName((PetscObject)fem, name));
131: PetscFunctionReturn(PETSC_SUCCESS);
132: }
134: /*@C
135: PetscFEGetType - Gets the `PetscFEType` (as a string) from the `PetscFE` object.
137: Not Collective
139: Input Parameter:
140: . fem - The `PetscFE`
142: Output Parameter:
143: . name - The `PetscFEType` name
145: Level: intermediate
147: .seealso: `PetscFEType`, `PetscFE`, `PetscFESetType()`, `PetscFECreate()`
148: @*/
149: PetscErrorCode PetscFEGetType(PetscFE fem, PetscFEType *name)
150: {
151: PetscFunctionBegin;
154: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
155: *name = ((PetscObject)fem)->type_name;
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: /*@C
160: PetscFEViewFromOptions - View from a `PetscFE` based on values in the options database
162: Collective on A
164: Input Parameters:
165: + A - the `PetscFE` object
166: . obj - Optional object that provides the options prefix
167: - name - command line option name
169: Level: intermediate
171: .seealso: `PetscFE`, `PetscFEView()`, `PetscObjectViewFromOptions()`, `PetscFECreate()`
172: @*/
173: PetscErrorCode PetscFEViewFromOptions(PetscFE A, PetscObject obj, const char name[])
174: {
175: PetscFunctionBegin;
177: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
178: PetscFunctionReturn(PETSC_SUCCESS);
179: }
181: /*@C
182: PetscFEView - Views a `PetscFE`
184: Collective on fem
186: Input Parameters:
187: + fem - the `PetscFE` object to view
188: - viewer - the viewer
190: Level: beginner
192: .seealso: `PetscFE`, `PetscViewer`, `PetscFEDestroy()`, `PetscFEViewFromOptions()`
193: @*/
194: PetscErrorCode PetscFEView(PetscFE fem, PetscViewer viewer)
195: {
196: PetscBool iascii;
198: PetscFunctionBegin;
201: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)fem), &viewer));
202: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)fem, viewer));
203: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
204: PetscTryTypeMethod(fem, view, viewer);
205: PetscFunctionReturn(PETSC_SUCCESS);
206: }
208: /*@
209: PetscFESetFromOptions - sets parameters in a `PetscFE` from the options database
211: Collective on fem
213: Input Parameter:
214: . fem - the `PetscFE` object to set options for
216: Options Database Keys:
217: + -petscfe_num_blocks - the number of cell blocks to integrate concurrently
218: - -petscfe_num_batches - the number of cell batches to integrate serially
220: Level: intermediate
222: .seealso: `PetscFEV`, `PetscFEView()`
223: @*/
224: PetscErrorCode PetscFESetFromOptions(PetscFE fem)
225: {
226: const char *defaultType;
227: char name[256];
228: PetscBool flg;
230: PetscFunctionBegin;
232: if (!((PetscObject)fem)->type_name) {
233: defaultType = PETSCFEBASIC;
234: } else {
235: defaultType = ((PetscObject)fem)->type_name;
236: }
237: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
239: PetscObjectOptionsBegin((PetscObject)fem);
240: PetscCall(PetscOptionsFList("-petscfe_type", "Finite element space", "PetscFESetType", PetscFEList, defaultType, name, 256, &flg));
241: if (flg) {
242: PetscCall(PetscFESetType(fem, name));
243: } else if (!((PetscObject)fem)->type_name) {
244: PetscCall(PetscFESetType(fem, defaultType));
245: }
246: PetscCall(PetscOptionsBoundedInt("-petscfe_num_blocks", "The number of cell blocks to integrate concurrently", "PetscSpaceSetTileSizes", fem->numBlocks, &fem->numBlocks, NULL, 1));
247: PetscCall(PetscOptionsBoundedInt("-petscfe_num_batches", "The number of cell batches to integrate serially", "PetscSpaceSetTileSizes", fem->numBatches, &fem->numBatches, NULL, 1));
248: PetscTryTypeMethod(fem, setfromoptions, PetscOptionsObject);
249: /* process any options handlers added with PetscObjectAddOptionsHandler() */
250: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)fem, PetscOptionsObject));
251: PetscOptionsEnd();
252: PetscCall(PetscFEViewFromOptions(fem, NULL, "-petscfe_view"));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@C
257: PetscFESetUp - Construct data structures for the `PetscFE` after the `PetscFEType` has been set
259: Collective on fem
261: Input Parameter:
262: . fem - the `PetscFE` object to setup
264: Level: intermediate
266: .seealso: `PetscFE`, `PetscFEView()`, `PetscFEDestroy()`
267: @*/
268: PetscErrorCode PetscFESetUp(PetscFE fem)
269: {
270: PetscFunctionBegin;
272: if (fem->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
273: PetscCall(PetscLogEventBegin(PETSCFE_SetUp, fem, 0, 0, 0));
274: fem->setupcalled = PETSC_TRUE;
275: PetscTryTypeMethod(fem, setup);
276: PetscCall(PetscLogEventEnd(PETSCFE_SetUp, fem, 0, 0, 0));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: /*@
281: PetscFEDestroy - Destroys a `PetscFE` object
283: Collective on fem
285: Input Parameter:
286: . fem - the `PetscFE` object to destroy
288: Level: beginner
290: .seealso: `PetscFE`, `PetscFEView()`
291: @*/
292: PetscErrorCode PetscFEDestroy(PetscFE *fem)
293: {
294: PetscFunctionBegin;
295: if (!*fem) PetscFunctionReturn(PETSC_SUCCESS);
298: if (--((PetscObject)(*fem))->refct > 0) {
299: *fem = NULL;
300: PetscFunctionReturn(PETSC_SUCCESS);
301: }
302: ((PetscObject)(*fem))->refct = 0;
304: if ((*fem)->subspaces) {
305: PetscInt dim, d;
307: PetscCall(PetscDualSpaceGetDimension((*fem)->dualSpace, &dim));
308: for (d = 0; d < dim; ++d) PetscCall(PetscFEDestroy(&(*fem)->subspaces[d]));
309: }
310: PetscCall(PetscFree((*fem)->subspaces));
311: PetscCall(PetscFree((*fem)->invV));
312: PetscCall(PetscTabulationDestroy(&(*fem)->T));
313: PetscCall(PetscTabulationDestroy(&(*fem)->Tf));
314: PetscCall(PetscTabulationDestroy(&(*fem)->Tc));
315: PetscCall(PetscSpaceDestroy(&(*fem)->basisSpace));
316: PetscCall(PetscDualSpaceDestroy(&(*fem)->dualSpace));
317: PetscCall(PetscQuadratureDestroy(&(*fem)->quadrature));
318: PetscCall(PetscQuadratureDestroy(&(*fem)->faceQuadrature));
319: #ifdef PETSC_HAVE_LIBCEED
320: PetscCallCEED(CeedBasisDestroy(&(*fem)->ceedBasis));
321: PetscCallCEED(CeedDestroy(&(*fem)->ceed));
322: #endif
324: PetscTryTypeMethod((*fem), destroy);
325: PetscCall(PetscHeaderDestroy(fem));
326: PetscFunctionReturn(PETSC_SUCCESS);
327: }
329: /*@
330: PetscFECreate - Creates an empty `PetscFE` object. The type can then be set with `PetscFESetType()`.
332: Collective
334: Input Parameter:
335: . comm - The communicator for the `PetscFE` object
337: Output Parameter:
338: . fem - The `PetscFE` object
340: Level: beginner
342: .seealso: `PetscFE`, `PetscFEType`, `PetscFESetType()`, `PetscFECreateDefault()`, `PETSCFEGALERKIN`
343: @*/
344: PetscErrorCode PetscFECreate(MPI_Comm comm, PetscFE *fem)
345: {
346: PetscFE f;
348: PetscFunctionBegin;
350: PetscCall(PetscCitationsRegister(FECitation, &FEcite));
351: *fem = NULL;
352: PetscCall(PetscFEInitializePackage());
354: PetscCall(PetscHeaderCreate(f, PETSCFE_CLASSID, "PetscFE", "Finite Element", "PetscFE", comm, PetscFEDestroy, PetscFEView));
356: f->basisSpace = NULL;
357: f->dualSpace = NULL;
358: f->numComponents = 1;
359: f->subspaces = NULL;
360: f->invV = NULL;
361: f->T = NULL;
362: f->Tf = NULL;
363: f->Tc = NULL;
364: PetscCall(PetscArrayzero(&f->quadrature, 1));
365: PetscCall(PetscArrayzero(&f->faceQuadrature, 1));
366: f->blockSize = 0;
367: f->numBlocks = 1;
368: f->batchSize = 0;
369: f->numBatches = 1;
371: *fem = f;
372: PetscFunctionReturn(PETSC_SUCCESS);
373: }
375: /*@
376: PetscFEGetSpatialDimension - Returns the spatial dimension of the element
378: Not collective
380: Input Parameter:
381: . fem - The `PetscFE` object
383: Output Parameter:
384: . dim - The spatial dimension
386: Level: intermediate
388: .seealso: `PetscFE`, `PetscFECreate()`
389: @*/
390: PetscErrorCode PetscFEGetSpatialDimension(PetscFE fem, PetscInt *dim)
391: {
392: DM dm;
394: PetscFunctionBegin;
397: PetscCall(PetscDualSpaceGetDM(fem->dualSpace, &dm));
398: PetscCall(DMGetDimension(dm, dim));
399: PetscFunctionReturn(PETSC_SUCCESS);
400: }
402: /*@
403: PetscFESetNumComponents - Sets the number of field components in the element
405: Not collective
407: Input Parameters:
408: + fem - The `PetscFE` object
409: - comp - The number of field components
411: Level: intermediate
413: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
414: @*/
415: PetscErrorCode PetscFESetNumComponents(PetscFE fem, PetscInt comp)
416: {
417: PetscFunctionBegin;
419: fem->numComponents = comp;
420: PetscFunctionReturn(PETSC_SUCCESS);
421: }
423: /*@
424: PetscFEGetNumComponents - Returns the number of components in the element
426: Not collective
428: Input Parameter:
429: . fem - The `PetscFE` object
431: Output Parameter:
432: . comp - The number of field components
434: Level: intermediate
436: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
437: @*/
438: PetscErrorCode PetscFEGetNumComponents(PetscFE fem, PetscInt *comp)
439: {
440: PetscFunctionBegin;
443: *comp = fem->numComponents;
444: PetscFunctionReturn(PETSC_SUCCESS);
445: }
447: /*@
448: PetscFESetTileSizes - Sets the tile sizes for evaluation
450: Not collective
452: Input Parameters:
453: + fem - The `PetscFE` object
454: . blockSize - The number of elements in a block
455: . numBlocks - The number of blocks in a batch
456: . batchSize - The number of elements in a batch
457: - numBatches - The number of batches in a chunk
459: Level: intermediate
461: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetTileSizes()`
462: @*/
463: PetscErrorCode PetscFESetTileSizes(PetscFE fem, PetscInt blockSize, PetscInt numBlocks, PetscInt batchSize, PetscInt numBatches)
464: {
465: PetscFunctionBegin;
467: fem->blockSize = blockSize;
468: fem->numBlocks = numBlocks;
469: fem->batchSize = batchSize;
470: fem->numBatches = numBatches;
471: PetscFunctionReturn(PETSC_SUCCESS);
472: }
474: /*@
475: PetscFEGetTileSizes - Returns the tile sizes for evaluation
477: Not collective
479: Input Parameter:
480: . fem - The `PetscFE` object
482: Output Parameters:
483: + blockSize - The number of elements in a block
484: . numBlocks - The number of blocks in a batch
485: . batchSize - The number of elements in a batch
486: - numBatches - The number of batches in a chunk
488: Level: intermediate
490: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFESetTileSizes()`
491: @*/
492: PetscErrorCode PetscFEGetTileSizes(PetscFE fem, PetscInt *blockSize, PetscInt *numBlocks, PetscInt *batchSize, PetscInt *numBatches)
493: {
494: PetscFunctionBegin;
500: if (blockSize) *blockSize = fem->blockSize;
501: if (numBlocks) *numBlocks = fem->numBlocks;
502: if (batchSize) *batchSize = fem->batchSize;
503: if (numBatches) *numBatches = fem->numBatches;
