Actual source code: matproduct.c

  1: /*
  2:     Routines for matrix products. Calling procedure:

  4:     MatProductCreate(A,B,C,&D); or MatProductCreateWithMat(A,B,C,D)
  5:     MatProductSetType(D, MATPRODUCT_AB/AtB/ABt/PtAP/RARt/ABC)
  6:     MatProductSetAlgorithm(D, alg)
  7:     MatProductSetFill(D,fill)
  8:     MatProductSetFromOptions(D)
  9:       -> MatProductSetFromOptions_Private(D)
 10:            # Check matrix global sizes
 11:            if the matrices have the same setfromoptions routine, use it
 12:            if not, try:
 13:              -> Query MatProductSetFromOptions_Atype_Btype_Ctype_C(D) from A, B and C (in order)
 14:              if found -> run the specific setup that must set the symbolic operation (these callbacks should never fail)
 15:            if callback not found or no symbolic operation set
 16:              -> Query MatProductSetFromOptions_anytype_C(D) from A, B and C (in order) (e.g, matrices may have inner matrices like MATTRANSPOSEVIRTUAL)
 17:            if dispatch found but combination still not present do
 18:              -> check if B is dense and product type AtB or AB -> if true, basic looping of dense columns
 19:              -> check if triple product (PtAP, RARt or ABC) -> if true, set the Basic routines

 21:     #  The setfromoptions calls MatProductSetFromOptions_Atype_Btype_Ctype should
 22:     #    Check matrix local sizes for mpi matrices
 23:     #    Set default algorithm
 24:     #    Get runtime option
 25:     #    Set D->ops->productsymbolic = MatProductSymbolic_productype_Atype_Btype_Ctype if found

 27:     MatProductSymbolic(D)
 28:       # Call MatProductSymbolic_productype_Atype_Btype_Ctype()
 29:         the callback must set the numeric phase D->ops->productnumeric = MatProductNumeric_productype_Atype_Btype_Ctype

 31:     MatProductNumeric(D)
 32:       # Call the numeric phase

 34:     # The symbolic phases are allowed to set extra data structures and attach those to the product
 35:     # this additional data can be reused between multiple numeric phases with the same matrices
 36:     # if not needed, call
 37:     MatProductClear(D)
 38: */

 40: #include <petsc/private/matimpl.h>

 42: const char *const MatProductTypes[] = {"UNSPECIFIED", "AB", "AtB", "ABt", "PtAP", "RARt", "ABC"};

 44: /* these are basic implementations relying on the old function pointers
 45:  * they are dangerous and should be removed in the future */
 46: static PetscErrorCode MatProductNumeric_PtAP_Unsafe(Mat C)
 47: {
 48:   Mat_Product *product = C->product;
 49:   Mat          P = product->B, AP = product->Dwork;

 51:   PetscFunctionBegin;
 52:   /* AP = A*P */
 53:   PetscCall(MatProductNumeric(AP));
 54:   /* C = P^T*AP */
 55:   PetscCall((*C->ops->transposematmultnumeric)(P, AP, C));
 56:   PetscFunctionReturn(PETSC_SUCCESS);
 57: }

 59: static PetscErrorCode MatProductSymbolic_PtAP_Unsafe(Mat C)
 60: {
 61:   Mat_Product *product = C->product;
 62:   Mat          A = product->A, P = product->B, AP;
 63:   PetscReal    fill = product->fill;

 65:   PetscFunctionBegin;
 66:   PetscCall(PetscInfo((PetscObject)C, "for A %s, P %s is used\n", ((PetscObject)product->A)->type_name, ((PetscObject)product->B)->type_name));
 67:   /* AP = A*P */
 68:   PetscCall(MatProductCreate(A, P, NULL, &AP));
 69:   PetscCall(MatProductSetType(AP, MATPRODUCT_AB));
 70:   PetscCall(MatProductSetAlgorithm(AP, MATPRODUCTALGORITHMDEFAULT));
 71:   PetscCall(MatProductSetFill(AP, fill));
 72:   PetscCall(MatProductSetFromOptions(AP));
 73:   PetscCall(MatProductSymbolic(AP));

 75:   /* C = P^T*AP */
 76:   PetscCall(MatProductSetType(C, MATPRODUCT_AtB));
 77:   PetscCall(MatProductSetAlgorithm(C, MATPRODUCTALGORITHMDEFAULT));
 78:   product->A = P;
 79:   product->B = AP;
 80:   PetscCall(MatProductSetFromOptions(C));
 81:   PetscCall(MatProductSymbolic(C));

 83:   /* resume user's original input matrix setting for A and B */
 84:   product->A     = A;
 85:   product->B     = P;
 86:   product->Dwork = AP;

 88:   C->ops->productnumeric = MatProductNumeric_PtAP_Unsafe;
 89:   PetscFunctionReturn(PETSC_SUCCESS);
 90: }

 92: static PetscErrorCode MatProductNumeric_RARt_Unsafe(Mat C)
 93: {
 94:   Mat_Product *product = C->product;
 95:   Mat          R = product->B, RA = product->Dwork;

 97:   PetscFunctionBegin;
 98:   /* RA = R*A */
 99:   PetscCall(MatProductNumeric(RA));
100:   /* C = RA*R^T */
101:   PetscCall((*C->ops->mattransposemultnumeric)(RA, R, C));
102:   PetscFunctionReturn(PETSC_SUCCESS);
103: }

105: static PetscErrorCode MatProductSymbolic_RARt_Unsafe(Mat C)
106: {
107:   Mat_Product *product = C->product;
108:   Mat          A = product->A, R = product->B, RA;
109:   PetscReal    fill = product->fill;

111:   PetscFunctionBegin;
112:   PetscCall(PetscInfo((PetscObject)C, "for A %s, R %s is used\n", ((PetscObject)product->A)->type_name, ((PetscObject)product->B)->type_name));
113:   /* RA = R*A */
114:   PetscCall(MatProductCreate(R, A, NULL, &RA));
115:   PetscCall(MatProductSetType(RA, MATPRODUCT_AB));
116:   PetscCall(MatProductSetAlgorithm(RA, MATPRODUCTALGORITHMDEFAULT));
117:   PetscCall(MatProductSetFill(RA, fill));
118:   PetscCall(MatProductSetFromOptions(RA));
119:   PetscCall(MatProductSymbolic(RA));

121:   /* C = RA*R^T */
122:   PetscCall(MatProductSetType(C, MATPRODUCT_ABt));
123:   PetscCall(MatProductSetAlgorithm(C, MATPRODUCTALGORITHMDEFAULT));
124:   product->A = RA;
125:   PetscCall(MatProductSetFromOptions(C));
126:   PetscCall(MatProductSymbolic(C));

128:   /* resume user's original input matrix setting for A */
129:   product->A             = A;
130:   product->Dwork         = RA; /* save here so it will be destroyed with product C */
131:   C->ops->productnumeric = MatProductNumeric_RARt_Unsafe;
132:   PetscFunctionReturn(PETSC_SUCCESS);
133: }

135: static PetscErrorCode MatProductNumeric_ABC_Unsafe(Mat mat)
136: {
137:   Mat_Product *product = mat->product;
138:   Mat          A = product->A, BC = product->Dwork;

140:   PetscFunctionBegin;
141:   /* Numeric BC = B*C */
142:   PetscCall(MatProductNumeric(BC));
143:   /* Numeric mat = A*BC */
144:   PetscCall((*mat->ops->matmultnumeric)(A, BC, mat));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: static PetscErrorCode MatProductSymbolic_ABC_Unsafe(Mat mat)
149: {
150:   Mat_Product *product = mat->product;
151:   Mat          B = product->B, C = product->C, BC;
152:   PetscReal    fill = product->fill;