504: PetscFunctionReturn(PETSC_SUCCESS);
505: }
507: /*@
508: PetscFEGetBasisSpace - Returns the `PetscSpace` used for the approximation of the solution for the `PetscFE`
510: Not collective
512: Input Parameter:
513: . fem - The `PetscFE` object
515: Output Parameter:
516: . sp - The `PetscSpace` object
518: Level: intermediate
520: .seealso: `PetscFE`, `PetscSpace`, `PetscFECreate()`
521: @*/
522: PetscErrorCode PetscFEGetBasisSpace(PetscFE fem, PetscSpace *sp)
523: {
524: PetscFunctionBegin;
527: *sp = fem->basisSpace;
528: PetscFunctionReturn(PETSC_SUCCESS);
529: }
531: /*@
532: PetscFESetBasisSpace - Sets the `PetscSpace` used for the approximation of the solution
534: Not collective
536: Input Parameters:
537: + fem - The `PetscFE` object
538: - sp - The `PetscSpace` object
540: Level: intermediate
542: Developer Note:
543: There is `PetscFESetBasisSpace()` but the `PetscFESetDualSpace()`, likely the Basis is unneeded in the function name
545: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetDualSpace()`
546: @*/
547: PetscErrorCode PetscFESetBasisSpace(PetscFE fem, PetscSpace sp)
548: {
549: PetscFunctionBegin;
552: PetscCall(PetscSpaceDestroy(&fem->basisSpace));
553: fem->basisSpace = sp;
554: PetscCall(PetscObjectReference((PetscObject)fem->basisSpace));
555: PetscFunctionReturn(PETSC_SUCCESS);
556: }
558: /*@
559: PetscFEGetDualSpace - Returns the `PetscDualSpace` used to define the inner product for a `PetscFE`
561: Not collective
563: Input Parameter:
564: . fem - The `PetscFE` object
566: Output Parameter:
567: . sp - The `PetscDualSpace` object
569: Level: intermediate
571: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
572: @*/
573: PetscErrorCode PetscFEGetDualSpace(PetscFE fem, PetscDualSpace *sp)
574: {
575: PetscFunctionBegin;
578: *sp = fem->dualSpace;
579: PetscFunctionReturn(PETSC_SUCCESS);
580: }
582: /*@
583: PetscFESetDualSpace - Sets the `PetscDualSpace` used to define the inner product
585: Not collective
587: Input Parameters:
588: + fem - The `PetscFE` object
589: - sp - The `PetscDualSpace` object
591: Level: intermediate
593: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetBasisSpace()`
594: @*/
595: PetscErrorCode PetscFESetDualSpace(PetscFE fem, PetscDualSpace sp)
596: {
597: PetscFunctionBegin;
600: PetscCall(PetscDualSpaceDestroy(&fem->dualSpace));
601: fem->dualSpace = sp;
602: PetscCall(PetscObjectReference((PetscObject)fem->dualSpace));
603: PetscFunctionReturn(PETSC_SUCCESS);
604: }
606: /*@
607: PetscFEGetQuadrature - Returns the `PetscQuadrature` used to calculate inner products
609: Not collective
611: Input Parameter:
612: . fem - The `PetscFE` object
614: Output Parameter:
615: . q - The `PetscQuadrature` object
617: Level: intermediate
619: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`
620: @*/
621: PetscErrorCode PetscFEGetQuadrature(PetscFE fem, PetscQuadrature *q)
622: {
623: PetscFunctionBegin;
626: *q = fem->quadrature;
627: PetscFunctionReturn(PETSC_SUCCESS);
628: }
630: /*@
631: PetscFESetQuadrature - Sets the `PetscQuadrature` used to calculate inner products
633: Not collective
635: Input Parameters:
636: + fem - The `PetscFE` object
637: - q - The `PetscQuadrature` object
639: Level: intermediate
641: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFEGetFaceQuadrature()`
642: @*/
643: PetscErrorCode PetscFESetQuadrature(PetscFE fem, PetscQuadrature q)
644: {
645: PetscInt Nc, qNc;
647: PetscFunctionBegin;
649: if (q == fem->quadrature) PetscFunctionReturn(PETSC_SUCCESS);
650: PetscCall(PetscFEGetNumComponents(fem, &Nc));
651: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
652: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
653: PetscCall(PetscTabulationDestroy(&fem->T));
654: PetscCall(PetscTabulationDestroy(&fem->Tc));
655: PetscCall(PetscObjectReference((PetscObject)q));
656: PetscCall(PetscQuadratureDestroy(&fem->quadrature));
657: fem->quadrature = q;
658: PetscFunctionReturn(PETSC_SUCCESS);
659: }
661: /*@
662: PetscFEGetFaceQuadrature - Returns the `PetscQuadrature` used to calculate inner products on faces
664: Not collective
666: Input Parameter:
667: . fem - The `PetscFE` object
669: Output Parameter:
670: . q - The `PetscQuadrature` object
672: Level: intermediate
674: Developer Note:
675: There is a special face quadrature but not edge, likely this API would benefit from a refactorization
677: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
678: @*/
679: PetscErrorCode PetscFEGetFaceQuadrature(PetscFE fem, PetscQuadrature *q)
680: {
681: PetscFunctionBegin;
684: *q = fem->faceQuadrature;
685: PetscFunctionReturn(PETSC_SUCCESS);
686: }
688: /*@
689: PetscFESetFaceQuadrature - Sets the `PetscQuadrature` used to calculate inner products on faces
691: Not collective
693: Input Parameters:
694: + fem - The `PetscFE` object
695: - q - The `PetscQuadrature` object
697: Level: intermediate
699: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
700: @*/
701: PetscErrorCode PetscFESetFaceQuadrature(PetscFE fem, PetscQuadrature q)
702: {
703: PetscInt Nc, qNc;
705: PetscFunctionBegin;
707: PetscCall(PetscFEGetNumComponents(fem, &Nc));
708: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
709: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
710: PetscCall(PetscTabulationDestroy(&fem->Tf));
711: PetscCall(PetscQuadratureDestroy(&fem->faceQuadrature));
712: fem->faceQuadrature = q;
713: PetscCall(PetscObjectReference((PetscObject)q));
714: PetscFunctionReturn(PETSC_SUCCESS);
715: }
717: /*@
718: PetscFECopyQuadrature - Copy both volumetric and surface quadrature to a new `PetscFE`
720: Not collective
722: Input Parameters:
723: + sfe - The `PetscFE` source for the quadratures
724: - tfe - The `PetscFE` target for the quadratures
726: Level: intermediate
728: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
729: @*/
730: PetscErrorCode PetscFECopyQuadrature(PetscFE sfe, PetscFE tfe)
731: {
732: PetscQuadrature q;
734: PetscFunctionBegin;
737: PetscCall(PetscFEGetQuadrature(sfe, &q));
738: PetscCall(PetscFESetQuadrature(tfe, q));
739: PetscCall(PetscFEGetFaceQuadrature(sfe, &q));
740: PetscCall(PetscFESetFaceQuadrature(tfe, q));
741: PetscFunctionReturn(PETSC_SUCCESS);
742: }
744: /*@C
745: PetscFEGetNumDof - Returns the number of dofs (dual basis vectors) associated to mesh points on the reference cell of a given dimension
747: Not collective
749: Input Parameter:
750: . fem - The `PetscFE` object
752: Output Parameter:
753: . numDof - Array with the number of dofs per dimension
755: Level: intermediate
757: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
758: @*/
759: PetscErrorCode PetscFEGetNumDof(PetscFE fem, const PetscInt **numDof)
760: {
761: PetscFunctionBegin;
764: PetscCall(PetscDualSpaceGetNumDof(fem->dualSpace, numDof));
765: PetscFunctionReturn(PETSC_SUCCESS);
766: }
768: /*@C
769: PetscFEGetCellTabulation - Returns the tabulation of the basis functions at the quadrature points on the reference cell
771: Not collective
773: Input Parameters:
774: + fem - The `PetscFE` object
775: - k - The highest derivative we need to tabulate, very often 1
777: Output Parameter:
778: . T - The basis function values and derivatives at quadrature points
780: Level: intermediate
782: Note:
783: .vb
784: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
785: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
786: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
787: .ve
789: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
790: @*/
791: PetscErrorCode PetscFEGetCellTabulation(PetscFE fem, PetscInt k, PetscTabulation *T)
792: {
793: PetscInt npoints;
794: const PetscReal *points;
796: PetscFunctionBegin;
799: PetscCall(PetscQuadratureGetData(fem->quadrature, NULL, NULL, &npoints, &points, NULL));
800: if (!fem->T) PetscCall(PetscFECreateTabulation(fem, 1, npoints, points, k, &fem->T));
801: PetscCheck(!fem->T || k <= fem->T->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->T->K);
802: *T = fem->T;
803: PetscFunctionReturn(PETSC_SUCCESS);
804: }
806: /*@C
807: PetscFEGetFaceTabulation - Returns the tabulation of the basis functions at the face quadrature points for each face of the reference cell
809: Not collective
811: Input Parameters:
812: + fem - The `PetscFE` object
813: - k - The highest derivative we need to tabulate, very often 1
815: Output Parameters:
816: . Tf - The basis function values and derivatives at face quadrature points
818: Level: intermediate
820: Note:
821: .vb
822: T->T[0] = Bf[((f*Nq + q)*pdim + i)*Nc + c] is the value at point f,q for basis function i and component c
823: T->T[1] = Df[(((f*Nq + q)*pdim + i)*Nc + c)*dim + d] is the derivative value at point f,q for basis function i, component c, in direction d
824: T->T[2] = Hf[((((f*Nq + q)*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point f,q for basis function i, component c, in directions d and e
825: .ve
827: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
828: @*/
829: PetscErrorCode PetscFEGetFaceTabulation(PetscFE fem, PetscInt k, PetscTabulation *Tf)
830: {
831: PetscFunctionBegin;
834: if (!fem->Tf) {
835: const PetscReal xi0[3] = {-1., -1., -1.};
836: PetscReal v0[3], J[9], detJ;
837: PetscQuadrature fq;
838: PetscDualSpace sp;
839: DM dm;
840: const PetscInt *faces;
841: PetscInt dim, numFaces, f, npoints, q;
842: const PetscReal *points;
843: PetscReal *facePoints;
845: PetscCall(PetscFEGetDualSpace(fem, &sp));
846: PetscCall(PetscDualSpaceGetDM(sp, &dm));
847: PetscCall(DMGetDimension(dm, &dim));
848: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
849: PetscCall(DMPlexGetCone(dm, 0, &faces));
850: PetscCall(PetscFEGetFaceQuadrature(fem, &fq));
851: if (fq) {
852: PetscCall(PetscQuadratureGetData(fq, NULL, NULL, &npoints, &points, NULL));
853: PetscCall(PetscMalloc1(numFaces * npoints * dim, &facePoints));
854: for (f = 0; f < numFaces; ++f) {
855: PetscCall(DMPlexComputeCellGeometryFEM(dm, faces[f], NULL, v0, J, NULL, &detJ));
856: for (q = 0; q < npoints; ++q) CoordinatesRefToReal(dim, dim - 1, xi0, v0, J, &points[q * (dim - 1)], &facePoints[(f * npoints + q) * dim]);
857: }
858: PetscCall(PetscFECreateTabulation(fem, numFaces, npoints, facePoints, k, &fem->Tf));
859: PetscCall(PetscFree(facePoints));
860: }
861: }
862: PetscCheck(!fem->Tf || k <= fem->Tf->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->Tf->K);
863: *Tf = fem->Tf;
864: PetscFunctionReturn(PETSC_SUCCESS);
865: }
867: /*@C
868: PetscFEGetFaceCentroidTabulation - Returns the tabulation of the basis functions at the face centroid points
870: Not collective
872: Input Parameter:
873: . fem - The `PetscFE` object
875: Output Parameters:
876: . Tc - The basis function values at face centroid points
878: Level: intermediate
880: Note:
881: .vb
882: T->T[0] = Bf[(f*pdim + i)*Nc + c] is the value at point f for basis function i and component c
883: .ve
885: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetFaceTabulation()`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
886: @*/
887: PetscErrorCode PetscFEGetFaceCentroidTabulation(PetscFE fem, PetscTabulation *Tc)
888: {
889: PetscFunctionBegin;
892: if (!fem->Tc) {
893: PetscDualSpace sp;
894: DM dm;
895: const PetscInt *cone;
896: PetscReal *centroids;
897: PetscInt dim, numFaces, f;
899: PetscCall(PetscFEGetDualSpace(fem, &sp));
900: PetscCall(PetscDualSpaceGetDM(sp, &dm));
901: PetscCall(DMGetDimension(dm, &dim));
902: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
903: PetscCall(DMPlexGetCone(dm, 0, &cone));
904: PetscCall(PetscMalloc1(numFaces * dim, ¢roids));
905: for (f = 0; f < numFaces; ++f) PetscCall(DMPlexComputeCellGeometryFVM(dm, cone[f], NULL, ¢roids[f * dim], NULL));
906: PetscCall(PetscFECreateTabulation(fem, 1, numFaces, centroids, 0, &fem->Tc));
907: PetscCall(PetscFree(centroids));
908: }
909: *Tc = fem->Tc;
910: PetscFunctionReturn(PETSC_SUCCESS);
911: }
913: /*@C
914: PetscFECreateTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
916: Not collective
918: Input Parameters:
919: + fem - The `PetscFE` object
920: . nrepl - The number of replicas
921: . npoints - The number of tabulation points in a replica
922: . points - The tabulation point coordinates
923: - K - The number of derivatives calculated
925: Output Parameter:
926: . T - The basis function values and derivatives at tabulation points
928: Level: intermediate
930: Note:
931: .vb
932: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
933: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
934: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
936: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
937: @*/
938: PetscErrorCode PetscFECreateTabulation(PetscFE fem, PetscInt nrepl, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation *T)
939: {
940: DM dm;
941: PetscDualSpace Q;
942: PetscInt Nb; /* Dimension of FE space P */
943: PetscInt Nc; /* Field components */
944: PetscInt cdim; /* Reference coordinate dimension */
945: PetscInt k;
947: PetscFunctionBegin;
948: if (!npoints || !fem->dualSpace || K < 0) {
949: *T = NULL;
950: PetscFunctionReturn(PETSC_SUCCESS);
951: }
955: PetscCall(PetscFEGetDualSpace(fem, &Q));
956: PetscCall(PetscDualSpaceGetDM(Q, &dm));
957: PetscCall(DMGetDimension(dm, &cdim));
958: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
959: PetscCall(PetscFEGetNumComponents(fem, &Nc));
960: PetscCall(PetscMalloc1(1, T));
961: (*T)->K = !cdim ? 0 : K;
962: (*T)->Nr = nrepl;
963: (*T)->Np = npoints;
964: (*T)->Nb = Nb;
965: (*T)->Nc = Nc;
966: (*T)->cdim = cdim;
967: PetscCall(PetscMalloc1((*T)->K + 1, &(*T)->T));
968: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscMalloc1(nrepl * npoints * Nb * Nc * PetscPowInt(cdim, k), &(*T)->T[k]));
969: PetscUseTypeMethod(fem, createtabulation, nrepl * npoints, points, K, *T);
970: PetscFunctionReturn(PETSC_SUCCESS);
971: }
973: /*@C
974: PetscFEComputeTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
976: Not collective
978: Input Parameters:
979: + fem - The `PetscFE` object
980: . npoints - The number of tabulation points
981: . points - The tabulation point coordinates
982: . K - The number of derivatives calculated
983: - T - An existing tabulation object with enough allocated space
985: Output Parameter:
986: . T - The basis function values and derivatives at tabulation points
988: Level: intermediate
990: Note:
991: .vb
992: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
993: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
994: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
995: .ve
997: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
998: @*/
999: PetscErrorCode PetscFEComputeTabulation(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
1000: {
1001: PetscFunctionBeginHot;
1002: if (!npoints || !fem->dualSpace || K < 0) PetscFunctionReturn(PETSC_SUCCESS);
1006: if (PetscDefined(USE_DEBUG)) {
1007: DM dm;
1008: PetscDualSpace Q;
1009: PetscInt Nb; /* Dimension of FE space P */
1010: PetscInt Nc; /* Field components */
1011: PetscInt cdim; /* Reference coordinate dimension */
1013: PetscCall(PetscFEGetDualSpace(fem, &Q));
1014: PetscCall(PetscDualSpaceGetDM(Q, &dm));
1015: PetscCall(DMGetDimension(dm, &cdim));
1016: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
1017: PetscCall(PetscFEGetNumComponents(fem, &Nc));
1018: PetscCheck(T->K == (!cdim ? 0 : K), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation K %" PetscInt_FMT " must match requested K %" PetscInt_FMT, T->K, !cdim ? 0 : K);
1019: PetscCheck(T->Nb == Nb, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nb %" PetscInt_FMT " must match requested Nb %" PetscInt_FMT, T->Nb, Nb);
1020: PetscCheck(T->Nc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nc %" PetscInt_FMT " must match requested Nc %" PetscInt_FMT, T->Nc, Nc);
1021: PetscCheck(T->cdim == cdim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation cdim %" PetscInt_FMT " must match requested cdim %" PetscInt_FMT, T->cdim, cdim);
1022: }
1023: T->Nr = 1;
1024: T->Np = npoints;
1025: PetscUseTypeMethod(fem, createtabulation, npoints, points, K, T);
1026: PetscFunctionReturn(PETSC_SUCCESS);
1027: }
1029: /*@C
1030: PetscTabulationDestroy - Frees memory from the associated tabulation.
1032: Not collective
1034: Input Parameter:
1035: . T - The tabulation
1037: Level: intermediate
1039: .seealso: `PetscTabulation`, `PetscFECreateTabulation()`, `PetscFEGetCellTabulation()`
1040: @*/
1041: PetscErrorCode PetscTabulationDestroy(PetscTabulation *T)
1042: {
1043: PetscInt k;
1045: PetscFunctionBegin;
1047: if (!T || !(*T)) PetscFunctionReturn(PETSC_SUCCESS);
1048: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscFree((*T)->T[k]));
1049: PetscCall(PetscFree((*T)->T));
1050: PetscCall(PetscFree(*T));
1051: *T = NULL;
1052: PetscFunctionReturn(PETSC_SUCCESS);
1053: }
1055: PETSC_EXTERN PetscErrorCode PetscFECreatePointTrace(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1056: {
1057: PetscSpace bsp, bsubsp;
1058: PetscDualSpace dsp, dsubsp;
1059: PetscInt dim, depth, numComp, i, j, coneSize, order;
1060: PetscFEType type;
1061: DM dm;
1062: DMLabel label;
1063: PetscReal *xi, *v, *J, detJ;
1064: const char *name;
1065: PetscQuadrature origin, fullQuad, subQuad;
1067: PetscFunctionBegin;
1070: PetscCall(PetscFEGetBasisSpace(fe, &bsp));
1071: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1072: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1073: PetscCall(DMGetDimension(dm, &dim));
1074: PetscCall(DMPlexGetDepthLabel(dm, &label));
1075: PetscCall(DMLabelGetValue(label, refPoint, &depth));
1076: PetscCall(PetscCalloc1(depth, &xi));
1077: PetscCall(PetscMalloc1(dim, &v));
1078: PetscCall(PetscMalloc1(dim * dim, &J));
1079: for (i = 0; i < depth; i++) xi[i] = 0.;
1080: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &origin));
1081: PetscCall(PetscQuadratureSetData(origin, depth, 0, 1, xi, NULL));
1082: PetscCall(DMPlexComputeCellGeometryFEM(dm, refPoint, origin, v, J, NULL, &detJ));
1083: /* CellGeometryFEM computes the expanded Jacobian, we want the true jacobian */
1084: for (i = 1; i < dim; i++) {
1085: for (j = 0; j < depth; j++) J[i * depth + j] = J[i * dim + j];
1086: }
1087: PetscCall(PetscQuadratureDestroy(&origin));
1088: PetscCall(PetscDualSpaceGetPointSubspace(dsp, refPoint, &dsubsp));
1089: PetscCall(PetscSpaceCreateSubspace(bsp, dsubsp, v, J, NULL, NULL, PETSC_OWN_POINTER, &bsubsp));
1090: PetscCall(PetscSpaceSetUp(bsubsp));
1091: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), trFE));
1092: PetscCall(PetscFEGetType(fe, &type));
1093: PetscCall(PetscFESetType(*trFE, type));
1094: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1095: PetscCall(PetscFESetNumComponents(*trFE, numComp));
1096: PetscCall(PetscFESetBasisSpace(*trFE, bsubsp));
1097: PetscCall(PetscFESetDualSpace(*trFE, dsubsp));
1098: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1099: if (name) PetscCall(PetscFESetName(*trFE, name));
1100: PetscCall(PetscFEGetQuadrature(fe, &fullQuad));
1101: PetscCall(PetscQuadratureGetOrder(fullQuad, &order));
1102: PetscCall(DMPlexGetConeSize(dm, refPoint, &coneSize));
1103: if (coneSize == 2 * depth) PetscCall(PetscDTGaussTensorQuadrature(depth, 1, (order + 2) / 2, -1., 1., &subQuad));
1104: else PetscCall(PetscDTSimplexQuadrature(depth, order, PETSCDTSIMPLEXQUAD_DEFAULT, &subQuad));
1105: PetscCall(PetscFESetQuadrature(*trFE, subQuad));
1106: PetscCall(PetscFESetUp(*trFE));
1107: PetscCall(PetscQuadratureDestroy(&subQuad));
1108: PetscCall(PetscSpaceDestroy(&bsubsp));
1109: PetscFunctionReturn(PETSC_SUCCESS);
1110: }
1112: PetscErrorCode PetscFECreateHeightTrace(PetscFE fe, PetscInt height, PetscFE *trFE)
1113: {
1114: PetscInt hStart, hEnd;
1115: PetscDualSpace dsp;
1116: DM dm;
1118: PetscFunctionBegin;
1121: *trFE = NULL;
1122: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1123: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1124: PetscCall(DMPlexGetHeightStratum(dm, height, &hStart, &hEnd));
1125: if (hEnd <= hStart) PetscFunctionReturn(PETSC_SUCCESS);
1126: PetscCall(PetscFECreatePointTrace(fe, hStart, trFE));
1127: PetscFunctionReturn(PETSC_SUCCESS);
1128: }
1130: /*@
1131: PetscFEGetDimension - Get the dimension of the finite element space on a cell
1133: Not collective
1135: Input Parameter:
1136: . fe - The `PetscFE`
1138: Output Parameter:
1139: . dim - The dimension
1141: Level: intermediate
1143: .seealso: `PetscFE`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
1144: @*/
1145: PetscErrorCode PetscFEGetDimension(PetscFE fem, PetscInt *dim)
1146: {
1147: PetscFunctionBegin;
1150: PetscTryTypeMethod(fem, getdimension, dim);
1151: PetscFunctionReturn(PETSC_SUCCESS);
1152: }
1154: /*@C
1155: PetscFEPushforward - Map the reference element function to real space
1157: Input Parameters:
1158: + fe - The `PetscFE`
1159: . fegeom - The cell geometry
1160: . Nv - The number of function values
1161: - vals - The function values
1163: Output Parameter:
1164: . vals - The transformed function values
1166: Level: advanced
1168: Notes:
1169: This just forwards the call onto `PetscDualSpacePushforward()`.