154:   PetscFunctionBegin;
155:   PetscCall(PetscInfo((PetscObject)mat, "for A %s, B %s, C %s is used\n", ((PetscObject)product->A)->type_name, ((PetscObject)product->B)->type_name, ((PetscObject)product->C)->type_name));
156:   /* Symbolic BC = B*C */
157:   PetscCall(MatProductCreate(B, C, NULL, &BC));
158:   PetscCall(MatProductSetType(BC, MATPRODUCT_AB));
159:   PetscCall(MatProductSetAlgorithm(BC, MATPRODUCTALGORITHMDEFAULT));
160:   PetscCall(MatProductSetFill(BC, fill));
161:   PetscCall(MatProductSetFromOptions(BC));
162:   PetscCall(MatProductSymbolic(BC));

164:   /* Symbolic mat = A*BC */
165:   PetscCall(MatProductSetType(mat, MATPRODUCT_AB));
166:   PetscCall(MatProductSetAlgorithm(mat, MATPRODUCTALGORITHMDEFAULT));
167:   product->B     = BC;
168:   product->Dwork = BC;
169:   PetscCall(MatProductSetFromOptions(mat));
170:   PetscCall(MatProductSymbolic(mat));

172:   /* resume user's original input matrix setting for B */
173:   product->B               = B;
174:   mat->ops->productnumeric = MatProductNumeric_ABC_Unsafe;
175:   PetscFunctionReturn(PETSC_SUCCESS);
176: }

178: static PetscErrorCode MatProductSymbolic_Unsafe(Mat mat)
179: {
180:   Mat_Product *product = mat->product;

182:   PetscFunctionBegin;
183:   switch (product->type) {
184:   case MATPRODUCT_PtAP:
185:     PetscCall(MatProductSymbolic_PtAP_Unsafe(mat));
186:     break;
187:   case MATPRODUCT_RARt:
188:     PetscCall(MatProductSymbolic_RARt_Unsafe(mat));
189:     break;
190:   case MATPRODUCT_ABC:
191:     PetscCall(MatProductSymbolic_ABC_Unsafe(mat));
192:     break;
193:   default:
194:     SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "ProductType %s is not supported", MatProductTypes[product->type]);
195:   }
196:   PetscFunctionReturn(PETSC_SUCCESS);
197: }

199: /*@C
200:    MatProductReplaceMats - Replace the input matrices for the matrix-matrix product operation inside the computed matrix

202:    Collective

204:    Input Parameters:
205: +  A - the matrix or `NULL` if not being replaced
206: .  B - the matrix or `NULL` if not being replaced
207: .  C - the matrix or `NULL` if not being replaced
208: -  D - the matrix whose values are computed via a matrix-matrix product operation

210:    Level: intermediate

212:    Note:
213:      To reuse the symbolic phase, the input matrices must have exactly the same data structure as the replaced one.
214:      If the type of any of the input matrices is different than what was previously used, or their symmetry flag changed but
215:      the symbolic phase took advantage of their symmetry, the product is cleared and `MatProductSetFromOptions()`
216:      and `MatProductSymbolic()` are invoked again.

218: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreate()`, `MatProductSetFromOptions()`, `MatProductSymbolic().` `MatProductClear()`
219: @*/
220: PetscErrorCode MatProductReplaceMats(Mat A, Mat B, Mat C, Mat D)
221: {
222:   Mat_Product *product;
223:   PetscBool    flgA = PETSC_TRUE, flgB = PETSC_TRUE, flgC = PETSC_TRUE, isset, issym;

225:   PetscFunctionBegin;
227:   MatCheckProduct(D, 4);
228:   product = D->product;
229:   if (A) {
231:     PetscCall(PetscObjectReference((PetscObject)A));
232:     PetscCall(PetscObjectTypeCompare((PetscObject)product->A, ((PetscObject)A)->type_name, &flgA));
233:     PetscCall(MatIsSymmetricKnown(A, &isset, &issym));
234:     if (product->symbolic_used_the_fact_A_is_symmetric && isset && !issym) { /* symbolic was built around a symmetric A, but the new A is not anymore */
235:       flgA                                           = PETSC_FALSE;
236:       product->symbolic_used_the_fact_A_is_symmetric = PETSC_FALSE; /* reinit */
237:     }
238:     PetscCall(MatDestroy(&product->A));
239:     product->A = A;
240:   }
241:   if (B) {
243:     PetscCall(PetscObjectReference((PetscObject)B));
244:     PetscCall(PetscObjectTypeCompare((PetscObject)product->B, ((PetscObject)B)->type_name, &flgB));
245:     PetscCall(MatIsSymmetricKnown(B, &isset, &issym));
246:     if (product->symbolic_used_the_fact_B_is_symmetric && isset && !issym) {
247:       flgB                                           = PETSC_FALSE;
248:       product->symbolic_used_the_fact_B_is_symmetric = PETSC_FALSE; /* reinit */
249:     }
250:     PetscCall(MatDestroy(&product->B));
251:     product->B = B;
252:   }
253:   if (C) {
255:     PetscCall(PetscObjectReference((PetscObject)C));
256:     PetscCall(PetscObjectTypeCompare((PetscObject)product->C, ((PetscObject)C)->type_name, &flgC));
257:     PetscCall(MatIsSymmetricKnown(C, &isset, &issym));
258:     if (product->symbolic_used_the_fact_C_is_symmetric && isset && !issym) {
259:       flgC                                           = PETSC_FALSE;
260:       product->symbolic_used_the_fact_C_is_symmetric = PETSC_FALSE; /* reinit */
261:     }
262:     PetscCall(MatDestroy(&product->C));
263:     product->C = C;
264:   }
265:   /* Any of the replaced mats is of a different type, reset */
266:   if (!flgA || !flgB || !flgC) {
267:     if (D->product->destroy) PetscCall((*D->product->destroy)(D->product->data));
268:     D->product->destroy = NULL;
269:     D->product->data    = NULL;
270:     if (D->ops->productnumeric || D->ops->productsymbolic) {
271:       PetscCall(MatProductSetFromOptions(D));
272:       PetscCall(MatProductSymbolic(D));
273:     }
274:   }
275:   PetscFunctionReturn(PETSC_SUCCESS);
276: }

278: static PetscErrorCode MatProductNumeric_X_Dense(Mat C)
279: {
280:   Mat_Product *product = C->product;
281:   Mat          A = product->A, B = product->B;
282:   PetscInt     k, K              = B->cmap->N;
283:   PetscBool    t = PETSC_TRUE, iscuda = PETSC_FALSE;
284:   PetscBool    Bcpu = PETSC_TRUE, Ccpu = PETSC_TRUE;
285:   char        *Btype = NULL, *Ctype = NULL;

287:   PetscFunctionBegin;
288:   switch (product->type) {
289:   case MATPRODUCT_AB:
290:     t = PETSC_FALSE;
291:   case MATPRODUCT_AtB:
292:     break;
293:   default:
294:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_SUP, "MatProductNumeric type %s not supported for %s and %s matrices", MatProductTypes[product->type], ((PetscObject)A)->type_name, ((PetscObject)B)->type_name);
295:   }
296:   if (PetscDefined(HAVE_CUDA)) {
297:     VecType vtype;