1171: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1173: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscDualSpacePushforward()`
1174: @*/
1175: PetscErrorCode PetscFEPushforward(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1176: {
1177: PetscFunctionBeginHot;
1178: PetscCall(PetscDualSpacePushforward(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1179: PetscFunctionReturn(PETSC_SUCCESS);
1180: }
1182: /*@C
1183: PetscFEPushforwardGradient - Map the reference element function gradient to real space
1185: Input Parameters:
1186: + fe - The `PetscFE`
1187: . fegeom - The cell geometry
1188: . Nv - The number of function gradient values
1189: - vals - The function gradient values
1191: Output Parameter:
1192: . vals - The transformed function gradient values
1194: Level: advanced
1196: Notes:
1197: This just forwards the call onto `PetscDualSpacePushforwardGradient()`.
1199: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1201: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardGradient()`, `PetscDualSpacePushforward()`
1202: @*/
1203: PetscErrorCode PetscFEPushforwardGradient(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1204: {
1205: PetscFunctionBeginHot;
1206: PetscCall(PetscDualSpacePushforwardGradient(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1207: PetscFunctionReturn(PETSC_SUCCESS);
1208: }
1210: /*@C
1211: PetscFEPushforwardHessian - Map the reference element function Hessian to real space
1213: Input Parameters:
1214: + fe - The `PetscFE`
1215: . fegeom - The cell geometry
1216: . Nv - The number of function Hessian values
1217: - vals - The function Hessian values
1219: Output Parameter:
1220: . vals - The transformed function Hessian values
1222: Level: advanced
1224: Notes:
1225: This just forwards the call onto `PetscDualSpacePushforwardHessian()`.
1227: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1229: Developer Note:
1230: It is unclear why all these one line convenience routines are desirable
1232: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardHessian()`, `PetscDualSpacePushforward()`
1233: @*/
1234: PetscErrorCode PetscFEPushforwardHessian(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1235: {
1236: PetscFunctionBeginHot;
1237: PetscCall(PetscDualSpacePushforwardHessian(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1238: PetscFunctionReturn(PETSC_SUCCESS);
1239: }
1241: /*
1242: Purpose: Compute element vector for chunk of elements
1244: Input:
1245: Sizes:
1246: Ne: number of elements
1247: Nf: number of fields
1248: PetscFE
1249: dim: spatial dimension
1250: Nb: number of basis functions
1251: Nc: number of field components
1252: PetscQuadrature
1253: Nq: number of quadrature points
1255: Geometry:
1256: PetscFEGeom[Ne] possibly *Nq
1257: PetscReal v0s[dim]
1258: PetscReal n[dim]
1259: PetscReal jacobians[dim*dim]
1260: PetscReal jacobianInverses[dim*dim]
1261: PetscReal jacobianDeterminants
1262: FEM:
1263: PetscFE
1264: PetscQuadrature
1265: PetscReal quadPoints[Nq*dim]
1266: PetscReal quadWeights[Nq]
1267: PetscReal basis[Nq*Nb*Nc]
1268: PetscReal basisDer[Nq*Nb*Nc*dim]
1269: PetscScalar coefficients[Ne*Nb*Nc]
1270: PetscScalar elemVec[Ne*Nb*Nc]
1272: Problem:
1273: PetscInt f: the active field
1274: f0, f1
1276: Work Space:
1277: PetscFE
1278: PetscScalar f0[Nq*dim];
1279: PetscScalar f1[Nq*dim*dim];
1280: PetscScalar u[Nc];
1281: PetscScalar gradU[Nc*dim];
1282: PetscReal x[dim];
1283: PetscScalar realSpaceDer[dim];
1285: Purpose: Compute element vector for N_cb batches of elements
1287: Input:
1288: Sizes:
1289: N_cb: Number of serial cell batches
1291: Geometry:
1292: PetscReal v0s[Ne*dim]
1293: PetscReal jacobians[Ne*dim*dim] possibly *Nq
1294: PetscReal jacobianInverses[Ne*dim*dim] possibly *Nq
1295: PetscReal jacobianDeterminants[Ne] possibly *Nq
1296: FEM:
1297: static PetscReal quadPoints[Nq*dim]
1298: static PetscReal quadWeights[Nq]
1299: static PetscReal basis[Nq*Nb*Nc]
1300: static PetscReal basisDer[Nq*Nb*Nc*dim]
1301: PetscScalar coefficients[Ne*Nb*Nc]
1302: PetscScalar elemVec[Ne*Nb*Nc]
1304: ex62.c:
1305: PetscErrorCode PetscFEIntegrateResidualBatch(PetscInt Ne, PetscInt numFields, PetscInt field, PetscQuadrature quad[], const PetscScalar coefficients[],
1306: const PetscReal v0s[], const PetscReal jacobians[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[],
1307: void (*f0_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f0[]),
1308: void (*f1_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f1[]), PetscScalar elemVec[])
1310: ex52.c:
1311: PetscErrorCode IntegrateLaplacianBatchCPU(PetscInt Ne, PetscInt Nb, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1312: PetscErrorCode IntegrateElasticityBatchCPU(PetscInt Ne, PetscInt Nb, PetscInt Ncomp, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1314: ex52_integrateElement.cu
1315: __global__ void integrateElementQuadrature(int N_cb, realType *coefficients, realType *jacobianInverses, realType *jacobianDeterminants, realType *elemVec)
1317: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt Nbl, const PetscScalar coefficients[],
1318: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1319: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1321: ex52_integrateElementOpenCL.c:
1322: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt N_bl, const PetscScalar coefficients[],
1323: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1324: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1326: __kernel void integrateElementQuadrature(int N_cb, __global float *coefficients, __global float *jacobianInverses, __global float *jacobianDeterminants, __global float *elemVec)
1327: */
1329: /*@C
1330: PetscFEIntegrate - Produce the integral for the given field for a chunk of elements by quadrature integration
1332: Not collective
1334: Input Parameters:
1335: + prob - The `PetscDS` specifying the discretizations and continuum functions
1336: . field - The field being integrated
1337: . Ne - The number of elements in the chunk
1338: . cgeom - The cell geometry for each cell in the chunk
1339: . coefficients - The array of FEM basis coefficients for the elements
1340: . probAux - The `PetscDS` specifying the auxiliary discretizations
1341: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1343: Output Parameter:
1344: . integral - the integral for this field
1346: Level: intermediate
1348: Developer Note:
1349: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1351: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrateBd()`
1352: @*/
1353: PetscErrorCode PetscFEIntegrate(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1354: {
1355: PetscFE fe;
1357: PetscFunctionBegin;
1359: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1360: if (fe->ops->integrate) PetscCall((*fe->ops->integrate)(prob, field, Ne, cgeom, coefficients, probAux, coefficientsAux, integral));
1361: PetscFunctionReturn(PETSC_SUCCESS);
1362: }
1364: /*@C
1365: PetscFEIntegrateBd - Produce the integral for the given field for a chunk of elements by quadrature integration
1367: Not collective
1369: Input Parameters:
1370: + prob - The `PetscDS` specifying the discretizations and continuum functions
1371: . field - The field being integrated
1372: . obj_func - The function to be integrated
1373: . Ne - The number of elements in the chunk
1374: . fgeom - The face geometry for each face in the chunk
1375: . coefficients - The array of FEM basis coefficients for the elements
1376: . probAux - The `PetscDS` specifying the auxiliary discretizations
1377: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1379: Output Parameter:
1380: . integral - the integral for this field
1382: Level: intermediate
1384: Developer Note:
1385: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1387: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrate()`
1388: @*/
1389: PetscErrorCode PetscFEIntegrateBd(PetscDS prob, PetscInt field, void (*obj_func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscInt Ne, PetscFEGeom *geom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1390: {
1391: PetscFE fe;
1393: PetscFunctionBegin;
1395: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1396: if (fe->ops->integratebd) PetscCall((*fe->ops->integratebd)(prob, field, obj_func, Ne, geom, coefficients, probAux, coefficientsAux, integral));
1397: PetscFunctionReturn(PETSC_SUCCESS);
1398: }
1400: /*@C
1401: PetscFEIntegrateResidual - Produce the element residual vector for a chunk of elements by quadrature integration
1403: Not collective
1405: Input Parameters:
1406: + ds - The PetscDS specifying the discretizations and continuum functions
1407: . key - The (label+value, field) being integrated
1408: . Ne - The number of elements in the chunk
1409: . cgeom - The cell geometry for each cell in the chunk
1410: . coefficients - The array of FEM basis coefficients for the elements
1411: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1412: . probAux - The PetscDS specifying the auxiliary discretizations
1413: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1414: - t - The time
1416: Output Parameter:
1417: . elemVec - the element residual vectors from each element
1419: Level: intermediate
1421: Note:
1422: .vb
1423: Loop over batch of elements (e):
1424: Loop over quadrature points (q):
1425: Make u_q and gradU_q (loops over fields,Nb,Ncomp) and x_q
1426: Call f_0 and f_1
1427: Loop over element vector entries (f,fc --> i):
1428: elemVec[i] += \psi^{fc}_f(q) f0_{fc}(u, \nabla u) + \nabla\psi^{fc}_f(q) \cdot f1_{fc,df}(u, \nabla u)
1429: .ve
1431: .seealso: `PetscFEIntegrateResidual()`
1432: @*/
1433: PetscErrorCode PetscFEIntegrateResidual(PetscDS ds, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1434: {
1435: PetscFE fe;
1437: PetscFunctionBeginHot;
1439: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1440: if (fe->ops->integrateresidual) PetscCall((*fe->ops->integrateresidual)(ds, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1441: PetscFunctionReturn(PETSC_SUCCESS);
1442: }
1444: /*@C
1445: PetscFEIntegrateBdResidual - Produce the element residual vector for a chunk of elements by quadrature integration over a boundary
1447: Not collective
1449: Input Parameters:
1450: + ds - The PetscDS specifying the discretizations and continuum functions
1451: . wf - The PetscWeakForm object holding the pointwise functions
1452: . key - The (label+value, field) being integrated
1453: . Ne - The number of elements in the chunk
1454: . fgeom - The face geometry for each cell in the chunk
1455: . coefficients - The array of FEM basis coefficients for the elements