299:     PetscCall(MatGetVecType(A, &vtype));
300:     PetscCall(PetscStrcmp(vtype, VECCUDA, &iscuda));
301:     if (!iscuda) PetscCall(PetscStrcmp(vtype, VECSEQCUDA, &iscuda));
302:     if (!iscuda) PetscCall(PetscStrcmp(vtype, VECMPICUDA, &iscuda));
303:     if (iscuda) { /* Make sure we have up-to-date data on the GPU */
304:       PetscCall(PetscStrallocpy(((PetscObject)B)->type_name, &Btype));
305:       PetscCall(PetscStrallocpy(((PetscObject)C)->type_name, &Ctype));
306:       PetscCall(MatConvert(B, MATDENSECUDA, MAT_INPLACE_MATRIX, &B));
307:       if (!C->assembled) { /* need to flag the matrix as assembled, otherwise MatConvert will complain */
308:         PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
309:         PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
310:       }
311:       PetscCall(MatConvert(C, MATDENSECUDA, MAT_INPLACE_MATRIX, &C));
312:     } else { /* Make sure we have up-to-date data on the CPU */
313: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
314:       Bcpu = B->boundtocpu;
315:       Ccpu = C->boundtocpu;
316: #endif
317:       PetscCall(MatBindToCPU(B, PETSC_TRUE));
318:       PetscCall(MatBindToCPU(C, PETSC_TRUE));
319:     }
320:   }
321:   for (k = 0; k < K; k++) {
322:     Vec x, y;

324:     PetscCall(MatDenseGetColumnVecRead(B, k, &x));
325:     PetscCall(MatDenseGetColumnVecWrite(C, k, &y));
326:     if (t) {
327:       PetscCall(MatMultTranspose(A, x, y));
328:     } else {
329:       PetscCall(MatMult(A, x, y));
330:     }
331:     PetscCall(MatDenseRestoreColumnVecRead(B, k, &x));
332:     PetscCall(MatDenseRestoreColumnVecWrite(C, k, &y));
333:   }
334:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
335:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
336:   if (PetscDefined(HAVE_CUDA)) {
337:     if (iscuda) {
338:       PetscCall(MatConvert(B, Btype, MAT_INPLACE_MATRIX, &B));
339:       PetscCall(MatConvert(C, Ctype, MAT_INPLACE_MATRIX, &C));
340:     } else {
341:       PetscCall(MatBindToCPU(B, Bcpu));
342:       PetscCall(MatBindToCPU(C, Ccpu));
343:     }
344:   }
345:   PetscCall(PetscFree(Btype));
346:   PetscCall(PetscFree(Ctype));
347:   PetscFunctionReturn(PETSC_SUCCESS);
348: }

350: static PetscErrorCode MatProductSymbolic_X_Dense(Mat C)
351: {
352:   Mat_Product *product = C->product;
353:   Mat          A = product->A, B = product->B;
354:   PetscBool    isdense;

356:   PetscFunctionBegin;
357:   switch (product->type) {
358:   case MATPRODUCT_AB:
359:     PetscCall(MatSetSizes(C, A->rmap->n, B->cmap->n, A->rmap->N, B->cmap->N));
360:     break;
361:   case MATPRODUCT_AtB:
362:     PetscCall(MatSetSizes(C, A->cmap->n, B->cmap->n, A->cmap->N, B->cmap->N));
363:     break;
364:   default:
365:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_SUP, "MatProductSymbolic type %s not supported for %s and %s matrices", MatProductTypes[product->type], ((PetscObject)A)->type_name, ((PetscObject)B)->type_name);
366:   }
367:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)C, &isdense, MATSEQDENSE, MATMPIDENSE, ""));
368:   if (!isdense) {
369:     PetscCall(MatSetType(C, ((PetscObject)B)->type_name));
370:     /* If matrix type of C was not set or not dense, we need to reset the pointer */
371:     C->ops->productsymbolic = MatProductSymbolic_X_Dense;
372:   }
373:   C->ops->productnumeric = MatProductNumeric_X_Dense;
374:   PetscCall(MatSetUp(C));
375:   PetscFunctionReturn(PETSC_SUCCESS);
376: }

378: /* a single driver to query the dispatching */
379: static PetscErrorCode MatProductSetFromOptions_Private(Mat mat)
380: {
381:   Mat_Product      *product = mat->product;
382:   PetscInt          Am, An, Bm, Bn, Cm, Cn;
383:   Mat               A = product->A, B = product->B, C = product->C;
384:   const char *const Bnames[] = {"B", "R", "P"};
385:   const char       *bname;
386:   PetscErrorCode (*fA)(Mat);
387:   PetscErrorCode (*fB)(Mat);
388:   PetscErrorCode (*fC)(Mat);
389:   PetscErrorCode (*f)(Mat) = NULL;

391:   PetscFunctionBegin;
392:   mat->ops->productsymbolic = NULL;
393:   mat->ops->productnumeric  = NULL;
394:   if (product->type == MATPRODUCT_UNSPECIFIED) PetscFunctionReturn(PETSC_SUCCESS);
395:   PetscCheck(A, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing A mat");
396:   PetscCheck(B, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing B mat");
397:   PetscCheck(product->type != MATPRODUCT_ABC || C, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing C mat");
398:   if (product->type != MATPRODUCT_ABC) C = NULL; /* do not use C if not needed */
399:   if (product->type == MATPRODUCT_RARt) bname = Bnames[1];
400:   else if (product->type == MATPRODUCT_PtAP) bname = Bnames[2];
401:   else bname = Bnames[0];

403:   /* Check matrices sizes */
404:   Am = A->rmap->N;
405:   An = A->cmap->N;
406:   Bm = B->rmap->N;
407:   Bn = B->cmap->N;
408:   Cm = C ? C->rmap->N : 0;
409:   Cn = C ? C->cmap->N : 0;
410:   if (product->type == MATPRODUCT_RARt || product->type == MATPRODUCT_ABt) {
411:     PetscInt t = Bn;
412:     Bn         = Bm;
413:     Bm         = t;
414:   }
415:   if (product->type == MATPRODUCT_AtB) {
416:     PetscInt t = An;
417:     An         = Am;
418:     Am         = t;
419:   }
420:   PetscCheck(An == Bm, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_SIZ, "Matrix dimensions of A and %s are incompatible for MatProductType %s: A %" PetscInt_FMT "x%" PetscInt_FMT ", %s %" PetscInt_FMT "x%" PetscInt_FMT, bname,
421:              MatProductTypes[product->type], A->rmap->N, A->cmap->N, bname, B->rmap->N, B->cmap->N);
422:   PetscCheck(!Cm || Cm == Bn, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_SIZ, "Matrix dimensions of B and C are incompatible for MatProductType %s: B %" PetscInt_FMT "x%" PetscInt_FMT ", C %" PetscInt_FMT "x%" PetscInt_FMT,
423:              MatProductTypes[product->type], B->rmap->N, B->cmap->N, Cm, Cn);

425:   fA = A->ops->productsetfromoptions;
426:   fB = B->ops->productsetfromoptions;
427:   fC = C ? C->ops->productsetfromoptions : fA;
428:   if (C) {
429:     PetscCall(PetscInfo(mat, "MatProductType %s for A %s, %s %s, C %s\n", MatProductTypes[product->type], ((PetscObject)A)->type_name, bname, ((PetscObject)B)->type_name, ((PetscObject)C)->type_name));
430:   } else {
431:     PetscCall(PetscInfo(mat, "MatProductType %s for A %s, %s %s\n", MatProductTypes[product->type], ((PetscObject)A)->type_name, bname, ((PetscObject)B)->type_name));
432:   }
433:   if (fA == fB && fA == fC && fA) {
434:     PetscCall(PetscInfo(mat, "  matching op\n"));
435:     PetscCall((*fA)(mat));
436:   }
437:   /* We may have found f but it did not succeed */
438:   if (!mat->ops->productsymbolic) { /* query MatProductSetFromOptions_Atype_Btype_Ctype */
439:     char mtypes[256];
440:     PetscCall(PetscStrncpy(mtypes, "MatProductSetFromOptions_", sizeof(mtypes)));
441:     PetscCall(PetscStrlcat(mtypes, ((PetscObject)A)->type_name, sizeof(mtypes)));
442:     PetscCall(PetscStrlcat(mtypes, "_", sizeof(mtypes)));
443:     PetscCall(PetscStrlcat(mtypes, ((PetscObject)B)->type_name, sizeof(mtypes)));
444:     if (C) {
445:       PetscCall(PetscStrlcat(mtypes, "_", sizeof(mtypes)));
446:       PetscCall(PetscStrlcat(mtypes, ((PetscObject)C)->type_name, sizeof(mtypes)));
447:     }
448:     PetscCall(PetscStrlcat(mtypes, "_C", sizeof(mtypes)));
449: #if defined(__clang__)
450:   #pragma clang diagnostic push
451:   #pragma clang diagnostic ignored "-Wformat-pedantic"
452: #elif defined(__GNUC__) || defined(__GNUG__)
453:   #pragma GCC diagnostic push
454:   #pragma GCC diagnostic ignored "-Wformat"
455: #endif
456:     PetscCall(PetscObjectQueryFunction((PetscObject)A, mtypes, &f));
457:     PetscCall(PetscInfo(mat, "  querying %s from A? %p\n", mtypes, f));
458:     if (!f) {
459:       PetscCall(PetscObjectQueryFunction((PetscObject)B, mtypes, &f));
460:       PetscCall(PetscInfo(mat, "  querying %s from %s? %p\n", mtypes, bname, f));
461:     }
462:     if (!f && C) {
463:       PetscCall(PetscObjectQueryFunction((PetscObject)C, mtypes, &f));
464:       PetscCall(PetscInfo(mat, "  querying %s from C? %p\n", mtypes, f));
465:     }
466:     if (f) PetscCall((*f)(mat));

468:     /* We may have found f but it did not succeed */
469:     /* some matrices (i.e. MATTRANSPOSEVIRTUAL, MATSHELL constructed from MatConvert), knows what to do with their inner matrices */
470:     if (!mat->ops->productsymbolic) {
471:       PetscCall(PetscStrncpy(mtypes, "MatProductSetFromOptions_anytype_C", sizeof(mtypes)));
472:       PetscCall(PetscObjectQueryFunction((PetscObject)A, mtypes, &f));
473:       PetscCall(PetscInfo(mat, "  querying %s from A? %p\n", mtypes, f));
474:       if (!f) {
475:         PetscCall(PetscObjectQueryFunction((PetscObject)B, mtypes, &f));
476:         PetscCall(PetscInfo(mat, "  querying %s from %s? %p\n", mtypes, bname, f));
477:       }
478:       if (!f && C) {
479:         PetscCall(PetscObjectQueryFunction((PetscObject)C, mtypes, &f));
480:         PetscCall(PetscInfo(mat, "  querying %s from C? %p\n", mtypes, f));
481:       }
482:     }
483:     if (f) PetscCall((*f)(mat));
484:   }
485: #if defined(__clang__)
486:   #pragma clang diagnostic pop
487: #elif defined(__GNUC__) || defined(__GNUG__)
488:   #pragma GCC diagnostic pop
489: #endif
490:   /* We may have found f but it did not succeed */
491:   if (!mat->ops->productsymbolic) {
492:     /* we can still compute the product if B is of type dense */
493:     if (product->type == MATPRODUCT_AB || product->type == MATPRODUCT_AtB) {
494:       PetscBool isdense;

496:       PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)B, &isdense, MATSEQDENSE, MATMPIDENSE, ""));
497:       if (isdense) {
498:         mat->ops->productsymbolic = MatProductSymbolic_X_Dense;
499:         PetscCall(PetscInfo(mat, "  using basic looping over columns of a dense matrix\n"));
500:       }
501:     } else if (product->type != MATPRODUCT_ABt) { /* use MatProductSymbolic/Numeric_Unsafe() for triple products only */
502:       /*
503:          TODO: this should be changed to a proper setfromoptions, not setting the symbolic pointer here, because we do not know if
504:                the combination will succeed. In order to be sure, we need MatProductGetProductType to return the type of the result
505:                before computing the symbolic phase
506:       */
507:       PetscCall(PetscInfo(mat, "  symbolic product not supported, using MatProductSymbolic_Unsafe() implementation\n"));
508:       mat->ops->productsymbolic = MatProductSymbolic_Unsafe;
509:     }
510:   }
511:   if (!mat->ops->productsymbolic) PetscCall(PetscInfo(mat, "  symbolic product is not supported\n"));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@C
516:    MatProductSetFromOptions - Sets the options for the computation of a matrix-matrix product operation where the type,
517:    the algorithm etc are determined from the options database.

519:    Logically Collective

521:    Input Parameter:
522: .  mat - the matrix whose values are computed via a matrix-matrix product operation

524:    Options Database Keys:
525: +    -mat_product_clear - Clear intermediate data structures after `MatProductNumeric()` has been called
526: .    -mat_product_algorithm <algorithm> - Sets the algorithm, see `MatProductAlgorithm` for possible values
527: -    -mat_product_algorithm_backend_cpu - Use the CPU to perform the computation even if the matrix is a GPU matrix

529:    Level: intermediate

531:    Note:
532:    The `-mat_product_clear` option reduces memory usage but means that the matrix cannot be re-used for a matrix-matrix product operation

534: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatSetFromOptions()`, `MatProductCreate()`, `MatProductCreateWithMat()`, `MatProductNumeric()`,
535:           `MatProductSetType()`, `MatProductSetAlgorithm()`, `MatProductAlgorithm`
536: @*/
537: PetscErrorCode MatProductSetFromOptions(Mat mat)
538: {
539:   PetscFunctionBegin;
541:   MatCheckProduct(mat, 1);
542:   PetscCheck(!mat->product->data, PetscObjectComm((PetscObject)mat), PETSC_ERR_ORDER, "Cannot call MatProductSetFromOptions with already present data");
543:   PetscObjectOptionsBegin((PetscObject)mat);
544:   PetscCall(PetscOptionsBool("-mat_product_clear", "Clear intermediate data structures after MatProductNumeric() has been called", "MatProductClear", mat->product->clear, &mat->product->clear, NULL));
545:   PetscCall(PetscOptionsDeprecated("-mat_freeintermediatedatastructures", "-mat_product_clear", "3.13", "Or call MatProductClear() after MatProductNumeric()"));
546:   PetscOptionsEnd();
547:   PetscCall(MatProductSetFromOptions_Private(mat));
548:   PetscCheck(mat->product, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing product after setup phase");
549:   PetscFunctionReturn(PETSC_SUCCESS);
550: }

552: /*@C
553:    MatProductView - View the private matrix-matrix algorithm object within a matrix

555:    Logically Collective

557:    Input Parameters:
558: +  mat - the matrix obtained with `MatProductCreate()` or `MatProductCreateWithMat()`
559: -  viewer - where the information on the matrix-matrix algorithm of `mat` should be reviewed

561:    Level: intermediate

563: .seealso: [](chapter_matrices), `MatProductType`, `Mat`, `MatProductSetFromOptions()`, `MatView()`, `MatProductCreate()`, `MatProductCreateWithMat()`
564: @*/
565: PetscErrorCode MatProductView(Mat mat, PetscViewer viewer)
566: {
567:   PetscFunctionBegin;
569:   if (!mat->product) PetscFunctionReturn(PETSC_SUCCESS);
570:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)mat), &viewer));
572:   PetscCheckSameComm(mat, 1, viewer, 2);
573:   if (mat->product->view) PetscCall((*mat->product->view)(mat, viewer));
574:   PetscFunctionReturn(PETSC_SUCCESS);
575: }