1456: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1457: . probAux - The PetscDS specifying the auxiliary discretizations
1458: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1459: - t - The time
1461: Output Parameter:
1462: . elemVec - the element residual vectors from each element
1464: Level: intermediate
1466: .seealso: `PetscFEIntegrateResidual()`
1467: @*/
1468: PetscErrorCode PetscFEIntegrateBdResidual(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1469: {
1470: PetscFE fe;
1472: PetscFunctionBegin;
1474: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1475: if (fe->ops->integratebdresidual) PetscCall((*fe->ops->integratebdresidual)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1476: PetscFunctionReturn(PETSC_SUCCESS);
1477: }
1479: /*@C
1480: PetscFEIntegrateHybridResidual - Produce the element residual vector for a chunk of hybrid element faces by quadrature integration
1482: Not collective
1484: Input Parameters:
1485: + prob - The PetscDS specifying the discretizations and continuum functions
1486: . key - The (label+value, field) being integrated
1487: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1488: . Ne - The number of elements in the chunk
1489: . fgeom - The face geometry for each cell in the chunk
1490: . coefficients - The array of FEM basis coefficients for the elements
1491: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1492: . probAux - The PetscDS specifying the auxiliary discretizations
1493: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1494: - t - The time
1496: Output Parameter
1497: . elemVec - the element residual vectors from each element
1499: Level: developer
1501: .seealso: `PetscFEIntegrateResidual()`
1502: @*/
1503: PetscErrorCode PetscFEIntegrateHybridResidual(PetscDS prob, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1504: {
1505: PetscFE fe;
1507: PetscFunctionBegin;
1509: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
1510: if (fe->ops->integratehybridresidual) PetscCall((*fe->ops->integratehybridresidual)(prob, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1511: PetscFunctionReturn(PETSC_SUCCESS);
1512: }
1514: /*@C
1515: PetscFEIntegrateJacobian - Produce the element Jacobian for a chunk of elements by quadrature integration
1517: Not collective
1519: Input Parameters:
1520: + ds - The PetscDS specifying the discretizations and continuum functions
1521: . jtype - The type of matrix pointwise functions that should be used
1522: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1523: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1524: . Ne - The number of elements in the chunk
1525: . cgeom - The cell geometry for each cell in the chunk
1526: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1527: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1528: . probAux - The PetscDS specifying the auxiliary discretizations
1529: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1530: . t - The time
1531: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1533: Output Parameter:
1534: . elemMat - the element matrices for the Jacobian from each element
1536: Level: intermediate
1538: Note:
1539: .vb
1540: Loop over batch of elements (e):
1541: Loop over element matrix entries (f,fc,g,gc --> i,j):
1542: Loop over quadrature points (q):
1543: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1544: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1545: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1546: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1547: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1548: .ve
1550: .seealso: `PetscFEIntegrateResidual()`
1551: @*/
1552: PetscErrorCode PetscFEIntegrateJacobian(PetscDS ds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1553: {
1554: PetscFE fe;
1555: PetscInt Nf;
1557: PetscFunctionBegin;
1559: PetscCall(PetscDSGetNumFields(ds, &Nf));
1560: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1561: if (fe->ops->integratejacobian) PetscCall((*fe->ops->integratejacobian)(ds, jtype, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1562: PetscFunctionReturn(PETSC_SUCCESS);
1563: }
1565: /*@C
1566: PetscFEIntegrateBdJacobian - Produce the boundary element Jacobian for a chunk of elements by quadrature integration
1568: Not collective
1570: Input Parameters:
1571: + ds - The PetscDS specifying the discretizations and continuum functions
1572: . wf - The PetscWeakForm holding the pointwise functions
1573: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1574: . Ne - The number of elements in the chunk
1575: . fgeom - The face geometry for each cell in the chunk
1576: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1577: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1578: . probAux - The PetscDS specifying the auxiliary discretizations
1579: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1580: . t - The time
1581: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1583: Output Parameter:
1584: . elemMat - the element matrices for the Jacobian from each element
1586: Level: intermediate
1588: Note:
1589: .vb
1590: Loop over batch of elements (e):
1591: Loop over element matrix entries (f,fc,g,gc --> i,j):
1592: Loop over quadrature points (q):
1593: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1594: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1595: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1596: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1597: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1598: .ve
1600: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1601: @*/
1602: PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1603: {
1604: PetscFE fe;
1605: PetscInt Nf;
1607: PetscFunctionBegin;
1609: PetscCall(PetscDSGetNumFields(ds, &Nf));
1610: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1611: if (fe->ops->integratebdjacobian) PetscCall((*fe->ops->integratebdjacobian)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1612: PetscFunctionReturn(PETSC_SUCCESS);
1613: }
1615: /*@C
1616: PetscFEIntegrateHybridJacobian - Produce the boundary element Jacobian for a chunk of hybrid elements by quadrature integration
1618: Not collective
1620: Input Parameters:
1621: + ds - The PetscDS specifying the discretizations and continuum functions
1622: . jtype - The type of matrix pointwise functions that should be used
1623: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1624: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1625: . Ne - The number of elements in the chunk
1626: . fgeom - The face geometry for each cell in the chunk
1627: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1628: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1629: . probAux - The PetscDS specifying the auxiliary discretizations
1630: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1631: . t - The time
1632: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1634: Output Parameter
1635: . elemMat - the element matrices for the Jacobian from each element
1637: Level: developer
1639: Note:
1640: .vb
1641: Loop over batch of elements (e):
1642: Loop over element matrix entries (f,fc,g,gc --> i,j):
1643: Loop over quadrature points (q):
1644: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1645: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1646: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1647: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1648: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1649: .ve
1651: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1652: @*/
1653: PetscErrorCode PetscFEIntegrateHybridJacobian(PetscDS ds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1654: {
1655: PetscFE fe;
1656: PetscInt Nf;
1658: PetscFunctionBegin;
1660: PetscCall(PetscDSGetNumFields(ds, &Nf));
1661: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1662: if (fe->ops->integratehybridjacobian) PetscCall((*fe->ops->integratehybridjacobian)(ds, jtype, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1663: PetscFunctionReturn(PETSC_SUCCESS);
1664: }
1666: /*@
1667: PetscFEGetHeightSubspace - Get the subspace of this space for a mesh point of a given height
1669: Input Parameters:
1670: + fe - The finite element space
1671: - height - The height of the Plex point
1673: Output Parameter:
1674: . subfe - The subspace of this FE space
1676: Level: advanced
1678: Note:
1679: For example, if we want the subspace of this space for a face, we would choose height = 1.
1681: .seealso: `PetscFECreateDefault()`
1682: @*/
1683: PetscErrorCode PetscFEGetHeightSubspace(PetscFE fe, PetscInt height, PetscFE *subfe)
1684: {
1685: PetscSpace P, subP;
1686: PetscDualSpace Q, subQ;
1687: PetscQuadrature subq;
1688: PetscFEType fetype;
1689: PetscInt dim, Nc;
1691: PetscFunctionBegin;
1694: if (height == 0) {
1695: *subfe = fe;
1696: PetscFunctionReturn(PETSC_SUCCESS);
1697: }
1698: PetscCall(PetscFEGetBasisSpace(fe, &P));
1699: PetscCall(PetscFEGetDualSpace(fe, &Q));
1700: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1701: PetscCall(PetscFEGetFaceQuadrature(fe, &subq));
1702: PetscCall(PetscDualSpaceGetDimension(Q, &dim));
1703: PetscCheck(height <= dim && height >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %" PetscInt_FMT " for dimension %" PetscInt_FMT " space", height, dim);
1704: if (!fe->subspaces) PetscCall(PetscCalloc1(dim, &fe->subspaces));
1705: if (height <= dim) {
1706: if (!fe->subspaces[height - 1]) {
1707: PetscFE sub = NULL;
1708: const char *name;
1710: PetscCall(PetscSpaceGetHeightSubspace(P, height, &subP));
1711: PetscCall(PetscDualSpaceGetHeightSubspace(Q, height, &subQ));
1712: if (subQ) {
1713: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), &sub));
1714: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1715: PetscCall(PetscObjectSetName((PetscObject)sub, name));
1716: PetscCall(PetscFEGetType(fe, &fetype));
1717: PetscCall(PetscFESetType(sub, fetype));
1718: PetscCall(PetscFESetBasisSpace(sub, subP));
1719: PetscCall(PetscFESetDualSpace(sub, subQ));
1720: PetscCall(PetscFESetNumComponents(sub, Nc));
1721: PetscCall(PetscFESetUp(sub));
1722: PetscCall(PetscFESetQuadrature(sub, subq));
1723: }
1724: fe->subspaces[height - 1] = sub;
1725: }
1726: *subfe = fe->subspaces[height - 1];
1727: } else {
1728: *subfe = NULL;
1729: }
1730: PetscFunctionReturn(PETSC_SUCCESS);
1731: }
1733: /*@
1734: PetscFERefine - Create a "refined" PetscFE object that refines the reference cell into smaller copies. This is typically used
1735: to precondition a higher order method with a lower order method on a refined mesh having the same number of dofs (but more
1736: sparsity). It is also used to create an interpolation between regularly refined meshes.