577: /* these are basic implementations relying on the old function pointers
578:  * they are dangerous and should be removed in the future */
579: PetscErrorCode MatProductNumeric_AB(Mat mat)
580: {
581:   Mat_Product *product = mat->product;
582:   Mat          A = product->A, B = product->B;

584:   PetscFunctionBegin;
585:   PetscCall((*mat->ops->matmultnumeric)(A, B, mat));
586:   PetscFunctionReturn(PETSC_SUCCESS);
587: }

589: PetscErrorCode MatProductNumeric_AtB(Mat mat)
590: {
591:   Mat_Product *product = mat->product;
592:   Mat          A = product->A, B = product->B;

594:   PetscFunctionBegin;
595:   PetscCall((*mat->ops->transposematmultnumeric)(A, B, mat));
596:   PetscFunctionReturn(PETSC_SUCCESS);
597: }

599: PetscErrorCode MatProductNumeric_ABt(Mat mat)
600: {
601:   Mat_Product *product = mat->product;
602:   Mat          A = product->A, B = product->B;

604:   PetscFunctionBegin;
605:   PetscCall((*mat->ops->mattransposemultnumeric)(A, B, mat));
606:   PetscFunctionReturn(PETSC_SUCCESS);
607: }

609: PetscErrorCode MatProductNumeric_PtAP(Mat mat)
610: {
611:   Mat_Product *product = mat->product;
612:   Mat          A = product->A, B = product->B;

614:   PetscFunctionBegin;
615:   PetscCall((*mat->ops->ptapnumeric)(A, B, mat));
616:   PetscFunctionReturn(PETSC_SUCCESS);
617: }

619: PetscErrorCode MatProductNumeric_RARt(Mat mat)
620: {
621:   Mat_Product *product = mat->product;
622:   Mat          A = product->A, B = product->B;

624:   PetscFunctionBegin;
625:   PetscCall((*mat->ops->rartnumeric)(A, B, mat));
626:   PetscFunctionReturn(PETSC_SUCCESS);
627: }

629: PetscErrorCode MatProductNumeric_ABC(Mat mat)
630: {
631:   Mat_Product *product = mat->product;
632:   Mat          A = product->A, B = product->B, C = product->C;

634:   PetscFunctionBegin;
635:   PetscCall((*mat->ops->matmatmultnumeric)(A, B, C, mat));
636:   PetscFunctionReturn(PETSC_SUCCESS);
637: }

639: /*@
640:    MatProductNumeric - Compute a matrix-matrix product operation with the numerical values

642:    Collective

644:    Input/Output Parameter:
645: .  mat - the matrix whose values are computed via a matrix-matrix product operation

647:    Level: intermediate

649:    Note:
650:    `MatProductSymbolic()` must have been called on `mat` before calling this function

652: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductSetAlgorithm()`, `MatProductSetType()`, `MatProductCreate()`, `MatSetType()`, `MatProductSymbolic()`
653: @*/
654: PetscErrorCode MatProductNumeric(Mat mat)
655: {
656:   PetscLogEvent eventtype = -1;
657:   PetscBool     missing   = PETSC_FALSE;

659:   PetscFunctionBegin;
661:   MatCheckProduct(mat, 1);
662:   switch (mat->product->type) {
663:   case MATPRODUCT_AB:
664:     eventtype = MAT_MatMultNumeric;
665:     break;
666:   case MATPRODUCT_AtB:
667:     eventtype = MAT_TransposeMatMultNumeric;
668:     break;
669:   case MATPRODUCT_ABt:
670:     eventtype = MAT_MatTransposeMultNumeric;
671:     break;
672:   case MATPRODUCT_PtAP:
673:     eventtype = MAT_PtAPNumeric;
674:     break;
675:   case MATPRODUCT_RARt:
676:     eventtype = MAT_RARtNumeric;
677:     break;
678:   case MATPRODUCT_ABC:
679:     eventtype = MAT_MatMatMultNumeric;
680:     break;
681:   default:
682:     SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "ProductType %s is not supported", MatProductTypes[mat->product->type]);
683:   }

685:   if (mat->ops->productnumeric) {
686:     PetscCall(PetscLogEventBegin(eventtype, mat, 0, 0, 0));
687:     PetscUseTypeMethod(mat, productnumeric);
688:     PetscCall(PetscLogEventEnd(eventtype, mat, 0, 0, 0));
689:   } else missing = PETSC_TRUE;

691:   if (missing || !mat->product) {
692:     char errstr[256];

694:     if (mat->product->type == MATPRODUCT_ABC) {
695:       PetscCall(PetscSNPrintf(errstr, 256, "%s with A %s, B %s, C %s", MatProductTypes[mat->product->type], ((PetscObject)mat->product->A)->type_name, ((PetscObject)mat->product->B)->type_name, ((PetscObject)mat->product->C)->type_name));
696:     } else {
697:       PetscCall(PetscSNPrintf(errstr, 256, "%s with A %s, B %s", MatProductTypes[mat->product->type], ((PetscObject)mat->product->A)->type_name, ((PetscObject)mat->product->B)->type_name));
698:     }
699:     PetscCheck(!missing, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Unspecified numeric phase for product %s", errstr);
700:     PetscCheck(mat->product, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing struct after symbolic phase for product %s", errstr);
701:   }

703:   if (mat->product->clear) PetscCall(MatProductClear(mat));
704:   PetscCall(PetscObjectStateIncrease((PetscObject)mat));
705:   PetscFunctionReturn(PETSC_SUCCESS);
706: }

708: /* these are basic implementations relying on the old function pointers
709:  * they are dangerous and should be removed in the future */
710: PetscErrorCode MatProductSymbolic_AB(Mat mat)
711: {
712:   Mat_Product *product = mat->product;
713:   Mat          A = product->A, B = product->B;

715:   PetscFunctionBegin;
716:   PetscCall((*mat->ops->matmultsymbolic)(A, B, product->fill, mat));
717:   mat->ops->productnumeric = MatProductNumeric_AB;
718:   PetscFunctionReturn(PETSC_SUCCESS);
719: }

721: PetscErrorCode MatProductSymbolic_AtB(Mat mat)
722: {
723:   Mat_Product *product = mat->product;
724:   Mat          A = product->A, B = product->B;

726:   PetscFunctionBegin;
727:   PetscCall((*mat->ops->transposematmultsymbolic)(A, B, product->fill, mat));
728:   mat->ops->productnumeric = MatProductNumeric_AtB;
729:   PetscFunctionReturn(PETSC_SUCCESS);
730: }

732: PetscErrorCode MatProductSymbolic_ABt(Mat mat)
733: {
734:   Mat_Product *product = mat->product;
735:   Mat          A = product->A, B = product->B;

737:   PetscFunctionBegin;
738:   PetscCall((*mat->ops->mattransposemultsymbolic)(A, B, product->fill, mat));
739:   mat->ops->productnumeric = MatProductNumeric_ABt;
740:   PetscFunctionReturn(PETSC_SUCCESS);
741: }

743: PetscErrorCode MatProductSymbolic_ABC(Mat mat)
744: {
745:   Mat_Product *product = mat->product;
746:   Mat          A = product->A, B = product->B, C = product->C;

748:   PetscFunctionBegin;
749:   PetscCall((*mat->ops->matmatmultsymbolic)(A, B, C, product->fill, mat));
750:   mat->ops->productnumeric = MatProductNumeric_ABC;
751:   PetscFunctionReturn(PETSC_SUCCESS);
752: }

754: /*@
755:    MatProductSymbolic - Perform the symbolic portion of a matrix-matrix product operation, this creates a data structure for use with the numerical
756:    product to be done with `MatProductNumeric()`

758:    Collective

760:    Input/Output Parameter:
761: .  mat - the matrix whose values are to be computed via a matrix-matrix product operation

763:    Level: intermediate

765:    Note:
766:    `MatProductSetFromOptions()` must have been called on `mat` before calling this function

768: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreate()`, `MatProductCreateWithMat()`, `MatProductSetFromOptions()`, `MatProductNumeric()`, `MatProductSetType()`, `MatProductSetAlgorithm()`
769: @*/
770: PetscErrorCode MatProductSymbolic(Mat mat)
771: {
772:   PetscLogEvent eventtype = -1;
773:   PetscBool     missing   = PETSC_FALSE;

775:   PetscFunctionBegin;
777:   MatCheckProduct(mat, 1);
778:   PetscCheck(!mat->product->data, PetscObjectComm((PetscObject)mat), PETSC_ERR_ORDER, "Cannot run symbolic phase. Product data not empty");
779:   switch (mat->product->type) {
780:   case MATPRODUCT_AB:
781:     eventtype = MAT_MatMultSymbolic;
782:     break;
783:   case MATPRODUCT_AtB:
784:     eventtype = MAT_TransposeMatMultSymbolic;
785:     break;
786:   case MATPRODUCT_ABt:
787:     eventtype = MAT_MatTransposeMultSymbolic;
788:     break;
789:   case MATPRODUCT_PtAP:
790:     eventtype = MAT_PtAPSymbolic;
791:     break;
792:   case MATPRODUCT_RARt:
793:     eventtype = MAT_RARtSymbolic;
794:     break;
795:   case MATPRODUCT_ABC:
796:     eventtype = MAT_MatMatMultSymbolic;
797:     break;
798:   default:
799:     SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "ProductType %s is not supported", MatProductTypes[mat->product->type]);
800:   }
801:   mat->ops->productnumeric = NULL;
802:   if (mat->ops->productsymbolic) {
803:     PetscCall(PetscLogEventBegin(eventtype, mat, 0, 0, 0));
804:     PetscUseTypeMethod(mat, productsymbolic);
805:     PetscCall(PetscLogEventEnd(eventtype, mat, 0, 0, 0));
806:   } else missing = PETSC_TRUE;

808:   if (missing || !mat->product || !mat->ops->productnumeric) {
809:     char errstr[256];

811:     if (mat->product->type == MATPRODUCT_ABC) {
812:       PetscCall(PetscSNPrintf(errstr, 256, "%s with A %s, B %s, C %s", MatProductTypes[mat->product->type], ((PetscObject)mat->product->A)->type_name, ((PetscObject)mat->product->B)->type_name, ((PetscObject)mat->product->C)->type_name));
813:     } else {
814:       PetscCall(PetscSNPrintf(errstr, 256, "%s with A %s, B %s", MatProductTypes[mat->product->type], ((PetscObject)mat->product->A)->type_name, ((PetscObject)mat->product->B)->type_name));
815:     }
816:     PetscCheck(!missing, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Unspecified symbolic phase for product %s. Call MatProductSetFromOptions() first", errstr);
817:     PetscCheck(mat->product, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing struct after symbolic phase for product %s", errstr);
818:   }
819:   PetscFunctionReturn(PETSC_SUCCESS);
820: }

822: /*@
823:    MatProductSetFill - Set an expected fill of the matrix whose values are computed via a matrix-matrix product operation

825:    Collective

827:    Input Parameters:
828: +  mat - the matrix whose values are to be computed via a matrix-matrix product operation
829: -  fill - expected fill as ratio of nnz(mat)/(nnz(A) + nnz(B) + nnz(C)); use `PETSC_DEFAULT` if you do not have a good estimate.
830:           If the product is a dense matrix, this value is not used.

832:    Level: intermediate

834: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductSetFromOptions()`, `MatProductSetType()`, `MatProductSetAlgorithm()`, `MatProductCreate()`
835: @*/
836: PetscErrorCode MatProductSetFill(Mat mat, PetscReal fill)
837: {
838:   PetscFunctionBegin;
840:   MatCheckProduct(mat, 1);
841:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) mat->product->fill = 2.0;
842:   else mat->product->fill = fill;
843:   PetscFunctionReturn(PETSC_SUCCESS);
844: }

846: /*@
847:    MatProductSetAlgorithm - Requests a particular algorithm for a matrix-matrix product operation that will perform to compute the given matrix

849:    Collective

851:    Input Parameters:
852: +  mat - the matrix whose values are computed via a matrix-matrix product operation
853: -  alg - particular implementation algorithm of the matrix product, e.g., `MATPRODUCTALGORITHMDEFAULT`.

855:    Options Database Key:
856: .  -mat_product_algorithm <algorithm> - Sets the algorithm, see `MatProductAlgorithm`

858:    Level: intermediate

860: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductClear()`, `MatProductSetType()`, `MatProductSetFill()`, `MatProductCreate()`, `MatProductAlgorithm`, `MatProductType`
861: @*/
862: PetscErrorCode MatProductSetAlgorithm(Mat mat, MatProductAlgorithm alg)
863: {
864:   PetscFunctionBegin;
866:   MatCheckProduct(mat, 1);
867:   PetscCall(PetscFree(mat->product->alg));
868:   PetscCall(PetscStrallocpy(alg, &mat->product->alg));
869:   PetscFunctionReturn(PETSC_SUCCESS);
870: }

872: /*@
873:    MatProductSetType - Sets a particular matrix-matrix product operation to be used to compute the values of the given matrix

875:    Collective

877:    Input Parameters:
878: +  mat - the matrix whose values are computed via a matrix-matrix product operation
879: -  productype   - matrix product type, e.g., `MATPRODUCT_AB`,`MATPRODUCT_AtB`,`MATPRODUCT_ABt`,`MATPRODUCT_PtAP`,`MATPRODUCT_RARt`,`MATPRODUCT_ABC`,
880:                   see `MatProductType`

882:    Level: intermediate

884:    Note:
885:    The small t represents the transpose operation.

887: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreate()`, `MatProductType`, `MatProductType`,
888:           `MATPRODUCT_AB`, `MATPRODUCT_AtB`, `MATPRODUCT_ABt`, `MATPRODUCT_PtAP`, `MATPRODUCT_RARt`, `MATPRODUCT_ABC`
889: @*/
890: PetscErrorCode MatProductSetType(Mat mat, MatProductType productype)
891: {
892:   PetscFunctionBegin;
894:   MatCheckProduct(mat, 1);
896:   if (productype != mat->product->type) {
897:     if (mat->product->destroy) PetscCall((*mat->product->destroy)(mat->product->data));
898:     mat->product->destroy     = NULL;
899:     mat->product->data        = NULL;
900:     mat->ops->productsymbolic = NULL;
901:     mat->ops->productnumeric  = NULL;
902:   }
903:   mat->product->type = productype;
904:   PetscFunctionReturn(PETSC_SUCCESS);
905: }

907: /*@
908:    MatProductClear - Clears from the matrix any internal data structures related to the computation of the values of the matrix from matrix-matrix product operations

910:    Collective

912:    Input Parameters:
913: .  mat - the matrix whose values are to be computed via a matrix-matrix product operation

915:    Options Database Key:
916: .    -mat_product_clear - Clear intermediate data structures after `MatProductNumeric()` has been called

918:    Level: intermediate

920:    Notes:
921:    This function should be called to remove any intermediate data used to compute the matrix to free up memory.