1738: Collective on fem
1740: Input Parameter:
1741: . fe - The initial PetscFE
1743: Output Parameter:
1744: . feRef - The refined PetscFE
1746: Level: advanced
1748: .seealso: `PetscFEType`, `PetscFECreate()`, `PetscFESetType()`
1749: @*/
1750: PetscErrorCode PetscFERefine(PetscFE fe, PetscFE *feRef)
1751: {
1752: PetscSpace P, Pref;
1753: PetscDualSpace Q, Qref;
1754: DM K, Kref;
1755: PetscQuadrature q, qref;
1756: const PetscReal *v0, *jac;
1757: PetscInt numComp, numSubelements;
1758: PetscInt cStart, cEnd, c;
1759: PetscDualSpace *cellSpaces;
1761: PetscFunctionBegin;
1762: PetscCall(PetscFEGetBasisSpace(fe, &P));
1763: PetscCall(PetscFEGetDualSpace(fe, &Q));
1764: PetscCall(PetscFEGetQuadrature(fe, &q));
1765: PetscCall(PetscDualSpaceGetDM(Q, &K));
1766: /* Create space */
1767: PetscCall(PetscObjectReference((PetscObject)P));
1768: Pref = P;
1769: /* Create dual space */
1770: PetscCall(PetscDualSpaceDuplicate(Q, &Qref));
1771: PetscCall(PetscDualSpaceSetType(Qref, PETSCDUALSPACEREFINED));
1772: PetscCall(DMRefine(K, PetscObjectComm((PetscObject)fe), &Kref));
1773: PetscCall(PetscDualSpaceSetDM(Qref, Kref));
1774: PetscCall(DMPlexGetHeightStratum(Kref, 0, &cStart, &cEnd));
1775: PetscCall(PetscMalloc1(cEnd - cStart, &cellSpaces));
1776: /* TODO: fix for non-uniform refinement */
1777: for (c = 0; c < cEnd - cStart; c++) cellSpaces[c] = Q;
1778: PetscCall(PetscDualSpaceRefinedSetCellSpaces(Qref, cellSpaces));
1779: PetscCall(PetscFree(cellSpaces));
1780: PetscCall(DMDestroy(&Kref));
1781: PetscCall(PetscDualSpaceSetUp(Qref));
1782: /* Create element */
1783: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), feRef));
1784: PetscCall(PetscFESetType(*feRef, PETSCFECOMPOSITE));
1785: PetscCall(PetscFESetBasisSpace(*feRef, Pref));
1786: PetscCall(PetscFESetDualSpace(*feRef, Qref));
1787: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1788: PetscCall(PetscFESetNumComponents(*feRef, numComp));
1789: PetscCall(PetscFESetUp(*feRef));
1790: PetscCall(PetscSpaceDestroy(&Pref));
1791: PetscCall(PetscDualSpaceDestroy(&Qref));
1792: /* Create quadrature */
1793: PetscCall(PetscFECompositeGetMapping(*feRef, &numSubelements, &v0, &jac, NULL));
1794: PetscCall(PetscQuadratureExpandComposite(q, numSubelements, v0, jac, &qref));
1795: PetscCall(PetscFESetQuadrature(*feRef, qref));
1796: PetscCall(PetscQuadratureDestroy(&qref));
1797: PetscFunctionReturn(PETSC_SUCCESS);
1798: }
1800: static PetscErrorCode PetscFESetDefaultName_Private(PetscFE fe)
1801: {
1802: PetscSpace P;
1803: PetscDualSpace Q;
1804: DM K;
1805: DMPolytopeType ct;
1806: PetscInt degree;
1807: char name[64];
1809: PetscFunctionBegin;
1810: PetscCall(PetscFEGetBasisSpace(fe, &P));
1811: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1812: PetscCall(PetscFEGetDualSpace(fe, &Q));
1813: PetscCall(PetscDualSpaceGetDM(Q, &K));
1814: PetscCall(DMPlexGetCellType(K, 0, &ct));
1815: switch (ct) {
1816: case DM_POLYTOPE_SEGMENT:
1817: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1818: case DM_POLYTOPE_QUADRILATERAL:
1819: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1820: case DM_POLYTOPE_HEXAHEDRON:
1821: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1822: PetscCall(PetscSNPrintf(name, sizeof(name), "Q%" PetscInt_FMT, degree));
1823: break;
1824: case DM_POLYTOPE_TRIANGLE:
1825: case DM_POLYTOPE_TETRAHEDRON:
1826: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT, degree));
1827: break;
1828: case DM_POLYTOPE_TRI_PRISM:
1829: case DM_POLYTOPE_TRI_PRISM_TENSOR:
1830: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT "xQ%" PetscInt_FMT, degree, degree));
1831: break;
1832: default:
1833: PetscCall(PetscSNPrintf(name, sizeof(name), "FE"));
1834: }
1835: PetscCall(PetscFESetName(fe, name));
1836: PetscFunctionReturn(PETSC_SUCCESS);
1837: }
1839: static PetscErrorCode PetscFECreateDefaultQuadrature_Private(PetscInt dim, DMPolytopeType ct, PetscInt qorder, PetscQuadrature *q, PetscQuadrature *fq)
1840: {
1841: const PetscInt quadPointsPerEdge = PetscMax(qorder + 1, 1);
1843: PetscFunctionBegin;
1844: switch (ct) {
1845: case DM_POLYTOPE_SEGMENT:
1846: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1847: case DM_POLYTOPE_QUADRILATERAL:
1848: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1849: case DM_POLYTOPE_HEXAHEDRON:
1850: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1851: PetscCall(PetscDTGaussTensorQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, q));
1852: PetscCall(PetscDTGaussTensorQuadrature(dim - 1, 1, quadPointsPerEdge, -1.0, 1.0, fq));
1853: break;
1854: case DM_POLYTOPE_TRIANGLE:
1855: case DM_POLYTOPE_TETRAHEDRON:
1856: PetscCall(PetscDTSimplexQuadrature(dim, 2 * qorder, PETSCDTSIMPLEXQUAD_DEFAULT, q));
1857: PetscCall(PetscDTSimplexQuadrature(dim - 1, 2 * qorder, PETSCDTSIMPLEXQUAD_DEFAULT, fq));
1858: break;
1859: case DM_POLYTOPE_TRI_PRISM:
1860: case DM_POLYTOPE_TRI_PRISM_TENSOR: {
1861: PetscQuadrature q1, q2;
1863: // TODO: this should be able to use symmetric rules, but doing so causes tests to fail
1864: PetscCall(PetscDTSimplexQuadrature(2, 2 * qorder, PETSCDTSIMPLEXQUAD_CONIC, &q1));
1865: PetscCall(PetscDTGaussTensorQuadrature(1, 1, quadPointsPerEdge, -1.0, 1.0, &q2));
1866: PetscCall(PetscDTTensorQuadratureCreate(q1, q2, q));
1867: PetscCall(PetscQuadratureDestroy(&q2));
1868: *fq = q1;
1869: /* TODO Need separate quadratures for each face */
1870: } break;
1871: default:
1872: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No quadrature for celltype %s", DMPolytopeTypes[PetscMin(ct, DM_POLYTOPE_UNKNOWN)]);
1873: }
1874: PetscFunctionReturn(PETSC_SUCCESS);
1875: }
1877: /*@
1878: PetscFECreateFromSpaces - Create a `PetscFE` from the basis and dual spaces
1880: Collective
1882: Input Parameters:
1883: + P - The basis space
1884: . Q - The dual space
1885: . q - The cell quadrature
1886: - fq - The face quadrature
1888: Output Parameter:
1889: . fem - The PetscFE object
1891: Level: beginner
1893: Note:
1894: The `PetscFE` takes ownership of these spaces by calling destroy on each. They should not be used after this call, and for borrowed references from `PetscFEGetSpace()` and the like, the caller must use `PetscObjectReference` before this call.