923:    After having called this function, matrix-matrix product operations can no longer be used on `mat`

925: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreate()`
926: @*/
927: PetscErrorCode MatProductClear(Mat mat)
928: {
929:   Mat_Product *product = mat->product;

931:   PetscFunctionBegin;
933:   if (product) {
934:     PetscCall(MatDestroy(&product->A));
935:     PetscCall(MatDestroy(&product->B));
936:     PetscCall(MatDestroy(&product->C));
937:     PetscCall(PetscFree(product->alg));
938:     PetscCall(MatDestroy(&product->Dwork));
939:     if (product->destroy) PetscCall((*product->destroy)(product->data));
940:   }
941:   PetscCall(PetscFree(mat->product));
942:   mat->ops->productsymbolic = NULL;
943:   mat->ops->productnumeric  = NULL;
944:   PetscFunctionReturn(PETSC_SUCCESS);
945: }

947: /* Create a supporting struct and attach it to the matrix product */
948: PetscErrorCode MatProductCreate_Private(Mat A, Mat B, Mat C, Mat D)
949: {
950:   Mat_Product *product = NULL;

952:   PetscFunctionBegin;
954:   PetscCheck(!D->product, PetscObjectComm((PetscObject)D), PETSC_ERR_PLIB, "Product already present");
955:   PetscCall(PetscNew(&product));
956:   product->A        = A;
957:   product->B        = B;
958:   product->C        = C;
959:   product->type     = MATPRODUCT_UNSPECIFIED;
960:   product->Dwork    = NULL;
961:   product->api_user = PETSC_FALSE;
962:   product->clear    = PETSC_FALSE;
963:   D->product        = product;

965:   PetscCall(MatProductSetAlgorithm(D, MATPRODUCTALGORITHMDEFAULT));
966:   PetscCall(MatProductSetFill(D, PETSC_DEFAULT));

968:   PetscCall(PetscObjectReference((PetscObject)A));
969:   PetscCall(PetscObjectReference((PetscObject)B));
970:   PetscCall(PetscObjectReference((PetscObject)C));
971:   PetscFunctionReturn(PETSC_SUCCESS);
972: }

974: /*@
975:    MatProductCreateWithMat - Set a given matrix to have its values computed via matrix-matrix operations on other matrices.

977:    Collective

979:    Input Parameters:
980: +  A - the first matrix
981: .  B - the second matrix
982: .  C - the third matrix (optional, use `NULL` if not needed)
983: -  D - the matrix whose values are to be computed via a matrix-matrix product operation

985:    Level: intermediate

987:    Notes:
988:    Use `MatProductCreate()` if the matrix you wish computed (the `D` matrix) does not already exist

990:    See `MatProductCreate()` for details on the usage of the matrix-matrix product operations

992:    Any product data currently attached to `D` will be cleared

994: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductType`, `MatProductSetType()`, `MatProductAlgorithm`,
995:           `MatProductSetAlgorithm`, `MatProductCreate()`, `MatProductClear()`
996: @*/
997: PetscErrorCode MatProductCreateWithMat(Mat A, Mat B, Mat C, Mat D)
998: {
999:   PetscFunctionBegin;
1002:   MatCheckPreallocated(A, 1);
1003:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
1004:   PetscCheck(!A->factortype, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");

1008:   MatCheckPreallocated(B, 2);
1009:   PetscCheck(B->assembled, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
1010:   PetscCheck(!B->factortype, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");

1012:   if (C) {
1015:     MatCheckPreallocated(C, 3);
1016:     PetscCheck(C->assembled, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
1017:     PetscCheck(!C->factortype, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
1018:   }

1022:   MatCheckPreallocated(D, 4);
1023:   PetscCheck(D->assembled, PetscObjectComm((PetscObject)D), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
1024:   PetscCheck(!D->factortype, PetscObjectComm((PetscObject)D), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");

1026:   /* Create a supporting struct and attach it to D */
1027:   PetscCall(MatProductClear(D));
1028:   PetscCall(MatProductCreate_Private(A, B, C, D));
1029:   PetscFunctionReturn(PETSC_SUCCESS);
1030: }

1032: /*@
1033:    MatProductCreate - create a matrix to hold the result of a matrix-matrix product operation

1035:    Collective

1037:    Input Parameters:
1038: +  A - the first matrix
1039: .  B - the second matrix
1040: -  C - the third matrix (or `NULL`)

1042:    Output Parameters:
1043: .  D - the matrix whose values are to be computed via a matrix-matrix product operation

1045:    Level: intermediate

1047:    Example:
1048: .vb
1049:     MatProductCreate(A,B,C,&D); or MatProductCreateWithMat(A,B,C,D)
1050:     MatProductSetType(D, MATPRODUCT_AB or MATPRODUCT_AtB or MATPRODUCT_ABt or MATPRODUCT_PtAP or MATPRODUCT_RARt or MATPRODUCT_ABC)
1051:     MatProductSetAlgorithm(D, alg)
1052:     MatProductSetFill(D,fill)
1053:     MatProductSetFromOptions(D)
1054:     MatProductSymbolic(D)
1055:     MatProductNumeric(D)
1056:     Change numerical values in some of the matrices
1057:     MatProductNumeric(D)
1058: .ve

1060:    Notes:
1061:    Use `MatProductCreateWithMat()` if the matrix you wish computed, the `D` matrix, already exists.

1063:    The information computed during the symbolic stage can be reused for new numerical computations with the same non-zero structure

1065:    Developer Note:
1066:    It is undocumented what happens if the nonzero structure of the input matrices changes. Is the symbolic stage automatically redone? Does it crash?
1067:    Is there error checking for it?

1069: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreateWithMat()`, `MatProductSetType()`, `MatProductSetAlgorithm()`, `MatProductClear()`
1070: @*/
1071: PetscErrorCode MatProductCreate(Mat A, Mat B, Mat C, Mat *D)
1072: {
1073:   PetscFunctionBegin;
1078:   PetscCheck(!A->factortype, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix A");
1079:   PetscCheck(!B->factortype, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix B");

1081:   if (C) {
1084:     PetscCheck(!C->factortype, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix C");
1085:   }

1088:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), D));
1089:   /* Delay setting type of D to the MatProduct symbolic phase, as we allow sparse A and dense B */
1090:   PetscCall(MatProductCreate_Private(A, B, C, *D));
1091:   PetscFunctionReturn(PETSC_SUCCESS);
1092: }

1094: /*
1095:    These are safe basic implementations of ABC, RARt and PtAP
1096:    that do not rely on mat->ops->matmatop function pointers.
1097:    They only use the MatProduct API and are currently used by
1098:    cuSPARSE and KOKKOS-KERNELS backends
1099: */
1100: typedef struct {
1101:   Mat BC;
1102:   Mat ABC;
1103: } MatMatMatPrivate;

1105: static PetscErrorCode MatDestroy_MatMatMatPrivate(void *data)
1106: {
1107:   MatMatMatPrivate *mmdata = (MatMatMatPrivate *)data;

1109:   PetscFunctionBegin;
1110:   PetscCall(MatDestroy(&mmdata->BC));
1111:   PetscCall(MatDestroy(&mmdata->ABC));
1112:   PetscCall(PetscFree(data));
1113:   PetscFunctionReturn(PETSC_SUCCESS);
1114: }

1116: static PetscErrorCode MatProductNumeric_ABC_Basic(Mat mat)
1117: {
1118:   Mat_Product      *product = mat->product;
1119:   MatMatMatPrivate *mmabc;

1121:   PetscFunctionBegin;
1122:   MatCheckProduct(mat, 1);
1123:   PetscCheck(mat->product->data, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Product data empty");
1124:   mmabc = (MatMatMatPrivate *)mat->product->data;
1125:   PetscCheck(mmabc->BC->ops->productnumeric, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Missing numeric stage");
1126:   /* use function pointer directly to prevent logging */
1127:   PetscCall((*mmabc->BC->ops->productnumeric)(mmabc->BC));
1128:   /* swap ABC product stuff with that of ABC for the numeric phase on mat */
1129:   mat->product             = mmabc->ABC->product;
1130:   mat->ops->productnumeric = mmabc->ABC->ops->productnumeric;
1131:   /* use function pointer directly to prevent logging */
1132:   PetscUseTypeMethod(mat, productnumeric);
1133:   mat->ops->productnumeric = MatProductNumeric_ABC_Basic;
1134:   mat->product             = product;
1135:   PetscFunctionReturn(PETSC_SUCCESS);
1136: }

1138: PetscErrorCode MatProductSymbolic_ABC_Basic(Mat mat)
1139: {
1140:   Mat_Product      *product = mat->product;
1141:   Mat               A, B, C;
1142:   MatProductType    p1, p2;
1143:   MatMatMatPrivate *mmabc;
1144:   const char       *prefix;

1146:   PetscFunctionBegin;
1147:   MatCheckProduct(mat, 1);
1148:   PetscCheck(!mat->product->data, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Product data not empty");
1149:   PetscCall(MatGetOptionsPrefix(mat, &prefix));
1150:   PetscCall(PetscNew(&mmabc));
1151:   product->data    = mmabc;
1152:   product->destroy = MatDestroy_MatMatMatPrivate;
1153:   switch (product->type) {
1154:   case MATPRODUCT_PtAP:
1155:     p1 = MATPRODUCT_AB;
1156:     p2 = MATPRODUCT_AtB;
1157:     A  = product->B;
1158:     B  = product->A;
1159:     C  = product->B;
1160:     break;
1161:   case MATPRODUCT_RARt:
1162:     p1 = MATPRODUCT_ABt;
1163:     p2 = MATPRODUCT_AB;
1164:     A  = product->B;
1165:     B  = product->A;
1166:     C  = product->B;
1167:     break;
1168:   case MATPRODUCT_ABC:
1169:     p1 = MATPRODUCT_AB;
1170:     p2 = MATPRODUCT_AB;
1171:     A  = product->A;
1172:     B  = product->B;
1173:     C  = product->C;
1174:     break;
1175:   default:
1176:     SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Not for ProductType %s", MatProductTypes[product->type]);
1177:   }
1178:   PetscCall(MatProductCreate(B, C, NULL, &mmabc->BC));
1179:   PetscCall(MatSetOptionsPrefix(mmabc->BC, prefix));
1180:   PetscCall(MatAppendOptionsPrefix(mmabc->BC, "P1_"));
1181:   PetscCall(MatProductSetType(mmabc->BC, p1));
1182:   PetscCall(MatProductSetAlgorithm(mmabc->BC, MATPRODUCTALGORITHMDEFAULT));
1183:   PetscCall(MatProductSetFill(mmabc->BC, product->fill));
1184:   mmabc->BC->product->api_user = product->api_user;
1185:   PetscCall(MatProductSetFromOptions(mmabc->BC));
1186:   PetscCheck(mmabc->BC->ops->productsymbolic, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Symbolic ProductType %s not supported with %s and %s", MatProductTypes[p1], ((PetscObject)B)->type_name, ((PetscObject)C)->type_name);
1187:   /* use function pointer directly to prevent logging */
1188:   PetscCall((*mmabc->BC->ops->productsymbolic)(mmabc->BC));

1190:   PetscCall(MatProductCreate(A, mmabc->BC, NULL, &mmabc->ABC));
1191:   PetscCall(MatSetOptionsPrefix(mmabc->ABC, prefix));
1192:   PetscCall(MatAppendOptionsPrefix(mmabc->ABC, "P2_"));
1193:   PetscCall(MatProductSetType(mmabc->ABC, p2));
1194:   PetscCall(MatProductSetAlgorithm(mmabc->ABC, MATPRODUCTALGORITHMDEFAULT));
1195:   PetscCall(MatProductSetFill(mmabc->ABC, product->fill));
1196:   mmabc->ABC->product->api_user = product->api_user;
1197:   PetscCall(MatProductSetFromOptions(mmabc->ABC));
1198:   PetscCheck(mmabc->ABC->ops->productsymbolic, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Symbolic ProductType %s not supported with %s and %s", MatProductTypes[p2], ((PetscObject)A)->type_name, ((PetscObject)mmabc->BC)->type_name);
1199:   /* swap ABC product stuff with that of ABC for the symbolic phase on mat */
1200:   mat->product              = mmabc->ABC->product;
1201:   mat->ops->productsymbolic = mmabc->ABC->ops->productsymbolic;
1202:   /* use function pointer directly to prevent logging */
1203:   PetscUseTypeMethod(mat, productsymbolic);
1204:   mmabc->ABC->ops->productnumeric = mat->ops->productnumeric;
1205:   mat->ops->productsymbolic       = MatProductSymbolic_ABC_Basic;
1206:   mat->ops->productnumeric        = MatProductNumeric_ABC_Basic;
1207:   mat->product                    = product;
1208:   PetscFunctionReturn(PETSC_SUCCESS);
1209: }

1211: /*@
1212:    MatProductGetType - Returns the type of matrix-matrix product associated with computing values for the given matrix

1214:    Not Collective

1216:    Input Parameter:
1217: .  mat - the matrix whose values are to be computed via a matrix-matrix product operation

1219:    Output Parameter:
1220: .  mtype - the `MatProductType`

1222:    Level: intermediate

1224: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreateWithMat()`, `MatProductSetType()`, `MatProductCreate()`, `MatProductType`, `MatProductAlgorithm`
1225: @*/
1226: PetscErrorCode MatProductGetType(Mat mat, MatProductType *mtype)
1227: {
1228:   PetscFunctionBegin;
1231:   *mtype = MATPRODUCT_UNSPECIFIED;
1232:   if (mat->product) *mtype = mat->product->type;
1233:   PetscFunctionReturn(PETSC_SUCCESS);
1234: }

1236: /*@
1237:    MatProductGetMats - Returns the matrices associated with the matrix-matrix product associated with computing values for the given matrix

1239:    Not Collective

1241:    Input Parameter:
1242: .  mat - the matrix whose values are to be computed via a matrix-matrix product operation

1244:    Output Parameters:
1245: +  A - the first matrix
1246: .  B - the second matrix
1247: -  C - the third matrix (may be `NULL` for some `MatProductType`)

1249:    Level: intermediate

1251: .seealso: [](chapter_matrices), `MatProduct`, `Mat`, `MatProductCreateWithMat()`, `MatProductSetType()`, `MatProductSetAlgorithm()`, `MatProductCreate()`
1252: @*/
1253: PetscErrorCode MatProductGetMats(Mat mat, Mat *A, Mat *B, Mat *C)
1254: {
1255:   PetscFunctionBegin;
1257:   if (A) *A = mat->product ? mat->product->A : NULL;
1258:   if (B) *B = mat->product ? mat->product->B : NULL;
1259:   if (C) *C = mat->product ? mat->product->C : NULL;
1260:   PetscFunctionReturn(PETSC_SUCCESS);
1261: }