1896: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`,
1897: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
1898: @*/
1899: PetscErrorCode PetscFECreateFromSpaces(PetscSpace P, PetscDualSpace Q, PetscQuadrature q, PetscQuadrature fq, PetscFE *fem)
1900: {
1901: PetscInt Nc;
1902: const char *prefix;
1904: PetscFunctionBegin;
1905: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)P), fem));
1906: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)P, &prefix));
1907: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)*fem, prefix));
1908: PetscCall(PetscFESetType(*fem, PETSCFEBASIC));
1909: PetscCall(PetscFESetBasisSpace(*fem, P));
1910: PetscCall(PetscFESetDualSpace(*fem, Q));
1911: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1912: PetscCall(PetscFESetNumComponents(*fem, Nc));
1913: PetscCall(PetscFESetUp(*fem));
1914: PetscCall(PetscSpaceDestroy(&P));
1915: PetscCall(PetscDualSpaceDestroy(&Q));
1916: PetscCall(PetscFESetQuadrature(*fem, q));
1917: PetscCall(PetscFESetFaceQuadrature(*fem, fq));
1918: PetscCall(PetscQuadratureDestroy(&q));
1919: PetscCall(PetscQuadratureDestroy(&fq));
1920: PetscCall(PetscFESetDefaultName_Private(*fem));
1921: PetscFunctionReturn(PETSC_SUCCESS);
1922: }
1924: static PetscErrorCode PetscFECreate_Internal(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt degree, PetscInt qorder, PetscBool setFromOptions, PetscFE *fem)
1925: {
1926: DM K;
1927: PetscSpace P;
1928: PetscDualSpace Q;
1929: PetscQuadrature q, fq;
1930: PetscBool tensor;
1932: PetscFunctionBegin;
1935: switch (ct) {
1936: case DM_POLYTOPE_SEGMENT:
1937: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1938: case DM_POLYTOPE_QUADRILATERAL:
1939: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1940: case DM_POLYTOPE_HEXAHEDRON:
1941: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1942: tensor = PETSC_TRUE;
1943: break;
1944: default:
1945: tensor = PETSC_FALSE;
1946: }
1947: /* Create space */
1948: PetscCall(PetscSpaceCreate(comm, &P));
1949: PetscCall(PetscSpaceSetType(P, PETSCSPACEPOLYNOMIAL));
1950: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)P, prefix));
1951: PetscCall(PetscSpacePolynomialSetTensor(P, tensor));
1952: PetscCall(PetscSpaceSetNumComponents(P, Nc));
1953: PetscCall(PetscSpaceSetNumVariables(P, dim));
1954: if (degree >= 0) {
1955: PetscCall(PetscSpaceSetDegree(P, degree, PETSC_DETERMINE));
1956: if (ct == DM_POLYTOPE_TRI_PRISM || ct == DM_POLYTOPE_TRI_PRISM_TENSOR) {
1957: PetscSpace Pend, Pside;
1959: PetscCall(PetscSpaceCreate(comm, &Pend));
1960: PetscCall(PetscSpaceSetType(Pend, PETSCSPACEPOLYNOMIAL));
1961: PetscCall(PetscSpacePolynomialSetTensor(Pend, PETSC_FALSE));
1962: PetscCall(PetscSpaceSetNumComponents(Pend, Nc));
1963: PetscCall(PetscSpaceSetNumVariables(Pend, dim - 1));
1964: PetscCall(PetscSpaceSetDegree(Pend, degree, PETSC_DETERMINE));
1965: PetscCall(PetscSpaceCreate(comm, &Pside));
1966: PetscCall(PetscSpaceSetType(Pside, PETSCSPACEPOLYNOMIAL));
1967: PetscCall(PetscSpacePolynomialSetTensor(Pside, PETSC_FALSE));
1968: PetscCall(PetscSpaceSetNumComponents(Pside, 1));
1969: PetscCall(PetscSpaceSetNumVariables(Pside, 1));
1970: PetscCall(PetscSpaceSetDegree(Pside, degree, PETSC_DETERMINE));
1971: PetscCall(PetscSpaceSetType(P, PETSCSPACETENSOR));
1972: PetscCall(PetscSpaceTensorSetNumSubspaces(P, 2));
1973: PetscCall(PetscSpaceTensorSetSubspace(P, 0, Pend));
1974: PetscCall(PetscSpaceTensorSetSubspace(P, 1, Pside));
1975: PetscCall(PetscSpaceDestroy(&Pend));
1976: PetscCall(PetscSpaceDestroy(&Pside));
1977: }
1978: }
1979: if (setFromOptions) PetscCall(PetscSpaceSetFromOptions(P));
1980: PetscCall(PetscSpaceSetUp(P));
1981: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1982: PetscCall(PetscSpacePolynomialGetTensor(P, &tensor));
1983: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1984: /* Create dual space */
1985: PetscCall(PetscDualSpaceCreate(comm, &Q));
1986: PetscCall(PetscDualSpaceSetType(Q, PETSCDUALSPACELAGRANGE));
1987: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)Q, prefix));
1988: PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &K));
1989: PetscCall(PetscDualSpaceSetDM(Q, K));
1990: PetscCall(DMDestroy(&K));
1991: PetscCall(PetscDualSpaceSetNumComponents(Q, Nc));
1992: PetscCall(PetscDualSpaceSetOrder(Q, degree));
1993: /* TODO For some reason, we need a tensor dualspace with wedges */
1994: PetscCall(PetscDualSpaceLagrangeSetTensor(Q, (tensor || (ct == DM_POLYTOPE_TRI_PRISM)) ? PETSC_TRUE : PETSC_FALSE));
1995: if (setFromOptions) PetscCall(PetscDualSpaceSetFromOptions(Q));
1996: PetscCall(PetscDualSpaceSetUp(Q));
1997: /* Create quadrature */
1998: qorder = qorder >= 0 ? qorder : degree;
1999: if (setFromOptions) {
2000: PetscObjectOptionsBegin((PetscObject)P);
2001: PetscCall(PetscOptionsBoundedInt("-petscfe_default_quadrature_order", "Quadrature order is one less than quadrature points per edge", "PetscFECreateDefault", qorder, &qorder, NULL, 0));
2002: PetscOptionsEnd();
2003: }
2004: PetscCall(PetscFECreateDefaultQuadrature_Private(dim, ct, qorder, &q, &fq));
2005: /* Create finite element */
2006: PetscCall(PetscFECreateFromSpaces(P, Q, q, fq, fem));
2007: if (setFromOptions) PetscCall(PetscFESetFromOptions(*fem));
2008: PetscFunctionReturn(PETSC_SUCCESS);
2009: }
2011: /*@C
2012: PetscFECreateDefault - Create a PetscFE for basic FEM computation
2014: Collective
2016: Input Parameters:
2017: + comm - The MPI comm
2018: . dim - The spatial dimension
2019: . Nc - The number of components
2020: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2021: . prefix - The options prefix, or NULL
2022: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
2024: Output Parameter:
2025: . fem - The PetscFE object
2027: Level: beginner
2029: Note:
2030: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2032: .seealso: `PetscFECreateLagrange()`, `PetscFECreateByCell()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2033: @*/
2034: PetscErrorCode PetscFECreateDefault(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, const char prefix[], PetscInt qorder, PetscFE *fem)
2035: {
2036: PetscFunctionBegin;
2037: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2038: PetscFunctionReturn(PETSC_SUCCESS);
2039: }
2041: /*@C
2042: PetscFECreateByCell - Create a PetscFE for basic FEM computation
2044: Collective
2046: Input Parameters:
2047: + comm - The MPI comm
2048: . dim - The spatial dimension
2049: . Nc - The number of components
2050: . ct - The celltype of the reference cell
2051: . prefix - The options prefix, or NULL
2052: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
2054: Output Parameter:
2055: . fem - The PetscFE object
2057: Level: beginner
2059: Note:
2060: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2062: .seealso: `PetscFECreateDefault()`, `PetscFECreateLagrange()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2063: @*/
2064: PetscErrorCode PetscFECreateByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt qorder, PetscFE *fem)
2065: {
2066: PetscFunctionBegin;
2067: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2068: PetscFunctionReturn(PETSC_SUCCESS);
2069: }
2071: /*@
2072: PetscFECreateLagrange - Create a PetscFE for the basic Lagrange space of degree k
2074: Collective
2076: Input Parameters:
2077: + comm - The MPI comm
2078: . dim - The spatial dimension
2079: . Nc - The number of components
2080: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2081: . k - The degree k of the space
2082: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
2084: Output Parameter:
2085: . fem - The PetscFE object
2087: Level: beginner
2089: Note:
2090: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2092: .seealso: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2093: @*/
2094: PetscErrorCode PetscFECreateLagrange(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, PetscInt k, PetscInt qorder, PetscFE *fem)
2095: {
2096: PetscFunctionBegin;
2097: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), NULL, k, qorder, PETSC_FALSE, fem));
2098: PetscFunctionReturn(PETSC_SUCCESS);
2099: }
2101: /*@
2102: PetscFECreateLagrangeByCell - Create a PetscFE for the basic Lagrange space of degree k
2104: Collective
2106: Input Parameters:
2107: + comm - The MPI comm
2108: . dim - The spatial dimension
2109: . Nc - The number of components
2110: . ct - The celltype of the reference cell
2111: . k - The degree k of the space
2112: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
2114: Output Parameter:
2115: . fem - The PetscFE object
2117: Level: beginner
2119: Note:
2120: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2122: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2123: @*/
2124: PetscErrorCode PetscFECreateLagrangeByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, PetscInt k, PetscInt qorder, PetscFE *fem)
2125: {
2126: PetscFunctionBegin;
2127: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, NULL, k, qorder, PETSC_FALSE, fem));
2128: PetscFunctionReturn(PETSC_SUCCESS);
2129: }
2131: /*@C
2132: PetscFESetName - Names the FE and its subobjects
2134: Not collective
2136: Input Parameters:
2137: + fe - The PetscFE
2138: - name - The name
2140: Level: intermediate
2142: .seealso: `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2143: @*/
2144: PetscErrorCode PetscFESetName(PetscFE fe, const char name[])
2145: {
2146: PetscSpace P;
2147: PetscDualSpace Q;
2149: PetscFunctionBegin;
2150: PetscCall(PetscFEGetBasisSpace(fe, &P));
2151: PetscCall(PetscFEGetDualSpace(fe, &Q));
2152: PetscCall(PetscObjectSetName((PetscObject)fe, name));
2153: PetscCall(PetscObjectSetName((PetscObject)P, name));
2154: PetscCall(PetscObjectSetName((PetscObject)Q, name));
2155: PetscFunctionReturn(PETSC_SUCCESS);
2156: }
2158: PetscErrorCode PetscFEEvaluateFieldJets_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2159: {
2160: PetscInt dOffset = 0, fOffset = 0, f, g;
2162: for (f = 0; f < Nf; ++f) {
2163: PetscFE fe;
2164: const PetscInt k = ds->jetDegree[f];
2165: const PetscInt cdim = T[f]->cdim;
2166: const PetscInt Nq = T[f]->Np;
2167: const PetscInt Nbf = T[f]->Nb;
2168: const PetscInt Ncf = T[f]->Nc;
2169: const PetscReal *Bq = &T[f]->T[0][(r * Nq + q) * Nbf * Ncf];
2170: const PetscReal *Dq = &T[f]->T[1][(r * Nq + q) * Nbf * Ncf * cdim];
2171: const PetscReal *Hq = k > 1 ? &T[f]->T[2][(r * Nq + q) * Nbf * Ncf * cdim * cdim] : NULL;
2172: PetscInt hOffset = 0, b, c, d;
2174: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
2175: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2176: for (d = 0; d < cdim * Ncf; ++d) u_x[fOffset * cdim + d] = 0.0;
2177: for (b = 0; b < Nbf; ++b) {
2178: for (c = 0; c < Ncf; ++c) {
2179: const PetscInt cidx = b * Ncf + c;
2181: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2182: for (d = 0; d < cdim; ++d) u_x[(fOffset + c) * cdim + d] += Dq[cidx * cdim + d] * coefficients[dOffset + b];
2183: }
2184: }
2185: if (k > 1) {
2186: for (g = 0; g < Nf; ++g) hOffset += T[g]->Nc * cdim;
2187: for (d = 0; d < cdim * cdim * Ncf; ++d) u_x[hOffset + fOffset * cdim * cdim + d] = 0.0;
2188: for (b = 0; b < Nbf; ++b) {
2189: for (c = 0; c < Ncf; ++c) {
2190: const PetscInt cidx = b * Ncf + c;
2192: for (d = 0; d < cdim * cdim; ++d) u_x[hOffset + (fOffset + c) * cdim * cdim + d] += Hq[cidx * cdim * cdim + d] * coefficients[dOffset + b];
2193: }
2194: }
2195: PetscCall(PetscFEPushforwardHessian(fe, fegeom, 1, &u_x[hOffset + fOffset * cdim * cdim]));
2196: }
2197: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2198: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * cdim]));
2199: if (u_t) {
2200: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2201: for (b = 0; b < Nbf; ++b) {
2202: for (c = 0; c < Ncf; ++c) {
2203: const PetscInt cidx = b * Ncf + c;
2205: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2206: }
2207: }
2208: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2209: }
2210: fOffset += Ncf;
2211: dOffset += Nbf;
2212: }
2213: return PETSC_SUCCESS;
2214: }
2216: PetscErrorCode PetscFEEvaluateFieldJets_Hybrid_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2217: {
2218: PetscInt dOffset = 0, fOffset = 0, f, g;
2220: /* f is the field number in the DS, g is the field number in u[] */
2221: for (f = 0, g = 0; f < Nf; ++f) {
2222: PetscFE fe = (PetscFE)ds->disc[f];
2223: const PetscInt dEt = T[f]->cdim;
2224: const PetscInt dE = fegeom->dimEmbed;
2225: const PetscInt Nq = T[f]->Np;
2226: const PetscInt Nbf = T[f]->Nb;
2227: const PetscInt Ncf = T[f]->Nc;
2228: const PetscReal *Bq = &T[f]->T[0][(r * Nq + q) * Nbf * Ncf];
2229: const PetscReal *Dq = &T[f]->T[1][(r * Nq + q) * Nbf * Ncf * dEt];
2230: PetscBool isCohesive;
2231: PetscInt Ns, s;
2233: if (!T[f]) continue;
2234: PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
2235: Ns = isCohesive ? 1 : 2;
2236: for (s = 0; s < Ns; ++s, ++g) {
2237: PetscInt b, c, d;
2239: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2240: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2241: for (b = 0; b < Nbf; ++b) {
2242: for (c = 0; c < Ncf; ++c) {
2243: const PetscInt cidx = b * Ncf + c;
2245: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2246: for (d = 0; d < dEt; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * dEt + d] * coefficients[dOffset + b];
2247: }
2248: }
2249: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2250: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2251: if (u_t) {
2252: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2253: for (b = 0; b < Nbf; ++b) {
2254: for (c = 0; c < Ncf; ++c) {
2255: const PetscInt cidx = b * Ncf + c;
2257: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2258: }
2259: }
2260: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2261: }
2262: fOffset += Ncf;
2263: dOffset += Nbf;
2264: }
2265: }
2266: return PETSC_SUCCESS;
2267: }
2269: PetscErrorCode PetscFEEvaluateFaceFields_Internal(PetscDS prob, PetscInt field, PetscInt faceLoc, const PetscScalar coefficients[], PetscScalar u[])
2270: {
2271: PetscFE fe;
2272: PetscTabulation Tc;
2273: PetscInt b, c;
2275: if (!prob) return PETSC_SUCCESS;
2276: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2277: PetscCall(PetscFEGetFaceCentroidTabulation(fe, &Tc));
2278: {
2279: const PetscReal *faceBasis = Tc->T[0];
2280: const PetscInt Nb = Tc->Nb;
2281: const PetscInt Nc = Tc->Nc;
2283: for (c = 0; c < Nc; ++c) u[c] = 0.0;
2284: for (b = 0; b < Nb; ++b) {
2285: for (c = 0; c < Nc; ++c) u[c] += coefficients[b] * faceBasis[(faceLoc * Nb + b) * Nc + c];
2286: }
2287: }
2288: return PETSC_SUCCESS;
2289: }
2291: PetscErrorCode PetscFEUpdateElementVec_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscInt e, PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2292: {
2293: PetscFEGeom pgeom;
2294: const PetscInt dEt = T->cdim;
2295: const PetscInt dE = fegeom->dimEmbed;
2296: const PetscInt Nq = T->Np;
2297: const PetscInt Nb = T->Nb;
2298: const PetscInt Nc = T->Nc;
2299: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2300: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dEt];
2301: PetscInt q, b, c, d;
2303: for (q = 0; q < Nq; ++q) {
2304: for (b = 0; b < Nb; ++b) {
2305: for (c = 0; c < Nc; ++c) {
2306: const PetscInt bcidx = b * Nc + c;
2308: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2309: for (d = 0; d < dEt; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dEt + bcidx * dEt + d];
2310: for (d = dEt; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = 0.0;
2311: }
2312: }
2313: PetscCall(PetscFEGeomGetCellPoint(fegeom, e, q, &pgeom));
2314: PetscCall(PetscFEPushforward(fe, &pgeom, Nb, tmpBasis));
2315: PetscCall(PetscFEPushforwardGradient(fe, &pgeom, Nb, tmpBasisDer));
2316: for (b = 0; b < Nb; ++b) {
2317: for (c = 0; c < Nc; ++c) {
2318: const PetscInt bcidx = b * Nc + c;
2319: const PetscInt qcidx = q * Nc + c;
2321: elemVec[b] += tmpBasis[bcidx] * f0[qcidx];
2322: for (d = 0; d < dE; ++d) elemVec[b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2323: }
2324: }
2325: }
2326: return PETSC_SUCCESS;
2327: }
2329: PetscErrorCode PetscFEUpdateElementVec_Hybrid_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscInt s, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2330: {
2331: const PetscInt dE = T->cdim;
2332: const PetscInt Nq = T->Np;
2333: const PetscInt Nb = T->Nb;
2334: const PetscInt Nc = T->Nc;
2335: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2336: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dE];
2337: PetscInt q, b, c, d;
2339: for (q = 0; q < Nq; ++q) {
2340: for (b = 0; b < Nb; ++b) {
2341: for (c = 0; c < Nc; ++c) {
2342: const PetscInt bcidx = b * Nc + c;
2344: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2345: for (d = 0; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dE + bcidx * dE + d];
2346: }
2347: }
2348: PetscCall(PetscFEPushforward(fe, fegeom, Nb, tmpBasis));
2349: PetscCall(PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer));
2350: for (b = 0; b < Nb; ++b) {
2351: for (c = 0; c < Nc; ++c) {
2352: const PetscInt bcidx = b * Nc + c;
2353: const PetscInt qcidx = q * Nc + c;
2355: elemVec[Nb * s + b] += tmpBasis[bcidx] * f0[qcidx];
2356: for (d = 0; d < dE; ++d) elemVec[Nb * s + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2357: }
2358: }
2359: }
2360: return PETSC_SUCCESS;
2361: }
2363: PetscErrorCode PetscFEUpdateElementMat_Internal(PetscFE feI, PetscFE feJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2364: {
2365: const PetscInt dE = TI->cdim;
2366: const PetscInt NqI = TI->Np;
2367: const PetscInt NbI = TI->Nb;
2368: const PetscInt NcI = TI->Nc;
2369: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2370: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * dE];
2371: const PetscInt NqJ = TJ->Np;
2372: const PetscInt NbJ = TJ->Nb;
2373: const PetscInt NcJ = TJ->Nc;
2374: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2375: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * dE];
2376: PetscInt f, fc, g, gc, df, dg;
2378: for (f = 0; f < NbI; ++f) {
2379: for (fc = 0; fc < NcI; ++fc) {
2380: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2382: tmpBasisI[fidx] = basisI[fidx];
2383: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * dE + df];
2384: }
2385: }
2386: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2387: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2388: for (g = 0; g < NbJ; ++g) {
2389: for (gc = 0; gc < NcJ; ++gc) {
2390: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2392: tmpBasisJ[gidx] = basisJ[gidx];
2393: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * dE + dg];
2394: }
2395: }
2396: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2397: PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2398: for (f = 0; f < NbI; ++f) {
2399: for (fc = 0; fc < NcI; ++fc) {
2400: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2401: const PetscInt i = offsetI + f; /* Element matrix row */
2402: for (g = 0; g < NbJ; ++g) {
2403: for (gc = 0; gc < NcJ; ++gc) {
2404: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2405: const PetscInt j = offsetJ + g; /* Element matrix column */
2406: const PetscInt fOff = eOffset + i * totDim + j;
2408: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2409: for (df = 0; df < dE; ++df) {
2410: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2411: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2412: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2413: }
2414: }
2415: }
2416: }
2417: }
2418: return PETSC_SUCCESS;
2419: }
2421: PetscErrorCode PetscFEUpdateElementMat_Hybrid_Internal(PetscFE feI, PetscBool isHybridI, PetscFE feJ, PetscBool isHybridJ, PetscInt r, PetscInt s, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2422: {
2423: const PetscInt dE = TI->cdim;
2424: const PetscInt NqI = TI->Np;
2425: const PetscInt NbI = TI->Nb;
2426: const PetscInt NcI = TI->Nc;
2427: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2428: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * dE];
2429: const PetscInt NqJ = TJ->Np;
2430: const PetscInt NbJ = TJ->Nb;
2431: const PetscInt NcJ = TJ->Nc;
2432: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2433: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * dE];
2434: const PetscInt so = isHybridI ? 0 : s;
2435: const PetscInt to = isHybridJ ? 0 : s;
2436: PetscInt f, fc, g, gc, df, dg;
2438: for (f = 0; f < NbI; ++f) {
2439: for (fc = 0; fc < NcI; ++fc) {
2440: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2442: tmpBasisI[fidx] = basisI[fidx];
2443: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * dE + df];
2444: }
2445: }
2446: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2447: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2448: for (g = 0; g < NbJ; ++g) {
2449: for (gc = 0; gc < NcJ; ++gc) {
2450: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2452: tmpBasisJ[gidx] = basisJ[gidx];
2453: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * dE + dg];
2454: }
2455: }
2456: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2457: PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2458: for (f = 0; f < NbI; ++f) {
2459: for (fc = 0; fc < NcI; ++fc) {
2460: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2461: const PetscInt i = offsetI + NbI * so + f; /* Element matrix row */
2462: for (g = 0; g < NbJ; ++g) {
2463: for (gc = 0; gc < NcJ; ++gc) {
2464: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2465: const PetscInt j = offsetJ + NbJ * to + g; /* Element matrix column */
2466: const PetscInt fOff = eOffset + i * totDim + j;
2468: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2469: for (df = 0; df < dE; ++df) {
2470: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2471: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2472: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2473: }
2474: }
2475: }
2476: }
2477: }
2478: return PETSC_SUCCESS;
2479: }
2481: PetscErrorCode PetscFECreateCellGeometry(PetscFE fe, PetscQuadrature quad, PetscFEGeom *cgeom)
2482: {
2483: PetscDualSpace dsp;
2484: DM dm;
2485: PetscQuadrature quadDef;
2486: PetscInt dim, cdim, Nq;
2488: PetscFunctionBegin;
2489: PetscCall(PetscFEGetDualSpace(fe, &dsp));
2490: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
2491: PetscCall(DMGetDimension(dm, &dim));
2492: PetscCall(DMGetCoordinateDim(dm, &cdim));
2493: PetscCall(PetscFEGetQuadrature(fe, &quadDef));
2494: quad = quad ? quad : quadDef;
2495: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
2496: PetscCall(PetscMalloc1(Nq * cdim, &cgeom->v));
2497: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->J));
2498: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->invJ));
2499: PetscCall(PetscMalloc1(Nq, &cgeom->detJ));
2500: cgeom->dim = dim;
2501: cgeom->dimEmbed = cdim;
2502: cgeom->numCells = 1;
2503: cgeom->numPoints = Nq;
2504: PetscCall(DMPlexComputeCellGeometryFEM(dm, 0, quad, cgeom->v, cgeom->J, cgeom->invJ, cgeom->detJ));
2505: PetscFunctionReturn(PETSC_SUCCESS);
2506: }
2508: PetscErrorCode PetscFEDestroyCellGeometry(PetscFE fe, PetscFEGeom *cgeom)
2509: {
2510: PetscFunctionBegin;
2511: PetscCall(PetscFree(cgeom->v));
2512: PetscCall(PetscFree(cgeom->J));
2513: PetscCall(PetscFree(cgeom->invJ));
2514: PetscCall(PetscFree(cgeom->detJ));
2515: PetscFunctionReturn(PETSC_SUCCESS);
2516: }